Solutions

Solution 1. (1) By a simple change of variable we get that $\left(T_{1}, \ldots, T_{n}\right)$ has density:

$$
\begin{equation*}
\left(t_{1}, \ldots, t_{n}\right) \mapsto \lambda^{n} e^{-\lambda t_{n}} 1_{\left\{0<t_{1}<\ldots<t_{n}\right\}} \tag{A.86}
\end{equation*}
$$

(2) By integrating on the $(n-1)$-first variables we get that T_{n} has density

$$
\begin{equation*}
t_{n} \mapsto \lambda \frac{(\lambda t)^{n-1}}{(n-1)!} e^{-\lambda t} 1_{\{t>0\}}, \tag{A.87}
\end{equation*}
$$

that is a $\Gamma(n, \lambda)$ random variable.
(3) Let $n \in \mathbb{N}_{0}$ and $t \geq 0$. Remind that $T_{0}=0$. We note that $\mathrm{P}\left(N_{t}=n\right)=\mathrm{P}\left(T_{n} \leq t<\right.$ $\left.T_{n+1}\right)$, which we may compute by using the density of $\left(T_{1}, \ldots, T_{n+1}\right)$.
(4) By using the density of $\left(T_{1}, \ldots, T_{n+1}\right)$, one may check that for any measurable function $f: \mathbb{R}_{n} \rightarrow \mathbb{R}_{+}$,

$$
\begin{equation*}
\mathrm{E}\left[f\left(T_{1}, \ldots, T_{n}\right) \mid N_{t}=n\right]=\int_{0 \leq t_{1}<\ldots<t_{n} \leq t} f\left(t_{1}, \ldots, t_{n}\right) \frac{n!}{t^{n}} \mathrm{~d} t_{1} \ldots \mathrm{~d} t_{n} \tag{A.88}
\end{equation*}
$$

(5) Since the process $\left(N_{t}\right)$ is non-decreasing, we get that $\mathrm{P}\left(N_{t}<\infty, \forall t \geq 0\right)=\mathrm{P}\left(N_{k}<\right.$ $\infty, \forall k \in \mathbb{N}$). This probability equals one since N_{k} is finite a.s, for all k in the countable set of integers..

Solution 2. We have for all $t \geq 0$:

$$
\begin{equation*}
N_{c t}=\#\left\{n \geq 1: T_{n} \leq c t\right\}=\#\left\{n \geq 1: T_{n} / c \leq t\right\} \tag{A.89}
\end{equation*}
$$

It is now just a matter of noticing that the increments of the sequence $\left(T_{n} / c\right)_{n \geq 1}$ are independent exponential random variables with parameter $c \lambda$.

Solution 3. We have $\mathrm{P}\left(\Delta N_{t}>0\right)=\sum_{n \in \mathbb{N}} \mathrm{P}\left(T_{n}=t\right)=0$ and $\mathrm{P}\left(\Delta N_{t}=0, \forall t>0\right)=$ $\mathrm{P}\left(T_{1}=+\infty\right)=0$.

Solution 4. The characteristic function of $\left(X_{t}\right)$ may be easily computed by decomposing on the value of N_{t}. With the same technique we get that

$$
\begin{equation*}
\mathrm{E}\left(X_{t}\right)=\mathrm{E}(Z) \mathrm{E}\left(N_{t}\right)=\lambda t \int_{\mathbb{R}^{d}} z \nu(\mathrm{~d} z) \tag{А.90}
\end{equation*}
$$

which yields

$$
\begin{equation*}
\phi_{\bar{X}_{t}}(u)=\exp \left(\lambda t \int_{\mathbb{R}^{d}}\left(e^{i\langle u, z\rangle}-1-i\langle u, z\rangle\right) \nu(\mathrm{d} z)\right) \tag{A.91}
\end{equation*}
$$

Solution 5. We have

$$
\begin{equation*}
\mathcal{N}((0, t])=\sum_{n \in \mathbb{N}} \delta_{T_{n}}((0, t])=\sum_{n \in \mathbb{N}} 1_{(0, t]}\left(T_{n}\right)=N_{t} \tag{A.92}
\end{equation*}
$$

We will now check that for all $t>0$, the restriction of \mathcal{N} to $[0, t]$ is a RPM with intensity λ times Lebesgue measure (restricted to $[0, t])$. Conditionally on $\left\{N_{t}=n\right\}(n \in \mathbb{N})$, the jump times are distributed like n uniform random variables on $[0, t]$ (see Exercise 1). Hence, conditionally on $\left\{N_{t}=n\right\}$ and for all Borel sets B_{1}, \ldots, B_{k} on $[0, t](k \in \mathbb{N})$, the random vector $\left(\mathcal{N}\left(B_{1}\right), \ldots, \mathcal{N}\left(B_{k}\right)\right)$ is distributed as a multinomial random variable with parameters n and $\left(\left|B_{1}\right| / t, \ldots,\left|B_{k}\right| / t\right)$, where $|\cdot|$ stands for Lebesgue measure. To remove the restriction to $[0, t]$, one may invoke the superposition property (see Proposition 2.3)
Solution 6. This follows the same idea as in the solution of the previous exercise. Conditionally on $\left\{N_{t}=n\right\}$, the (unordered) set of points $\left\{\left(T_{i}, Z_{i}\right), 1 \leq i \leq n\right\}$ is distributed as a collection of n i.i.d. random variables with law $\mathcal{U}([0, t]) \otimes \nu$. We may deduce thereof that \mathcal{N} is a $\operatorname{RPM}(\lambda \mathrm{d} t \otimes \nu)$ on $E=\mathbb{R}_{+} \times \mathbb{R}^{d}$, where $\mathrm{d} t$ is Lebesgue measure on the positive half-line.

Solution 7. When m is a finite measure, \mathcal{N} may be written as $\sum_{1 \leq i \leq N} \delta_{X_{i}}$, where N is $\mathcal{P}(m(E))$ and $\left(X_{i}\right)_{i \in \mathbb{N}}$ is a sequence of independent random variables distributed as $m / m(E)$. Recall that the integral of f w.r.t. Dirac measure δ_{x} equals $f(x)$. Therefore, we get

$$
\begin{equation*}
\int f \mathrm{~d} \mathcal{N}=\sum_{1 \leq i \leq N} f\left(X_{i}\right) \tag{A.93}
\end{equation*}
$$

Solution 8. Define \mathcal{N} as in Exercice 6. To emphasize the distinct roles of time and space, we write $\mathcal{N}(\mathrm{d} s, \mathrm{~d} z)$ instead of $\mathrm{d} \mathcal{N}$ (s for time and z for space). Then, one can check that

$$
\begin{equation*}
X_{t}=\int_{(0, t] \times \mathbb{R}^{d}} z \mathcal{N}(\mathrm{~d} s, \mathrm{~d} z) \tag{А.94}
\end{equation*}
$$

This integral is still well defined when $\nu\left(\mathbb{R}^{d}\right)<\infty$, as there will still be a.s. finitely many points in $(0, t] \times \mathbb{R}^{d}$. Alternatively, one may apply the usual construction with $\nu / \nu\left(\mathbb{R}^{d}\right)$ as jump distribution and replace λ by $\lambda \nu\left(\mathbb{R}^{d}\right)$.
Solution 9. Let \mathcal{N} be a $\operatorname{RPM}(\lambda \mathrm{d} t \otimes \mathrm{~d} \nu)$. By Proposition 2.6, the random variables

$$
\begin{equation*}
X_{t}=\int_{(0, t] \times \mathbb{R}^{d}} z \mathcal{N}(\mathrm{~d} s, \mathrm{~d} z) \tag{A.95}
\end{equation*}
$$

are well-defined and a.s. finite for all $t>0$. This defines a compound Poisson process with prescribed jump measure.

Solution 10. Let us denote by μ the probability law under consideration and μ_{n} the law such that $\mu=\mu_{n}^{* n}$.
(1) $\mu_{n}=\mathcal{N}\left(\frac{m}{n}, \frac{\sigma^{2}}{n}\right)$;
(2) $\mu_{n}=\mathcal{P}(\lambda / n)$;
(3) pick μ_{n} as the law of a compound Poisson process with intensity λ / n and jump distribution ν, evaluated at time 1;
(4) pick $\mu_{n}=\operatorname{Gamma}\left(\frac{a}{n}, b\right)$ (when $k \in \mathbb{N}$ recall that $\operatorname{Gamma}(k, b)$ is the law of the sum of k i.i.d. $\mathcal{E}(b)$ random variables); All one needs to prove is that

$$
\begin{equation*}
\operatorname{Gamma}\left(a_{1}, 1\right) * \operatorname{Gamma}\left(a_{2}, 1\right)=\operatorname{Gamma}\left(a_{1}+a_{2}, 1\right) \tag{A.96}
\end{equation*}
$$

(note that b is but a scaling parameter) which can be done via the Laplace transform or the convolution formula.
(5) $\mu_{n}=\delta_{a / n}$.

Solution 11. Let X be a $\operatorname{Ber}(p)$ random variable. Suppose that $X=Y_{1}+Y_{2}$ with Y_{1} and Y_{2} independent and identically distributed. Prove that necessarily $\mathrm{P}\left(Y_{1}=1 / 2\right)=\sqrt{p}$ and $\mathrm{P}\left(Y_{1}=0\right)=\sqrt{1-p}$. This is impossible when $p \in(0,1)$. See Example 9 in [15] for a full solution.

Solution 12. (1) $\Psi(u)=i u m-\frac{u^{2} \sigma^{2}}{2}$;
(2) $\Psi(u)=\lambda\left(e^{i u}-1\right)$;
(3) $\Psi(u)=\lambda \int\left(e^{i u z}-1\right) \nu(\mathrm{d} z)$;
(4) $\Psi(u)=-a \log \left(1-i \frac{u}{b}\right)$, where \log denotes the principal value of the complex logarithm.

Method 1: First compute it when $a \in \mathbb{N}$ using the interpretation of $\Gamma(a, b)$ as the sum of independent exponential variables, then extend the formula to $a \in \mathbb{Q} \cap(0,+\infty)$ using infinite divisibility. To extend it to $a>0$, verify that for all $u \in \mathbb{R}$ the mapping $a>0 \mapsto \int_{0}^{\infty} e^{i u t} t^{a-1} e^{-t} \mathrm{~d} t$ is continuous (by dominated convergence).

Method 2: Let $a>0$ be fixed and $b=1$ (the general case $b>0$ follows by scaling). Using a change of variable, we have for every $\lambda>0$:

$$
\begin{equation*}
\int_{0}^{+\infty} \frac{t^{a-1} e^{-\lambda t}}{\Gamma(a)} \mathrm{d} t=\lambda^{-a} \tag{А.97}
\end{equation*}
$$

Let us now consider these two expressions (in the left and right-hand sides respectively) as functions of the complex variable λ. Both functions are well-defined and holomorphic (that is \mathbb{C}-differentiable) on the open connected set $\{\lambda \in \mathbb{C}: \operatorname{Re}(\lambda)>0\}$ so they coincide on this set, by the Principle of Analytic Continuation [9, Theorems 1 and 2 in Section 1.3]. This set includes complex numbers of the form $1-i u, u \in \mathbb{R}$, which allows to conclude.
(5) $\Psi(u)=i u a$.

Solution 13. For any fixed $u \in \mathbb{R}^{d}$, the function $z \mapsto e^{i\langle u, z\rangle}-1-i\langle u, z\rangle 1_{\{|z| \leq 1\}}$ is bounded (in modulus) by some constant times $1 \wedge|z|^{2}$. Since ν is a Lévy measure, the integral is well-defined.

Solution 14. First of all, the assumption that ν is finite allows us to split in two the integral in (3.3) and proves that c is well-defined. Moreover,

$$
\begin{align*}
& \phi_{Y}(u)=\exp \left(-\frac{1}{2}\langle u, A u\rangle\right) \tag{A.98}\\
& \phi_{\widetilde{Y}}(u)=\exp \left(\int\left(e^{i\langle u, z\rangle}-1\right) \nu(\mathrm{d} z)\right) \quad \text { (see Exercise 4). }
\end{align*}
$$

We conclude by using the independence of Y and \widetilde{Y}.

Solution 15. See Exercise 12.
Solution 16. Let $t>0$. It is enough to check that for all $n \in \mathbb{N}, X$ has a.s. finitely many jumps with modulus larger than $1 / n$ on $[0, t]$. This comes from the fact that X has a.s. càdlàg sample paths. For details, we refer to Theorem 2.8.1 and Lemma 2.3.4 in [1].
Solution 17. In this case we have that $X_{t}=\sum_{s \in(0, t]} \Delta X_{s}=\sum_{s \in(0, t]}\left|\Delta X_{s}\right|$ is finite a.s. hence $\int(1 \wedge|z|) \nu(\mathrm{d} z)$ is finite, by Proposition 4.5.
Solution 18. A Poisson counting process is a subordinator. A CPP with jump measure supported by $(0,+\infty)$ is also a subordinator.

Solution 19. By using stationarity of increments, we get that for all $0<s<t$,

$$
\begin{equation*}
\mathrm{P}\left(X_{t}-X_{s} \geq 0\right)=\mathrm{P}\left(X_{t-s} \geq 0\right)=1 \tag{A.99}
\end{equation*}
$$

From this we deduce that

$$
\begin{equation*}
\mathrm{P}\left(X_{t}-X_{s} \geq 0, \forall s, t \in \mathbb{Q}: 0<s<t\right)=1 \tag{A.100}
\end{equation*}
$$

and we conclude by right-continuity of the paths.
Solution 20. The corresponding Lévy-Itô decomposition writes

$$
\begin{equation*}
X_{t}=b t+\int_{(0, t] \times(0,+\infty)} z \mathcal{N}(\mathrm{~d} s, \mathrm{~d} z) \tag{A.101}
\end{equation*}
$$

where $b \geq 0$ and \mathcal{N} is a RPM on $(0,+\infty)^{2}$ with intensity measure $\mathrm{d} t \otimes \nu$.
Solution 21. (1) By continuity of the Brownian sample paths,

$$
\begin{equation*}
T_{a}=\inf \left\{t \geq 0: B_{t} \geq a\right\} \tag{A.102}
\end{equation*}
$$

from which we get that $a \mapsto T_{a}$ is a.s. non-decreasing (and T_{a} is a stopping time w.r.t. to the filtration generated by B, since $[a,+\infty)$ is a closed set, see [8, Proposition 3.9]). Let us now prove that it is a Lévy process. First, let us show that sample paths are càdlàg. The existence of left limits are a direct consequence of monotonicity. If T were not right-continuous at $a \geq 0$, there would exist $\varepsilon>0$ such that $B_{t} \leq a$ for all $t \in\left[T_{a}, T_{a}+\varepsilon\right]$, which cannot happen. Indeed, conditionally on $T_{a}<+\infty$ (which is a.s. satisfied), $\left(B_{T_{a}+t}-a\right)$ is distributed as Brownian motion (strong Markov property) and it is known that the set of return times to the origin of a Brownian motion has 0 as accumulation point. Let us now prove that the process has independent and stationary increments, i.e. for every $0 \leq a \leq b$, the random variable $T_{b}-T_{a}$ is independent of $\sigma\left(T_{c}, 0 \leq c \leq a\right)$ and is distributed as T_{b-a}. First, note that if $c \leq a$ then $T_{c} \leq T_{a}$ and then T_{c} is $\mathcal{F}_{T_{a}}$ measurable. By using the strong Markov property and stationary increments of Brownian motion, we get for all $t \geq 0$, a.s (recall that $\left.\mathrm{P}\left(T_{a}<\infty\right)=1\right):$

$$
\begin{align*}
\mathrm{P}\left(T_{b}-T_{a} \geq t \mid \mathcal{F}_{T_{a}}\right) & =\mathrm{P}\left(\sup _{0 \leq s \leq t} B_{T_{a}+s} \leq b \mid \mathcal{F}_{T_{a}}\right) \\
& =\mathrm{P}\left(\sup _{0 \leq s \leq t} B_{s} \leq b \mid B_{0}=a\right) \tag{A.103}\\
& =\mathrm{P}\left(\sup _{0 \leq s \leq t} B_{s} \leq b-a\right) \\
& =\mathrm{P}\left(T_{b-a} \geq t\right),
\end{align*}
$$

which completes the proof.
(2) If the process $\left(T_{a}\right)$ had a.s. continuous sample paths then by Corollary 4.1 and Theorem 4.2 it would write $T_{a}=c a$ for some $c>0$, which is absurd.
(3) Apply Doob's optional stopping theorem to the martingale $\left(\exp \left(\lambda B_{s}-\frac{1}{2} \lambda^{2} s\right)\right)_{s \geq 0}$ and bounded stopping time $t \wedge T_{a}$, then let $t \rightarrow \infty$.
(4) By using the change of variable hinted on, we see that \mathcal{L} satisfies a $\mathcal{L}(u)=-(2 u)^{1 / 2} t \mathcal{L}^{\prime}(u)$ for $u>0$, with the initial condition $\mathcal{L}(0)=1$. The unique solution is $\mathcal{L}(u)=$ $\exp (-a \sqrt{2 u})$ (it is actually enough to check this for $a=1$, why?). Therefore, $\mathcal{L}(u)=\mathrm{E}\left(e^{-u T_{a}}\right)$ for all $u \geq 0$, which completes the proof (Laplace transforms characterize probability distributions on $[0, \infty)$).

Solution 22. The process M has continuous sample paths and is non-decreasing a.s. If it were a subordinator then, by Corollary 4.1 and Theorem 4.2, we would get $M_{t}=b t$ for some $b \geq 0$ and all $t \geq 0$, which is absurd.
Solution 23. For all $u \geq 0$, we have

$$
\begin{equation*}
\int_{0}^{\infty}\left(1-e^{-u z}\right) \frac{\mathrm{d} z}{z^{1+\alpha}}=\Gamma(1-\alpha) \frac{u^{\alpha}}{\alpha} \tag{A.104}
\end{equation*}
$$

(Write $1-e^{-u z}=\int_{0}^{z} u e^{-u y} \mathrm{~d} y$ and interchange integrals). Therefore,

$$
\begin{equation*}
\mathcal{L}(u)=\exp \left(-b u-u^{\alpha}+u \int_{0}^{1} z \nu(\mathrm{~d} z)\right) \tag{A.105}
\end{equation*}
$$

and it is enough to pick $b=\int_{0}^{1} z \nu(\mathrm{~d} z)=\frac{\alpha}{(1-\alpha) \Gamma(1-\alpha)}$.
Solution 24. Using the solution to Exercise 23 with $\alpha=1 / 2$, we see that the jump measure of the process of Brownian ladder times must be

$$
\begin{equation*}
\nu(\mathrm{d} z)=\frac{\mathrm{d} z}{\Gamma(1 / 2) \sqrt{2 z^{3}}} \tag{A.106}
\end{equation*}
$$

Solution 25. (1) The random variable Y_{j} is bounded and $\widetilde{\mathcal{N}}\left(\left(t_{j}, t_{j+1}\right] \times A_{i}\right)$ is squareintegrable (we recall that $\nu\left(A_{i}\right)$ is finite) so $Y_{j} \widetilde{\mathcal{N}}\left(\left(t_{j}, t_{j+1}\right] \times A_{i}\right)$ is square-integrable for all i and j. A finite sum of square-integrable random variables is square-integrable. Since Y_{j} is $\mathcal{F}_{t_{j}}$-measurable and $\widetilde{\mathcal{N}}\left(\left(t_{j}, t_{j+1}\right] \times A_{i}\right)$ is independent from $\mathcal{F}_{t_{j}}$, we get

$$
\begin{equation*}
\mathrm{E}\left[Y_{j} \tilde{\mathcal{N}}\left(\left(t_{j}, t_{j+1}\right] \times A_{i}\right)\right]=0 \tag{A.107}
\end{equation*}
$$

so $I_{T}(F)$ is centered.
(2) The mapping I_{T} is clearly linear so it remains to prove that $\mathrm{E}\left(I_{T}(F)^{2}\right)=\|F\|_{\mathcal{H}^{2}(T)}^{2}$. For convenience, let us define for every i and j,

$$
\begin{equation*}
I_{i, j}=Y_{j} \tilde{\mathcal{N}}\left(\left(t_{j}, t_{j+1}\right] \times A_{i}\right) \tag{A.108}
\end{equation*}
$$

so that

$$
\begin{equation*}
I_{T}(F)=\sum_{1 \leq j \leq m}\left(\sum_{1 \leq i \leq n} c_{i} I_{i, j}\right) \tag{A.109}
\end{equation*}
$$

Since Y_{j} is $\mathcal{F}_{t_{j}}$-measurable and $\tilde{\mathcal{N}}\left(\left(t_{j}, t_{j+1}\right] \times A_{i}\right)$ is centered and independent from $\mathcal{F}_{t_{j}}$, one may check that the random variables $\left(\sum_{i} c_{i} I_{i, j}\right)_{1 \leq j \leq m}$'s are orthogonal. Therefore,

$$
\begin{align*}
\mathrm{E}\left(I_{T}(F)^{2}\right) & =\sum_{1 \leq j \leq m} \mathrm{E}\left[\left(\sum_{1 \leq i \leq n} c_{i} I_{i, j}\right)^{2}\right] \tag{A.110}\\
& =\sum_{1 \leq j \leq m} \operatorname{Var}\left(\sum_{1 \leq i \leq n} c_{i} I_{i, j}\right) .
\end{align*}
$$

Since the $\left(A_{i}\right)_{1 \leq i \leq n}$'s are disjoint, we get from Proposition 2.4 that for every j, the random variables $\left(I_{i, j}\right)_{1 \leq i \leq n}$'s are independent, hence

$$
\begin{align*}
\mathrm{E}\left[I_{T}(F)^{2}\right] & =\sum_{1 \leq j \leq m} \sum_{1 \leq i \leq m} c_{i}^{2} \operatorname{Var}\left(I_{i, j}\right) \\
& =\sum_{1 \leq j \leq m} \sum_{1 \leq i \leq n} c_{i}^{2} \mathrm{E}\left[Y_{j}^{2} \widetilde{\mathcal{N}}\left(\left(t_{j}, t_{j+1}\right] \times A_{i}\right)^{2}\right] \tag{A.111}\\
& =\sum_{1 \leq j \leq m} \sum_{1 \leq i \leq n} c_{i}^{2} \mathrm{E}\left[Y_{j}^{2}\right]\left(t_{j+1}-t_{j}\right) \nu\left(A_{i}\right)=\|F\|_{\mathcal{H}^{2}(T)}^{2}
\end{align*}
$$

(3) Let $G \in \mathcal{H}^{2}(T)$ such that G is orthogonal to \mathcal{S}. It is enough to show that $G=0$, $\mathrm{d} t \otimes \nu \otimes \mathrm{P}$-a.s (see Lemma A.1). Let $A \in \mathcal{B}\left(\mathbb{R}^{d}\right)$ such that $\nu(A)<\infty, s \leq t \leq T$ and Y_{s} a bounded and \mathcal{F}_{s}-measurable random variable. Consider

$$
\begin{equation*}
F(r, z)=Y_{s} 1_{(s, t]}(r) 1_{A}(z) . \tag{A.112}
\end{equation*}
$$

Then

$$
\begin{equation*}
0=\langle F, G\rangle_{\mathcal{H}^{2}}=\int_{(s, t] \times A} \mathrm{E}\left[Y_{s} G(r, z)\right] \mathrm{d} r \nu(\mathrm{~d} z) \tag{A.113}
\end{equation*}
$$

Define the following process:

$$
\begin{equation*}
X_{t}^{(A)}:=\int_{(0, t] \times A} G(r, z) \mathrm{d} r \nu(\mathrm{~d} z), \quad 0 \leq t \leq T \tag{A.114}
\end{equation*}
$$

One may check that it is square-integrable and adapted. Indeed,

- By Jensen's inequality, $\mathrm{E}\left[\left(X_{t}^{(A)}\right)^{2}\right] \leq t \nu(A)\|G\|_{\mathcal{H}^{2}(T)}^{2}<+\infty$.
- Since G is predictable, the mapping

$$
\begin{equation*}
(\omega, z) \in \Omega \times \mathbb{R}^{d} \mapsto \int_{(0, t]} G(r, z) 1_{A}(z) \mathrm{d} r \tag{A.115}
\end{equation*}
$$

is $\mathcal{B}\left(\mathbb{R}^{d}\right) \otimes \mathcal{F}_{t}$-measurable ${ }^{* *}$. By Fubini's theorem, we readily obtain that

$$
\omega \in \Omega \mapsto \int_{(0, t] \times \mathbb{R}^{d}} G(r, z) 1_{A}(z) \mathrm{d} r \nu(\mathrm{~d} z)
$$

is \mathcal{F}_{t}-measurable.
By (A.113), we get that $\mathrm{E}\left[Y_{s}\left(X_{t}^{(A)}-X_{s}^{(A)}\right)\right]=0$, which yields

$$
\begin{equation*}
\mathrm{E}\left[X_{t}^{(A)} \mid \mathcal{F}_{s}\right]=X_{s}^{(A)} \tag{A.117}
\end{equation*}
$$

Hence, $\left(X_{t}^{(A)}\right)$ is an \mathcal{F}-martingale. Moreover, one can check that this is a process with finite variations (difference between two non-decreasing processes, see [8, Section 4.1]). Hence, it is a.s. constant (see [8, Theorem 4.8]), so $X_{t}^{(A)}=X_{0}^{(A)}=0$ P-a.s. Let us now deduce that $G=0, \mathrm{~d} t \otimes \nu \otimes \mathrm{P}-a . s$, with the help of a monotone class argument. To this end, define

$$
\begin{equation*}
\mathcal{C}=\left\{C \subseteq[0, T] \times \mathbb{R}: \int_{C} G(r, z) \mathrm{d} r \nu(\mathrm{~d} z)=0 \quad \mathrm{P}-\text { a.s. }\right\} \tag{A.118}
\end{equation*}
$$

We have proven so far that \mathcal{C} contains the set

$$
\begin{equation*}
\mathcal{C}_{0}:=\{(s, t] \times A, \quad 0 \leq s \leq t \leq T, \quad A \in \mathcal{B}(\mathbb{R})\} \tag{A.119}
\end{equation*}
$$

that is a π-system generating $\mathcal{B}([0, T]) \otimes \mathcal{B}(\mathbb{R})$. Furthermore, one can check that \mathcal{C} is a monotone class. By Dynkin's theorem, the property defining \mathcal{C} is therefore valid for all sets in $\mathcal{B}([0, T]) \otimes \mathcal{B}(\mathbb{R})$. The reader may check that this implies $G=0, \mathrm{~d} t \otimes \nu \otimes \mathrm{P}$-a.s. Hint : use $\{G \geq 0\}$ and $\{G \leq 0\}$ as test sets.
(4) Since \mathcal{S} is dense, the isometry may be uniquely extended to $\mathcal{H}^{2}(T)$.

Solution 26. Pick $b(t)=b, \sigma(t)=\sigma, H(t, z)=K(t, z)=z$ for all (t, z).
Solution 27. (1) We have $N_{t}=\int_{0}^{t} \int_{|z| \geq 1} \mathcal{N}(\mathrm{~d} s, \mathrm{~d} z)$ where \mathcal{N} is a $\operatorname{RPM}\left(\lambda \mathrm{d} t \otimes \delta_{1}\right)$. We may then write $\mathrm{d} N_{s}:=\int_{|z| \geq 1} \mathcal{N}(\mathrm{~d} s, \mathrm{~d} z)$, that is a RPM on $(0, \infty)$ with intensity $\lambda \mathrm{d} t$ (i.e. a homogeneous Poisson point process with intensity $\lambda>0$). By analogy with compensated Poisson measures we define $\mathrm{d} \widetilde{N}_{s}$ as the signed measure $\mathrm{d} N_{s}-\lambda \mathrm{d} s$.
(2) We have, with the usual notations,
(A.120)

$$
\int_{0}^{t} f(s) \mathrm{d} N_{s}=\sum_{1 \leq i \leq N_{t}} f\left(T_{i}\right) \quad \text { and } \quad \int_{0}^{t} f(s) \mathrm{d} \widetilde{N}_{s}=\sum_{1 \leq i \leq N_{t}} f\left(T_{i}\right)-\lambda \int_{0}^{t} f(s) \mathrm{d} s
$$

(3) $\int_{0}^{t} B_{s} \mathrm{~d} N_{s}=\sum_{1 \leq i \leq N_{t}} B_{T_{i}}$.
(4) The presence of s^{-}instead of s is here to ensure predictability of the process $\left(N_{s^{-}}\right)$. We have

$$
\begin{equation*}
X_{t}=\int_{0}^{t} N_{s^{-}} \mathrm{d} N_{s}=\sum_{1 \leq i \leq N_{t}} N_{T_{i}^{-}}=\sum_{1 \leq i \leq N_{t}}(i-1)=\frac{N_{t}\left(N_{t}-1\right)}{2} \tag{A.121}
\end{equation*}
$$

[^0](with the convention that the sum over an empty set is zero, which is consistent with the case $N_{t}=0$). Note that X_{t} is not equal to $\frac{1}{2} N_{t}^{2}$, as we would get from a blind application of standard (non-stochastic) calculus. Let us now look at the compensated version:
\[

$$
\begin{equation*}
\widetilde{X}_{t}:=\int_{0}^{t} N_{s^{-}} \mathrm{d} \widetilde{N}_{s}=\frac{N_{t}\left(N_{t}-1\right)}{2}-\lambda \int_{0}^{t} N_{s^{-}} \mathrm{d} s \tag{A.122}
\end{equation*}
$$

\]

from which we get by a straightforward computation that $\mathrm{E}\left(\widetilde{X}_{t}\right)=0$. As one can check, this would no longer hold if we were to replace $N_{s^{-}}$by N_{s} in the definition of X_{t}.
(5) Apply Itô's formula with $f(t, z)=z^{2}$ and $K(t, z)=1$. Only the first term of (III) is present. We get

$$
\begin{equation*}
\mathrm{d} Y_{t}=\left[\left(N_{t^{-}}+1\right)^{2}-N_{t^{-}}^{2}\right] \mathrm{d} N_{t}=\left(2 N_{t^{-}}+1\right) \mathrm{d} N_{t} \tag{A.123}
\end{equation*}
$$

One may check that this is consistent with our previous answer.
Solution 28. Let us write both formulas (in one dimension) next to each other to highlight the analogy:

$$
\begin{align*}
\mathcal{L} f(x) & =b f^{\prime}(x)+\frac{1}{2} \sigma^{2} f^{\prime \prime}(x)+\int_{\mathbb{R}}\left[f(x+z)-f(x)-z f^{\prime}(x) 1_{\{|z| \leq 1\}}\right] \nu(\mathrm{d} z) \tag{A.124}\\
\Psi(u) & =i b u-\frac{1}{2} a u^{2}+\int_{\mathbb{R}^{d}}\left(e^{i u z}-1-i u z 1_{\{|z| \leq 1\}}\right) \nu(\mathrm{d} z)
\end{align*}
$$

Derivation corresponds to multiplication by iu in Fourier mode (hence differentiating twice corresponds to multiplication by $(i u)^{2}=-u^{2}$) and shifting by z corresponds to multiplication by $e^{i u z}$ (addition of a phase).

Solution 29. Check Assumption 6.1 with $b(y):=b y, \sigma(y):=\sigma^{2} y$ and $F(y, z)=G(y, z):=$ $y z$.
Solution 30. (1) By using Remark 7.1, we may write $S_{t}=\exp \left(L_{t}\right)$ with

$$
\begin{align*}
L_{t}=b t & -\frac{1}{2} \sigma^{2} t+t \int_{|z| \leq 1}(\log (1+z)-z) \nu(\mathrm{d} z) \tag{A.125}\\
& +\sigma B_{t}+\int_{0}^{t} \int_{|z|>1} \log (1+z) \mathcal{N}(\mathrm{d} s, \mathrm{~d} z)+\int_{0}^{t} \int_{|z| \leq 1} \log (1+z) \widetilde{\mathcal{N}}(\mathrm{d} s, \mathrm{~d} z)
\end{align*}
$$

The last two integrals are well-defined because $\log (1+z) \sim_{0} z$ and ν is a Lévy measure.
(2) One may check that L is a Lévy process with triplet $(\bar{b}, \sigma, \bar{\nu})$, where

$$
\begin{align*}
\bar{b}=b-\frac{1}{2} \sigma^{2}+ & \int_{|z| \leq 1}(\log (1+z)-z) \nu(\mathrm{d} z) \\
& +\int_{1}^{e-1} \log (1+z) \nu(\mathrm{d} z)-\int_{-1}^{1 / e-1} \log (1+z) \nu(\mathrm{d} z) \tag{A.126}
\end{align*}
$$

and

$$
\begin{equation*}
\bar{\nu}(A)=\nu(\{z>-1: \log (1+z) \in A\}), \quad A \in \mathcal{B}(\mathbb{R}) \tag{A.127}
\end{equation*}
$$

The only non-trivial part is to check that $\bar{\nu}$ is indeed a Lévy measure.
(3) We get
(A.128)

$$
\begin{aligned}
\mathrm{d} f\left(L_{t}\right)= & f^{\prime}\left(L_{t}\right) b \mathrm{~d} t-\frac{1}{2} \sigma^{2} f^{\prime}\left(L_{t}\right) \mathrm{d} t+\int_{|z| \leq 1}(\log (1+z)-z) \nu(\mathrm{d} z) f^{\prime}\left(L_{t}\right) \mathrm{d} t+\sigma f^{\prime}\left(L_{t}\right) \mathrm{d} B_{t} \\
& +\frac{1}{2} f^{\prime \prime}\left(L_{t}\right) \sigma^{2} \mathrm{~d} t+\int_{|z|>1}\left[f\left(L_{t^{-}}+\log (1+z)\right)-f\left(L_{t^{-}}\right)\right] \mathcal{N}(\mathrm{d} t, \mathrm{~d} z) \\
& +\int_{|z| \leq 1}\left[f\left(L_{t^{-}}+\log (1+z)\right)-f\left(L_{t^{-}}\right)\right] \tilde{\mathcal{N}}(\mathrm{d} t, \mathrm{~d} z) \\
& +\int_{|z| \leq 1}\left[f\left(L_{t^{-}}+\log (1+z)\right)-f\left(L_{t^{-}}\right)-\log (1+z) f^{\prime}\left(L_{t^{-}}\right)\right] \mathrm{d} t \nu(\mathrm{~d} z)
\end{aligned}
$$

(4) Applying it to $f=\exp$ and simplifying, we get

$$
\begin{equation*}
\mathrm{d} S_{t}=S_{t^{-}}\left[b \mathrm{~d} t+\sigma \mathrm{d} B_{t}+\int_{|z|>1} z \mathcal{N}(\mathrm{~d} t, \mathrm{~d} z)+\int_{|z| \leq 1} z \tilde{\mathcal{N}}(\mathrm{~d} t, \mathrm{~d} z)\right]=S_{t^{-}} \mathrm{d} X_{t} \tag{A.129}
\end{equation*}
$$

Solution 31. Left to reader.
Solution 32. Using the same notation as in Exercise 30, we get the (necessary and sufficient) condition:

$$
\begin{equation*}
\bar{b}+\frac{1}{2} \sigma^{2}+\int\left(e^{z}-1-z 1_{\{|z| \leq 1\}}\right) \bar{\nu}(\mathrm{d} z)=0 \tag{A.130}
\end{equation*}
$$

which simplifies as

$$
\begin{equation*}
b+\int_{|z|>1} z \nu(\mathrm{~d} z)=0 \tag{A.131}
\end{equation*}
$$

Solution 33. The case treated in (7.7) corresponds to $\nu_{i}=\lambda_{i} \delta_{1}$, where $(i \in\{1,2\})$, hence $\phi(z)=\log \left(\lambda_{1} / \lambda_{2}\right)$ and we obtain
(A.132)

$$
\nu_{1}(\mathbb{R})-\nu_{2}(\mathbb{R})=\lambda_{1}-\lambda_{2}, \quad \sum_{0<s \leq t} \phi\left(\Delta X_{s}\right)=\log \left(\lambda_{1} / \lambda_{2}\right) \sum_{\substack{0<s \leq t \\\left(\Delta X_{s} \neq 0\right)}} 1=\log \left(\lambda_{1} / \lambda_{2}\right) N_{t}
$$

Solution 34. Left to reader.

Solution 35. (1) We proceed by backward iteration. The formula clearly holds for $k=n$. Let $1 \leq k<n$ and assume that the formula holds for $k+1$. Using what we know from the one-step model, we get

$$
\begin{equation*}
W_{k}\left(X_{1}, \ldots, X_{k}\right)=q W_{k+1}\left(X_{1}, \ldots, X_{k},+\right)+(1-q) W_{k+1}\left(X_{1}, \ldots, X_{k},-\right) \tag{A.133}
\end{equation*}
$$

with

$$
\begin{equation*}
q=\frac{1-1 / e}{e-1 / e}=\frac{e-1}{e^{2}-1}=\frac{1}{1+e} \tag{A.134}
\end{equation*}
$$

We conclude by using the formula at step $k+1$.
(2) Same idea, with this time $A_{0} / A_{1}=e^{-r}$ and

$$
\begin{equation*}
q=\frac{e^{r+1}-1}{e^{2}-1} \tag{A.135}
\end{equation*}
$$

(3) Check that $\mathrm{E}\left[e^{X_{1}}\right]=e^{r}$.

Solution 36. Let us denote by Q_{t} the restriction of Q to events in \mathcal{F}_{t}. By the martingale property we get $Q_{t}(\Omega)=\mathrm{E}_{P}\left(e^{Y_{t}}\right)=\mathrm{E}_{P}\left(e^{Y_{0}}\right)=1$ and the consistency condition:

$$
\begin{equation*}
Q_{t}(A)=\mathrm{E}_{P}\left(e^{Y_{t}} A\right)=\mathrm{E}_{P}\left(e^{Y_{s}} A\right)=Q_{s}(A), \quad 0 \leq s \leq t, A \in \mathcal{F}_{s} \tag{A.136}
\end{equation*}
$$

We conclude by Kolmogorov's extension theorem.
Solution 37. By taking logarithm, we have

$$
\begin{equation*}
\mathrm{d}\left(\log S_{t}\right)=\sigma \mathrm{d} B_{t}+\left(\mu-\frac{1}{2} \sigma^{2}\right) \mathrm{d} t \tag{A.137}
\end{equation*}
$$

hence

$$
\begin{equation*}
\mathrm{d}\left(\log \widetilde{S}_{t}\right)=\left(\sigma \mathrm{d} B_{Q}(t)-\frac{1}{2} \sigma^{2} \mathrm{~d} t\right)+(\mu-r+\sigma F(t)) \mathrm{d} t \tag{A.138}
\end{equation*}
$$

The only possible choice is

$$
\begin{equation*}
F(t)=\frac{r-\mu}{\sigma}, \quad \forall t \geq 0 \tag{A.139}
\end{equation*}
$$

in which case, by Itô's formula,

$$
\begin{equation*}
\mathrm{d} \widetilde{S}_{t}=\sigma \widetilde{S}_{t^{-}} \mathrm{d} B_{Q}(t) \tag{A.140}
\end{equation*}
$$

Solution 38. (1) For all $t \in[0, T]$, we have

$$
\begin{align*}
W_{t} & =U_{t} S_{t}+V_{t} A_{t} \\
& =\gamma_{t} S_{t}+Z_{t} A_{t}-\gamma_{t} \widetilde{S}_{t} A_{t} \\
& =Z_{t} A_{t} \tag{A.141}\\
& =e^{-r(T-t)} \mathrm{E}_{Q}\left(Z \mid \mathcal{F}_{t}\right)
\end{align*}
$$

(2) The portfolio is replicating, since $W_{T}=\mathrm{E}\left(Z \mid \mathcal{F}_{T}\right)=Z$.
(3) By Itô's formula, see Theorem 5.6.4 in [1].
(4) The arbitrage-free value of the contingent claim is

$$
\begin{equation*}
W_{0}=e^{-r T} \mathrm{E}_{Q}(Z) \tag{A.142}
\end{equation*}
$$

(compare with (8.15)).

Solution 39. Using the result of Exercise 38, the arbitrage-free price of the option writes

$$
\begin{equation*}
W_{0}=e^{-r T} \mathrm{E}_{Q}\left[\left(S_{T}-k\right)_{+}\right] . \tag{A.143}
\end{equation*}
$$

Check that

$$
\begin{equation*}
S_{T}=S_{0} e^{\sigma B_{Q}(T)+\left(r-\frac{1}{2} \sigma^{2}\right) T} \tag{A.144}
\end{equation*}
$$

Using that B_{Q} is a standard Brownian motion under P_{Q}, we obtain

$$
\begin{equation*}
W_{0}=\int_{\mathbb{R}}\left(S_{0} e^{x}-k e^{-r T}\right)+e^{-\frac{\left(x+\frac{1}{2} \sigma^{2} T\right)^{2}}{2 \sigma^{2} T}} \frac{\mathrm{~d} x}{\sigma \sqrt{2 \pi T}} \tag{A.145}
\end{equation*}
$$

Deduce thereof that

$$
\begin{equation*}
W_{0}=S_{0} \Phi\left(\frac{\log \left(S_{0} / k\right)+\left(r+\sigma^{2} / 2\right) T}{\sigma \sqrt{T}}\right)-k e^{-r T} \Phi\left(\frac{\log \left(S_{0} / k\right)+\left(r-\sigma^{2} / 2\right) T}{\sigma \sqrt{T}}\right) \tag{A.146}
\end{equation*}
$$

where Φ is the cumulative distribution function of a standard Gaussian random variable. See [1, Theorem 5.6.4] and references therein for a complete solution.
Solution 40. Let $g_{m, v^{2}}$ be the density of $\mathcal{N}\left(m, v^{2}\right)$. Then,

$$
\begin{equation*}
\nu(\mathrm{d} z)=\lambda g_{m, v^{2}}(\mathrm{~d} z), \quad b=\mu+\int_{-1}^{1} z \nu(\mathrm{~d} z) \tag{A.147}
\end{equation*}
$$

Solution 41. Clearly, ν_{θ} is a non-negative measure. Moreover,

$$
\begin{equation*}
\int_{\mathbb{R}}\left(1 \wedge|z|^{2}\right) \nu_{\theta}(\mathrm{d} z) \leq \int_{\mathbb{R}} \nu_{\theta}(\mathrm{d} z)=\int_{\mathbb{R}} e^{\theta z} g_{m, v^{2}}(z) \mathrm{d} z<\infty \tag{A.148}
\end{equation*}
$$

Solution 42. (1) By dominated convergence,

$$
\begin{equation*}
f^{\prime}(\theta)=\int_{\mathbb{R}} x\left(e^{x}-1\right) e^{\theta x} \nu(\mathrm{~d} x) \geq 0 \tag{A.149}
\end{equation*}
$$

so f is non-decreasing.
(2) Since $\nu((0, \infty))>0$ and $\nu((-\infty, 0))>0$ we respectively get
(A.150)

$$
\begin{aligned}
f^{\prime}(\theta) \geq \int_{0}^{\infty} x\left(e^{x}-1\right) \nu(\mathrm{d} x)>0 & (\theta \geq 0) \\
f^{\prime}(\theta) \geq \int_{-\infty}^{0} x\left(e^{x}-1\right) \nu(\mathrm{d} x)>0 & (\theta \leq 0)
\end{aligned}
$$

(3) From what precedes, f is a bijection from \mathbb{R} to \mathbb{R}, so that (8.32) has a unique solution.

[^0]: ${ }^{* *}$ Any adapted process with left-continuous (or right-continuous) sample paths is progressive, see [8, Proposition 3.4]

