Solution 5. We have

(A.92)
$$\mathcal{N}((0,t]) = \sum_{n \in \mathbb{N}} \delta_{T_n}((0,t]) = \sum_{n \in \mathbb{N}} \mathbf{1}_{(0,t]}(T_n) = N_t.$$

We will now check that for all t > 0, the restriction of \mathcal{N} to [0, t] is a RPM with intensity λ times Lebesgue measure (restricted to [0, t]). Conditionally on $\{N_t = n\}$ $(n \in \mathbb{N})$, the jump times are distributed like n uniform random variables on [0, t] (see Exercise 1). Hence, conditionally on $\{N_t = n\}$ and for all Borel sets B_1, \ldots, B_k on [0, t] $(k \in \mathbb{N})$, the random vector $(\mathcal{N}(B_1), \ldots, \mathcal{N}(B_k))$ is distributed as a multinomial random variable with parameters n and $(|B_1|/t, \ldots, |B_k|/t)$, where $|\cdot|$ stands for Lebesgue measure. To remove the restriction to [0, t], one may invoke the superposition property (see Proposition 2.3)

Solution 6. This follows the same idea as in the solution of the previous exercise. Conditionally on $\{N_t = n\}$, the (unordered) set of points $\{(T_i, Z_i), 1 \leq i \leq n\}$ is distributed as a collection of n i.i.d. random variables with law $\mathcal{U}([0,t]) \otimes \nu$. We may deduce thereof that \mathcal{N} is a RPM($\lambda dt \otimes \nu$) on $E = \mathbb{R}_+ \times \mathbb{R}^d$, where dt is Lebesgue measure on the positive half-line.

Solution 7. When m is a finite measure, \mathcal{N} may be written as $\sum_{1 \leq i \leq N} \delta_{X_i}$, where N is $\mathcal{P}(m(E))$ and $(X_i)_{i \in \mathbb{N}}$ is a sequence of independent random variables distributed as m/m(E). Recall that the integral of f w.r.t. Dirac measure δ_x equals f(x). Therefore, we get

(A.93)
$$\int f d\mathcal{N} = \sum_{1 \le i \le N} f(X_i).$$

Solution 8. Define \mathcal{N} as in Exercice 6. To emphasize the distinct roles of time and space, we write $\mathcal{N}(ds, dz)$ instead of $d\mathcal{N}$ (s for time and z for space). Then, one can check that

(A.94)
$$X_t = \int_{(0,t] \times \mathbb{R}^d} z \mathcal{N}(\mathrm{d}s, \mathrm{d}z)$$

This integral is still well defined when $\nu(\mathbb{R}^d) < \infty$, as there will still be a.s. finitely many points in $(0,t] \times \mathbb{R}^d$. Alternatively, one may apply the usual construction with $\nu/\nu(\mathbb{R}^d)$ as jump distribution and replace λ by $\lambda\nu(\mathbb{R}^d)$.

Solution 9. Let \mathcal{N} be a RPM($\lambda dt \otimes d\nu$). By Proposition 2.6, the random variables

(A.95)
$$X_t = \int_{(0,t] \times \mathbb{R}^d} z \mathcal{N}(\mathrm{d} s, \mathrm{d} z).$$

are well-defined and a.s. finite for all t > 0. This defines a compound Poisson process with prescribed jump measure.