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SOLUTIONS

Solution 1. (1) By a simple change of variable we get that (T1,...,T,) has density:

<A86) (tl, . ,tn) — )\ne_)\tnl{0<t1<m<tn}.
(2) By integrating on the (n — 1)-first variables we get that T,, has density
C "
(A.87) tn — )\(n - 1>!6 1{t>0},

that is a T'(n, \) random variable.

(3) Let n € Ny and t > 0. Remind that Ty = 0. We note that P(N, =n) =P(T, <t <
Tht1), which we may compute by using the density of (T1,...,Tht1).

(4) By using the density of (T4, ..., Th+1), one may check that for any measurable func-
tion f: R, — R4,
(A.38) BIf (T3 TN =) = |
0<t1<...<tp <t
(5) Since the process (Ny) is non-decreasing , we get that P(Ny; < co,Vt > 0) = P(N <
00, Vk € N). This probability equals one since Ny, is finite a.s, for all k in the countable
set of integers..

Solution 2. We have for all t > 0:
(A.89) Nao=#{n>1:T,<ct}=#{n>1:T,/c < t}.

It is now just a matter of noticing that the increments of the sequence (T),/c)p>1 are
independent exponential random variables with parameter cA.

Solution 3. We have P(AN; > 0) = > .P(Tn = t) = 0 and P(AN; = 0,Vt > 0) =
P(T1 = -l—OO) = 0.

n!
Fltr o tn) oty dy,

Solution 4. The characteristic function of (X;) may be easily computed by decomposing
on the value of Ny. With the same technique we get that

(A.90) E(X;) = E(Z)E(N,) = Mt /R av(da),

which yields
(A.91) bx,(u) = exp ()\t/

2 1 —i(u, 2))r(dz)).
[ L= ifu, 2))v(d2))
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Solution 5. We have

(A.92) N(0,8) =67, ((0,8) = Y 1i0(Tn) = Ns.
neN neN

We will now check that for allt > 0, the restriction of N to [0,t] is a RPM with intensity \
times Lebesgue measure (restricted to [0,t]). Conditionally on {N; = n} (n € N), the jump
times are distributed like n uniform random variables on [0,t] (see Ezercise 1). Hence,
conditionally on {N; = n} and for all Borel sets By,...,By on [0,t] (k € N), the random
vector (N'(By), ..., N(By)) is distributed as a multinomial random variable with parameters
n and (|B1|/t,...,|Bk|/t), where || stands for Lebesque measure. To remove the restriction
to [0,t], one may invoke the superposition property (see Proposition 2.3)

Solution 6. This follows the same idea as in the solution of the previous exercise. Con-
ditionally on {Ny = n}, the (unordered) set of points {(T;, Z;), 1 < i < n} is distributed
as a collection of n i.i.d. random variables with law U([0,t]) @ v. We may deduce thereof
that N is a RPM(A\dt ® v) on E = Ry x RY, where dt is Lebesgue measure on the positive
half-line.

Solution 7. When m is a finite measure, N' may be written as 3 ;< 0x,, where N
is P(m(E)) and (X;)ien s a sequence of independent random variables distributed as
m/m(E). Recall that the integral of f w.r.t. Dirac measure 6, equals f(x). Therefore,
we get

(A.93) [ =3 s
1<i<N

Solution 8. Define N as in Ezercice 6. To emphasize the distinct roles of time and space,
we write N'(ds,dz) instead of AN (s for time and z for space). Then, one can check that

(A.94) X = / 2N (ds, dz).
(0,¢] x R4

This integral is still well defined when V(Rd) < 00, as there will still be a.s. finitely many
points in (0,t] x RY. Alternatively, one may apply the usual construction with v/v(R?) as
jump distribution and replace X by Av(RY).

Solution 9. Let N be a RPM(\dt ® dv). By Proposition 2.6, the random variables
(A.95) X = / 2N (ds,dz).
(0,t] x R4

are well-defined and a.s. finite for allt > 0. This defines a compound Poisson process with
prescribed jump measure.
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Solution 10. Let us denote by u the probability law under consideration and p, the law
such that p = ;"

2
(1) pn =NCET):
(2) pn =P(A/n);
(3) pick py, as the law of a compound Poisson process with intensity \/n and jump dis-

tribution v, evaluated at time 1;

(4) pick pn = Gamma(y,b) (when k € N recall that Gammal(k,b) is the law of the sum
of k i.i.d. £(b) random variables); All one needs to prove is that

(A.96) Gamma(ai, 1) * Gamma(ag, 1) = Gamma(a; + ag, 1),

(note that b is but a scaling parameter) which can be done via the Laplace transform
or the convolution formula.

(5) Hn = 50,/77,'

Solution 11. Let X be a Ber(p) random variable. Suppose that X =Y, + Yo with Y1 and
Yy independent and identically distributed. Prove that necessarily P(Yy = 1/2) = \/p and
P(Y1 = 0) = /1 —p. This is impossible when p € (0,1). See Example 9 in [15] for a full
solution.

2

: : 252,

Solution 12. (1) ¥(u) = ium — “F~;
(2) W(u) = A(e™ —1);

(3) W(u) =\ [(e™* — 1)v(dz);

(4) ¥(u) = —alog(1—iy), where log denotes the principal value of the complex logarithm.

Method 1: First compute it when a € N using the interpretation of I'(a,b) as the

sum of independent exponential variables, then extend the formula to a € QN (0, +00)

using infinite divisibility. To extend it to a > 0, verify that for all u € R the mapping
a>0 [° et etdt is continuous (by dominated convergence).

Method 2: Let a > 0 be fized and b =1 (the general case b > 0 follows by scaling).
Using a change of variable, we have for every A > 0:

“+o00 ta—le—)\t
(A.97) / L qt=a
0 I'(a)

Let us now consider these two expressions (in the left and right-hand sides respec-
tively) as functions of the complex variable A. Both functions are well-defined and
holomorphic (that is C-differentiable) on the open connected set {\ € C: Re(\) > 0}
so they coincide on this set, by the Principle of Analytic Continuation [9, Theorems
1 and 2 in Section 1.3]. This set includes complex numbers of the form 1 —iu, u € R,
which allows to conclude.

(5) U(u) = iua.

Solution 13. For any fized u € RY, the function z — e/%?) —1 — i(u, z)l{‘zgl} 18 bounded

(in modulus) by some constant times 1 A |z|?. Since v is a Lévy measure, the integral is
well-defined.
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Solution 14. First of all, the assumption that v is finite allows us to split in two the
integral in (3.3) and proves that ¢ is well-defined. Moreover,

= ex flu, u) |,
o by (1) = exp (= 5 (u, Au) )

¢3(u) = exp (/(ei<“’z> - 1)V(dz)) (see Exercise /).

We conclude by using the independence of Y and Y.
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Solution 15. See Ezercise 12.

Solution 16. Lett > 0. It is enough to check that for allmn € N, X has a.s. finitely many
Jumps with modulus larger than 1/n on [0,t]. This comes from the fact that X has a.s.
cadlag sample paths. For details, we refer to Theorem 2.8.1 and Lemma 2.5.4 in [1].

Solution 17. In this case we have that X; = Zse(o,t] AX, = ZsE(O,t] |AX,| is finite a.s.
hence [(1 A |z|)v(dz) is finite, by Proposition 4.5.

Solution 18. A Poisson counting process is a subordinator. A CPP with jump measure
supported by (0,+00) is also a subordinator.

Solution 19. By using stationarity of increments, we get that for all 0 < s < t,
(A.99) P(X;—Xs>0)=P(X;—s >0)=1.

From this we deduce that

(A.100) P(X; —X;>0, Vs,t €Q: 0<s<t)=1,

and we conclude by right-continuity of the paths.

Solution 20. The corresponding Lévy-Ité decomposition writes
(A.101) Xy =bt + / 2N (ds,dz),
(0,t]x (0,+00)

where b > 0 and N is a RPM on (0, +00)? with intensity measure dt ® v.

Solution 21. (1) By continuity of the Brownian sample paths,
(A.102) T, = inf{t > 0: B; > a},

from which we get that a — Ty, is a.s. non-decreasing (and Ty, is a stopping time w.r.t.
to the filtration generated by B, since [a,+00) is a closed set, see [8, Proposition 3.9] ).
Let us now prove that it is a Lévy process. First, let us show that sample paths are
cadlag. The existence of left limits are a direct consequence of monotonicity. If T
were not right-continuous at a > 0, there would exist € > 0 such that By < a for all
t € [Ta, Ta+e], which cannot happen. Indeed, conditionally on T, < 400 (which is a.s.
satisfied), (Br,++ — a) is distributed as Brownian motion (strong Markov property)
and it is known that the set of return times to the origin of a Brownian motion has
0 as accumulation point. Let us now prove that the process has independent and
stationary increments, i.e. for every 0 < a < b, the random variable Ty, — T, is
independent of o(T., 0 < ¢ < a) and is distributed as Ty_,. First, note that if ¢ < a
then T, < T, and then T, is Fr, measurable. By using the strong Markov property
and stationary increments of Brownian motion, we get for all t > 0, a.s (recall that
P(T, < o0) =1):
P(Tb T, > t‘]:Ta) = P( sup Br,4+s < bl]:Ta>
0<s<t
=P(sup Bs; <b|By=a)
(A.103) Oss<t
=P(sup Bs<b—a)
0<s<t
= P(Tb—a > t)7

which completes the proof.
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(2) If the process (T,) had a.s. continuous sample paths then by Corollary 4.1 and The-
orem 4.2 it would write T, = ca for some ¢ > 0, which is absurd.

(3) Apply Doob’s optional stopping theorem to the martingale (exp(ABs — %)\25))520 and
bounded stopping time t ATy, then let t — oo.

(4) By using the change of variable hinted on, we see that L satisfies aL(u) = —(2u)"/?tL (u)
for w > 0, with the initial condition L£(0) = 1. The unique solution is L(u) =
exp(—av2u) (it is actually enough to check this for a = 1, why?). Therefore,
L(u) = E(e~Ia) for all u > 0, which completes the proof (Laplace transforms char-
acterize probability distributions on [0, 00)).

Solution 22. The process M has continuous sample paths and is non-decreasing a.s. If
it were a subordinator then, by Corollary 4.1 and Theorem 4.2, we would get My = bt for
some b >0 and all t > 0, which is absurd.

Solution 23. For all w > 0, we have

«

* —uz dz U
(A.104) /0 (- ) S5 =T - o)

(Write 1 — e %% = foz ue~"dy and interchange integrals). Therefore,
1
(A.105) L(u) = exp ( —bu —u*+ u/ zy(dz)),
0

and it is enough to pick b = fol 2v(dz) = m

Solution 24. Using the solution to Exercise 23 with o = 1/2, we see that the jump measure
of the process of Brownian ladder times must be

(A.106) v(dz) = F(l/;i)zx/ﬁ
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Solution 25. (1) The random variable Y; is bounded and .//\V/((tj,tj_l,_l] X A;) is square-
integrable (we recall that v(A;) is finite) so Y;N ((t),tj41] x A;) is square-integrable for
all i and j. A finite sum of square-integrable random variables is square-integrable.
Since Yj is Fi;-measurable and N ((t;,t;41] x A;) is independent from Fy,, we get

(A.107) B[ViN ((t, 1] x A7)] =0,
so Ip(F) is centered.

(2) The mapping It is clearly linear so it remains to prove that E(I7(F)?) = HFH?—F(T)‘
For convenience, let us define for every i and j,

(A.108) Iij = N (8, tj] x Ai),
so that

(A.109) Ir(F) =Y ( 3 ciIi,j).

1<j<m  1<i<n

Since Yj is Ji,-measurable and N((tj,tj.l,.l] x A;) is centered and independent from
Fi;, one may check that the random wvariables (>, ¢ilij)i<j<m’s are orthogonal.

Therefore,
2
B(rr(F?) = Y B[( Y aly) |
(A.110) 1<j<m 1<i<n
= Z Var( Z Ci]i,j)
1<j<m 1<i<n

Since the (Ai)i<i<n’s are disjoint, we get from Proposition 2.4 that for every j, the
random variables (I; j)1<i<n’s are independent, hence

ElIp(F)’)= Y > cVar(l;)

1<j<m1<is<m

(A.111) = > Y GENIN(( ] x A

1<j<m 1<i<n
= > Y GENPI(tn — t)v(Ai) = [IF 1520
1<j<m1<i<n

(3) Let G € H*(T) such that G is orthogonal to S. It is enough to show that G = 0,
dt @ v @ P-a.s (see Lemma A.1). Let A € B(RY) such that v(A) < oo, s <t < T and
Y, a bounded and Fs-measurable random variable. Consider

(A.112) F(r,z) = Y5l q(r)la(z).
Then
(A.113) 0= (F,G)y2 = / E[YsG(r, z)]dr v(dz).
(s,t]x A

Define the following process:
(A.114) x = / G(r,z)drv(dz), 0<t<T.
(0,t]x A

One may check that it is square-integrable and adapted. Indeed,
e By Jensen’s inequality, E[(Xt(A))2] < tV(A)HGH?_lQ(T) < 400.
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e Since G is predictable, the mapping
(A.115) (w,2) € QxR — G(r,z)1a(z)dr
(0,2]

is B(RY) ® F;-measurable™. By Fubini’s theorem, we readily obtain that

(A.116) weN— G(r, 2)14(z)drv(dz)
(0,t]x R4
is Fi-measurable.
By (A.113), we get that E[Y. (X(A) XS(A))] = 0, which yields

(A.117) EXY| 5] = XA,

Hence, (Xt(A)) is an F-martingale. Moreover, one can check that this is a process
with finite variations (difference between two non-decreasing processes see [8, Section

4.1]). Hence, it is a.s. constant (see [8, Theorem 4.8]), so Xt(A) (4 — 0 P-a.s.
Let us now deduce that G = 0, dt ® v ® P-a.s, with the help of a monotone class
argument. To this end, define

(A.118) C= {C C [0,7] x R: / G(r,z)drv(dz) =0 P — a.s.}.
C
We have proven so far that C contains the set
(A.119) Co = {(s,t]xA, 0<s<t<T, AEB(R)},

that is a w-system generating B([0,T]) @ B(R). Furthermore, one can check that C is a
monotone class. By Dynkin’s theorem, the property defining C is therefore valid for all
sets in B([0,T]) @ B(R). The reader may check that this implies G = 0,dt @ v @ P-a.s.
Hint : use {G > 0} and {G < 0} as test sets.

(4) Since S is dense, the isometry may be uniquely extended to H2(T).

Solution 26. Pick b(t) =b, o(t) =0, H(t,z) = K(t,z) = z for all (t,z).
Solution 27. (1) We have N, = fot fz|>1./\/(ds,dz) where N is a RPM(\dt ® 01). We
may then write dNg := f 1>1 N(ds,dz), that is a RPM on (0, 00) with intensity Ad¢

(i.e. a homogeneous Poisson point process with intensity X > 0). By analogy with
compensated Poisson measures we define AN as the signed measure dNg — Ads.

(2) We have, with the usual notations,
(A.120)

/ F(8)ANs = > f(T) / f(s)dNs= > F(T) = A /O tf(s)ds.

1<i<N, 1<i< N,

(3) fot BydNs =} <i<n, Bry-

(4) The presence of s~ instead of s is here to ensure predictability of the process (Ny-).
We have

t
. Niy(Ny — 1)
(A.121) X, = i N,-dN, = Z Ny = Z (i-1)=———
1<i<Ng 1<i<Ng

**Any adapted process with left-continuous (or right-continuous) sample paths is progressive, see |8,
Proposition 3.4]
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(with the convention that the sum over an empty set is zero, which is consistent with
the case Ny = 0). Note that Xy is not equal to %Nf, as we would get from a blind
application of standard (non-stochastic) calculus. Let us now look at the compensated
Version:

~ t - NV -1 ¢
(A.122) X, ::/ N,-dN, = % - )\/ N,-ds,
0 0

from which we get by a straightforward computation that E()?t) = 0. As one can
check, this would no longer hold if we were to replace Ny— by Ny in the definition of
X;.
(5) Apply Ité’s formula with f(t,z) = 2% and K(t,z) = 1. Only the first term of (1II) is
present. We get
(A.123) dY; = [(N;- +1)2 — N2]dN; = (2N~ + 1)dN,.
One may check that this is consistent with our previous answer.

Solution 28. Let us write both formulas (in one dimension) next to each other to highlight
the analogy:

Lf(x)=bf'(z) + 502 f"(x) + / [f(x +2) = f(z) = 2f"(2) 1z <y]v(dz),
(A.124) ) R
U (u) = ibu — —au? +/ (e“‘z —-1- iuzl{‘zgl})u(dz).

2 Rd
Derivation corresponds to multiplication by iu in Fourier mode (hence differentiating twice
corresponds to multiplication by (iu)? = —u?) and shifting by z corresponds to multiplica-
tion by e™* (addition of a phase).
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Solution 29. Check Assumption 6.1 with b(y) := by, o(y) := oy and F(y,z) = G(y,2) :=
yz.

Solution 30. (1) By using Remark 7.1, we may write Sy = exp(L;) with

Ly =bt— 0%t + t/ (log(1 + z) — z)r(dz)
|z]<1
(A.125)

t t
+ 0B, + / / log(1 + 2)N(ds,dz) + / / log(1 + 2)N(ds, dz).
0 J|z|>1 0 J|z|I<1

The last two integrals are well-defined because log(1+2z) ~g z and v is a Lévy measure.

(2) One may check that L is a Lévy process with triplet (b,o,v), where

b=10b— 30 —|—/Z|§1(log(1 +2) — z)v(dz)

(A.126) o1 1e1
+ / log(1 + z)v(dz) — / log(1 + z)v(dz).
1 -1
and
(A.127) v(A)=v({z>—1: log(l1+ z) € A}), A € B(R).
The only non-trivial part is to check that v is indeed a Lévy measure.
(3) We get
(A.128)
1
df(Lt) = f/(Lt)bdt — 50'2f/(Lt)dt + / (log(l + Z) — z)v(dz)f’(Lt)dt + Uf/(Lt)dBt
|2I<1

+ %f”(Lt)Uth + / [f(Li- 4+ log(1 + 2)) — f(Ly-)N(dt, dz)

|z|>1

4 /| (B g1 +2) = S (L W (02

<1[f(
+ /| |<1[f(Lt— +log(1+2)) — f(Ls-) — log(1 + Z)f/(Lt—)]dtu(dz)

(4) Applying it to f = exp and simplifying, we get

zN(dt,dz)+/ zN(dt,dz)] = S;-dX;.

(A.129)  dS; =S, [bdt +odB, + / -
2| <

|z|>1
Solution 31. Left to reader.

Solution 32. Using the same notation as in Ezercise 30, we get the (necessary and suffi-
cient) condition:

(A.130) b+ %O’Q +/ (ez —-1- Zl{|2|§1})l7(dz) =0,

which simplifies as

(A.131) b—l—/l| zv(dz) = 0.
z|>1
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Solution 33. The case treated in (7.7) corresponds to v; = A\;jd1, where (i € {1,2}), hence
¢(2z) = log(A1/X2) and we obtain

(A.132)
vi(R) — 15(R) = A; — Ao, D B(AX) =log(Ai/A2) Y 1=log(Ai/A2)N,.
0<s<t 0<s<t
(AX,#0)

Solution 34. Left to reader.
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Solution 35. (1) We proceed by backward iteration. The formula clearly holds for k = n.
Let 1 < k < n and assume that the formula holds for k + 1. Using what we know
from the one-step model, we get

<A133) Wk(Xl, . ,Xk) = qu-',-l(Xl, N ¢ —|—) + (1 — q)WkH(Xl, . ¢ —),
with

1-1 11
(A.134) g lzle _ e

e—1/e e2—1 1+e
We conclude by using the formula at step k + 1.

(2) Same idea, with this time Ag/A1 =e™" and

el

e2—1 "

(A.135) q=

(3) Check that E[e*1] = e".

Solution 36. Let us denote by Qy the restriction of QQ to events in Fy. By the martingale
property we get Q4(Q) = Ep(e¥*) = Ep(e¥°) = 1 and the consistency condition:

(A.136) Q:i(A) =Ep(e¥*A) = Ep(e¥* A) = Q,(A), 0<s<tAecF,.
We conclude by Kolmogorov’s extension theorem.

Solution 37. By taking logarithm, we have

1
(A.137) d(log S;) = odB; + (u - 502>dt,
hence
~ 1,
(A.138) dlog &) = (cdBq(t) ~ So%dt) + (i =71+ oF (1))t
The only possible choice is
(A.139) Fy=""F " w>o,
o

in which case, by Ito’s formula,
(A.140) dS; = ¢S,-dBg(t).
Solution 38. (1) For allt € [0,T], we have

Wi = UiSt + Vi Ay

== '}/tSt + ZtAt — 'ytgtAt
= ZtAt

= e "TVEQ(Z|F).
The portfolio is replicating, since Wp = E(Z|Fr) = Z.
By Ito’s formula, see Theorem 5.6.4 in [1].

(A.141)

(2)
(3)
(4) The arbitrage-free value of the contingent claim is
(A.142) Wo =e "TEg(Z)
(compare with (8.15)).
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Solution 39. Using the result of Exercise 38, the arbitrage-free price of the option writes

(A143) WO — efTTEQ[(ST - k’)+]
Check that
(A.144) Sp = Spe?Ba(M+r—30°)T

Using that Bg is a standard Brownian motion under Pg, we obtain

_ @31 (g

A.145 W, :/ Soe® —ke ™), e 202T .
) A - T

Deduce thereof that

(A.146) Wp = 50q>(1°g<50/k):\/(;+ UQ/Q)T) - ke—rT(I)(log(SO/k);‘\/(;_ 02/2)T>’

where ® is the cumulative distribution function of a standard Gaussian random variable.
See [1, Theorem 5.6.4] and references therein for a complete solution.

Solution 40. Let g,, 2 be the density of N'(m,v?). Then,

1
(A.147) v(dz) = Agp42(d2), b=pu —I—/ zv(dz).

-1
Solution 41. Clearly, vy is a non-negative measure. Moreover,
(A.148) /(1 A 22 rg(dz) < / vp(dz) = / eazgm,vz(z)dz < 00.
R R R

Solution 42. (1) By dominated convergence,

(A.149) £(0) = / 2(e® = 1)e®u(dz) > 0,
R
so f is non-decreasing.

(2) Since v((0,00)) > 0 and v((—00,0)) > 0 we respectively get

FO= [ale - uan >0 020
(A.150) %
f1(0) > / z(e® — 1v(dz) >0 (0 <0).

—0oQ

(3) From what precedes, f is a bijection from R to R, so that (8.32) has a unique solution.



