
JUMP PROCESSES 43

Solutions

Solution 1. (1) By a simple change of variable we get that (T1, . . . , Tn) has density:

(A.86) (t1, . . . , tn) 7! �
n
e
��tn1{0<t1<...<tn}.

(2) By integrating on the (n� 1)-first variables we get that Tn has density

(A.87) tn 7! �
(�t)n�1

(n� 1)!
e
��t1{t>0},

that is a �(n,�) random variable.

(3) Let n 2 N0 and t � 0. Remind that T0 = 0. We note that P(Nt = n) = P(Tn  t <

Tn+1), which we may compute by using the density of (T1, . . . , Tn+1).

(4) By using the density of (T1, . . . , Tn+1), one may check that for any measurable func-
tion f : Rn ! R+,

(A.88) E[f(T1, . . . , Tn)|Nt = n] =

Z

0t1<...<tnt
f(t1, . . . , tn)

n!

tn
dt1 . . . dtn.

(5) Since the process (Nt) is non-decreasing , we get that P(Nt < 1, 8t � 0) = P(Nk <

1, 8k 2 N). This probability equals one since Nk is finite a.s, for all k in the countable
set of integers..

Solution 2. We have for all t � 0:

(A.89) Nct = #{n � 1: Tn  ct} = #{n � 1: Tn/c  t}.

It is now just a matter of noticing that the increments of the sequence (Tn/c)n�1 are
independent exponential random variables with parameter c�.

Solution 3. We have P(�Nt > 0) =
P

n2N P(Tn = t) = 0 and P(�Nt = 0, 8t > 0) =
P(T1 = +1) = 0.

Solution 4. The characteristic function of (Xt) may be easily computed by decomposing
on the value of Nt. With the same technique we get that

(A.90) E(Xt) = E(Z)E(Nt) = �t

Z

Rd
z⌫(dz),

which yields

(A.91) �X̄t
(u) = exp

⇣
�t

Z

Rd
(eihu,zi � 1� ihu, zi)⌫(dz)

⌘
.
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Solution 5. We have

(A.92) N ((0, t]) =
X

n2N
�Tn((0, t]) =

X

n2N
1(0,t](Tn) = Nt.

We will now check that for all t > 0, the restriction of N to [0, t] is a RPM with intensity �

times Lebesgue measure (restricted to [0, t]). Conditionally on {Nt = n} (n 2 N), the jump
times are distributed like n uniform random variables on [0, t] (see Exercise 1). Hence,
conditionally on {Nt = n} and for all Borel sets B1, . . . , Bk on [0, t] (k 2 N), the random
vector (N (B1), . . . ,N (Bk)) is distributed as a multinomial random variable with parameters
n and (|B1|/t, . . . , |Bk|/t), where |·| stands for Lebesgue measure. To remove the restriction
to [0, t], one may invoke the superposition property (see Proposition 2.3)

Solution 6. This follows the same idea as in the solution of the previous exercise. Con-
ditionally on {Nt = n}, the (unordered) set of points {(Ti, Zi), 1  i  n} is distributed
as a collection of n i.i.d. random variables with law U([0, t]) ⌦ ⌫. We may deduce thereof
that N is a RPM(�dt⌦ ⌫) on E = R+ ⇥Rd, where dt is Lebesgue measure on the positive
half-line.

Solution 7. When m is a finite measure, N may be written as
P

1iN �Xi, where N

is P(m(E)) and (Xi)i2N is a sequence of independent random variables distributed as
m/m(E). Recall that the integral of f w.r.t. Dirac measure �x equals f(x). Therefore,
we get

(A.93)

Z
fdN =

X

1iN

f(Xi).

Solution 8. Define N as in Exercice 6. To emphasize the distinct roles of time and space,
we write N (ds, dz) instead of dN (s for time and z for space). Then, one can check that

(A.94) Xt =

Z

(0,t]⇥Rd
zN (ds, dz).

This integral is still well defined when ⌫(Rd) < 1, as there will still be a.s. finitely many
points in (0, t]⇥ Rd. Alternatively, one may apply the usual construction with ⌫/⌫(Rd) as
jump distribution and replace � by �⌫(Rd).

Solution 9. Let N be a RPM(�dt⌦ d⌫). By Proposition 2.6, the random variables

(A.95) Xt =

Z

(0,t]⇥Rd
zN (ds, dz).

are well-defined and a.s. finite for all t > 0. This defines a compound Poisson process with
prescribed jump measure.
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Solution 10. Let us denote by µ the probability law under consideration and µn the law
such that µ = µ

⇤n
n .

(1) µn = N (mn ,
�2

n );

(2) µn = P(�/n);

(3) pick µn as the law of a compound Poisson process with intensity �/n and jump dis-
tribution ⌫, evaluated at time 1;

(4) pick µn = Gamma( an , b) (when k 2 N recall that Gamma(k, b) is the law of the sum
of k i.i.d. E(b) random variables); All one needs to prove is that

(A.96) Gamma(a1, 1) ⇤Gamma(a2, 1) = Gamma(a1 + a2, 1),

(note that b is but a scaling parameter) which can be done via the Laplace transform
or the convolution formula.

(5) µn = �a/n.

Solution 11. Let X be a Ber(p) random variable. Suppose that X = Y1 + Y2 with Y1 and
Y2 independent and identically distributed. Prove that necessarily P(Y1 = 1/2) =

p
p and

P(Y1 = 0) =
p
1� p. This is impossible when p 2 (0, 1). See Example 9 in [15] for a full

solution.

Solution 12. (1)  (u) = ium�
u2�2

2
;

(2)  (u) = �(eiu � 1);

(3)  (u) = �
R
(eiuz � 1)⌫(dz);

(4)  (u) = �a log(1�i
u
b ), where log denotes the principal value of the complex logarithm.

Method 1: First compute it when a 2 N using the interpretation of �(a, b) as the
sum of independent exponential variables, then extend the formula to a 2 Q\(0,+1)
using infinite divisibility. To extend it to a > 0, verify that for all u 2 R the mapping
a > 0 7!

R
1

0
e
iut

t
a�1

e
�tdt is continuous (by dominated convergence).

Method 2: Let a > 0 be fixed and b = 1 (the general case b > 0 follows by scaling).
Using a change of variable, we have for every � > 0:

(A.97)

Z
+1

0

t
a�1

e
��t

�(a)
dt = �

�a
.

Let us now consider these two expressions (in the left and right-hand sides respec-
tively) as functions of the complex variable �. Both functions are well-defined and
holomorphic (that is C-di↵erentiable) on the open connected set {� 2 C : Re(�) > 0}
so they coincide on this set, by the Principle of Analytic Continuation [9, Theorems
1 and 2 in Section 1.3]. This set includes complex numbers of the form 1� iu, u 2 R,
which allows to conclude.

(5)  (u) = iua.

Solution 13. For any fixed u 2 Rd, the function z 7! e
ihu,zi

� 1� ihu, zi1{|z|1} is bounded
(in modulus) by some constant times 1 ^ |z|

2. Since ⌫ is a Lévy measure, the integral is
well-defined.
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Solution 14. First of all, the assumption that ⌫ is finite allows us to split in two the
integral in (3.3) and proves that c is well-defined. Moreover,

(A.98)
�Y (u) = exp

⇣
�

1

2
hu,Aui

⌘
,

�eY (u) = exp
⇣Z

(eihu,zi � 1)⌫(dz)
⌘

(see Exercise 4).

We conclude by using the independence of Y and eY .
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Solution 15. See Exercise 12.

Solution 16. Let t > 0. It is enough to check that for all n 2 N, X has a.s. finitely many
jumps with modulus larger than 1/n on [0, t]. This comes from the fact that X has a.s.
càdlàg sample paths. For details, we refer to Theorem 2.8.1 and Lemma 2.3.4 in [1].

Solution 17. In this case we have that Xt =
P

s2(0,t]�Xs =
P

s2(0,t] |�Xs| is finite a.s.

hence
R
(1 ^ |z|)⌫(dz) is finite, by Proposition 4.5.

Solution 18. A Poisson counting process is a subordinator. A CPP with jump measure
supported by (0,+1) is also a subordinator.

Solution 19. By using stationarity of increments, we get that for all 0 < s < t,

(A.99) P(Xt �Xs � 0) = P(Xt�s � 0) = 1.

From this we deduce that

(A.100) P(Xt �Xs � 0, 8s, t 2 Q : 0 < s < t) = 1,

and we conclude by right-continuity of the paths.

Solution 20. The corresponding Lévy-Itô decomposition writes

(A.101) Xt = bt+

Z

(0,t]⇥(0,+1)

zN (ds, dz),

where b � 0 and N is a RPM on (0,+1)2 with intensity measure dt⌦ ⌫.

Solution 21. (1) By continuity of the Brownian sample paths,

(A.102) Ta = inf{t � 0: Bt � a},

from which we get that a 7! Ta is a.s. non-decreasing (and Ta is a stopping time w.r.t.
to the filtration generated by B, since [a,+1) is a closed set, see [8, Proposition 3.9]).
Let us now prove that it is a Lévy process. First, let us show that sample paths are
càdlàg. The existence of left limits are a direct consequence of monotonicity. If T
were not right-continuous at a � 0, there would exist " > 0 such that Bt  a for all
t 2 [Ta, Ta+"], which cannot happen. Indeed, conditionally on Ta < +1 (which is a.s.
satisfied), (BTa+t � a) is distributed as Brownian motion (strong Markov property)
and it is known that the set of return times to the origin of a Brownian motion has
0 as accumulation point. Let us now prove that the process has independent and
stationary increments, i.e. for every 0  a  b, the random variable Tb � Ta is
independent of �(Tc, 0  c  a) and is distributed as Tb�a. First, note that if c  a

then Tc  Ta and then Tc is FTa measurable. By using the strong Markov property
and stationary increments of Brownian motion, we get for all t � 0, a.s (recall that
P(Ta < 1) = 1):

(A.103)

P(Tb � Ta � t|FTa) = P( sup
0st

BTa+s  b|FTa)

= P( sup
0st

Bs  b|B0 = a)

= P( sup
0st

Bs  b� a)

= P(Tb�a � t),

which completes the proof.
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(2) If the process (Ta) had a.s. continuous sample paths then by Corollary 4.1 and The-
orem 4.2 it would write Ta = ca for some c > 0, which is absurd.

(3) Apply Doob’s optional stopping theorem to the martingale (exp(�Bs �
1

2
�
2
s))s�0 and

bounded stopping time t ^ Ta, then let t ! 1.

(4) By using the change of variable hinted on, we see that L satisfies aL(u) = �(2u)1/2tL0(u)
for u > 0, with the initial condition L(0) = 1. The unique solution is L(u) =
exp(�a

p
2u) (it is actually enough to check this for a = 1, why?). Therefore,

L(u) = E(e�uTa) for all u � 0, which completes the proof (Laplace transforms char-
acterize probability distributions on [0,1)).

Solution 22. The process M has continuous sample paths and is non-decreasing a.s. If
it were a subordinator then, by Corollary 4.1 and Theorem 4.2, we would get Mt = bt for
some b � 0 and all t � 0, which is absurd.

Solution 23. For all u � 0, we have

(A.104)

Z
1

0

(1� e
�uz)

dz

z1+↵
= �(1� ↵)

u
↵

↵
.

(Write 1� e
�uz =

R z
0
ue

�uydy and interchange integrals). Therefore,

(A.105) L(u) = exp
⇣
� bu� u

↵ + u

Z
1

0

z⌫(dz)
⌘
,

and it is enough to pick b =
R
1

0
z⌫(dz) = ↵

(1�↵)�(1�↵) .

Solution 24. Using the solution to Exercise 23 with ↵ = 1/2, we see that the jump measure
of the process of Brownian ladder times must be

(A.106) ⌫(dz) =
dz

�(1/2)
p

2z3
.
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Solution 25. (1) The random variable Yj is bounded and eN ((tj , tj+1] ⇥ Ai) is square-

integrable (we recall that ⌫(Ai) is finite) so Yj
eN ((tj , tj+1]⇥Ai) is square-integrable for

all i and j. A finite sum of square-integrable random variables is square-integrable.
Since Yj is Ftj -measurable and eN ((tj , tj+1]⇥Ai) is independent from Ftj , we get

(A.107) E
h
Yj

eN ((tj , tj+1]⇥Ai)
i
= 0,

so IT (F ) is centered.

(2) The mapping IT is clearly linear so it remains to prove that E(IT (F )2) = kFk
2

H2(T )
.

For convenience, let us define for every i and j,

(A.108) Ii,j = Yj
eN ((tj , tj+1]⇥Ai),

so that

(A.109) IT (F ) =
X

1jm

⇣ X

1in

ciIi,j

⌘
.

Since Yj is Ftj -measurable and eN ((tj , tj+1] ⇥ Ai) is centered and independent from
Ftj , one may check that the random variables (

P
i ciIi,j)1jm’s are orthogonal.

Therefore,

(A.110)

E(IT (F )2) =
X

1jm

E
h⇣ X

1in

ciIi,j

⌘2i

=
X

1jm

Var
⇣ X

1in

ciIi,j

⌘
.

Since the (Ai)1in’s are disjoint, we get from Proposition 2.4 that for every j, the
random variables (Ii,j)1in’s are independent, hence

(A.111)

E[IT (F )2] =
X

1jm

X

1im

c
2

i Var(Ii,j)

=
X

1jm

X

1in

c
2

iE[Y
2

j
eN ((tj , tj+1]⇥Ai)

2]

=
X

1jm

X

1in

c
2

iE[Y
2

j ](tj+1 � tj)⌫(Ai) = kFk
2

H2(T )
.

(3) Let G 2 H
2(T ) such that G is orthogonal to S. It is enough to show that G = 0,

dt⌦ ⌫ ⌦P-a.s (see Lemma A.1). Let A 2 B(Rd) such that ⌫(A) < 1, s  t  T and
Ys a bounded and Fs-measurable random variable. Consider

(A.112) F (r, z) = Ys1(s,t](r)1A(z).

Then

(A.113) 0 = hF,GiH2 =

Z

(s,t]⇥A
E[YsG(r, z)]dr ⌫(dz).

Define the following process:

(A.114) X
(A)

t :=

Z

(0,t]⇥A
G(r, z)dr⌫(dz), 0  t  T.

One may check that it is square-integrable and adapted. Indeed,

• By Jensen’s inequality, E[(X(A)

t )2]  t⌫(A)kGk
2

H2(T )
< +1.
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• Since G is predictable, the mapping

(A.115) (!, z) 2 ⌦⇥ Rd
7!

Z

(0,t]
G(r, z)1A(z)dr

is B(Rd)⌦ Ft-measurable∗∗. By Fubini’s theorem, we readily obtain that

(A.116) ! 2 ⌦ 7!

Z

(0,t]⇥Rd
G(r, z)1A(z)dr⌫(dz)

is Ft-measurable.
By (A.113), we get that E[Ys(X

(A)

t �X
(A)

s )] = 0, which yields

(A.117) E[X(A)

t |Fs] = X
(A)

s .

Hence, (X(A)

t ) is an F-martingale. Moreover, one can check that this is a process
with finite variations (di↵erence between two non-decreasing processes, see [8, Section

4.1]). Hence, it is a.s. constant (see [8, Theorem 4.8]), so X
(A)

t = X
(A)

0
= 0 P-a.s.

Let us now deduce that G = 0, dt ⌦ ⌫ ⌦ P-a.s, with the help of a monotone class
argument. To this end, define

(A.118) C =
n
C ✓ [0, T ]⇥ R :

Z

C
G(r, z)dr⌫(dz) = 0 P� a.s.

o
.

We have proven so far that C contains the set

(A.119) C0 :=
n
(s, t]⇥A, 0  s  t  T, A 2 B(R)

o
,

that is a ⇡-system generating B([0, T ])⌦B(R). Furthermore, one can check that C is a
monotone class. By Dynkin’s theorem, the property defining C is therefore valid for all
sets in B([0, T ])⌦B(R). The reader may check that this implies G = 0, dt⌦⌫⌦P-a.s.
Hint : use {G � 0} and {G  0} as test sets.

(4) Since S is dense, the isometry may be uniquely extended to H
2(T ).

Solution 26. Pick b(t) = b, �(t) = �, H(t, z) = K(t, z) = z for all (t, z).

Solution 27. (1) We have Nt =
R t
0

R
|z|�1

N (ds, dz) where N is a RPM(�dt ⌦ �1). We

may then write dNs :=
R
|z|�1

N (ds, dz), that is a RPM on (0,1) with intensity �dt

(i.e. a homogeneous Poisson point process with intensity � > 0). By analogy with
compensated Poisson measures we define d eNs as the signed measure dNs � �ds.

(2) We have, with the usual notations,
(A.120)Z t

0

f(s)dNs =
X

1iNt

f(Ti) and

Z t

0

f(s)d eNs =
X

1iNt

f(Ti)� �

Z t

0

f(s)ds.

(3)
R t
0
BsdNs =

P
1iNt

BTi.

(4) The presence of s� instead of s is here to ensure predictability of the process (Ns�).
We have

(A.121) Xt =

Z t

0

Ns�dNs =
X

1iNt

NT�
i

=
X

1iNt

(i� 1) =
Nt(Nt � 1)

2

∗∗Any adapted process with left-continuous (or right-continuous) sample paths is progressive, see [8,
Proposition 3.4]
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(with the convention that the sum over an empty set is zero, which is consistent with
the case Nt = 0). Note that Xt is not equal to 1

2
N

2
t , as we would get from a blind

application of standard (non-stochastic) calculus. Let us now look at the compensated
version:

(A.122) eXt :=

Z t

0

Ns�d eNs =
Nt(Nt � 1)

2
� �

Z t

0

Ns�ds,

from which we get by a straightforward computation that E( eXt) = 0. As one can
check, this would no longer hold if we were to replace Ns� by Ns in the definition of
Xt.

(5) Apply Itô’s formula with f(t, z) = z
2 and K(t, z) = 1. Only the first term of (III) is

present. We get

(A.123) dYt = [(Nt� + 1)2 �N
2

t� ]dNt = (2Nt� + 1)dNt.

One may check that this is consistent with our previous answer.

Solution 28. Let us write both formulas (in one dimension) next to each other to highlight
the analogy:

(A.124)

Lf(x) = bf
0(x) + 1

2
�
2
f
00(x) +

Z

R
[f(x+ z)� f(x)� zf

0(x)1{|z|1}]⌫(dz),

 (u) = ibu�
1

2
au

2 +

Z

Rd

⇣
e
iuz

� 1� iuz1{|z|1}

⌘
⌫(dz).

Derivation corresponds to multiplication by iu in Fourier mode (hence di↵erentiating twice
corresponds to multiplication by (iu)2 = �u

2) and shifting by z corresponds to multiplica-
tion by e

iuz (addition of a phase).
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Solution 29. Check Assumption 6.1 with b(y) := by, �(y) := �
2
y and F (y, z) = G(y, z) :=

yz.

Solution 30. (1) By using Remark 7.1, we may write St = exp(Lt) with

(A.125)

Lt = bt�
1

2
�
2
t+ t

Z

|z|1

(log(1 + z)� z)⌫(dz)

+ �Bt +

Z t

0

Z

|z|>1

log(1 + z)N (ds, dz) +

Z t

0

Z

|z|1

log(1 + z) eN (ds, dz).

The last two integrals are well-defined because log(1+z) ⇠0 z and ⌫ is a Lévy measure.

(2) One may check that L is a Lévy process with triplet (b̄,�, ⌫̄), where

(A.126)

b̄ = b�
1

2
�
2+

Z

|z|1

(log(1 + z)� z)⌫(dz)

+

Z e�1

1

log(1 + z)⌫(dz)�

Z
1/e�1

�1

log(1 + z)⌫(dz).

and

(A.127) ⌫̄(A) = ⌫({z > �1: log(1 + z) 2 A}), A 2 B(R).

The only non-trivial part is to check that ⌫̄ is indeed a Lévy measure.

(3) We get
(A.128)

df(Lt) = f
0(Lt)bdt�

1

2
�
2
f
0(Lt)dt+

Z

|z|1

(log(1 + z)� z)⌫(dz)f 0(Lt)dt+ �f
0(Lt)dBt

+
1

2
f
00(Lt)�

2dt+

Z

|z|>1

[f(Lt� + log(1 + z))� f(Lt�)]N (dt, dz)

+

Z

|z|1

[f(Lt� + log(1 + z))� f(Lt�)] eN (dt, dz)

+

Z

|z|1

[f(Lt� + log(1 + z))� f(Lt�)� log(1 + z)f 0(Lt�)]dt⌫(dz)

(4) Applying it to f = exp and simplifying, we get

(A.129) dSt = St�

h
bdt+ �dBt +

Z

|z|>1

zN (dt, dz) +

Z

|z|1

z eN (dt, dz)
i
= St�dXt.

Solution 31. Left to reader.

Solution 32. Using the same notation as in Exercise 30, we get the (necessary and su�-
cient) condition:

(A.130) b̄+ 1

2
�
2 +

Z ⇣
e
z
� 1� z1{|z|1}

⌘
⌫̄(dz) = 0,

which simplifies as

(A.131) b+

Z

|z|>1

z⌫(dz) = 0.
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Solution 33. The case treated in (7.7) corresponds to ⌫i = �i�1, where (i 2 {1, 2}), hence
�(z) = log(�1/�2) and we obtain
(A.132)

⌫1(R)� ⌫2(R) = �1 � �2,

X

0<st

�(�Xs) = log(�1/�2)
X

0<st
(�Xs 6=0)

1 = log(�1/�2)Nt.

Solution 34. Left to reader.
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Solution 35. (1) We proceed by backward iteration. The formula clearly holds for k = n.
Let 1  k < n and assume that the formula holds for k + 1. Using what we know
from the one-step model, we get

(A.133) Wk(X1, . . . , Xk) = qWk+1(X1, . . . , Xk,+) + (1� q)Wk+1(X1, . . . , Xk,�),

with

(A.134) q =
1� 1/e

e� 1/e
=

e� 1

e2 � 1
=

1

1 + e
.

We conclude by using the formula at step k + 1.

(2) Same idea, with this time A0/A1 = e
�r and

(A.135) q =
e
r+1

� 1

e2 � 1
.

(3) Check that E[eX1 ] = e
r.

Solution 36. Let us denote by Qt the restriction of Q to events in Ft. By the martingale
property we get Qt(⌦) = EP (eYt) = EP (eY0) = 1 and the consistency condition:

(A.136) Qt(A) = EP (e
YtA) = EP (e

YsA) = Qs(A), 0  s  t, A 2 Fs.

We conclude by Kolmogorov’s extension theorem.

Solution 37. By taking logarithm, we have

(A.137) d(logSt) = �dBt +
⇣
µ�

1

2
�
2

⌘
dt,

hence

(A.138) d(log eSt) =
⇣
�dBQ(t)�

1

2
�
2dt

⌘
+

⇣
µ� r + �F (t)

⌘
dt.

The only possible choice is

(A.139) F (t) =
r � µ

�
, 8t � 0,

in which case, by Itô’s formula,

(A.140) deSt = � eSt�dBQ(t).

Solution 38. (1) For all t 2 [0, T ], we have

(A.141)

Wt = UtSt + VtAt

= �tSt + ZtAt � �t
eStAt

= ZtAt

= e
�r(T�t)EQ(Z|Ft).

(2) The portfolio is replicating, since WT = E(Z|FT ) = Z.

(3) By Itô’s formula, see Theorem 5.6.4 in [1].

(4) The arbitrage-free value of the contingent claim is

(A.142) W0 = e
�rTEQ(Z)

(compare with (8.15)).
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Solution 39. Using the result of Exercise 38, the arbitrage-free price of the option writes

(A.143) W0 = e
�rTEQ[(ST � k)+].

Check that

(A.144) ST = S0e
�BQ(T )+(r� 1

2�
2
)T
.

Using that BQ is a standard Brownian motion under PQ, we obtain

(A.145) W0 =

Z

R
(S0e

x
� ke

�rT )+ e
�

(x+1
2�2T )2

2�2T
dx

�
p
2⇡T

.

Deduce thereof that

(A.146) W0 = S0�
⇣ log(S0/k) + (r + �

2
/2)T

�
p
T

⌘
� ke

�rT�
⇣ log(S0/k) + (r � �

2
/2)T

�
p
T

⌘
,

where � is the cumulative distribution function of a standard Gaussian random variable.
See [1, Theorem 5.6.4] and references therein for a complete solution.

Solution 40. Let gm,v2 be the density of N (m, v
2). Then,

(A.147) ⌫(dz) = �gm,v2(dz), b = µ+

Z
1

�1

z⌫(dz).

Solution 41. Clearly, ⌫✓ is a non-negative measure. Moreover,

(A.148)

Z

R
(1 ^ |z|

2)⌫✓(dz) 

Z

R
⌫✓(dz) =

Z

R
e
✓z
gm,v2(z)dz < 1.

Solution 42. (1) By dominated convergence,

(A.149) f
0(✓) =

Z

R
x(ex � 1)e✓x⌫(dx) � 0,

so f is non-decreasing.

(2) Since ⌫((0,1)) > 0 and ⌫((�1, 0)) > 0 we respectively get

(A.150)

f
0(✓) �

Z
1

0

x(ex � 1)⌫(dx) > 0 (✓ � 0)

f
0(✓) �

Z
0

�1

x(ex � 1)⌫(dx) > 0 (✓  0).

(3) From what precedes, f is a bijection from R to R, so that (8.32) has a unique solution.


