
Université Paris-Dauphine, PSL University
Centre de Recherche en Mathématiques de la Décision
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Introduction

This mémoire d’Habilitation à Diriger des Recherches contains a synthesis of my research work
as well as perspectives for future research. A large part of it consists of results that have been
already published in journals. These results appear in the form of theorems or propositions∗ and
the corresponding references are encapsulated at the beginning of each chapter. I sketch the proofs
of the most important theorems, in order to explain the main ideas behind them. The reader may
refer to the original papers for detailed proofs. I also discuss the results and present directions for
future research, some of them labelled as conjectures. Some of these research directions are the
object of ongoing work, while some others are still open.

The results presented in this mémoire mostly deal with polymer models seen from the point
of view of Probability Theory and Statistical Mechanics. Polymers are macromolecules that can
be found both in nature and in the industry. They are formed by the repetition of a very large
number of basic units called monomers, which are atoms or groups of atoms. Different kinds of
geometries can be achieved via the binding of such monomers but we will here restrict to linear
polymers, that are chain-like molecules. To mimick the spatial flexibility of monomer bonds, the
idea emerged in the last century to model the configuration of a polymer chain by a random walk
path [50, 68]. The simple random walk model is a very popular model in Probability Theory. It
is defined as a Zd-valued random process (Sn)n≥0 usually started at the origin and so that the
increments (Sn − Sn−1)n≥1 are independent and uniformly distributed on the 2d unit vectors.
Hence, a polymer with N monomers shall be represented by a random walk running up to time
N . Two types of models arise: in undirected models, the position of the n-th monomer in the
chain is Sn (d-dimensional model) while in directed models, its position is understood as (n, Sn)
(1+d-dimensional model). The latter model has the advantage of satisfying the exclusion principle,
according to which two distinct monomers cannot occupy the same site. Note that we will sometimes
also deal with the a priori unphysical dimensions d > 3. Another restriction comes from the fact that
only equilibrium models are considered. The equilibrium states will be defined via the formalism
of Statistical Mechanics, which we now briefly introduce. For each n ∈ N, let Hn be a real-valued
function (called Hamiltonian function) depending on the first n steps of the random walk/polymer.
This function depends on the particular model we want to study, that is the type of interactions
that govern the physics of the molecule (e.g. monomer-monomer or monomer-solvent interactions,
external forces). Then, the probability measure describing a polymer of size n, at equilibrium and
at inverse temperature β > 0, can be denoted by Pn,β and defined by

dPn,β
dP

(S1, . . . , Sn) =
exp(−βHn(S1, . . . , Sn))

Zn,β
, (0.1)

where P is the law of the simple random walk and Zn,β = E[exp(−βHn(S1, . . . , Sn))] is a normal-
ization factor called partition function. One of the main goals is to describe the typical shape of
the polymer under the law Pn,β in the limit of many monomers (n → ∞), and the first step in
undertaking this task is usually to determine the asymptotic behaviour of the sequence of partition
functions.

Let us now briefly present below the different problematics that one will find in this document.
First of all, one notices that the polymer measure in (0.1) comes as a competition between energy
(tendency to minimise the Hamiltonian function) and entropy (randomness). The outcome of this
competition may depend on the inverse temperature (or other parameters), leading to different
behaviours of the polymer as n → ∞. This drastic change in the limiting polymer measure (or
in the free energy of the system as we will see in Chapters 1 and 3) for different values of the
parameter is known as a phenomenon of phase transition. What happens at the onset of such
transitions is called critical behaviour. Note that we will sometimes break the convention that
energy should be minimised by switching the sign of the Hamiltonian, and consider possibly more

∗except for Propositions 1.4 and 1.11, which are not contributions from the author.
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than one parameter: for instance, the annealed charged polymer model in Chapter 3 (a model for
polyelectrolytes) exhibits two phases, depending on both the inverse temperature and the charge
bias.

Another important topic is that of disordered systems, of which the first three chapters offer
examples. These are systems which contain impurities or a certain degree of inhomogeneity. In the
context of polymers, this happens for instance when monomers can exist in various forms inside
the same molecule: this is the case for a DNA strand, of which nucleotides can be of four forms,
A, T, C or G (Chapter 1) or a polyelectrolyte, of which monomers can have different electrical
charges (Chapter 3). Another possible scenario is that of a inhomogeneous solvent (see Chapter 2)
and we sometimes say in this case that the polymer evolves in a random environnement. This
leads to models with two sources of randomness: the first one is that of the random walk itself
and the second one is related to the inhomogeneities, also referred as disorder. As a consequence, a
disordered model usually has two versions: the quenched model corresponds to a polymer set in an
environment where disorder is frozen, while in the annealed model, the polymer and the disorder
variables jointly fluctuate. A crucial question is whether disorder affects the critical behavior of
a system with a phase transition, and we will come back to this issue of disorder relevance in
Chapter 1.

This mémoire contains four chapters. Each chapter is dedicated to a different model which deals
with a specific kind of interaction. Chapters 1 and 2 deal with directed models, while Chapters 3
and 4 deal with undirected models (in Chapter 4 we rather work with the continuous counterpart
of the simple random walk, that is Brownian motion). Chapters 1 and 2 both deal with pinning yet
they are kept separately for a matter of notation and exposition. In Chapter 1, pinning is induced
by the presence of a single defect line that attracts or repels the polymer. This model is also
adapted to other situations such as DNA denaturation (Poland-Scheraga models). In Chapter 2,
however, pinning is induced by the presence of many repulsive lines. As we will see, this model is also
connected to other famous models such as the Anderson model and the random walk model among
obstacles. Both models in Chapters 1 and 2 are disordered ones: in Chapter 1 disorder sits on the
defect line (or equivalently on the monomers) and in Chapter 2, disorder sits on the position of the
repulsive lines. Chapter 3 deals with folding and unfolding of polymers, a mechanism that is visible
in real-life molecules. We will mostly discuss this phenomenon in the context of charged polymers
(another class of disordered polymers) for which, in the annealed setup, a phase transition happens
between a collapsed phase and an extended phase. Some of our research directions, however, also
include the study of folding in other contexts (as in the “Swiss cheese” model and interacting
partially directed walks). Finally, Chapter 4 deals with a Poisson collection of Brownian motions,
that one may look at a simple model for a system of many non-interacting chains (polymer melt)
and the phenomenon at stake there is percolation.

Even if the contents and the structure of what follows are motivated by questions arising from
Physics and Biology, we will deal, of course, with the mathematical tools that are used to study
such models (see e.g. [53, 72, 73]). The partitions functions will be analyzed using various tools
such as coarse graining techniques, rare-stretch strategies, expansion techniques and more gener-
ally, tools from the Large Deviations Theory [51, 52, 65]. Some results from Ergodic Theory are
used in Section 1.3.1. Some other tools are used to study disordered models, such as change of
measure arguments, second moment methods and, when it comes to correlated disorder, decoupling
techniques. We will also rely on tools from Renewal Theory [8] (Chapter 1) and Random Walk
Theory [96, 123] (such as confinement estimates and moment generating functions of hitting times
in Chapter 2 or representation of local times in Chapter 3). The notion of Newtonian capacity of a
set plays a crucial role in Chapter 4 but also in one of our perspectives on folding (Section 3.6.1).
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Notation

• N = {1, 2, . . .} and N0 = {0, 1, 2, . . .};

• un ∼ vn means un = [1 + o(1)]vn as n→∞;

• we use the symbol := to define quantities;

• ε ↓ 0 (resp. ε ↑ 0) means that ε converges to 0 from above (resp. from below);

• a ∨ b = max(a, b), a ∧ b = min(a, b), (a)+ = max(a, 0);

• if Zn = E[exp(Hn)] is a partition function and A is an event then Zn(A) = E[exp(Hn)1A];

• Mᵀ is the transpose matrix of M ;

• we use the symbols # or | · | to denote the cardinality of a set;

• unless stated otherwise, ‖ · ‖ is the Euclidean norm on Rd;

• if U is an open set of Rd and k ∈ N∪ {∞} then Ck(U) is the set of functions that are k-times
continuously differentiable in U ;

• cap(A) is the Newtonian capacity of a set A (in Zd or Rd, depending on the context);

• B(x, r) is the open Euclidean ball centered at x ∈ Rd with radius r;

• we abbreviate “independent and identically distributed” by IID or i.i.d;

• [n] = {1, 2, . . . , n} for n ∈ N.
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Chapter 1

Pinning of a polymer on a defect
line

This chapter is based on [111–113] and joint works with Q. Berger, F. Caravenna, R. Sun and N.
Zygouras [19,23], D. Cheliotis and Y. Chino [44] and F. den Hollander [54].

The pinning model provides a general mathematical framework to study the localization phase
transition that occurs in various physical contexts such as the wetting transition of interfaces [56,69],
DNA denaturation (Poland-Scheraga models) [115], localization of flux lines in superconducting vor-
tex arrays [105] and localization of a polymer along a defect line. For an account on pinning models,
we refer to the two monographs [72,73] and references therein, as well as Chapters 7 and 11 in [53].
This chapter is organized as follows: in Section 1.1 we recall some well-established facts about the
homogeneous version of the pinning model and the corresponding phase transition; in Section 1.2
we investigate the effect of disorder in the interaction and present a summary of the results that
have been obtained on this topic. We then consider the case of correlated disorder in Section 1.3.
We finally close the chapter with a discussion and some perspectives in Section 1.4.

1.1 The homogeneous pinning model

Polymer chain and contact points. The polymer chain is modeled by a Markov chain S = (Sn)n≥0

on Z with S0 = 0, the probability distribution and expectation of which are denoted by P and E.
Here, one should think of (n, Sn) as the position of the n-th monomer along the polymer chain
while the line N × {0} corresponds to a defect line. We denote by τ := (τn)n≥0 the sequence of
random times at which S returns to 0, namely τ0 = 0 and τn+1 = inf{k > τn : Sk = 0}. By the
Markov property of S, the process τ is a renewal process. With a slight abuse of notation, we shall
also write τ for the random subset of integers {0, τ1, τ2, . . .} which, in the polymer interpretation,
are the positions (along the polymer chain) of the monomers that touch the defect line. We assume
throughout the chapter that the inter-arrival law of τ satisfies a power-law decay:

K(n) := P(τ1 = n) = L(n)n−(1+α), α ≥ 0, n ∈ N, (1.1)

where L : (0,∞)→ (0,∞) is a slowly varying function whose support is aperiodic, that is, gcd{n ≥
1: L(n) > 0} = 1. The aperiodicity assumption is made for convenience and does not hide anything
deep. We also assume that τ is recurrent (non-terminating) that is P(τ1 < ∞) =

∑
n≥1K(n) = 1

(otherwise it is said to be transient). Finally, we denote by δn the Bernoulli random variable that
is 1 if the n-th monomer along the polymer chain touches the defect line and 0 otherwise, which we

9
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may write
δn = 1{n∈τ}. (1.2)

Example 1.1. One of the most natural example is when S is the simple random walk on Z, which
satisfies (1.1) for n ∈ 2N, with α = 1/2 and L(·) converging to a constant. The fact that the support
of K has period 2 in this case can be easily dealt with.

Remark 1.2. In this framework the fundamental object is the renewal process τ , and there is
no need to refer to the Markov chain S. However, let us mention that, for any α > 0 and any
slowly varying function L, a nearest-neighbour Markov chain S on Z with Bessel-like drift can be
constructed, that satisfies assumption (1.1) asymptotically, that is K(n) ∼ L(n)/n1+α as n → ∞,
cf. [2].

We start with the homogeneous version of the model, which is completely solvable and treated
in detail in [72]. Let us denote the number of contact points between the n first monomers and the
defect line by

Hn =
∑

1≤k≤n

δk = #{1 ≤ k ≤ n : k ∈ τ}. (1.3)

The polymer measure with length n ∈ N and pinning strength h ∈ R is defined by

dPn,h
dP

=
1

Zn,h
exp(hHn), (1.4)

where Zn,h = E[exp(hHn)] is a normalizing constant called partition function. The measure above
corresponds to a polymer chain of which the n first monomers interact with the defect line. The
interaction is attractive if h > 0, neutral if h = 0 and repulsive if h < 0. It is sometimes more
convenient to work with the constrained (as opposed to free) version of the measure, that is

dPcn,h
dP

=
1

Zn,h
exp(hHn)δn, (1.5)

as the sequence of constrained partition functions Zcn,h = E[exp(hHn)δn] is super-multiplicative.
However, both versions lead to the same value of the limiting free energy [72, Chapter 1, Remark
1.2] which is defined as

f(h) = lim
n→∞

1

n
logZn,h = lim

n→∞

1

n
logZcn,h. (1.6)

By restricting the expectation E to the event {τ1 > n} in the definition of the partition function,
and observing that log P(τ1 > n) = O(log n) by (1.1), it follows that f(h) ≥ 0. It is actually known
that f(h) = 0 if h ≤ 0, otherwise

f(h) = inf
{

f ≥ 0:
∑
n≥1

e−fnK(n) ≤ e−h
}
. (1.7)

The phase transition can be explained in terms of non-analyticity of the free energy at the critical
point hc = 0 and in terms of the limiting density of contact points:

lim
n→∞

En,h

(Hn

n

)
=

{
0 (h < 0)

f′(h) > 0 (h > 0).
(1.8)

What happens at criticality depends on the exponent α. It is known that

f(h) = hmax(1,1/α)L̂(1/h), (1.9)

where L̂ is a slowly varying function related to L, see Theorem 2.1 in [72] for a precise statement.
A simple case to keep in mind is when L converges to a constant and so does L̂. The exponent
νhom = max(1, 1/α) is called the (homogeneous) critical exponent and characterizes the order of the
phase transition.

Remark 1.3. There is no loss of generality by assuming that τ is recurrent, as one can observe by
shifting the pinning strength by log P(τ1 <∞).
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1.2 The random pinning model

An important challenge in statistical mechanics is to understand the effect of quenched impurities
or inhomogeneities in the interaction on the mechanism of phase transition. Such impurities may
drastically change the properties of a physical system and alter the nature of its phase transitions,
leading to new phenomena. In the pinning model, disorder is attached to the defect line, which can
either attract or repel the polymer. This leads to the random (or disordered) version of the pinning
model.

The disorder sequence. The disorder is modeled by a sequence ω := (ωn)n≥1 of i.i.d. real random
variables which are sampled independently of τ . The probability distribution and corresponding
expectation for ω will be denoted respectively by P and E. We assume that

M(t) := E[etω1 ] <∞ ∀t ∈ R , E[ω1] = 0 , E[ω2
1 ] = 1 . (1.10)

The requirement that ω1 is centered and of unit variance is just a matter of normalization and does
not hide anything deep. The log-moment generating function is denoted by

Λ(t) := logM(t) ∼ 1
2 t

2 as t→ 0 . (1.11)

The standard normal distribution provides an example of such a probability distribution, with
Λ(t) = 1

2 t
2 for t ∈ R. The i.i.d. assumption will be removed in Section 1.3.

The disordered polymer measure. Let us define a disordered analogue of (1.4):

dPωn,β,h
dP

=
1

Zωn,β,h
exp

{ n∑
k=1

(h+ βωk)δk

}
, n ∈ N, β ≥ 0, h ∈ R, (1.12)

where

Zωn,β,h = E
{

exp
( n∑
k=1

(h+ βωk)δk

)}
(1.13)

is the quenched partition function, h is the (average) pinning strength and β is the disorder strength
(or coupling constant).

Free energy. Many statistical properties of the model can be captured through the (quenched)
free energy, which is defined by

f(β, h) := lim
n→∞

1

n
logZωn,β,h = lim

n→∞

1

n
E logZωn,β,h , (1.14)

where the first limit exists P-a.s. and in L1(P), and remains unchanged if we replace the partition
function by its constrained counterpart (see [72, Chapter 4]). As in the homogeneous case, we may
split the space of parameters into a localized phase L = {(β, h) : f(β, h) > 0} and a delocalized
phase D = {(β, h) : f(β, h) = 0}. These two phases are separated by the (quenched) critical curve

hc(β) := sup{h : f(β, h) = 0}, (1.15)

where the (quenched) localization-delocalization transition occurs. We may describe these two
phases in terms of the contact fraction ∂hf(β, h) = limn→∞(1/n)En,β,h(|τ ∩ {1, . . . , n}|), which
is positive inside the localized phase and zero inside the delocalized phase. A simple application of
Jensen’s inequality leads to the observation that hc(β) ≤ 0 and with extra work one can prove that
actually hc(β) ∈ (−∞, 0) if β > 0 [4]. Apart from the critical point, the other main feature of the
phase transition is the (quenched) critical exponent, which is defined by

νq(β) = lim
h↓hc(β)

log f(β, h)

log(h− hc(β))
, (1.16)

when the limit exists, and indicates the smoothness (or order) of the phase transition.
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1.2.1 Annealed versus quenched

The effect of disorder is best seen through comparison of the quenched model with its annealed
counterpart. In particular, the annealed partition function and the annealed free energy are defined
by

Za
n,β,h := E(Zωn,β,h) = EE

[
exp

( n∑
k=1

(h+ βωk)δk

)]
(1.17)

and

fa(β, h) := lim
n→∞

1

n
logZa

n,β,h. (1.18)

The critical features of this model are the annealed critical curve and exponent:

ha
c(β) = inf{h : fa(β, h) > 0}, νa(β) = lim

h↓ha
c(β)

log fa(β, h)

log(h− ha
c(β))

, (1.19)

when the limit exists. By Jensen’s inequality, for all h ∈ R and β ≥ 0,

f(β, h) ≤ fa(β, h), (1.20)

which gives
hc(β) ≥ ha

c(β). (1.21)

It turns out that in the case of i.i.d. disorder the annealed model is exactly solvable since it coincides
with the homogeneous model with parameter h+ Λ(β), hence

ha
c(β) = −Λ(β) ∼ − 1

2β
2, β ↓ 0 (1.22)

and
νa(β) = νhom = max(1, 1/α), β ≥ 0. (1.23)

1.2.2 Disorder relevance and the Harris criterion

Disorder is usually said to be relevant if quenched and annealed critical features differ. Hence, from
what precedes, disorder may be relevant with respect to critical points, if hc(β) − ha

c(β) > 0, or
relevant with respect to critical exponents, if νa(β) 6= νq(β). There has been a lot of activity around
this question and several approaches have been used: direct estimates such as fractional moment
and second moment estimates [4, 5, 19, 22, 31, 55, 74, 76], martingale theory [92], variational tech-
niques [45] and more recently chaos expansion of the partition function [35–37]. This question is
now fully settled.

Critical point shift. It was first noted in [75, Proposition 6.1] that if hc(β)− ha
c(β) > 0 for some

value of β then the same holds for larger values of β. Hence, the question is to know whether there
is equality of critical points for small values of β or if there is a positive critical point shift for all
β > 0. Finally, the criterion for disorder relevance in the sense of critical point shift reads [22]:

[∀β > 0, hc(β) > ha
c(β)] ⇐⇒

∑
n≥0

P(n ∈ τ)2 =∞. (1.24)

The sum above actually coincides with the expected number of points in the intersection set of two
independent copies of τ . By the Renewal Theorem, {P(n ∈ τ)} converges to 1

µ := 1
E[τ1] as n→∞,

with the improvement that
P(n ∈ τ) ∼ L(n)−1nα−1 (1.25)

when α ∈ (0, 1). Hence, disorder is always relevant when α > 1/2 and irrelevant for small values of β
when α < 1/2, which comes in agreement with a criterion found in the physics literature and called
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the Harris criterion [82]. This criterion gave however no prediction for the marginal case α = 1/2,
which was the subject of controversies. The answer for this special case, which is actually essential
for Example 1.1, depends on the slowly varying function and is given by (1.24) and (1.25).

Critical exponents. A key result for investigating disorder relevance with respect to critical
exponents is the following:

Proposition 1.4 (Smoothing inequality). There exists a constant ε0 > 0 and a continuous map
(β, δ) 7→ Aβ,δ from (0, ε0) × (−ε0, ε0) to (0,∞), depending only on the disorder distribution and
such that lim(β,δ)→(0,0)Aβ,δ = 1, with the following properties: for every 0 < β < ε0 and |u| < βε0

0 ≤ f(β, hc(β) + u) ≤ 1 + α

2
Aβ,uβ

u2

β2
; (1.26)

The smoothing inequality was first proved in [76], without the precision on the constant and
under more restrictive assumptions on the disorder. In the case of Gaussian disorder, it appears
in [72] with the right constant (1+α)/2, cf. Theorem 5.6 and Remark 5.7 therein. The general state-
ment we use here is proved in [31]. This inequality implies that in all cases νq(β) ≥ 2 when β > 0,
therefore νq(β) > νa(β) as soon as α > 1/2. Hence disorder tends to smoothen the phase transi-
tion. In the other direction, it was proved in [1, 6, 45, 77, 92, 133] that when the intersection of two
copies of τ is transient (when α < 1/2 for instance) then νq(β) = νa(β) at least for small values of β.

Finally, let us point out that even if the issue of disorder relevance is settled for the pinning
model, it is still an open problem to determine the precise order of the quenched phase transition
in the relevant regime.

1.2.3 The weak-coupling limit of the quenched critical curve

For the random pinning model with α > 1, rough upper and lower bounds of the order β2 were
known for the critical curve hc(β), cf. [5,55]. In [19, Theorem 1.4], we sharpened these earlier results
by establishing the following:

Theorem 1.5. If µ := E[τ1] <∞ ∗ then we have

lim
β↓0

hc(β)− ha
c(β)

β2
=

1

2µ

α

1 + α
. (1.27)

Thus, the asymptotic behavior of the critical curve of the random pinning model with α > 1 is
universal, in the sense that it depends only on the exponent α and on the mean µ of the underlying
renewal process, and not on the finer details of the renewal process or the disorder distribution.
We stress that the asymptotic behaviour of (1.27) cannot be derived by a naive expansion of the
partition function and interchange of n→∞ and β → 0 limits.

Proof strategy for the lower bound. The proof of the lower bound on hc(·) is based on a refinement
of the “fractional moment and coarse graining” method, which was developed in this context in
[55,74], see also [73, Chapters 6 and 7]. The fractional moment method consists in showing that for
some γ ∈ (0, 1),

lim inf
n→∞

E[(Zωn,β,h)γ ] <∞. (1.28)

If the previous relation holds then f(β, h) = 0, hence h ≤ hc(β). The standard application of this
moment method makes use of a change of measure, which via the use of Hölder’s inequality gives
rise to an energy-entropy balance. The change of measure is done by defining the tilted measures:

dPδ,k
dP

=
∏

1≤i≤k

exp(δωi − Λ(δ)), δ ∈ R. (1.29)

∗The condition in [19, Theorem 1.4] is α > 1 but it was slightly improved to E[τ1] <∞ in [23].



14 CHAPTER 1. PINNING OF A POLYMER ON A DEFECT LINE

By Hölder’s inequality,

E[(Zωn,β,h)γ ] ≤ Eδ,n[Zωn,β,h]γEδ,n
[( dP

dPδ,n

) 1
1−γ
]1−γ

. (1.30)

The first factor in the r.h.s. is an energy factor while the second term is an entropy factor. In [55,74],
the entropy factor can be bounded by an arbitrary constant, while the energy factor can be made
arbitrarily small. Our first refinement requires optimizing this energy-entropy balance, which is
crucial in obtaining the precise constant. To be more precise, we set hβ = ha

c(β) + cβ2, nβ = dt/β2e
(t > 0) and δ = −aβ (a ∈ R). By evaluating (1.30) for this specific choice of parameters, letting
β ↓ 0 and optimising over a (that is a = (1− γ)/µ) we obtain:

lim sup
β↓0

E[(Zωnβ ,β,hβ )γ ] ≤ 1

µγ
exp

[γ
µ

(
c− 1− γ

2µ

)
t
]
. (1.31)

The coarse graining step enables us to go from the estimate above to (1.28) by glueing several blocks
of length nβ . This step is quite technical so we do not detail it here (see the original paper [19]
for the full proof) but the outcome is that (1.28) holds as soon as the r.h.s. above is small and,
since t can be chosen arbitrarily large, this means that any c < (1 − γ)/(2µ) is a valid choice.
The condition that γ > 1/(α + 1) for the coarse graining step to work finally gives the desired
lower bound. Note that we need a refinement in the coarse graining procedure too. In the standard
application, the polymer only needs to place a positive fraction of monomers at the interface in
each visited coarse-grained block, while in our case, we need to ensure that this positive fraction is
in fact close to 1. For this step, α > 1 plays a crucial role.

Proof strategy for the upper bound. The idea to prove the upper bound is to couple the smoothing
inequality in Proposition 1.4 with a rough linear (but quantitative) lower bound on the free energy.
More precisely, we prove that for every c ∈ R,

lim inf
β↓0

f(β, ha
c(β) + cβ2)

β2
≥ 1

µ

[
c− 1

2µ

]
. (1.32)

This is obtained by defining for q ∈ N,

H
(q)
`,ω = log E

[
exp

( ∑
1≤k≤`

(βωk + h)δk

)
|τq = `

]
(1.33)

and applying Jensen’s inequality:

f(β, h) ≥ 1

qµ
EE(H(q)

τq,ω). (1.34)

Then, we set h = ha
c(β) + cβ2, perform a Taylor expansion as β ↓ 0 and later send q to infinity. Re-

markably, enforcing the compatibility of the inequality in (1.32) with the corresponding smoothing
inequality (1.26) leads to the sharp upper bound on the critical curve. What actually lies behind
this compatibility condition is a rare stretch strategy, which we now sketch. We start by decom-
posing N = ∪∞i=1Bi into blocks of (large) length M and we search for such blocks where the sample
average of the disorder is about aβ, that is M−1

∑
n∈B· ωn ' aβ, where a is a fixed parameter. The

probability of a block to have a sample average of that order is roughly exp(−a2β2M/2) and the
reciprocal of this probability will give the number of blocks that will separate the atypical ones.
Once these “atypical blocks” have been identified, we let the polymer jump from the end point
of one such block to the start point of the following. In view of (1.1), the cost for this is roughly
exp(−(1 + α)a2β2M/2). Once at the beginning of an atypical block, the contribution to the free
energy of the polymer is roughly, by (1.32) (recall that h = ha

c(β) + cβ and we have shifted the
mean of the disorder to aβ):

β2

µ

[
c+ a− 1

2µ

]
M. (1.35)
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The energy-entropy balance gives the following lower bound for the free energy:

e−a
2β2M/2M

[(
c+ a− 1

2µ

)
− 1 + α

2
a2

]
β2.

Finally, optimizing over a, the term in square brackets becomes
[
c − α

1+α
1

2µ

]
, which leads to the

sharp upper bound on the critical curve. Let us note that rare stretch strategies have been employed
extensively in the study of pinning (but also copolymer) models, cf. [72, Sections 6.3 and 5.4]
and [73, Section 5.1] for instance.

Remark 1.6. The case α ∈ ( 1
2 , 1) has been answered by Caravenna, Toninelli and Torri [37]. There

exists a constant mα ∈ (0,∞) and a slowly varying function L̃α (explicitly determined by L and α)
such that

lim
β↓0

hc(β)− ha
c(β)

L̃α(1/β)β
2α

2α−1

= mα. (1.36)

Moreover, mα is the critical parameter of the continuum disordered pinning model which was built
in [35, 36]. However, the continuum limit does not seem to give any information on the limit in
(1.27). Indeed, it is shown in [35] that when α > 1, the partition function under weak coupling
converges, in the continuum limit, to the exponential of a Brownian motion with drift, which depends
on µ but not on α > 1.

1.3 The random pinning model with correlated disorder

The study of pinning models in correlated disorder is more recent [17, 18, 21, 23, 113]. The motiva-
tion is twofold. First, it is quite natural from a mathematical perspective to try and understand
what remains of the properties of the model (in particular, the validity of the criterion for disor-
der relevance) when ones removes the assumption of independence in the disorder sequence. Also,
from the point of view of physical and biological motivations, it appears that inhomogeneities may
present (more or less strong) correlations: let us mention for instance the correlations in the se-
quence of nucleotides, which play the role of the disorder sequence in DNA denaturation [86]. The
question of the influence of correlated disorder on critical phenomena was actually considered in
the context of long-range correlated percolation and the Harris criterion extended to the so-called
Weinrib-Halperin criterion [140,141], which suggests that the criterion for disorder relevance should
be modified only if the correlations are strong enough.

Our first observation is that the existence of the quenched free energy is still guaranteed under
rather mild assumptions on the disorder sequence, namely if ω is a stationary and ergodic sequence
of integrable random variables [72, Theorem 4.6]. However, the annealed model is in general not
trivial and this is a reason to first restrict to some particular correlated disorder distributions, such
as

• correlated Gaussian disorder [17,23,111–113];

• random environments with large attractive regions of sub-exponential decay, also referred to
as infinite disorder [18, 21];

• disorder built on renewal sequences [3, 21,44].

1.3.1 Correlated Gaussian disorder

The random pinning model with Gaussian correlated disorder has been studied in [17,23,111–113]
and is still partially open. We assume here that ω = (ωn)n≥0 is a Gaussian stationary sequence,
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the law of which is denoted by P and we recall that ωn is the (random) charge on the n-th site of
the defect line (or interface). Its correlation function is

ρn := E[ω0ωn], n ∈ Z, (1.37)

with ρ−n = ρn as a consequence of stationarity. We still assume that E[ω0] = 0 and ρ0 = E[ω2
0 ] = 1,

which is just a matter of normalization. For notational convenience, we also write Υ := (ρij)i,j≥0

the covariance matrix, where ρij := E[ωiωj ] = ρ|j−i|.

Example 1.7. A valid choice for the correlation structure is ρn = (1 + n)−a for all n ≥ 0, with
a > 0 a fixed constant, since it is convex, cf. [116].

In the Gaussian case, the two-point correlation function is enough to describe the whole corre-
lation structure and to compute exponential moments. This allows us to get an explicit annealed
model:

Za
n,β,h = E

[
exp

(
h
∑

1≤k≤n

δk +
β2

2

∑
1≤k,`≤n

ρk`δkδ`

)]
. (1.38)

Let us observe that when correlations are non-negative and not summable the annealed model is
degenerate, in the sense that fa(β, h) = +∞ for all (β, h), and the quenched free energy is always
positive. We refer to [17, 18] for an explanation of this so-called infinite disorder phenomenon.
Henceforth we shall make the following assumption:

Assumption 1.8. We assume that correlations are summable, that is
∑
n∈Z |ρn| < +∞, and we

define the constant Υ∞ :=
∑
n∈Z ρn. This means that Υ is a bounded operator. We also make the

additional technical assumption that Υ is invertible.

Note that Assumption 1.8 implies that limn→∞ ρn = 0, which entails ergodicity of ω, see [49,
Chapter 14, Section 2, Theorem 2]. For the choice ρn = (1 + n)−a, Assumption 1.8 corresponds to
having a > 1.

Even so, the annealed model is not trivial and it is still not completely solved. A spectral
characterization of the annealed critical curve is given in [113], but there is no explicit formula as
in the i.i.d. case. Nonetheless, we are able to derive the small coupling asymptotic of the annealed
critical curve †:

Proposition 1.9 (cf. Theorem 2.3 in [113]). The following limit holds:

lim
β↓0

ha
c(β)

β2
= −1

2
Cρ, with Cρ :=

∑
n∈Z

ρnP(|n| ∈ τ). (1.39)

In [23] we identified the small coupling asymptotic of the quenched critical point when E[τ1] <
+∞, in analogy with Theorem 1.5:

Theorem 1.10. If µ = E[τ1] < +∞ then we have

lim
β↓0

hc(β)− ha
c(β)

β2
=

Υ∞
2µ

α

1 + α
. (1.40)

Note that the asymptotics given in Theorem 1.10 and that of Theorem 1.5 only differ through
the multiplicative constant Υ∞. In particular, one recovers Theorem 1.5 in the IID case, where
Υ∞ = 1. Theorem 1.10 proves disorder relevance in terms of critical points if µ < +∞ (in particu-
lar if α > 1), under Assumption 1.8.

Let us now turn to critical exponents. The smoothing inequality in Proposition 1.4 has been
extended to the Gaussian correlated case:
†In [113, Theorem 2.3] we assume that correlations are doubly-summable, but a look at the proof reveals that

summable correlations are enough.
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Proposition 1.11 (cf. Theorem 2.3 in [17]). For every β > 0 and u ≥ 0,

0 ≤ f(β, hc(β) + u) ≤
(

1 + α

2Υ∞

)
u2

β2
. (1.41)

As for the annealed critical exponent, it is known to coincide with the homogeneous one under
the stronger assumption that the correlations are doubly summable:

Theorem 1.12 (cf. Theorem 3.1 in [113]). If
∑
n∈N n|ρn| is finite then for all β ≥ 0, there exists

C = C(β) ∈ (0,∞) such that for u ≥ 0,

(1/C) f(0, u) ≤ fa(β, ha
c(β) + u) ≤ C f(0, u). (1.42)

The proof uses a general theorem on countable Markov shifts with a potential of summable
variations. Let us describe in a few lines the core of the method developed in [113]. First, we define
a potential function on NN by

φβ(t1, t2, . . .) = logK(t1) + 1
2β

2
(

1 + 2
∑
k≥1

ρt1+...+tk

)
. (1.43)

We also consider the following operator, which acts on bounded functions f defined on NN and
which is closely linked to the annealed partition function:

(Lβf)(t1, t2, . . .) =
∑
n∈N

exp(φβ(n, t1, t2, . . .))f(n, t1, t2, . . .). (1.44)

It turns out that when the correlations are doubly summable the potential function has summable
variations and Lβ has nice spectral properties. In particular, one can define λ(β), the analogue of
the Perron-Frobenius eigenvalue of Lβ , and we obtain

ha
c(β) = − log λ(β). (1.45)

Such a characterization also holds for the annealed free energy. To this end, we define

φβ,f(t1, t2, . . .) = φβ(t1, t2, . . .)− ft1, (1.46)

and Lβ,f (resp. λ(β, f)) the associated operator (resp. principal eigenvalue). We prove that

fa(β, h) = inf{f ≥ 0: − log λ(β, f) = h}, h ≥ ha
c(β). (1.47)

Then, Theorem 1.12 follows from a general theorem for phase transitions of dynamical systems.
We point out that the bounds in (1.42) can be upgraded to sharp asymptotics under the stronger
assumption that the correlations decrease exponentially fast, see [113, Theorem 2.2]. Theorem 1.12
was also independently proved in [17, Theorem 2.2] with more basic arguments (quasi-renewal prop-
erty) but for small values of β.

Finally, one may deduce from (1.42) and (1.41) that disorder is relevant (in terms of critical
exponents) for α > 1/2 and

∑
n∈N n|ρn| <∞, which corresponds to having a > 2 in Example 1.7.

Remark 1.13. The condition that Υ is invertible is actually only necessary for Proposition 1.11 and
Theorem 1.10. A simple case when Υ is invertible is when 1 = ρ0 > 2

∑
n∈N |ρn|: it is then diagonally

dominant. More generally, one has to consider the Laurent series associated to the Toeplitz matrix
Υ, namely f(λ) = 1 + 2

∑
n∈N ρn cos(λn) (we used that ρ0 = 1, and that ρ−n = ρn). Then, the

fundamental eigenvalue distribution theorem of Szegö [80, Chapter 5] tells that the Toeplitz operator
Υ is invertible if and only if minλ∈[0,2π] f(λ) > 0. For example, if ρ0 = 1, ρ1 = 1/2 and ρn = 0 for
n ≥ 2, then Assumption 1.8 is not verified: indeed, one then has that f(λ) = 1 + cos(λ), and its
minimum is 0 so that the operator Υ is not invertible.
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One of the main difficulty in the correlated setup is that the partition functions associated to
disjoint subsets of the defect line are no longer independent. To tackle this, we proved and used the
following Gaussian decoupling inequality:

Lemma 1.14 (cf. Lemma B.1 in [23]). Let P be the law of a centered Gaussian sequence ω =
(ωn)n∈Z, with a correlation matrix Υ = (ρij)i,j∈Z. If I and J are two disjoint subsets of Z, we
define

C(I,J ) =
∑

i∈I, j∈J
| ρij | . (1.48)

Let f : RI 7→ R and g : RJ 7→ R be two functions which are C2 and such that, for some constant
c ∈ (0,∞),

∀i ∈ I, j ∈ J , | ∂ωif |≤ c f, | ∂ωjg |≤ c g ;

∀i, i′ ∈ I, j, j′ ∈ J , | ∂2
ωi,ωi′

f |≤ c2 f, | ∂2
ωj ,ωj′

g |≤ c2 g .
(1.49)

Denoting by ωI the vector (ωn)n∈I , for any subset I of Z, we have

E[f(ωI)g(ωJ )] ≤ ec
2C(I,J )E[f(ωI)]E[g(ωJ )]. (1.50)

The basic idea behind Lemma 1.14 is interpolation. By using two independent copies of ω, we
first build a centered Gaussian sequence ω̃ such that

E(ω̃iω̃j) = ρij(1{i,j∈I} + 1{i,j∈J}), i, j ∈ I ∪ J . (1.51)

We then define the interpolating sequence

ωn(t) =
√
tω̃n +

√
1− tωn and φ(t) = E[f(ωI(t))g(ωJ (t))], t ∈ [0, 1], (1.52)

so that the expectation in the l.h.s. of (1.50) coincides with φ(0) whereas the product of the
expectations in the r.h.s. coincides with φ(1). The derivative of φ may be evaluated via Gaussian
intergration by part and it then boils down to proving the differential inequality φ′(t) ≥ −Cφ(t) for
some positive constant C and applying Gronwall’s lemma, see [23, Lemma B.1] for details. Note that
interpolation techniques have been already successfully applied by Toninelli [133] in the context of
random pinning with i.i.d. disorder.

1.3.2 Renewal disorder

This section is based on a joint work with D. Cheliotis and Y. Chino [44]. The disorder sequence
we consider here is built on another renewal sequence τ̂ which is independent of τ and starts at the
origin. Its law will be denoted by P̂. To be more precise, we assume that if the n-th monomer is on
the interface then it is given a reward equal to β + h if n ∈ τ̂ and h otherwise. This corresponds to
the following binary correlated disorder sequence:

ωn = δ̂n := 1{n∈τ̂}, n ∈ N0. (1.53)

From now on, the inter-arrival laws of τ and τ̂ satisfy

K(n) := P(τ1 = n) ∼ cK n−(1+α), K̂(n) := P̂(τ̂1 = n) = cK̂ n
−(1+α̂), n ∈ N (1.54)

with α, α̂ > 0, and
µ := E(τ1), µ̂ := Ê(τ̂1), (1.55)

which may be finite or infinite. Note that these definitions ensure aperiodicity for both renewal
processes. In principle, the constants cK and cK̂ may also be replaced by slowly varying functions,
which would allow to include the special case α ∈ {0, 1} in the discussion, but we refrain from



1.3. THE RANDOM PINNING MODEL WITH CORRELATED DISORDER 19

doing so for the sake of simplicity. Also, we write an equality in the definition of K̂(n) to ensure
log-convexity. This technical condition is only needed to prove Theorem 1.22, which we actually
believe to hold when the equality sign is replaced by the equivalent sign in the definition of K̂ in
(1.54). The definitions of the basic quantities such as partition functions and free energies are the
same as in the previous sections, except that P and E are replaced by P̂ and Ê.

A first dichotomy arises:

• If α̂ < 1 then the quantity in front of β in the Hamiltonian, which equals |τ ∩ τ̂ ∩{1, . . . , n}|, is
at most |τ̂ ∩{1, . . . n}|. The latter is of order nα̂ = o(n), therefore disorder has no effect on the
quenched free energy, which reduces to the homogeneous free energy. However the annealed
model is non-trivial.

• If α̂ > 1 then (i) we may replace P̂ by its stationary version, denoted by P̂s, under which the
distribution of the increments (τ̂n+1− τ̂n)n∈N0 is the same as in P̂, whereas that of τ̂0 becomes
{P̂(τ̂1 > n)/µ̂}n∈N0

, see e.g. [8, Chapter V, Corollary 3.6] (Again, this does not affect the free
energy, see Propositions 1.15 and 1.21) ; (ii) the correlations of the disorder sequence have a
power-law decay with exponent α̂− 1, since for n > m,

ρm,n := CovP̂s
(δ̂m, δ̂n) = Ês(δ̂mδ̂n)− Ês(δ̂m)Ês(δ̂n)

= P̂s(m ∈ τ̂)
(

P̂s(n ∈ τ̂ | m ∈ τ̂)− P̂s(n ∈ τ̂)
)

=
1

µ̂

(
P̂(n−m ∈ τ̂)− 1

µ̂

)
∼ c(n−m)1−α̂, as n−m→∞,

(1.56)

for some positive constant c. The latter can be deduced from the Renewal Theorem and the
following renewal convergence estimate [70, Lemma 4]

P̂(n ∈ τ̂)− 1

µ̂
∼

cK̂
α̂(α̂− 1)µ̂2

1

nα̂−1
, n→∞. (1.57)

This choice of disorder distribution and correlation structure is motivated by the following:

• By tuning the value of the parameter exponent α̂, one finds a whole spectrum of correla-
tion exponents ranging from non-summable correlations to summable correlations, according
to whether the sum

∑
n≥0 |ρ0,n| is infinite or finite. According to (1.56), correlations are

summable when α̂ > 2 and non-summable when α̂ < 2.

• Our disorder sequence is bounded, therefore the annealed free energy is always finite, in
contrast to the case of Gaussian variables with non-summable correlations [17].

• The probability of observing a long sequence of ones decays exponentially in the length, which
rules out the infinite disorder regime discussed in [18].

• The renewal structure of the disorder sequence makes the study of the annealed model and
decoupling inequalities more tractable.

The rest of the section is organized as follows: we first introduce the intersection set, which
serves as preliminary for the annealed results that come next, and we end with two theorems on
the quenched model. We refer the reader to the last section of this chapter for further discussion
and perspectives, including one conjecture.
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The intersection set

Before going any further, we need to introduce some quantities. The intersection set of τ and τ̂ ,
which we denote by

τ̃ = τ ∩ τ̂ , (1.58)

will play a fundamental role in the sequel. Let us notice that it is itself a renewal starting at τ̃0 = 0.
We denote its law by P̃ and write

δ̃n := 1{n∈τ̃} = 1{n∈τ}1{n∈τ̂} = δnδ̂n, n ∈ N0. (1.59)

For h ≤ 0, denote by Ph the probability of the renewal process with τ0 = 0 and inter-arrival law

Kh(n) = ehK(n), n ∈ N, Kh(∞) = 1− eh. (1.60)

We denote the corresponding expectation by Eh. If h < 0 then τ is transient under Ph. The expected
number of points in the renewal set τ̃ (including 0) under the law Ph ⊗ P̂ is denoted by

I(h) := EhÊ(|τ̃ |) ∈ [1,∞]. (1.61)

Note that
I(h) =

∑
n∈N0

Ph(n ∈ τ)P̂(n ∈ τ̂) =
∑

n,k∈N0

ehkP(τk = n)P̂(n ∈ τ̂)

=
∑
k∈N0

ehk(P⊗ P̂)(τk ∈ τ̂).
(1.62)

The function I is finite and infinitely differentiable on (−∞, 0). It is also continuous on (−∞, 0],
increasing and strictly convex. Its range is [1, I(0)] with I(0) = EÊ(|τ ∩ τ̂ |), which may be finite or
infinite. It follows from standard renewal theory (see [8, Proposition 2.4, Chapter 1]) that

p(h) := (Ph ⊗ P̂)(τ̃1 <∞) = 1− I(h)−1. (1.63)

Results on the annealed model

We begin with the existence of the annealed free energy.

Proposition 1.15. For all β ≥ 0 and h ∈ R, the annealed free energy

fa(β, h) = lim
n→∞

1

n
logZa

n,β,h (1.64)

exists and it is finite and non-negative. The result still holds, without changing the value of the free
energy, when µ̂ <∞ and P̂ is replaced by P̂s.

The following basic properties of the annealed free energy are standard: the function (β, h) 7→
fa(β, h) is convex, continuous and non-decreasing in both variables. Our next result provides an
expression for the annealed critical curve involving the function I.

Proposition 1.16. Let β0 = − log p(0). The annealed critical curve is

ha
c(β) =

{
I−1

(
1

1−e−β

)
if β > β0,

0 if 0 ≤ β ≤ β0.
(1.65)

Remark 1.17. From (1.63) we have that β0 = − log(1− {EÊ(|τ̃ |)}−1) is non-negative. Therefore,
using the Renewal Theorem, we see that

β0

{
> 0 if α+ α̂ < 1,

= 0 if α+ α̂ > 1.
(1.66)
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hac (β)

Figure 1.1: Shape of the annealed critical curve (in blue). The critical point β0 = − log p(0) and the
slope at β0 might be positive or equal to zero, depending on the values of α and α̂, see Remark 1.17
and Theorem 1.19.

By the properties of I we get that β 7→ ha
c(β) is infinitely differentiable in [0,∞)\{− log p(0)} and

has negative derivative in (− log p(0),∞). Moreover, β 7→ ha
c(β) is concave because (β, h) 7→ fa(β, h)

is convex, see Figure 1.1. The next two results provide the scaling behaviour of the annealed critical
curve close to β0.

Theorem 1.18. Suppose α+ α̂ > 1 (then β0 = 0). There exists ca > 0 such that

ha
c(β) = −β

µ̂
− caβγa [1 + o(1)], as β ↓ 0, (1.67)

where

γa =

{
1 +

[
α̂−1
α∧1 ∧ 1

]
. if α̂ > 1 and α̂ 6= 1 + α ∧ 1

α∧1
α̂−1+α∧1 if α̂ < 1.

(1.68)

If α̂ = 1 + α ∧ 1, we get instead

ha
c(β) = −β

µ̂
− caβ2| log β|[1 + o(1)]. (1.69)

The first term −β/µ̂ in the expansion simply accounts for the fact that our disorder sequence

is not centered and that by the Renewal Theorem, limn→∞ Ê(δ̂n) = 1/µ̂. Note that by Jensen’s
inequality, ha

c(β) ≤ −β/µ̂, and this already gives that ca ≥ 0 in Theorem 1.18. If α̂ > 1 + α ∧ 1,
then γa = 2, as in the i.i.d. case, but if α̂ < 1 +α∧ 1, there is an anomalous scaling of the annealed
critical curve. Moreover, if α̂ < 1 then µ̂ =∞ so the term β/µ̂ disappears and γa > 1 gives the first
order term.

Theorem 1.19. Suppose α+ α̂ < 1 (then β0 > 0). As β ↓ β0, there is a constant c ∈ (−∞, 0) such
that

ha
c(β) ∼ c(β − β0)γa

1 + | log(β − β0)|1{1−α̂=2α}
, where γa = 1 ∨ α

1− α− α̂
. (1.70)

Our next result is about the order of the annealed phase transition.

Proposition 1.20 (The annealed critical exponent). Suppose α̂ > 0. Let β > 0. There exists a
constant C = C(β) ∈ (0,∞) such that

(1/C)uνa(β) ≤ fa(β, ha
c(β) + u) ≤ Cuνa(β) (1.71)
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for all 0 < u ≤ 1, with

νa(β) :=

{
1
αeff
∨ 1 if β > β0,

1
α ∨ 1 if 0 ≤ β ≤ β0,

(1.72)

where αeff := α+ (1− α̂)+.

Therefore, the annealed critical exponent remains unchanged compared to the homogeneous
case if α̂ > 1, but is changed for large values of β when α̂ < 1 and α < 1.

Results on the quenched model

We start with the existence of the quenched free energy.

Proposition 1.21. For β > 0 and h ∈ R the sequence {(1/n) logZωn,β,h}n∈N converges P̂-a.s. and

in L1(P̂) to a non-negative constant f(β, h) called the quenched free energy. Moreover, if µ̂ = ∞
then f(β, h) = f(0, h), and if µ̂ <∞ then the convergence still holds P̂s-a.s. and in L1(P̂s) (without
changing the value of the free energy).

We are able to prove the following smoothing inequality:

Theorem 1.22. Let α̂ > 1 and β > 0. There exists a constant C = C(β) ∈ (0,∞) such that for
0 < u ≤ 1,

f(β, hc(β) + u) ≤ Cu2∧α̂(1 + | log u|1{α̂=2}). (1.73)

The exponent 2∧ α̂ in the theorem above is not expected to be optimal, but in view of Proposi-
tion 1.20, this already tells us that disorder is relevant w.r.t. critical exponents if α̂ > 2 and α > 1/2,
or if α̂ ∈ (1, 2) and α̂ > 1/α. This result extends the smoothing inequality in Proposition 1.4.

We also prove the following result on disorder irrelevance:

Theorem 1.23. If α̂ > 2 and α < 1/2 then disorder is irrelevant for β small enough, meaning that
hc(β) = ha

c(β) and

lim
h↓ha

c(β)

log f(β, h)

log(h− ha
c(β))

=
1

α
. (1.74)

To the best of our knowledge, such a result on disorder irrelevance (in both critical points and
exponents) has not yet been proved for other instances of correlated disorder, e.g. Gaussian disorder
with summable correlations.

Sketch of the proof of Theorem 1.23. We follow the standard second moment method, which con-
sists in proving that the second moment of the quenched partition function at the annealed critical
point is bounded in the system size. However, the evaluation of such moment is not as direct as in
the i.i.d. case and new arguments are needed. First, we consider a slightly more convenient partition
function, that is (recall (1.60))

Z̄n,β,h = Eh

[
exp

(
β
∑

1≤k≤n

δk δ̂k

)]
, h ≤ 0. (1.75)

Hence our goal is now to prove that

sup
n≥1

Ê[Z̄2
n,β,ha

c(β)] <∞. (1.76)

The next step is to set z = z(β) = eβ−1 and perform a Meyer expansion on the quenched partition
function, which gives:

Ê[Z̄2
n,β,h] =

∑
I,J⊆[n]

z|I|+|J|Ph(I ⊆ τ)Ph(J ⊆ τ)P̂h(I ∪ J ⊆ τ̂). (1.77)
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Then, we provide a decoupling inequality for the last term of the r.h.s., that is a control on∣∣∣ P̂h(I ∪ J ⊆ τ̂)

P̂h(I ⊆ τ̂)P̂h(J ⊆ τ̂)
− 1
∣∣∣. (1.78)

At this stage we use that α̂ > 2 to prove the existence of a constant C > 1 such that the second
moment is bounded from above by:∑

I,J⊆[n]

z|I|+|J|C |I∩J|[Ph(I ⊆ τ)P̂h(I ⊆ τ̂)][Ph(J ⊆ τ)P̂h(J ⊆ τ̂)]

=
∑

I,J⊆[n]

z|I|+|J|C |I∩J|[(Ph ⊗ P̂h)(I ⊆ τ ∩ τ̂)][(Ph ⊗ P̂h)(J ⊆ τ ∩ τ̂)]
(1.79)

(for ease of exposition we simplify this part of the argument but details can be found in [44]). We
now almost have a product. The next step is to write that

|I ∩ J | = |I|+ |J | − |I ∪ J |, (1.80)

and notice that ( 1

C

)|I∪J|
= EX

[∏
i∈I

Xi

∏
j∈J

Xj

]
, (1.81)

where X is a sequence of i.i.d. Bernoulli random variables with parameter 1/C. Inserting (1.81)
into (1.79), we finally get a product. By rearranging the expression that we obtain and reintegrating
over X, we get as an upper bound on the second moment:

Ẽ⊗2
β,h

[
exp

(
β̄2

∑
1≤k≤n

δ̃k δ̃
′
k

)]
, (1.82)

where (i) β̄ is an explicit inverse temperature which is equivalent to
√
Cβ as β ↓ 0 (the constant C

is the same as in (1.79)) and (ii) τ̃ and τ̃ ′ are two independent copies of a renewal process which,

under P̃β,h, starts at 0 and satisfies P̃β,h(τ̃1 = n) = eβ(Ph ⊗ P̂)(τ̃1 = n) for n ≥ 1 (recall (1.58)).
This renewal process is transient when h < ha

c(β) and recurrent when h = ha
c(β). Remarkably, the

expression in (1.82) is very similar to what we would obtain with i.i.d disorder and one can (almost)
conclude from there as in the i.i.d. case. �

1.4 Discussion and perspectives

(A) The value of the quenched critical exponent in the regime of relevant disorder
is still unknown and seems to be a very challenging question, even in the case of i.i.d. disorder.
Derrida and Retaux [57] introduced a simplified version of the hierarchical pinning model, which is
formulated in terms of a recursive model. For this model they conjectured an infinite order phase
transition in the relevant disorder regime, with a free energy vanishing like exp(−cst/

√
h− hc(β))

as h ↓ hc(β), and argued in favor of a similar singularity for the pinning model. This conjecture has
been answered recently in [47] for the recursive model (in a slightly weaker form) and in [83] for an
exactly solvable continuous version.

(B) The critical slope of the copolymer model. We also obtained in [19, Theorem 1.4] the
weak-coupling limit of the quenched critical curve (the critical slope) for the copolymer model, in
the case of i.i.d. disorder and α > 1. The partition function of the copolymer writes

Zωn,λ,h = E
[

exp
(
− 2λ

∑
1≤k≤n

(ωk + h)∆k

)]
, (1.83)
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where (∆k)k≥1 is a sequence of Bernoulli random variables which indicates whether the k-th
monomer is below or above the interface. It is defined by ∆k = εi, where i is the unique posi-
tive integer such that k ∈ (τi−1, τi] and (εi)i≥1 is a sequence of i.i.d Bernoulli random variables
with parameter 1

2 which indicates whether an excursion of the polymer is below or above the
interface. This model corresponds to a polymer in presence of two solvents separated by a flat in-
terface, when the monomers may have different solvent affinities. Our result, which is the analogue
of Theorem 1.5, writes (with notations similar to the pinning model):

lim
λ↓0

ha
c(λ)− hc(λ)

λ
=

1

2

α

1 + α
. (1.84)

This answers a conjecture of Bolthausen, den Hollander and Opoku [29], who obtained the corre-
sponding lower bound. The value of the critical slope has been extensively investigated and remains
an open question in the case α ∈ (0, 1), where bounds have been obtained and the value is known
to be universal and to coincide with the corresponding slope in the continuum polymer model,
see [28, 29, 33]. In the case of correlated Gaussian disorder and α > 1, we proved in [23, Theorem
1.9] that (1.84) becomes

ha
c(λ) = Υ∞λ, lim

λ↓0

hc(λ)

λ
= max

{ Υ∞
1 + α

,
1

2

Υ∞
1 + α

+
1

2
Ccop
ρ

}
, (1.85)

(recall Assumption 1.8) where

Ccop
ρ = E

[ 1

µ

∑
1≤n,m≤τ1

ρnm

]
. (1.86)

Interestingly, the first term in the maximum corresponds to the Monthus bound [103] whereas the
second term is the natural extension of the value found in the i.i.d. case.

(C) The Large Deviations approach. Cheliotis and den Hollander [45] attacked the problem of
pinning with disorder from the point of view of Large Deviations Theory. Their approach relies on a
quenched Large Deviations Principle (LDP) for words cut in a random sequence by a renewal pro-
cess, see Birkner, Greven and den Hollander [25]. This LDP was extended in [54] to words cut in a
correlated sequence, which could, in principle, be applied to pinning models with correlated disorder.

(D) Pinning model with Gaussian correlated disorder. Many parts are still missing regarding
the issue of disorder relevance in this context. Let us stick, for simplicity, to the case of summable
correlations of the form ρk = (1 + k)−a (a > 1) and sum up what we have obtained so far. When
a > 2, correlations are doubly summable, νa(β) = νhom and by the smoothing inequality, disorder
is relevant w.r.t. to critical exponents as soon as α > 1

2 , since then νq(β) ≥ 2 > νa(β). We have
also proved that disorder is relevant w.r.t. to critical points as soon as α > 1, for all a > 1. Ac-
cording to the Weinrib-Halperin criterion, α = 1

2 should remain the borderline between irrelevance
and relevance, hence what is still missing to confirm this prediction is a proof of irrelevance when
α < 1

2 and relevance when α ∈ ( 1
2 , 1) and a ∈ (1, 2). Regarding the annealed critical exponents,

previous work on the hierarchical version of the model [24] suggests that νa(β) = νhom as soon as
a > 2 min(α, 1) and νa(β) > νhom when a < 2 min(α, 1).

(E) Pinning model with renewal disorder. We finally collect here some remarks about the
model presented in Section 1.3.2:
1. According to the Weinrib-Halperin criterion [141], which aims to generalize the Harris criterion,
disorder should be relevant if ν < 2

ξ∧1 (at least for small disorder) and irrelevant if ν > 2
ξ∧1 ,

where ν is the critical exponent of the pure (homogeneous) system and ξ is the correlation ex-
ponent of the environment. The application of this criterion to pinning models was introduced
and discussed in [17, 24]. In our case, ν = (1/α) ∨ 1, ξ = α̂ − 1 (assuming that α̂ > 1) and the
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Harris criterion should not be changed if ξ > 1, i.e. α̂ > 2, which is confirmed by Theorem 1.22
and Theorem 1.23. If α̂ ∈ (1, 2), the criterion predicts that disorder is relevant (resp. irrelevant) if
α > α̂−1

2 (resp. α < α̂−1
2 ). However, there is no clear evidence that this criterion gives the right

prediction out of the Gaussian regime and it has actually been disproved in several examples [17,18].

2. The recent work of Caravenna, Sun and Zygouras [35, 36] has opened a new perspective on
the issue of disorder relevance. Their approach consists in computing weak-coupling limit of the
quenched partition functions, with randomness surviving in the limit. More precisely, they determine
sequences of parameters in the Hamiltonian (the coupling constants hn, βn in our case) that converge
to zero as the system size goes to infinity and such that the properly rescaled quenched partition
function converges in distribution to a random limit, which is obtained in the form of a Wiener
chaos expansion. In several instances, including the one of the pinning model in i.i.d. environment,
it was shown that these conditions coincide with those of disorder relevance. Applying this approach
to our model leads us to the following conjecture:

Conjecture 1.24. Disorder is relevant for all β > 0 (in the sense of critical point shift) if

α > 1− 1

α̂ ∧ 2
, (1.87)

in which case

lim sup
β↓0

log(hc(β)− ha
c(β))

log β
=

(α ∧ 1)(α̂ ∧ 2)

1− (α̂ ∧ 2)(1− (α ∧ 1))
. (1.88)

The reason for the term 1/α̂ in place of the usual 1/2 when α̂ ∈ (1, 2) is that the partial sums of
our disorder sequence are in the domain of attraction of an α̂-stable law rather than the standard
normal distribution. More precisely, we have:

1

n1/α̂

n∑
k=1

(δ̂k − 1/µ̂) −→ α̂-stable law, as n→∞, α̂ ∈ (1, 2). (1.89)

Therefore we expect that white noise is replaced by a Lévy noise in the weak-coupling limit of the
quenched partition function. Note that (1.87) and (1.88) coincide with the case of i.i.d. disorder
when α̂ > 2, that is the summable correlation scenario. Finally, another fact that supports this
conjecture is that the chaos expansion approach gives the right prediction for a pinning model in
i.i.d. γ-stable environment (1 < γ < 2), which has been studied recently by Lacoin and Sohier [93].
There, it was proved that disorder is relevant (resp. irrelevant) if α > 1− 1/γ (resp. α < 1− 1/γ),
which is to be compared to our conjecture.

3. The picture that has emerged for the moment regarding disorder relevance for this model can be
summed up in the following exponent diagram, see Figure 1.2.

• The blue area is where we have proved relevance for small β.

• In the region α̂ < 1 we have relevance in the blue area because the quenched critical curve is
trivially 0 while the annealed one is strictly negative.

• In the blue region with α̂ > 1, we have relevance due to smoothing, see Theorem 1.22. We
do not know yet whether the critical points differ but we conjecture that they do so (see
Conjecture 1.24 above).

• In the yellow triangle we have irrelevance because there also the annealed critical curve is 0
for small β and the critical exponents agree.

• In the yellow part with α̂ > 2, we have irrelevance due to Theorem 1.23.
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0 1/2 1 α

1

2

α̂

Figure 1.2: Disorder relevance/irrelevance in the exponent diagram.

• The dashed line marks the border of relevance/irrelevance according to the chaos expansion
heuristics when α ∈ (0, 1) and α̂ ∈ (1, 2), see Conjecture 1.24.

• The dotted line marks the border of relevance/irrelevance according to the Harris-Weinrib-
Helperin criterion when α ∈ (0, 1) and α̂ ∈ (1, 2), see Item 2 above.

4. Finally, let us mention the recent work of Alexander and Berger [3] who also consider a pinning
model with disorder built out of a renewal sequence. Even if they may look similar, the model
studied in [3] and the one considered here are actually different in spirit. Indeed, in [3] all the
interactions up to the n-th renewal point of the disorder renewal (denoted here by τ̂n) are taken
into account, and the only parameter is the inverse temperature β (no pinning strength h). As a
consequence, the results obtained therein are also quite different as for instance, the critical line
deciding disorder relevance is at α + α̂ = 1. However, we do not exclude that the two models are
related. For instance, the line α + α̂ = 1 also appears in Remark 1.17 above and, incidentally, in
Proposition 1.20 (see also Figure 1.2).



Chapter 2

Pinning of a polymer with
multiple interfaces

This chapter is based on a joint work with F. Simenhaus [114].

We consider S = (Sn)n∈N0
a simple random walk on Z. We recall that the increments (Sn −

Sn−1)n∈N are independent and identically distributed (i.i.d.) random variables which are uniformly
distributed on {−1, 1}, and we shall write Px for the law of the walk started at S0 = x, for x ∈ Z,
with the notational simplification P0 = P. As in Chapter 1, we consider a directed polymer model,
meaning that the n-th monomer of the polymer chain is located at site (n, Sn) ∈ N× Z. The focus
of the previous chapter was on the interaction between the polymer chain and a single defect line
or interface. In this chapter, we shall investigate what happens when the polymer is in presence of
several (actually an infinite number of) interfaces.

Let us draw the reader’s attention on notation for a moment. For simplicity we mostly stick to
the notation of the original paper [114], which means that the letter τ , which was used in Chapter 1
to denote the set of contacts points of the polymer with the interface, is now used to denote the set
of heights where the interfaces are located. Hence, in order to avoid confusion we chose to treat the
case of many interfaces in a different chapter, even though both Chapter 1 and the present chapter
deal with the pinning effect.

This chapter is organized as follows: Section 2.1 presents a general overview of the problem while
Section 2.2 is dedicated to the model studied in [114], where a particular random set of interfaces
is considered. We discuss some perspectives in Section 2.3.

2.1 An overview of the problem

2.1.1 A (1 + 1)-directed polymer with multiple interfaces

Let us assume that the polymer chain is in presence of a countable number of interfaces, the heights
of which are denoted by τ = (τn)n∈N0 . In other words, the n-th interface is the (discrete) horizontal
line N× {τn}. We further assume that the interfaces are all equally repulsive. Hence, the partition
function of our system writes

Zn,β = E[exp(−βHn)], Hn =

n∑
k=1

1{Sk∈τ}, (2.1)

27
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where Hn is the Hamiltonian and β > 0 is the inverse temperature, or repulsion strength. Whenever
the polymer touches one of the interfaces it is penalized by a factor e−β . The associated polymer
measure writes

dPn,β
dP

=
1

Zn,β
exp

(
− β

n∑
k=1

1{Sk∈τ}

)
. (2.2)

By removing the deterministic and linear term n to the Hamiltonian, we see that the situation is
the same as that of neutral interfaces with an attractive region in-between them. Therefore, it is not
a complete surprise that the presence of many repulsive interfaces may eventually lead to pinning
(hence the name of the chapter), but we will see that the final answer to this question depends
heavily on the distribution of τ . We refer to Chapter 1 and references within for an overview of the
pinning phenomenon in the case of a single interface.

The set of monomers that touch the interfaces (contact points) shall be denoted by θ, that is
(we assume w.l.o.g. that 0 ∈ τ):

θ0 = 0, θn+1 = inf{k > θn : Sk ∈ τ}, n ∈ N0, (2.3)

see Figure 2.1.

N

•
•

•

•
•
•

•••
τ0 = 0
τ−1

τ2

τ3

Z

θ6 θ7 θ8
+ + +

Figure 2.1: Example of a polymer among repulsive interfaces. The horizontal dashed lines correspond
to the interfaces, the thick one to the polymer and the dots to the contact points.

2.1.2 A warm-up: the case of periodic interfaces

Let us consider for a moment the case of equally spaced interfaces, that is τ = tZ, where t ∈ N
is fixed. This problem is equivalent to a polymer in a slit, that is a random walk wrapped on the
torus Z/tZ with repulsion at 0.

If we set β = ∞ this means that contacts with the interfaces are forbidden and the behaviour
of the partition function in the limit of large n is then given by the classical small-ball probability:

Zn,∞ = P1(Sk ∈ (0, t), 0 < k < n) = exp(−[ϕ∞(t) + o(1)]n), n→∞ (2.4)

where

ϕ∞(t) =
π2

2t2
+ Θ

( 1

t4

)
, t→∞. (2.5)



2.1. AN OVERVIEW OF THE PROBLEM 29

The first term in the expansion above corresponds to the first eigenvalue of (minus) the continuous
Laplacian (−∆) on the interval (0, t) with Dirichlet boundary conditions.

The case β ∈ (0,∞) was considered for instance in [30,99,107] and taken up by Caravenna and
Pétrélis [34], who refined the asymptotic expansion of the free energy by proving that

Zn,β = exp(−[ϕβ(t) + o(1)]n), n→∞, (2.6)

with

ϕβ(t) =
π2

2t2

[
1− 4

eβ − 1

1

t
+ o
(1

t

)]
, t→∞. (2.7)

Caravenna and Pétrélis [34] actually consider the case when the size of the slits t is allowed to
depend on n, say t = tn = na where a ∈ (0, 1). The second order term in the expansion (2.7)
indicates that the typical time spent in-between interfaces is of order t3n. Therefore, there should be
a transition at t3n = n, that is a = 1/3, and this is exactly what Caravenna and Pétrélis [34] prove.
Let us summarize what they obtain:

• If a < 1/3, the polymer sees the interfaces a number of times of order n/t3n = n1−3a. In
addition, the random walk seen at the subsequent times (θi)i≥1 should be diffusive (as the
interfaces are periodically distributed, there is no favorite direction) hence Sn is of order

na
√
n1−3a = n

1−a
2 .

• If 1/3 < a < 1/2, the walk essentially sees one interface, that is Sn is of order na, and in this
case it is actually proved that the polymer localizes into one slit after a O(1) number of steps.

• If a > 1/2 then the polymer does not see the interfaces (except the one at the origin) and the
polymer is essentially diffusive.

We refer to [34, Theorem 1.1] for precise statements.

In Section 2.2 we shall consider an environment of interfaces where the sizes of the slits are fixed
but random. This direction of research was actually suggested in the monograph [53, Chap. 7]. We
will see however that the size of the relevant slits does depend on the size of the polymer n, which
explains why Caravenna and Pétrélis’ work [34] is relevant to us.

2.1.3 Another viewpoint: a random walk among obstacles

Another standard formulation of the problem we consider in this chapter is that of a random walk
surviving in a field of obstacles, which actually makes sense in any dimension d ≥ 1. We now see n
as a time parameter and Sn as the position of a random walker at time n. The set τ is interpreted
as the set of positions of some obstacles and θ is the set of consecutive times when the walker meets
any of those obstacles. Each time the walker meets an obstacle, it is killed with probability 1− e−β
or survives with probability e−β , independently from the past. The obstacles are called soft when
β ∈ (0,∞), that is when there is a positive chance of survival, and hard when β =∞, that is when
any obstacle instantaneously kills the random walk. For a precise mathematical definition, we first
enlarge the probability space so as to include a N-valued geometric random variable N with success
parameter 1 − e−β . This random variable plays the role of a clock that kills the walker after the
latter meets the set of obstacles N times. In other terms, the killing time of the walker, denoted by
σ, is defined by

σ = θN . (2.8)

Note that our probability law now depends on the parameter β. We shall write Pβx when we want to
stress this dependence or omit the superscript when no confusion is possible. Again we may write
Pβ instead of Pβ0 . We also point out that σ implicitly depends on τ through θ. By integrating out
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N we see that the partition function in (2.1) coincides with the probability that the random walk
survives in the field of obstacles τ at least up to time n, that is

Zn,β = Pβ(σ > n), n ∈ N. (2.9)

We stress again that Zn,β is a function of the environment of obstacles (τn)n≥0.

Let us give here a brief account of what is known for the random walk among random obstacles,
the two main (related) points of interest being the asymptotic behaviour of the survival probability
and the path properties of the random walk conditioned to survive, in the limit of large n. For
simplicity, we restrict to the case of random Bernoulli obstacles, which is at the same time the most
natural and the most studied case. This corresponds to defining, independently from the random
walk, a sequence of i.i.d. Bernoulli random variables ω = (ωi)i∈Z with parameter p ∈ (0, 1) and
setting

τ = {i ∈ Z : ωi = 1}. (2.10)

We shall use P and E for probability and expectation with respect to these Bernoulli random vari-
ables. One may then consider the quenched survival probability (the positions of the obstacles are
frozen) or the annealed survival probability (the positions of the obstacles are averaged out).

The case of annealed and hard (β = ∞) Bernoulli obstacles corresponds to the random walk
penalized by the cardinality of its range, that is

E(Zn,∞) = E[(1− p)|Rn|], where Rn := {S1, . . . , Sn}. (2.11)

Donsker and Varadhan [63] first proved that

E(Zn,∞) = exp
(
− [ca + o(1)]n

d
d+2

)
, n→∞, (2.12)

where ca = ca(p, d) is an explicit constant obtained as the minimiser of a variational problem. Sznit-
man [124, 130] introduced the method of enlargement of obstacles (MEO) and obtained thereby a
direct analogue of (2.12) in the context of a Brownian motion among Poisson obtacles (BMPO).
Antal [7] again derives (2.12) for the random walk in random obstacles (RWRO) in discrete space
and continuous-time, this time via the MEO. Let us now turn to path properties. Bolthausen [27]
gave a localization result for the continuous-time RWRO in d = 2. In short, he proved that the
random walk folds into a Euclidian ball with a radius ρn ≈ n1/4 (the precise constant is determined
by the variational problem that is behind the value of ca) and conjectures that the same should
hold in all dimensions, with ρn ≈ n1/(d+2). In parallel, Sznitman [126] proved an analogous result
for d = 2 in the context of BMPO. The case d ≥ 3 was taken up in the same context (BMPO)
by Povel [118] via the MEO. As pointed out in this reference, localization results for d = 1 should
follow from estimates (0.7) and Remark 1.4 in Sznitman [125]. Povel also claims that it is possi-
ble to extend Sznitman’s arguments in [125] to derive a weak convergence result for the BMPO
conditioned on survival. The one-dimensional version of weak convergence for BMPO was obtained
by Schmock [122]. More recently, Berestycki and Cerf [16] proved Bolthausen’s conjecture for the
discrete RWRO in d ≥ 3. In an independent and almost simultaneous work, Ding, Fukushima, Sun
and Xu [60] proved the same kind of localization results, with an upper bound on the boundary of
the range (see also [58] for a biased random walk version).

In the case of quenched Bernoulli obstacles, we have

Zn,β = exp
(
− [c+ o(1)]

n

(log n)2/d

)
, n→∞ (2.13)

where the o(1) holds P-as and c = c(p, d) is an explicit constant obtained as the minimiser of a
variational problem. This was proved in the BMPO setting by Sznitman [127], see also [129] and
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Fukushima [71]. Antal [7] claims that (2.13) follows from his work, where he uses the MEO in a
discrete setting. Sznitman [128, 130] proved a confinement property for the BMPO (with path lo-
calization in d = 1). These results have been recently improved by Ding and Xu [61,62] who proved
localization of the random walk in a single Euclidian ball of volume asymptotically equivalent to
d log1/p n, in the discrete setting, see also the even more recent improvements by Ding, Fukushima,
Sun and Xu [59].

Let us end this section with a reference to the classical monograph by Sznitman [130] on random
motions in random media. Chapter 6 therein is of particular interest to us as it highlights the link
between random motions in random media and directed polymers in the presence of columnar
defects, and presents the concept of pinning effect of quenched path measures.

2.1.4 (Yet) another viewpoint: the parabolic Anderson model

Our model actually fits into a broader class of models, for which the partition function writes

ZVn =
∑
x∈Zd

ZVn,x, ZVn,x := E
[

exp
( ∑

1≤k≤n

V (Sk)
)
1{Sn=x}

]
, (2.14)

where V = (V (x))x∈Zd is a potential, and of course (2.1) is simply ZVn with V (x) = −β1{x∈τ}. The
partition function constrained on the endpoint satisfies the equation

ZVn+1,x − ZVn,x = eV (x)(∆ZVn )x + (eV (x) − 1)ZVn,x, (2.15)

where ∆ is the discrete Laplacian. This equation actually corresponds to a discrete-time analogue
of the parabolic Anderson model (PAM) with potential V , that is the equation

∂tu = ∆u+ V u, u : (t, x) ∈ [0,∞)× Zd 7→ R. (2.16)

There is a rich literature and intense activity around the PAM. We refer to König [90] for a recent
monograph dedicated to this topic. Note that the potential is usually chosen as a sequence of
random variables that are independent in the space parameter and constant in time. In contrast,
the set of interfaces we shall consider in Section 2.2 leads to a potential with long-range spatial
correlations, that is one of the research direction suggested in [90, Section 7.2]. Such models have
also been considered by physicists. Let us mention for instance the Aubry-André model [15] in
which the potential, defined by an irrational rotation on the torus, is ergodic but not even mixing.
Interestingly, this model is known for exhibiting a phase transition even in dimension one. For a
review of potentials in discrete and continuous space, we refer to [90, Section 1.5].

2.2 Renewal interfaces

In what follows we allow ourselves to use the terminology of the polymer point of view or that of
the random walk in random obstacles (RWRO). Hence, the trajectory of the random walk is the
same as the configuration of the polymer and the positions of the obstacles are the heights of the
interfaces. From now on, for convenience, we consider random walks that do not visit the negative
half-line Z− = −N0. This extra condition allows us to consider interfaces that are indexed by N0

instead of Z and does not hide anything deep nor change the main idea of our result. Hence the
partition function now writes

Zn,β = E[exp(−βHn)1{Sk>0, 0<k≤n}], Hn =

n∑
k=1

1{Sk∈τ}. (2.17)
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This simply amounts to putting an impenetrable wall on the negative half-plane. In the language of
RWRO, this means that we slightly change the definition of the killing time to

σ = θN ∧HZ− and Zn,β = Pβ(σ > n), (2.18)

where HZ− = inf{n ≥ 1: Sn ≤ 0} is the hitting time of the negative half-line.

2.2.1 Definition of the model

We now put a probability measure P on the heights of the interfaces that is different from the
Bernoulli distribution presented in Section 2.1.3. Let us denote by Tk = τk − τk−1, for k ∈ N, the
increments of τ , that is the size of the intervals between two consecutive interfaces, which we call
gaps (see Figure 2.2). We assume that, under P, τ is a discrete renewal process, meaning that the
(Tk)’s are i.i.d. N-valued random variables. We further assume that τ0 = 0 and that the increments
have a power-tail distribution:

P(T1 = n) ∼ cτ n−(1+γ), γ > 0, n→∞, (2.19)

where cτ is a positive constant.

Remark 2.1. When P is the Bernoulli distribution of Section 2.1.3, τ is also a renewal process,
with the notable difference that the increment distribution is geometric: P(T1 = n) = p(1 − p)n−1

for n ≥ 1. We will see that going from an exponential tail to a polynomial tail induces some drastic
changes to the asymptotic behaviour of the partition function.

τ0 = 0

N

N
τ1

τi

τi+1

Ti+1

Figure 2.2: Example of a polymer among repulsive interfaces. The dashed lines correspond to the
interfaces, the thick one to the polymer and the shaded area to the hard wall.

2.2.2 The quenched Lyapunov exponent

Before we can state our main theorem, we need to introduce the quenched Lyapunov exponent. To
this end let us define, for x ∈ Z, the hitting time of x,

Hx = inf{n ≥ 1: Sn = x}, (2.20)

and for ` ∈ N, the random variable (with respect to τ)

λ(`, β) = −1

`
log E

(
exp

(
− β

∑
1≤k≤Hτ`

1{Sk∈τ}

)
1{Sk>0, 0<k≤n}

)
. (2.21)
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In the language of RWRO, the expectation above is the probability that the walk restricted to the
positive half-line survives at least until it reaches the `-th obstacle:

λ(`, β) = −1

`
log Pβ(Hτ` < σ). (2.22)

Proposition 2.2. For all β > 0 there exists a positive constant λ(β) = λ(β,P) such that, P-a.s.
and in L1(P),

lim
`→∞

λ(`, β) = λ(β), (2.23)

with

0 ≤ λ(β)− β ≤ E(log T1) + log 2. (2.24)

Moreover, the function β 7→ λ(β) is concave and continuous on R∗+.

Note that log T1 is integrable because of our assumption in (2.19). The limit λ(β) is called the
quenched Lyapunov exponent and corresponds to the asymptotic cost per new interface or obstacle
visited. The existence of this limit is obtained via a standard application of Kingman’s sub-additive
ergodic theorem (see Theorem 7.4.1 in [64]). We refer to the original paper [114] for a complete proof.

2.2.3 Main result: limiting free energy and variational problem

We are now ready to state our main result. From now on we set

N = N(n) = n
γ
γ+2 , fn(β) = − 1

N
logZn,β , n ≥ 1. (2.25)

Theorem 2.3. The sequence of random variables (fn(β))n∈N converges in P-distribution to the
random variable

f(β) := inf
(x,y)∈Π

{
λ(β)x+

π2

2y2

}
, (2.26)

where Π is a Poisson point process on R+ × R+
∗ with intensity dx⊗ cτγ y−(1+γ)dy.

In particular, the limit is universal as it only only depends on cτ and γ. With a slight abuse of
notation we have written (x, y) ∈ Π to mean that (x, y) is in the support of the point measure Π.
As a slight but not substantial improvement of this result, we also establish in [114] a functional
version of this theorem.

2.2.4 Sketch of the proof

In this section we try to convey the main ideas behind the proof of Theorem 2.3.

Choice of scaling.

First of all let us explain, at a heuristic level, the choice of the normalization in (2.25). The ar-
gument we use is usually referred to as a Flory argument. We assume that at a large time n the
walk has visited at most N obstacles and has remained confined in the largest visible gap, and we
find the value of N with the best energy-entropy balance. By basic extreme-value theory, the size
of the largest visible gap is of order N1/γ , and by a standard small-ball estimate (see (2.4)-(2.5)
above) the entropic cost of being confined in that gap during time n is of order nN−2/γ . Also, we
learn from Proposition 2.2 that the cost of crossing N obstacles is of order λ(β)N . By balancing

out these two costs, one finds the optimal choice N = n
γ
γ+2 .
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Limiting variational problem.

Let us now explain how the Poisson point process arises. To this end we define

(Xi,N , Yi,N ) :=
( i
N
,
Ti+1

N1/γ

)
for all i ≥ 1,

and ΠN =

∞∑
i=1

δ(Xi,N ,Yi,N ),
(2.27)

where δx is the Dirac mass at x. We observe that ΠN is a (random) Radon point measure on
E = R+ × R+

∗ and we shall denote by Mp(E) the space of such measures. It turns out that ΠN

converges weakly (for the topology of vague convergence) to the Poisson point process Π introduced
in Theorem 2.3. This follows from [121, Proposition 3.21 p. 154] and the fact that for all y > 0, the
sequence (nP(T1 > yn1/γ))n≥1 converges to cτy

−γ when n goes to infinity. Let us now fix i ∈ N
and consider the following two-step strategy:

(i) the polymer reaches the i-th interface;

(ii) the polymer stays confined in the interval (τi, τi+1) for the remaining time, which we assume
to be n− o(n).

By Proposition 2.2, the cost of (i) is roughly λ(β)i provided i is large, and by (2.4)-(2.5), the cost

of (ii) is roughly (π2n)/(2T 2
i+1). Hence, since N = n

γ
γ+2 , the total contribution of this strategy to

the free energy is

λ(β)i+
π2n

2T 2
i+1

= ψβ(Xi,N , Yi,N )N, where ψβ(x, y) = λ(β)x+
π2

2y2
. (2.28)

Therefore, if we assume that this strategy is the relevant one, the free energy fn(β) should be well
approximated by

min
(x,y)∈ΠN

ψβ(x, y), (2.29)

which should hopefully converge, in the limit of large n (or N) to

min
(x,y)∈Π

ψβ(x, y), (2.30)

that is the right-hand side in (2.26). Unfortunately, the map

E ∈Mp(E) 7→ min
(x,y)∈E

ψβ(x, y) (2.31)

appears not to be vaguely continuous and for this reason we have to go through a number of ap-
proximations by first restricting the minimum to a compact set K. We refer to [114] for details.

Lower bound on the partition function.

One can almost directly derive a rigorous lower bound for the partition function out of this heuristic.
The only thing we have neglected in the first part of the strategy (see item (i) above) is the time it
takes for the random walk to reach the gap (τi, τi+1). However, as the confinement probability

Pτi(Sk ∈ (τi, τi+1), 0 < k ≤ j) (2.32)

decreases with j, we get by applying the Markov property at time Hτi :

Zn,β ≥ P(Hτi ≤ n ∧ σ)Pτi(Sk ∈ (τi, τi+1), 0 < k ≤ n). (2.33)
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The second probability is dealt with a sharper version of (2.4). It now remains to show that the
constraint {Hτi ≤ n} may be removed in the first probability, in order to make the quantity
λ(i, β) ≈ λ(β)i appear. This is done by proving that for typical interfaces and for the values of i
considered, we have

P(Hτi ≤ n|Hτi ≤ σ) ≥ exp(−o(N)). (2.34)

Upper bound on the partition function.

Let us sketch here the proof of the upper bound, which is more challenging, as it is often the case
for this kind of models. The difficulty is to prove that there is no better strategy for the polymer
than the one previously described. In words, we prove that once the optimal gap has been selected
(see (2.29)) there is no contribution on the free energy from the near-optimal gaps, at least at first
order. The basic idea is a decomposition of the environment of interfaces according to record gaps.
The records are defined as follows:

i(0) = 0, i(k) = inf{i > i(k − 1) : Ti+1 > Ti(k−1)+1}, k ∈ N, (2.35)

and
T ∗k = Ti(k)+1, k ∈ N0. (2.36)

Hence, i(k) is the label of the k-th record and T ∗k is the corresponding gap size. Letting H∗k = Hτi(k)

be the hitting time of the k-th record gap, we decompose the partition function according to the
furthest record gap reached by the random walk:

Zn,β =
∑
k≥0

Z
(k)
n,β , where Z

(k)
n,β := Zn,β(H∗k ≤ n < H∗k+1). (2.37)

Thanks to our lower bound, we may already dismiss the records that are too far from the origin
(they are too costly to reach) or too close from the origin (they are typically thin hence the entropic
cost of confinement is high). This writes, for ε > 0 arbitrarily small and with P-probability close to
one,

Zn,β ≤ 2
∑

k : εN≤i(k)≤(1/ε)N

Z
(k)
n,β , (2.38)

and we observe that the value of i that optimises (2.29) corresponds to one of those i(k)’s with
large P-probability, provided ε is small enough. Since we can control the number of records in the

window [εN, (1/ε)N ], the next step is to give an upper bound on each Z
(k)
n . The bound we aim for

can be roughly written as

Z
(k)
n,β . exp

{
−
[
λ(β)i(k) +

π2n

2(T ∗k )2

]}
, (2.39)

up to some prefactor which is exp(o(N)). The first term in the sum corresponds to the cost of
reaching the k-th record (Step (i)) while the second term corresponds to the confinement part
(Step (ii)). In the remaining part of the proof, we fix k such that εN ≤ i(k) ≤ (1/ε)N and we let

φ =
π2

2(T ∗k )2
, (2.40)

which is the cost of confinement in the k-th record gap (τi(k), τi(k)+1), per unit of time. We observe
that, according to the upper bound we aim for, the cost φ is felt on the interval [0, n] (up to some
negligible part), which somehow indicates that the walk spends almost all its time confined in the
record gap (even though at this point we are not trying yet to obtain path statements). This fact is
not completely obvious as one could imagine, for instance, that it might be entropically favorable
for the walk to linger in some gaps the sizes of which are relatively close to the record gap size.
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However, we prove that this is not the case, or at least, that this is not felt at the level of the free
energy.

Let us explain now how we control Z
(k)
n,β exp(φn). By decomposing the partition function accord-

ing to the time it takes for the polymer to reach the record gap, we see that it suffices to control
two parts:

(I) = Pβ(σ > m,H∗k = m) exp(φm),

(II) = Pτi(k)(σ ∧H
∗
k+1 > n−m) exp(φ(n−m)).

(2.41)

Control on (I). We first use a Chebychev bound:

(I) ≤ Eβ
[

exp(φH∗k)1{H∗k<σ}

]
. (2.42)

To estimate this (truncated) moment generating function, we use an auxiliary process X = (Xn)n≥0

that is uniquely defined by the relation (recall (2.3))

τXn = Sθn , n ∈ N0. (2.43)

In words, this proces indicates the labels of the interfaces that are visited by the random walk, in
chronological order. By letting ζ0 and ζ∗k be the respective hitting times of 0 and i(k) by X, and
by conditioning on X, we get

Eβ
[

exp(φH∗k)1{H∗k<σ}

]
= Eβ

[ ∏
1≤i≤ζ∗k

E(exp(φ(θi − θi−1))|Xi−1, Xi)1{ζ∗k<ζ0∧N}

]
. (2.44)

To rewrite this expression in a nicer way, we define the (truncated) moment generating functions

Qij(φ) := Eτi(e
φθ11{X1=j}) = Eτi(e

φθ11{Sθ1=τj}), i, j ∈ N0, (2.45)

which are actually zero unless |i− j| ≤ 1. By integrating out the geometric random variable N , we
obtain

Eβ
[

exp(φH∗k)1{H∗k<σ}

]
= E

[ ∏
1≤i≤ζ∗k

e−β
QXi−1,Xi(φ)

QXi−1,Xi(0)
1{ζ∗k<ζ0}

]
. (2.46)

The next step is to control the ratio

Ri :=
QXi−1,Xi(φ)

QXi−1,Xi(0)
. (2.47)

Explicit formulas are available for the moment generating functions in (2.45), by which we get a
rather precise control on the Ri’s. It turns out that the control on the ratio depends on whether
the gap that lies between τXi−1

and τXi is small or large (if Xi−1 = Xi we consider the largest gap
adjacent to τXi). Let us clarify this dichotomy: first, we fix a threshold α ∈ (0, 1) and claim that a
gap of size T is large if T ≥ αT ∗k , else it is small. By tuning α appropriately we find that

Ri ≤

{
exp(ε) if the gap between τXi−1

and τXi is small,

fk if the gap between τXi−1
and τXi is large,

(2.48)

where fk is a positive quantity that depends on the ratio between the first and second record gaps
on the portion of space considered:

fk = f(T ∗k−1/T
∗
k ), (2.49)

with f(x) diverging as x→ 1. Again, we see that the large gaps might be problematic. Let us set

I := {1 ≤ i ≤ ζ∗k : the gap between τXi−1 and τXi is large}. (2.50)
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From what precedes, we get as an upper bound

(I) ≤ Eβ−ε(f
|I|
k 1{ζ∗k<ζ0∧N}), (2.51)

that is, each visit to an interface is penalized by exp(−[β − ε]) while each crossing of a large gap
gets a (possibly large) reward fk. However, each crossing of a large gap also has a probabilistic cost
and the last key step is to prove that, in some sense and with large P-probability, this cost is not
compensated by the reward fk. We refer to the original paper [114] for details on this part of the
argument. This means, in short, that large gaps are crossed essentially once, so that

(I) . fLk P(ζ∗k < ζ0 ∧N ), L := #{1 ≤ i ≤ i(k) : Ti ≥ αT ∗k }. (2.52)

We finally prove that the (random) prefactor fLk is smaller than exp(
√
N) with large P-probability

and use Proposition 2.2 to get

(I) . exp(−λ(β)i(k) + o(N)). (2.53)

Control on (II). The probability in (II) corresponds to a confinement of the polymer inbetween
levels 0 and τi(k+1). We prove that this probability is dominated by that of confinement in the
largest gap available, that is the k-th record, which has size T ∗k . This can be done in two ways. The
first way is to extend the results in (2.6)-(2.7) (for an environment with only one gap size) to an
environment with a periodic pattern of gap sizes, via the tools of Markov renewal theory. The second
way is to use a coupling argument and prove that the polymer is more penalized by the interfaces
in (0, τi(k+1)) than by interfaces equally spaced by T ∗k . We obtain thereby that (II) ≤ exp(o(N)),
which, in view of (2.53), completes the proof.

2.2.5 Discussion

We collect here a number of comments and remarks about our result.

1. We have not considered the annealed partition function, which decreases at most polynomially
fast since τ might leave (0, n] free from interfaces:

E(Zn,β) ≥ 1
2P1(H0 ≥ n)P(τ1 > n) ∼ (cst)n−(γ+ 1

2 ), (2.54)

as n→∞, and we end up with a behaviour that is completely different from that of the quenched
partition function.

2. Note that we cannot hope for better than weak convergence. Indeed, if fn would converge to f
almost-surely, then f would be measurable with respect to the tail σ-algebra of the family (Ti)i∈N.
As the increments are independent, the latter is trivial due to the 0− 1 law, and f would be deter-
ministic.

3. In the case γ ≤ 1, the variational formula in (2.26) admits an alternative representation in terms
of a subordinator, which reads

f(β) = inf
t≥0

{
λ(β)t+

π2

2(∆St)2

}
, (2.55)

where (St)t≥0 is a γ-stable subordinator and ∆St = St − S−t = St − limu→t− Su.

4. We can compute explicitly the tail distribution function of the limiting law in Theorem 2.3:

P(f(β) ≥ u) = exp
(
− cτ
λ(β)πγ(γ + 2)

(2u)1+ γ
2

)
, u ≥ 0. (2.56)
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See [114] for details.

5. The case γ = 0 is left open. In this case, a gap distribution of the form (2.19) is no longer
appropriate and one should instead assume that P(T1 = n) ∼ L(n)/n, where L is a non-negative
slowly varying function such that

∑
L(n)/n is finite. Complications may arise at two levels : (i)

the normalization of max1≤i≤n Ti, that we use to guess the value of N , and (ii) the integrability
of log T1, that we use in Proposition 2.2. For instance, if L(n) = (log n)−2 then E(log T1) = ∞
and max1≤i≤n Ti has a completely different type of renormalization since, as one can readily show,
(1/
√
n) log max1≤i≤n Ti converges to a non-trivial probability law with cumulative distribution func-

tion x 7→ exp(−x−2)1{x>0}, as n→∞.

6. We state without proof an alternative expression for λ(β) based on ergodic theory considerations.
To this end, let τ̃ be an independent copy of τ , as defined in Section 2.2. Suppose that the random
walk is now free to visit Z− but is killed by the set −τ̃ (note the minus sign), with the same
probability 1− exp(−β), and denote by σ̃ the corresponding killing time. Then,

λ(β) = −EẼ log Pβ(Hτ1 < σ̃). (2.57)

Assuming this last equality, we could readily prove using the dominated convergence theorem that
λ is also continuous at 0.

7. Equation (2.24) does not give much information about the behaviour of λ(β) at 0, which remains
an open question. We expect however that β = o(λ(β)) as β → 0 and we now explain why. To this
end, recall (2.57) and the related notations above. By integrating over N and differentiating in β
we obtain

lim
β→0

λ′(β) = ẼEE
(Hτ1∑
k=1

1{Sk∈−τ̃}

)
, (2.58)

that we expect to be infinite. Indeed, by first restricting the walk to make its first step to the left
and then using the symmetry of the random walk,

ẼEE
(Hτ1∑
k=1

1{Sk∈−τ̃}

)
≥ 1

2
ẼE−1

( H0∑
k=1

1{Sk∈−τ̃}

)
=

1

2
ẼE1

( H0∑
k=1

1{Sk∈τ̃}

)
. (2.59)

We now interchange integrals and use the Renewal Theorem to obtain, at least for γ 6= 1,

lim
β→0

λ′(β) ≥ 1

2
E1

( H0∑
k=1

P̃(Sk ∈ τ̃)
)
≥ C

2
E1

( H0∑
k=1

(1 + Sk)(γ−1)∧0
)
. (2.60)

Since, by Ray-Knight’s theorem, the mean number of visits to x ∈ N0 between time 1 and H0 equals
1 under P1, we get

lim
β→0

λ′(β) ≥ C
∑
x∈N0

(1 + x)(γ−1)∧0 =∞. (2.61)

8. Let us stress that the scaling nγ/(γ+2) that appears in Theorem 2.3 is different from the scaling
of the PAM in a bounded i.i.d. potential. In this case [90, Example 5.10] states that the correct
scaling is n up to a logarithmic correction (see also (2.13)). Hence we are in a case where the space
correlations of the potential have a drastic effect on the asymptotic behaviour of the survival prob-
ability.
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2.3 Perspectives

In this section we briefly discuss two natural extensions of our work in Section 2.2: path properties
and higher-dimensional models.

2.3.1 Renewal interfaces: path localization

We found in Theorem 2.3 the asymptotic behaviour of the partition function for the model of re-
newal interfaces. The proof we sketched suggests that the polymer follows a confinement strategy
inside a gap which solves the variational problem in (2.26). However, path properties do not directly
follow from the derivation of the leading term in the asymptotics of the partition function and new
arguments are necessary. This task has been taken up in a joint work with F. Simenhaus and we
present here some early results extracted from our work in progress.

First of all, let us recall a general fact for RWRO which states that, under the polymer measure
Pn,β (see (2.2)) the random walk (Sk)1≤k≤n follows an inhomogeneous Markov chain in a (random)
drift field. Indeed, one can easily check that for all 1 ≤ k < n and x1, . . . , xk+1 ∈ Zd,

Pn,β(Sk+1 = xk+1|Sk = xk, . . . , S1 = x1) =
e−β1{xk+1∈τ}Zn−k−1,xk+1∑
|y−xk|=1 e

−β1{y∈τ}Zn−k−1,y

, (2.62)

which may depend on n, k, xk, xk+1 but not on x1, . . . , xk−1. For the rest of the paragraph we will
refer to the index of the optimal gap as

`0 = `0(n, τ, β) = argmin`∈N0

{
λ(β, `)`+

π2n

2T 2
`+1

}
. (2.63)

As the confinement strategy is done in two steps, two questions arise:

(1) How long does it take for the random walk to reach τ`0 (left endpoint of the optimal gap)?

(2) What amount of the remaining time does the random walk spend in the gap (τ`0 , τ`0+1)?

We find that the answer to (1) depends on the value of γ. If 0 < γ < 2 then, conditional on survival
and in the limit of large `, the time to reach τ` is of order τ` to the power 2

γ∨1 , that is diffusive
for 0 < γ < 1 and super-diffusive but sub-ballistic for 1 < γ < 2. In any of these cases, the time
to reach τ` is also of order `2/γ . If γ > 2 then we enter a ballistic regime as this time becomes of
order τ` (hence also of order ` by the Law of Large Numbers). These asymptotics are derived by
comparing the random walk conditioned to hit τ` before it dies to a simpler random walk in random
environment.

The answer to (2) seems to reveal a dichotomy: when γ < 1, the random walk, after it has
reached τ`0 , spends essentially all of its remaining time (up to O(1) steps) inside the optimal gap,
which means that the interfaces induce a strong localization effect. This does not seem to be the case
anymore if γ > 1. In this case, we conjecture that the walk does not spend all its time in the optimal
gap but does not wander off too far from it (weaker localization). This dichotomy between γ < 1
and γ > 1 echoes that of Caravenna and Pétrélis [34] in the case of interfaces distributed along the
lattice tZ, when t = t(n) = na (see Section 2.1.2). Indeed, since the size of the relevant gaps in our

renewal model is N
1
γ = n

1
γ+2 , one sees that the borderline case corresponds to a(γ) := 1

γ+2 = 1
3 ,

that is precisely γ = 1.

2.3.2 Random walk in a polymer melt

It would be interesting to consider the effect of spatially correlated potentials in higher dimensions.
The random interlacement set introduced by Sznitman [131] provides such an example of a random
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subset of Zd (d ≥ 3) which could serve as a set of obstacles τ (joint project with Q. Berger). The
random interlacement at level u > 0, denoted by RI(u), is characterized by the relation

P(A ∩ RI(u) = ∅) = exp(−u cap(A)), (2.64)

where A is any finite subset of Zd and cap(A) its Newtonian capacity. It is known to exhibit
long-range spatial correlations:

|P(x, y ∈ RI(u))− P(x ∈ RI(u))P(y ∈ RI(u))| ∼ (cst)‖x− y‖2−d, x, y ∈ Zd, (2.65)

as ‖x− y‖ goes to infinity. Moreover, Sznitman proved that a percolation transition for the vacant
set Zd \RI(u) occurs at a critical level uc(d). Hence, the model suggested here is that of a random
walk killed by a random interlacement (or random walk in a polymer melt) in the subcritical
regime u < uc(d). A Flory argument reveals the size of the relevant vacant pocket (i.e. set free from
obstacles) where the random walk might take shelter and the challenge is to determine whether the
same kind of localization results hold as in the case of i.i.d. obstacles. Interestingly, when β = ∞
(hard obstacles) the annealed version of this model turns out to be the random walk penalized by
its capacity:

E(Zn,∞) = E[exp(−u cap({S1, . . . , Sn}))], u > 0. (2.66)

This model is of course linked to the deviations of cap({S1, . . . , Sn}), a problem which has been
recently investigated in [10] (see also the discussion in Section 4.4).



Chapter 3

Folding and unfolding of polymers.

This chapter is based on joint works with Q. Berger, F. Caravenna, F. den Hollander and
N. Pétrélis [20, 32].

DNA and proteins are polyelectrolytes whose monomers are in a charged state that depends on
the pH of the solution in which they are immersed. The charges may fluctuate in space (‘quenched’)
and in time (‘annealed’). In this chapter we consider the charged polymer chain introduced in
Kantor and Kardar [87]. The polymer chain is modelled by the path of a simple random walk on
Zd, d ≥ 1. Each monomer in the polymer chain carries a random electric charge, drawn in an i.i.d.
fashion from R. Each self-intersection of the polymer chain contributes an energy that is equal to
the product of the charges of the two monomers that meet (i.e., a negative energy when the charges
have opposite sign and a positive energy when the charges have the same sign). The polymer chain
has a probability distribution on path space that is given by the Gibbs measure associated with the
energy. Our goal is to study the scaling properties of the polymer as its length tends to infinity.

What makes the charged polymer model challenging is that the interaction is both attractive
and repulsive. This places it outside the range of models that have been studied with the help of
subadditivity techniques (see Ioffe [84] for an overview), and makes it a testbed for the development
of new approaches. The collapse transition of a charged polymer can be seen as a simplified version
of the folding transition of a protein. Interactions between different parts of the protein cause it to
fold into different configurations depending on the temperature.

This chapter is organized as follows. We first define the charged polymer model in Section 3.1 in
both its annealed and quenched versions. In Section 3.2 we briefly discuss the weakly self-avoiding
walk, which can be seen as a limiting case of the charged polymer model. Section 3.3 contains a
few results about the quenched charged polymer, while in Section 3.4 we present a series of recent
results about the collapse phase transition that occurs in the annealed model. A series of comments,
open questions and conjectures is listed in Section 3.5. Finally, we discuss some perspectives on the
issue of random walk folding in Section 3.6.

3.1 Charged polymers

Let S = (Si)i∈N0
be a simple random walk on Zd, d ≥ 1, i.e., S0 = 0 and Si =

∑i
j=1Xj , i ∈ N,

with X = (Xj)j∈N i.i.d. random variables that are uniformly distributed on the 2d unit vectors.
The path S models the configuration of the undirected polymer chain, i.e., Si is the position of
monomer i. We use the letters P and E for probability and expectation with respect to S.

Let ω = (ωi)i∈N be i.i.d. random variables taking values in R. The sequence ω models the electric
charges along the polymer chain, i.e., ωi is the charge of monomer i (see Fig. 3.1). We use the letters

41



42 CHAPTER 3. FOLDING AND UNFOLDING OF POLYMERS.

P and E for probability and expectation with respect to ω. Throughout the paper we assume that

M(t) = E(etω1) <∞ ∀ t ∈ R. (3.1)

Without loss of generality we may take

E(ω1) = 0, E(ω2
1) = 1. (3.2)

We shall sometimes abbreviate
mk = E[ωk1 ], k ∈ N, (3.3)

so that m1 = 0, m2 = 1 by (3.2).

To allow for biased charges, we use a tilting parameter δ ∈ R and write Pδ for the i.i.d. law of
ω with marginal

Pδ(dω1) =
eδω1 P(dω1)

M(δ)
. (3.4)

Note that Eδ(ω1) = M ′(δ)/M(δ). In what follows we may, without loss of generality, take δ ∈ [0,∞).

Example 3.1. The special case where the charges are +1 with probability p and −1 with probability
1− p for some p ∈ (0, 1) corresponds to P = [ 1

2 (δ−1 + δ+1)]⊗N and δ = 1
2 log( p

1−p ).

We will sometimes make a distinction between lattice and non-lattice charge distributions. To
this end, we define

T := sup
{
t > 0: P(ω1 ∈ tZ) = 1

}
(3.5)

(with the convention sup ∅ = 0). Either T > 0 (‘lattice case’) or T = 0 (‘non-lattice case’). The
following additional assumption will be needed at a few places:

Assumption 3.2. One of these two propositions holds:

(a) ω1 is discrete with a distribution that is lattice.
(b) ω1 is continuous with a density that is in Lp for some p > 1.

(3.6)

Let Π denote the set of nearest-neighbour paths starting at 0. Given n ∈ N, we associate with
each (ω, S) ∈ RN ×Π an energy given by the Hamiltonian (see Fig. 3.1)

Hω
n (S) =

∑
1≤i,j≤n

ωiωj 1{Si=Sj}. (3.7)

Let β denote the inverse temperature. Throughout the sequel the relevant space for the pair of
parameters (δ, β) is the quadrant

Q = [0,∞)× (0,∞). (3.8)

Given (δ, β) ∈ Q, the quenched polymer measure of length n is the Gibbs measure Pω,βn defined as

dPω,βn
dP

(S) =
1

Zω,βn

e−βH
ω
n (S), S ∈ Π, (3.9)

with
Zω,βn = E

[
e−βH

ω
n (S)

]
, (3.10)

the quenched partition function of length n, whereas the annealed polymer measure of length n is
the Gibbs measure Pδ,βn defined as

dPδ,βn
d(Pδ × P)

(ω, S) =
1

Zδ,βn
e−βH

ω
n (S), (ω, S) ∈ RN ×Π, (3.11)
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with
Zδ,βn = (Eδ × E)

[
e−βH

ω
n (S)

]
(3.12)

the annealed partition function of length n. The measure Pδ,βn is the joint probability distribution
for the polymer chain and the charges at charge bias δ and inverse temperature β when the polymer
chain has length n.

=+1

= -1

+

+

Figure 3.1: Top: A polymer chain carrying (±1)-valued random charges. Bottom: The path may or
may not be self-avoiding. The charges only interact at self-intersections.

Remark 3.3. The Hamiltonian in (3.7) only picks up interaction between charges when the monomers
carrying these charges meet at the same site. In other words, the long-range Coulomb interaction is
screened to a short-range on-site interaction. This choice is mathematically convenient. In fact, so
far no mathematically rigorous results have been obtained for long-range models. The short-range
model considered here describes a charged polymer immersed in an ionic fluid, which surrounds the
monomers and screens their charges.

3.2 A special case: the weakly self-avoiding walk

The results of this section are based on a joint work with Q. Berger and F. den Hollander [20].

The quenched charged polymer model with P = [ 1
2 (δ−1 + δ+1)]⊗N interpolates between the

simple random walk (β = 0), the self-avoiding walk (β = δ =∞) and the weakly self-avoiding walk
(β ∈ (0,∞), δ =∞), for which an abundant literature is available (see den Hollander [53, Chapter
2] for references). The weakly self-avoiding walk model corresponds to the situation where all the
charges are +1, in which case the Hamiltonian in (3.7) coincides with the self-intersection local time
of the random walk, which we denote by

Qn =
∑

1≤i,j≤n

1{Si=Sj} =
∑
x∈Zd

`n(x)2, (3.13)

where
`n(x) =

∑
1≤i≤n

1{Si=x} (3.14)

is the local time of the random walk at site x up to time n. A standard computation gives (see e.g.
Spitzer [123, Section 7]), as n→∞,

E[Qn] =
∑

1≤i,j≤n

P(Si = Sj) ∼


λ1n

3/2, d = 1,

λ2n log n, d = 2,

λdn, d ≥ 3,

(3.15)
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where
λ2 = 2/π, λd = 2Gd − 1, d ≥ 3, (3.16)

Gd =
∑
n∈N0

P(Sn = 0) is the Green function at the origin of simple random walk on Zd, while
λ1 is a constant related to the one-dimensional Brownian self-intersection local time [46, Theorem
5.2.3].

For u ≥ 0, let
Zwsaw
n (u) = E

[
e−uQn

]
, u ∈ [0,∞), (3.17)

be the partition function of the weakly self-avoiding walk, which is a challenging and well-studied
model. It would be too long to give a full account on the literature (see den Hollander [53]) but
let us keep in mind that the penalization by the self-intersection local time tends to unfold the
polymer. Here we shall only focus on results that came out as a by-product of our study of charged
polymers [20]. More precisely, we consider:

• the free energy fwsaw of the weakly self-avoiding walk and its scaling in the limit of weak
interaction (Proposition 3.4 below);

• the downward large deviations of the self-intersection local time Qn as n→∞ (Proposition 3.5
below).

Weak-interaction limit of the free energy

First, we note that the partition function in (3.17) is sub-multiplicative because

Qn+m ≥ Qn +Qn,n+m, m, n ∈ N, (3.18)

where Qn,n+m := #{n < i, j ≤ n + m : Si = Sj} is distributed as Qm. Hence (minus) the free
energy of the weakly self-avoiding walk

fwsaw(u) = − lim
n→∞

1

n
logZwsaw

n (u), u ∈ [0,∞), (3.19)

exists. The following proposition identifies the scaling behaviour of fwsaw(u) for u ↓ 0.

Proposition 3.4. As u ↓ 0,

fwsaw(u) ∼


λ1u

2/3, d = 1,

λ2u log(1/u), d = 2,

λdu, d ≥ 3,

(3.20)

where λd is given in (3.16). �

The anomalous scalings in d = 1 and d = 2 parallel that in (3.15). We comment further on this
result in Section 3.5, see Conjecture 3.25.

Downward large deviations of the self-intersection local time

The case d ≥ 2 in Proposition 3.4 may be deduced from Varadhan’s lemma and the following
proposition:

Proposition 3.5. The limit

I(t) = lim
n→∞

[
− 1

n
log P(Qn ≤ tn)

]
, t ∈ [1,∞), (3.21)
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exists. Moreover, t 7→ I(t) is finite, non-negative, non-increasing and convex on [1,∞), and satisfies

d = 2: I(t) > 0, t ≥ 1, d ≥ 3: I(t)

{
> 0, 1 ≤ t ≤ λd,
= 0, t ≥ λd.

(3.22)

Furthermore,

d = 2: lim
t→∞

− log I(t)

t
=

1

λ2
. (3.23)

�

Proposition 3.5 extends the downward moderate deviation result for Qn derived by Chen [46,
Theorem 8.3.2].

0 t

I(t)

1

r

0 t

I(t)

1 λd

r

r

Figure 3.2: Qualitative plots of t 7→ I(t) for d = 2 and d ≥ 3.

3.3 The quenched charged polymer

Let us come back to the quenched polymer measure defined in (3.9). Very little is known mathe-
matically about the quenched version of the model, where the charges are frozen. The two main
questions of interest are:

(1) Is the free energy self-averaging in the disorder?

(2) Is there a phase transition from a ‘collapsed phase’ to an ‘extended phase’ at some critical
value of the temperature?

We expect that the answer to (1) is yes and the answer to (2) is no.

In this section we prove two modest results about the quenched charged polymer. Recall (3.14).
The range of the random walk up to time n is

Rn = {S1, . . . , Sn} = {x ∈ Z : `n(x) > 0}. (3.24)

We first show that |Rn| grows linearly in n when the average charge is non-zero.

Proposition 3.6. Suppose that δ, β ∈ (0,∞). Then there exist c1, c2 > 0 (depending on δ, β) such
that, for Pδ-a.e. ω,

Pω,βn (|Rn| ≤ c1n) ≤ e−c2n+o(n). (3.25)
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Proof. Let π be the one-sided path that takes steps only in one fixed direction (one of the 2d unit
vectors). Estimate

Zω,βn ≥ ( 1
2d )n E

[
e−βH

ω,β
n (S) 1{Si=πi ∀ 1≤i≤n}

]
= ( 1

2d )n e−β
∑n
i=1 ω

2
i = ( 1

2d )n e−βn+o(n). (3.26)

Moreover, by Jensen’s inequality we have

Hω
n (S) =

∑
x∈Rn

(
n∑
i=1

ωi1{Si=x}

)2

≥ Ω2
n

|Rn|
, where Ωn =

∑
1≤i≤n

ωi. (3.27)

Combining (3.26) and (3.27), we obtain

Pω,βn (Rn ≤ c1n) ≤ exp

{
−βn

[
Ω2
n

c1n2
− 1− log(2d)

β

]}
. (3.28)

By the strong law of large numbers for ω, we have limn→∞ n−1Ωn = (∂/∂δ) logM(δ) = m(δ) > 0 for

Pδ-a.a. ω, and so the term between square brackets equals c3[1+o(1)] with c3 = 1
c1
m(δ)2−1− log(2d)

β .

Therefore, by choosing c1 > 0 small enough so that c3 > 0, we get (3.25) with c2 = βc3. �

We next show that the polymer chain is ballistic when the charges are sufficiently biased and
d = 1.

Proposition 3.7. Let d = 1. For every β ∈ (0,∞) there exists δ0 = δ0(β) ∈ (0,∞) such that

∀ δ > δ0 ∃ ε = ε(δ) > 0: lim
n→∞

Pω,βn
(
n−1Sn > ε | Sn > 0

)
= 1. (3.29)

Proof. Fix β ∈ (0,∞). Pick δ0 such that

m(δ0) =

√
1
2

(
1 + log 2

β

)
. (3.30)

If δ > δ0, then we can choose c1 >
1
2 in Proposition 3.6 and use the inequality

#{x ∈ Z : `n(x) = 1}
n

≥ 2|Rn|
n
− 1 (3.31)

to conclude that a positive fraction of the sites are visited precisely once. Consequently, if the
polymer chain chooses to go to the right, then Sn/n has a strictly positive lim inf. �

3.4 The annealed charged polymer

In the present section we focus on the annealed version of the model, where the charges are averaged
out. This version is somehow easier to deal with, yet turns out to exhibit an interesting phase
transition between a ‘collapsed phase’ and an ‘extended phase’, which we explain in Section 3.4.1.
In Section 3.4.2 we focus on the one-dimensional case [32], where a lot can be said. Section 3.4.3 is
specific to dimensions d ≥ 2.

3.4.1 The general picture

The goal of this section is to give a general picture of the phase diagram that is valid in all
dimensions. Recall first the definition of the local times in (3.14). By integrating out the charges
in (3.12), the annealed partition function can be rewritten as

Zδ,βn = E

[ ∏
x∈Zd

gδ,β
(
`n(x)

)]
, (3.32)



3.4. THE ANNEALED CHARGED POLYMER 47

where

gδ,β(`) = Eδ
[

exp(−βΩ2
`)
]
, Ω` =

∑̀
i=1

ωi, ` ∈ N0, (3.33)

with the convention gδ,β(0) = 1. The annealed free energy per monomer is defined by

f(δ, β) = lim sup
n→∞

1

n
logZδ,βn . (3.34)

Remark 3.8. We are able to prove that the limes superior in (3.34) is a limit in d = 1 (see
Theorem 3.15 below) and we expect that the same holds in higher dimensions. Convergence appears
to be hard to settle, due to the competition between attractive and repulsive interactions. Nonetheless,
we are able to prove convergence in higher dimensions for large enough β and for charge distributions
that are non-lattice with a bounded density (see Theorem 3.23 below).

Our first theorem provides relevant upper and lower bounds on the free energy. Recall (3.1) and
abbreviate

f(δ) = − logM(δ) ∈ (−∞, 0]. (3.35)

Theorem 3.9. The limes superior in (3.34) takes values in (−∞, 0] and satisfies the inequality

f(δ, β) ≥ f(δ). (3.36)

The excess annealed free energy per monomer is then defined by

f∗(δ, β) = f(δ, β)− f(δ). (3.37)

It follows from (3.32)–(3.37) that

f∗(δ, β) = lim sup
n→∞

1

n
logZ∗,δ,βn (3.38)

with

Z∗,δ,βn = E

[ ∏
x∈Zd

g∗δ,β
(
`n(x)

)]
, (3.39)

and

g∗δ,β(`) = E
[

exp
(
δΩ` − βΩ2

`

)]
, ` ∈ N0, (3.40)

with the convention g∗δ,β(0) = 1. We may think of g∗δ,β(`) as a single-site partition function for a
site that is visited ` times.

Example 3.10. If the distribution of the charges is standard normal, then

g∗δ,β(`) =

√
1

1 + 2β`
exp

[
δ2`

2(1 + 2β`)

]
, ` ∈ N0. (3.41)

Note that − log g∗δ,β can be decomposed as − log g∗δ,β = − log g∗,att
δ,β − log g∗,rep

δ,β with

− log g∗,att
δ,β (`) =

1

2
log(1 + 2β`), − log g∗,rep

δ,β (`) = − δ2`

2(1 + 2β`)
. (3.42)

The former is an attractive interaction (positive concave function), the latter is a repulsive inter-
action (negative convex function).
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0 δ

β
βc(δ)

E

C

Figure 3.3: Qualitative plot of the critical curve δ 7→ βc(δ) where the excess free energy f∗(δ, β) changes
from being zero (C) to being strictly positive (E). The critical curve is part of C.

Recall (3.8). Because f∗(δ, β) ≥ 0, it is natural to define two phases:

C = {(δ, β) ∈ Q : f∗(δ, β) = 0},
E = {(δ, β) ∈ Q : f∗(δ, β) > 0}.

(3.43)

For reasons that will become clear later, we refer to these as the collapsed phase, respectively, the
extended phase. One may check that for every δ ∈ [0,∞), β 7→ f∗(δ, β) is finite, non-negative, non-
increasing and convex. Hence there is a critical threshold βc(δ) ∈ [0,∞] such that C is the region
on and above the curve and E is the region below the curve (see Fig. 3.3).

Let us summarize what has been obtained until now for the critical curve (recall the definition
of λd in (3.16) and that of m3 in (3.3)):

Theorem 3.11. (i) δ 7→ βc(δ) is continuous, strictly increasing and convex on [0,∞), with βc(0) =
0.
(ii) Let d = 1 and assume (3.6). There exists a constant a ∈ (0,∞) such that, as δ ↓ 0,

βc(δ)− 1
2δ

2 ∼ −a( 1
2δ

2)
4
3 . (3.44)

(iii) Let d ≥ 2. As δ ↓ 0,
βc(δ) = 1

2δ
2 − 1

3m3δ
3 − εδ (3.45)

with

[κ+ o(1)] δ4 ≤ εδ ≤ [1 + o(1)]

{
κ2δ

4 log(1/δ), d = 2,

κdδ
4, d ≥ 3,

(3.46)

where

κ = 1
12m4 − 1

3m
2
3, κd =

{
1
4λ2, d = 2
1
4 (λd − 1) + κ, d ≥ 3.

(3.47)

Theorem 3.11 shows that there is indeed a phase transition at a non-trivial critical curve of
which 1

2δ
2 is the first order. If the charge distribution is symmetric, then actually βc(δ) ≤ 1

2δ
2 for

all δ ∈ [0,∞). The next order in the expansion depends on the dimension.

Theorem 3.11(ii) shows that the scaling of the critical curve in d = 1 is anomalous. The term
in δ3 that appears when d ≥ 2 is not relevant in this case. A spectral representation of the multi-
plicative constant a will be given in Theorem 3.20 below.

Theorem 3.11(iii) identifies three terms in the upper bound of βc(δ) for small δ, of which the
last is anomalous for d = 2. The proof is based on an analysis of the downward large deviations
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of the self-intersection local time Qn defined in (3.13) under the law P of simple random walk,
see Proposition 3.5. For the standard normal distribution m3 = 0 and m4 = 3, and so κd = 1

4λd
for d ≥ 2 in (3.47). Note that κd ≥ κ > 0 for d ≥ 3 when m3 = 0, but not necessarily when
m3 6= 0. Indeed, if the distribution of the charges puts weight 1

3N2 , 1 − 1
2N2 , 1

6N2 on the values
−N , 0, 2N , respectively, for some N ∈ N, then m1 = 0, m2 = 1, m3 = N , m4 = 3N2, in which
case − 1

3m
2
3 + 1

12m4 = − 1
12N

2. This gives κd < 0 for N large enough and κ < 0 ≤ κd for N small
enough. A sharp version of Theorem 3.11(iii) is the object of Conjecture 3.26.

Let us now turn to the behaviour of the critical curve in the limit of a large charge bias.
Interestingly, this depends on whether the charge distribution is lattice or not. Heuristically, the
reason is that it is easier to build small absolute values of Ω` =

∑`
k=1 ωk for small values of `

when the charge distribution is non-lattice rather than lattice. This is confirmed by the following
theorem, which is valid in all dimensions.

Theorem 3.12. As δ →∞,

βc(δ) ∼
δ

T
(3.48)

with T defined in (3.5). If T = 0 and ω1 has a bounded density (with respect to the Lebesgue
measure), then

βc(δ) ∼
δ2

4 log δ
. (3.49)

Remark 3.13. Biskup and König [26], Ioffe and Velenik [85], Kosygina and Mountford [91] deal
with annealed versions of various models of simple random walk in a random potential. In all these
models the interaction is either attractive or repulsive, meaning that the annealed partition function
is the expectation of the exponential of a functional of the local times of simple random walk that
is either subadditive or superadditive. In contrast, our annealed charged polymer model is neither
attractive nor repulsive.

3.4.2 One-dimensional case

Much more can be said in dimension one [32]. We obtain a spectral representation of the phase
transition and show that the collapsed phase is actually a subballistic phase whereas the extended
phase is a ballistic phase. Moreover, we show that the phase transition is first order and that the
empirical speed and the empirical charge satisfy a law of large numbers. We identify the scaling
of the critical curve in the limit of small average charge and that of the free energy in the limit
of small inverse temperature, which exhibit anomalous behaviour. A key tool in our analysis is
the Ray-Knight formula for the local times of the one-dimensional simple random walk. This tool,
which has been used extensively in the literature, is exploited in full to obtain the fine details of
the phase diagram of the charged polymer.

Spectral representation

Let Q(i, j) be the probability matrix defined by

Q(i, j) =


1{j=0}, if i = 0, j ∈ N0,(
i+ j − 1

i− 1

)(
1

2

)i+j
, if i ∈ N, j ∈ N0,

(3.50)

which is the transition kernel of a critical Galton-Watson branching process with a geometric off-
spring distribution (of parameter 1

2 ). For (µ, δ, β) ∈ [0,∞) × Q, define the N0 × N0 matrix Aµ,δ,β
by

Aµ,δ,β(i, j) = e−µ(i+j+1) g∗δ,β(i+ j + 1)Q(i+ 1, j), i, j ∈ N0. (3.51)
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Note that Aµ,δ,β is symmetric. Let λδ,β(µ) be the spectral radius of Aµ,δ,β in `2(N0). One can check
that, for every (δ, β) ∈ Q, µ 7→ λδ,β(µ) is continuous, decreasing, log-convex on [0,∞) and tends to
zero at infinity.

Definition 3.14. Let µ(δ, β) be the unique solution of the equation λδ,β(µ) = 1 when it exists and
µ(δ, β) = 0 otherwise.

One can actually prove that, for every (δ, β) ∈ Q, µ 7→ λδ,β(µ) is analytic and strictly log-convex
on (0,∞), and has a finite strictly negative right-slope at 0 (see Fig. 3.4).

0 µ
µ(δ, β)

log λδ,β(µ)

s
s

Figure 3.4: Qualitative plot of µ 7→ log λδ,β(µ). Only the case λδ,β(0) > 1 is shown. The interior of the
ballistic phase int(B) corresponds to λδ,β(0) > 1, the subballistic phase S corresponds to λδ,β(0) < 1, the
critical curve corresponds to λδ,β(0) = 1 (see (3.53)).

We begin with a spectral representation for the annealed free energy.

Theorem 3.15. For all (δ, β) ∈ Q, the limes superior in (3.34) is a limit. Moreover, the excess
free energy has the spectral representation

f∗(δ, β) = µ(δ, β). (3.52)

The latter generalizes the spectral representation derived in Greven and den Hollander [81] for
the weakly self-avoiding walk (see also den Hollander [52, Chapter IX]). This in turn provides a
spectral characterization of the critical curve.

Theorem 3.16. For every δ ∈ [0,∞), βc(δ) is the unique solution of the equation λδ,β(0) = 1.
Moreover, δ 7→ βc(δ) is analytic on (0,∞) and (δ, β) 7→ f∗(δ, β) is analytic on E.

Hence there is no other phase transition inside the extended phase.

First-order phase transition from a subballistic to a ballistic phase

Let

B =
{

(δ, β) ∈ Q : 0 < β ≤ βc(δ)
}
, S = Q\B. (3.53)

The set B will be referred to as the ballistic phase, the set S as the subballistic phase, for reasons we
explain next. Namely, we proceed by stating a law of large numbers for the empirical speed (Sn/n)
and the empirical charge (Ωn/n), respectively. In the statement below the condition Sn > 0 is put
in to choose a direction for the endpoint of the polymer chain.
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Theorem 3.17. For every (δ, β) ∈ Q there exists a v(δ, β) ∈ [0, 1] such that

lim
n→∞

Pδ,βn
(∣∣n−1Sn − v(δ, β)

∣∣ > ε
∣∣∣Sn > 0

)
= 0 ∀ ε > 0, (3.54)

where

v(δ, β)

{
> 0, (δ, β) ∈ B,
= 0, (δ, β) ∈ S. (3.55)

For every (δ, β) ∈ B,

1

v(δ, β)
=

[
− ∂

∂µ
log λδ,β(µ)

]
µ=µ(δ,β)

=

[
− ∂

∂µ
λδ,β(µ)

]
µ=µ(δ,β)

. (3.56)

(Take the right-derivative when µ(δ, β) = 0.) Moreover, (δ, β) 7→ v(δ, β) is analytic on int(B).

Theorem 3.18. For every (δ, β) ∈ Q, there exists a ρ(δ, β) ∈ [0,∞) such that

lim
n→∞

Pδ,βn
(∣∣n−1Ωn − ρ(δ, β)

∣∣ > ε
)

= 0 ∀ ε > 0, (3.57)

where

ρ(δ, β)

{
> 0, (δ, β) ∈ B,
= 0, (δ, β) ∈ S. (3.58)

For every (δ, β) ∈ B,

ρ(δ, β) =

[
∂
∂δ log λδ,β(µ)

− ∂
∂µ log λδ,β(µ)

]
µ=µ(δ,β)

=
∂

∂δ
µ
(
δ, β
)
. (3.59)

Moreover, (δ, β) 7→ ρ(δ, β) is analytic on int(B).

The speed v(δ, β) of the polymer chain is strictly positive in the ballistic phase and zero in
the subballistic phase (which explains the names associated with these two phases). In the ballistic
phase the speed is given by the spectral formula in (3.56). The latter generalizes the spectral formula
derived in Greven and den Hollander [81] for the speed v(β) = v(∞, β) of the weakly self-avoiding
walk. The charge ρ(δ, β) of the polymer chain is strictly positive in the ballistic phase and zero in
the subballistic phase. In the ballistic phase the charge is given by the spectral formula in (3.59).
Fig. 3.5 shows a numerical plot of β 7→ v(1, β) and β 7→ ρ(1, β) when ω1 is standard normal.
Interestingly, the speed is not monotone on (0, βc(1)]. This is in contrast with the monotonicity
that was found (but not proved) in [81] for the weakly self-avoiding walk (for which βc(∞) = ∞).
Equally interesting, the charge is monotone on (0, βc(1)]. Since the critical curve lies in the ballistic
phase B, Theorems 3.17–3.18 imply that (δ, β) 7→ v(δ, β) and (δ, β) 7→ ρ(δ, β) are discontinuous at
criticality. This means that the phase transition is first order. The scaling behaviour of the excess
free energy near the critical curve also shows that the phase transition is first order.

Theorem 3.19. For every δ ∈ (0,∞),

f∗(δ, β) ∼ Kδ[βc(δ)− β], as β ↑ βc(δ), (3.60)

where Kδ ∈ (0,∞) is given by

Kδ =

[
∂
∂β log λδ,β(µ)
∂
∂µ log λδ,β(µ)

]
β=βc(δ),µ=0

. (3.61)
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Figure 3.5: Numerical plots of the typical speed v(δ, β) and the typical charge ρ(δ, β) in Theorems 3.17
and 3.18, based on a 100×100 truncation of the matrix in (3.51), for the case where ω1 is standard normal.
Above: plot of β 7→ v(δ, β) and β 7→ ρ(δ, β) for δ = 1 and β ∈ (0, 0.36). Below: same for δ ∈ (0, 1) and
β ∈ (0, 0.36) (for graphical clarity the axes have been rotated: the δ-axis runs from front to back, the β-axis
runs from right to left).

Weak coupling limits

For a ∈ R and b ∈ (0,∞), let La,b be the Sturm-Liouville operator defined by

(La,bg)(x) = (2ax− 4bx2)g(x) + g′(x) + xg′′(x), g ∈ C2((0,∞)). (3.62)

This is a two-parameter version of a one-parameter family of operators considered in van der Hofstad
and den Hollander [137]. Let

C =

{
g ∈ L2

(
(0,∞)) ∩ C∞((0,∞)

)
: ‖g‖2 = 1, g > 0,

∫ ∞
0

[
x

9
2 g(x)2 + xg′(x)2

]
dx <∞

}
. (3.63)

The largest eigenvalue problem

La,bg = χg, χ ∈ R, g ∈ C, (3.64)

has a unique solution (ga,b, χ(a, b)) with the following properties: for every b ∈ (0,∞),

a 7→ χ(a, b) is analytic, strictly increasing and strictly convex on R,
χ(0, b) < 0, lim

a→∞
χ(a, b) =∞, lim

a→−∞
χ(a, b) = −∞,

a 7→ ga,b is analytic as a map from R to L2((0,∞)).

(3.65)

(See Coddington and Levinson [48] for general background on Sturm-Liouville theory.)
Let a∗ = a∗(b) denote the unique solution of the equation χ(a, b) = 0 (see Fig. 3.6). We may

now complement Theorem 3.11(ii).

Theorem 3.20. The constant a in Theorem 3.11(ii) equals a∗(1).
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χ(a, b)
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Figure 3.6: Qualitative plot of a 7→ χ(a, b) for fixed b ∈ (0,∞).

We close by identifying the scaling behaviour of the free energy for small inverse temperature.

Theorem 3.21. Assume (3.6). For every δ ∈ (0,∞),

f(δ, β) ∼ −Aδβ
2
3 , v(δ, β) ∼ Bδβ

1
3 , ρ(δ, β)− ρδ ∼ −Cδβ

2
3 , as β ↓ 0, (3.66)

where ρδ = Eδ(ω1) = −f ′(δ), and Aδ, Bδ, Cδ ∈ (0,∞) are given by

Aδ = a∗(ρδ),
1

Bδ
=

[
∂

∂a
χ(a, b)

]
a=a∗(ρδ), b=ρδ

, Cδ =
d

dδ
a∗(ρδ). (3.67)

The proofs of Theorems 3.20 and 3.21 follow van der Hofstad and den Hollander [137], but
we have to address additional difficulties, due to our more complicated Hamiltonian. The third
statement in (3.66) actually holds under an extra technical assumption related to the asymptotic
variance of the charge distribution under the annealed polymer measure, which we do not detail
here, for the sake of simplicity. We refer to [32, Theorem 1.10] for a precise statement.

3.4.3 Higher dimensions

The Ray-Knight formula is no longer available in d ≥ 2 (at least not in such a tractable form as
in d = 1). Our results [20] have been derived with the help of other tools, namely by expanding
the partition function in the limit of small parameters and comparing it to the weakly self-avoiding
walk. The phase diagram is qualitatively similar as in d = 1, but a detailed description of the scaling
behaviour in the two phases is still missing.

Let us start with scaling bounds on the free energy for small inverse temperature and fixed
charge bias.

Theorem 3.22. For any δ ∈ (0,∞), as β ↓ 0,

−
[
m(δ)2 + v(δ) + o(1)

]
β ≥ f(δ, β) ≥ [1 + o(1)]

{
−λ2m(δ)2 β log(1/β), d = 2,

−
[
λdm(δ)2 + v(δ)

]
β, d ≥ 3,

(3.68)

where m(δ) = Eδ[ω1] and v(δ) = Varδ[ω1]. �

We finally settle the existence of the free energy in a subset of the collapsed phase (that is for
large enough inverse temperature) and for a subclass of charge distributions.

Theorem 3.23. Suppose that the charge distribution is non-lattice (T = 0) and has a bounded
density. Then there exists a curve δ 7→ β0(δ) such that, for all β ≥ β0(δ),
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(1) the sequence {log g∗δ,β(`)}`∈N is super-additive,

(2) the limes superior in (3.34) is a limit, and equals −f(δ),

(3) the limes superior in (3.38) is a limit, and equals 0.

Moreover, β0(δ) ≥ βc(δ) and β0(δ) ∼ βc(δ) as δ →∞. �

3.4.4 A selection of proof techniques and heuristics

Spectral representation of the free energy in d = 1.

As we have seen, the annealed partition function can be expressed as the expected value of a
relatively simple function of the local times. The key idea behind the results in d = 1 is to use a
Ray-Knight identity, which relates these local times to a Galton-Watson process. This identity can
be conveniently stated in terms of the edge-crossing numbers of the random walk, which are defined
by (y ∈ N0)

M+
n (y) =

1

2

∑
1≤k≤n

1{{Sk−1,Sk}={y,y+1}}


M−n (y) =

1

2

∑
1≤k≤n

1{{Sk−1,Sk}={−y,−y−1}}

 ,
(3.69)

and which are linked to the local times by the following relation:

On the event {Sn = x} with x ∈ N0 : `n(y) =


M+
n (y − 1) +M+

n (y), if y > x,

M+
n (y − 1) +M+

n (y) + 1, if 1 ≤ y ≤ x,
M+
n (0) +M−n (0), if y = 0,

M−n (−y − 1) +M−n (−y), if y < 0.

(3.70)
Let us now fix `, x ∈ N0 and define a two-species branching process

(M+,M−) = (M+(y),M−(y))y∈N0
(3.71)

with law P`,x as follows:

• At generation 0 there are ` individuals, which are divided by fair coin tossing into two sub-
populations, labelled + and −.

• Each subpopulation evolves independently as a critical Galton-Watson branching process with
a geometric offspring distribution, denoted by Geo0( 1

2 ) and given by Geo0( 1
2 )(i) = 2−(i+1),

i ∈ N0.

• If x ∈ N, then there is additional immigration of a Geo0( 1
2 )-distributed number of individuals

in the + subpopulation, at each generation 1, . . . , x (equivalently, the generations 0, . . . , x− 1
have an additional “hidden” individual, which is not counted but produces offspring).

• Define M±(y) as the size of the ± subpopulation in the y-th generation.

Define the total population size

Ξ =
∑
y∈N0

(M+(y) +M−(y)) (3.72)

and note that Ξ <∞ a.s. because a critical Galton-Watson process eventually dies out. The version
of the Ray-Knight identity that follows is extracted from [32].
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Theorem 3.24. Fix `, n, x ∈ N0 such that 0 ≤ ` ≤ 1
2n, 0 ≤ x ≤ n and x − n is even. The edge-

crossing numbers (M+
n ,M

−
n ) of the simple random walk defined in (3.69) conditionally on {`n(0) =

`, Sn = x} have the same joint distribution as the branching process with law P`,x conditionally on
{Ξ = 1

2 (n− x)}. In formulas,

P
(

(M+
n ,M

−
n ) = (m+,m−), `n(0) = `, Sn = x

)
= P`,x

(
(M+,M−) = (m+,m−), Ξ = 1

2 (n− x)
)
,

(3.73)

for all sequences (m+,m−) = (m+
y ,m

−
y )y∈N0 ∈ (N0 × N0)N0 .

Let us now introduce the grand-canonical partition function:

Z(µ, δ, β) =
∑
n∈N0

e−µn Z∗,δ,βn , µ ∈ [0,∞), (3.74)

and observe that the (excess) free energy is then directly linked to the radius of convergence of
this series. The key step of our analysis is to use Theorem 3.24 and express the grand-canonical
partition function in terms of the matrix Aµ,δ,β defined in (3.51):

Z(µ, δ, β) =

[
1

1− Ãᵀ
µ,δ,β

Âµ,δ,β
1 +Aµ,δ,β
1−Aµ,δ,β

1

1− Ãµ,δ,β

]
(0, 0), (3.75)

where:

• we write (1 − Aµ,δ,β)−1 as an abuse of notation for
∑
n≥0A

n
µ,δ,β , which is well-defined as a

matrix with entries in [0,∞], since Aµ,δ,β has non-negative entries;

• the matrices Ãµ,δ,β and Âµ,δ,β are modifications of Aµ,δ,β whose precise value is irrelevant at
this level of presentation;

• the relevant term for the understanding of what comes next is (1−Aµ,δ,β)−1.

It turns out that when µ > µ(δ, β) the matrix Id − Aµ,δ,β is invertible, which leads to Z(µ, δ, β)
being finite. On the contrary, we can prove that Z(µ, δ, β) is infinite as soon as 0 ≤ µ < µ(δ, β),
hence

µ(δ, β) = lim sup
n→∞

1

n
logZ∗,δ,βn . (3.76)

It remains to prove that the lim sup is actually a limit. To this end, we restrict the partition function
to bridges, that are the random walk paths satisfying the condition 0 < Sk ≤ Sn for all 0 < k ≤ n,
and prove that

lim inf
n→∞

1

n
logZ∗,δ,βn ≥ lim

n→∞

1

n
logZ∗,δ,βn,bridge = µ(δ, β). (3.77)

The equality above comes from the relation (with self-explanatory notation)

Zbridge(µ, δ, β) =

[
Aµ,δ,β

1−Aµ,δ,β

]
(0, 0), (3.78)

and the fact that the limit exists for the bridge version comes from super-additivity of the sequence
(logZ∗,δ,βn,bridge)n∈N, the concatenation of two bridges being again a bridge. The combination of (3.76)
and (3.77) finally settles Theorem 3.15.
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Large Deviations Principles and Law of Large Numbers in d = 1.

The Law of Large Numbers for the endpoint of the polymer and the empirical charge, which are
stated in Theorems 3.17 and 3.18, actually come as a corollary of Large Deviations Principles. To
obtain such a result, we begin by introducing the joint moment-generating function for the speed
and the charge. Fix (δ, β) ∈ Q and (γ, γ′) ∈ R2. Let

Z∗,δ,βn (γ, γ′) := E
[
eγSn

∏
x∈Z

g∗δ+γ′,β(`n(x))
]
. (3.79)

Then

Eδ,βn
[
eγSn+γ′Ωn

]
=

Z∗,δ,βn (γ, γ′)

Z∗,δ,βn (0, 0)
, (3.80)

where we recall that Eδ,βn is the expectation w.r.t. the annealed polymer measure of length n defined
in (3.11–3.12). Next, let

Z(µ, δ, β; γ, γ′) =
∑
n∈N0

e−µnZ∗,δ,βn (γ, γ′). (3.81)

Then Z(µ, δ, β; γ, γ′) has a spectral representation similar to the one in (3.75). Indeed, the only
difference is that Aµ,δ,β must be replaced by eγAµ,δ+γ′,β . From this spectral representation one can
compute the limiting log-moment generating function

Λδ,β(γ, γ′) = lim
n→∞

1

n
logEδ,βn

[
eγSn+γ′Ωn

]
(3.82)

and deduce, after a suitable Legendre transform, the rate functions v 7→ Iδ,β(v) and ρ 7→ Jδ,β(ρ) for
the Large Deviation Principles associated to Sn/n and Ωn/n under the annealed polymer measure.
Provided β 6= βc(δ), these rate functions have each a unique zero, denoted by v(δ, β) and ρ(δ, β)
respectively, which turn out to be positive inside the extended phase and zero in the collapsed
phase. This gives the Law of Large Numbers outside of criticality, the case β = βc(δ) requiring a
separate argument for which we refer to the original paper [32]. Interestingly, the rate functions also
contain flat pieces (i.e. convex but non strictly convex). These flat pieces indicate a Non-Cramer
regime in which the polymer adopts an inhomogeneous strategy when it is squeezed too much, see
Figure 3.7 below (we restrict to the rate function associated to Sn/n, for conciseness).

0 vss

Iδ,β(v)

v(δ, β)ṽ(δ, β)
0 vs

s
Iδ,β(v)

ṽ(δ, β)

Figure 3.7: Qualitative plot of v 7→ Iδ,β(v) for (δ, β) ∈ int(B) (left) and (δ, β) ∈ S (right). The flat pieces
correspond to an inhomogeneous strategy for the polymer to realise a large deviation. For instance, in the
flat piece on the left, if the speed is v < ṽ(δ, β), then the charge makes a large deviation on a stretch of
the polymer of length v/ṽ(δ, β) times the total length, so as to allow it to move at speed ṽ(δ, β) along that
stretch at zero cost, and then makes a large deviation on the remaining stretch, so as to allow it to be
subballistic along that remaining stretch at zero cost.
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Heuristics for the weak-interaction asymptotics of the critical curve (Theorem 3.11 (ii)
and (iii)).

Let us consider Example 3.10 (standard normal case) and extend (3.41) to ` ∈ R+. For convenience,
we re-parametrize

t = t(`) = 2β`, (3.83)

so that

Gδ,β(`) := log g∗δ,β(`) =
1

2

{ δ2

2β

t

1 + t
− log(1 + t)

}
. (3.84)

By differentiating, we see that Gδ,β attains its maximum at

t∗ = t∗(δ, β) :=
δ2

2β
− 1, with t∗ ≥ 0 ⇔ β ≤ 1

2δ
2. (3.85)

A quick look at the shape of the function Gδ,β , depending on the sign of t∗ suggests that, at first
order, βc(δ) ≈ 1

2δ
2. In order to determine the next order term, we henceforth set

β = 1
2δ

2[1− e(δ)], with lim
δ↓0

e(δ) = 0. (3.86)

Assuming that t takes values close to t∗ ∼ e(δ) and expanding Gδ,β(`) for small values of δ (or β),
we get

Gδ,β(`) ≈ 1
2e(δ)t−

1
4 t

2 = βe(δ)`− β2`2. (3.87)

Let us now apply the relation above to `n(x) and sum over x ∈ Zd. Recalling that∑
x∈Zd

`n(x) = n, and
∑
x∈Zd

`n(x)2 = Qn, (3.88)

(see (3.13)) we get ∑
x∈Zd

Gδ,β(`n(x)) ≈ βe(δ)n− β2Qn. (3.89)

This leads to the following approximation:

f∗(δ, β) ≈ βe(δ)− fwsaw(β2). (3.90)

By equating the right-hand side to zero and using Proposition 3.4, we eventually find

e(δ) ∼


λ1( 1

2δ
2)1/3 (d = 1),

λ2( 1
2δ

2)| log( 1
2δ

2)| (d = 2),

λd(
1
2δ

2) (d ≥ 3).

(3.91)

Let us stress, however, that (3.90) cannot be valid when the right-hand side becomes negative, since
the excess free energy is always non-negative. Item (iii) of Theorem 3.11, that is for d ≥ 2, actually
follows from a rigorous adaptation of these heuristics [20] but the results obtained are not as sharp
as those announced above, see Conjecture 3.26 below.

For d = 1, the results of Theorem 3.11 (ii) and its complement in Theorem 3.20 are derived
in [32] with a different strategy, which we sketch now. Recall that βc(δ) is the solution to λδ,β(0) = 1.
The starting point is the following Rayleigh-Ritz formula:

λδ,β(µ) = sup
v∈`2(N0)

v≥0,‖v‖2=1

〈v,Aµ,δ,βv〉. (3.92)
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By substracting 1 = 〈v, v〉 and changing sequences to functions, we obtain a functional Iδ,β such
that

λδ,β(0)− 1 = sup
f∈L2(0,∞)
f≥0,‖f‖2=1

Iδ,β(f). (3.93)

It turns out that (provided f has enough regularity)

lim
δ,β↓0

Iδ,β(f) = I(a)(f) := 〈f,La,1f〉, (3.94)

under the constraint

β = 1
2δ

2 − a
(

1
2δ

2
)4/3

, (3.95)

with La,1 defined in (3.62) and a ∈ R. By using the tools of variational convergence (epi-convergence)
we show that, under the same condition,

lim
δ,β↓0

β−2/3(λδ,β(0)− 1) = χ(a, 1) (3.96)

with χ(a, 1) defined in (3.64). From this relation we finally infer that the critical value of a is indeed
a∗(1), as defined below (3.65). Interestingly, one can finally reconciliate this approach and the one
leading to (3.91), by noticing that

a∗(1) = lim
β↓0

fwsaw(β)

β2/3
, (3.97)

see [137, Theorem 4].

3.5 Discussion and open questions

(1) Charges with long-range interaction. It would be interesting to deal with charges whose
interaction extends beyond the ‘on-site’ interaction in (3.7), like a Coulomb potential (polynomial
decay) or a Yukawa potential (exponential decay).

(2) A conjecture for the weakly self-avoiding walk. We complement Proposition 3.4 by
stating a conjecture for the higher order terms in the asymptotic expansion of fwsaw(u) for d ≥ 3.

Conjecture 3.25. There are constants ad > 0 such that

λdu− fwsaw(u) ∼


a3 u

3/2, d = 3,

a4 u
2 log(1/u), d = 4,

ad u
2, d ≥ 5,

as u ↓ 0. (3.98)

This translates into a related conjecture for the rate function I in Proposition 3.5: we conjecture
that there are constants ãd > 0 such that

I(λd − s) ∼


ã3 s

3, d = 3,

ã4 s
2/ log(1/s), d = 4,

ãd s
2, d ≥ 5,

as s ↓ 0. (3.99)

We refer to [20] for some heuristic arguments that support Conjecture 3.25.

(3a) Scaling inside the collapsed phase [annealed, d ≥ 1]. Theorem 3.11(i) corrects a mistake
in den Hollander [53, Chapter 8], where it was argued that f∗ ≡ 0 (i.e., C covers the full quadrant,
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or βc ≡ 0). The mistake can be traced back to a failure of convexity of the function ` 7→ G∗δ,β(`) =
log g∗δ,β(`). Is is stated in den Hollander [53, Chapter 8] that for every d ≥ 1 and every (δ, β) ∈ int(C),

lim
n→∞

(αn)2

n
logZ∗,δ,βn = −χd, (3.100)

with αn = (n/ log n)1/(d+2) and with χd ∈ (0,∞) a constant that is explicitly computable. The
idea behind (3.100) is that the empirical charge makes a large deviation under the law Pδ so that
it becomes zero. The price for this large deviation is

exp(−nH(P0 |Pδ)[1 + o(1)]), n→∞, (3.101)

where H(P0 |Pδ) denotes the specific relative entropy of P0 = P with respect to Pδ. Since the latter
equals logM(δ) = −f(δ), this accounts for the term that is subtracted in the excess free energy.
Conditional on the empirical charge being zero, the attraction between charged monomers with
the same sign wins from the repulsion between charged monomers with opposite sign, making the
polymer chain contract to a subdiffusive scale αn. This accounts for the correction term in the free
energy. It is also stated in [53] that, under the law Pδ,βn ,(

1

αn
Sbntc

)
0≤t≤1

=⇒ (Ut)0≤t≤1, n→∞, (3.102)

where =⇒ denotes convergence in distribution and (Ut)t≥0 is a Brownian motion on Rd condi-
tioned not to leave a ball with a deterministic radius and a randomly shifted center (see Fig. 3.8).
Compactification is a key step in the sketch of the proof provided in den Hollander [53, Chapter
8], which requires super-additivity of {log g∗δ,β(`)}`∈N. From Theorem 3.23(1) we know that this
property holds at least for β large enough. ∗

0

R

Z

Figure 3.8: A Brownian motion starting at 0 conditioned to stay inside the ball with radius R̄ and
center Z̄. A formula for R̄ is given in [53, Chapter 8].

(3b) Scaling inside the extended phase [annealed, d ≥ 1]. It is natural to expect that for
every (δ, β) ∈ E the polymer behaves like weakly self-avoiding walk. Once the empirical charge is
strictly positive, the repulsion should win from the attraction, and the polymer should scale as if
all the charges were strictly positive, with a change of time scale only. We have proved it for d = 1
but it remains open for d ≥ 2.

∗ The scaling property in (3.100) was first noted by Biskup and König [26], as a by-product of their analysis of
the parabolic Anderson model.
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(4) Weak interaction limits [annealed, d = 1]. Theorem 3.21 deals with weak interaction limits
and shows that near the horizontal axis in Fig. 3.3 the free energy, the speed and the charge exhibit
an anomalous scaling. This is a generalization of the scaling found in van der Hofstad and den
Hollander [137] for weakly self-avoiding walk. The constants Aδ, Bδ, Cδ are expected to represent
the free energy, speed and charge of a Brownian version of the charged polymer with Hamiltonian

HW̃
T (W [0, T ]) =

∫
R
LW̃
T (x)2 dx, LW̃

T (x) =

∫ T

0

dW̃s δ(Ws − x), (3.103)

where W [0, T ] is the path of the polymer, dW̃s is the charge of the interval ds, W̃[0, T ] is an
independent Brownian motion with drift δ, and the polymer measure has β = 1 with the Wiener
measure as reference measure. The version without charges is known as the Edwards model (see
van der Hofstad, den Hollander and König [138,139]). The expressions in (3.103) are formal but it
would be interesting to give them a meaning.

(5) Central limit theorems and fluctuations at criticality [annealed, d = 1]. In [32] we pro-
vide the central limit theorem for the speed and the charge in the interior of the ballistic regime. We
do not deduce the central limit theorem from the large deviation principle, but rather exploit finer
properties of the spectral representation for the excess free energy. The proof is actually inspired
by König [89]. We have no result about the fluctuations of the polymer endpoint at criticality, but
we expect these fluctuations to be of order

√
n in the upward direction and of order n2/3 in the

downward direction.

(6a) The annealed critical curve in d ≥ 2. The lower and upper bounds in Theorem 3.11(iii)
differ by a multiplicative factor when d ≥ 3 and by a logarithmic factor when d = 2. We expect
that the upper bound gives the right asymptotic behaviour:

Conjecture 3.26. As δ ↓ 0,

εδ ∼

{
κ2δ

4 log(1/δ), d = 2,

κdδ
4, d ≥ 3.

(3.104)

In [20] we state a conjecture about trimmed local times that would imply Conjecture 3.26.

(6b) Annealed free energy in d ≥ 2. We collect a list of open questions:

(1) Theorem 3.23 settles the existence of the free energy in a subset of the collapsed phase for a
subclass of charge distributions. Is the limes superior in (3.34) always a limit, like for d = 1?

(2) Is (δ, β) 7→ f∗(δ, β) analytic throughout the extended phase E , as in d = 1? This would prove
that there are no sub-phases inside the extended phase.

(3) How does f∗(δ, β) behave as β ↑ βc(δ)? Is the phase transition first order, as for d = 1, or
higher order?

(4) In analogy with what we saw in Theorem 3.11(iii), the bounds in Theorem 3.22 do not match,
but we expect the following:

Conjecture 3.27. For any δ ∈ (0,∞), as β ↓ 0,

f(δ, β) ∼

{
−λ2m(δ)2 β log(1/β), d = 2,

−
[
λdm(δ)2 + v(δ)

]
β, d ≥ 3.

(3.105)

(7) More about the quenched charged polymer. Here are some open problems for the
quenched version of the model:
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(1) Does the quenched free energy exist for Pδ-a.e. ω, and is it constant? How does it depend on
δ and β? Trivially, it is convex in β for all δ, but what more can be said?

(2) In d = 1, is the quenched charged polymer ballistic for all δ ∈ (0,∞)? How does the speed
depend on β and δ?

(3) In the quenched model with δ = 0, is the polymer chain subdiffusive (like in the annealed
model; see discussion above)? The fluctuations of the charges are expected to push the poly-
mer further apart than in the annealed model. Is there a scaling limit for P-a.e. ω, or does
the polymer chain fluctuate so much that there is a scaling limit only along ω-dependent
subsequences (“sample dependence”)?

(4) Is the scaling of the polymer always similar to that of the self-avoiding walk when the average
charge is non-zero?

3.6 Perspectives on folding

In this final section we discuss two other random walk models that exhibit a folding mechanism.

3.6.1 Swiss Cheese : towards a microscopic limit

Let d ≥ 3 and B = (Bs)s≥0 be a d-dimensional standard Brownian motion. For t > 0 and a > 0,
let W a(t) = {x ∈ Rd : ∃s ∈ [0, t], ‖x − Bs‖ ≤ a} be the Wiener sausage at time t and radius a.
In [135], van den Berg, Bolthausen and den Hollander proved the following Moderate Deviations
Principle for the volume of the Wiener sausage:

lim
t→∞

t
2
d−1 log P(|W a(t)| ≤ bt) = −Iκa(b), (3.106)

where

Iκa(b) := inf
φ∈Φκa (b)

[1

2

∫
Rd
|∇φ|2(x)dx

]
, κa := cap(B(0, a)) = lim

t→∞

1

t
E(|W a(t)|), (3.107)

and

Φκa(b) :=
{
φ ∈ H1(Rd) :

∫
φ2(x)dx = 1,

∫
(1− e−κaφ

2(x))dx ≤ b
}
. (3.108)

Following the motto of [135], the picture to have in mind is that of a Wiener sausage which folds into
a Swiss cheese: the Wiener sausage conditioned to have volume less that bt (where b < κa) spends
a fraction of time φ2(x) in the neighbourhood xt1/d, covering only a fraction 1 − exp(−κaφ2(x))
of this neighbourhood and leaving random holes. However, the authors of [135] did not prove such
a pathwise statement. Interestingly, in the case 3 ≤ d ≤ 4 the variational problem in (3.107) has
a minimiser for all b ∈ (0, κa) whereas in the case d ≥ 5, the existence of a minimiser is only
guaranteed for b < κ∗a < κa. It was also proved in [135] that any minimiser is (up to a shift) a
positive radially symmetric and decreasing (RSD) function. The shift corresponds to a randomly
located center at which the Swiss cheese strategy is expected to be performed.

The Moderate Deviations Principle has been adapted to the discrete case by Phetpradap in its
PhD dissertation [110]. It reads, with the same rate function,

lim
n→∞

n
2
d−1 log P(|Rn| ≤ bn) = −1

d
Iκd(b), (3.109)

where Rn = {S1, . . . , Sn} is the range of a simple random walk S = (Sn)n≥0 on Zd and, in this
set-up,

κd := cap({0}) = P(∀n ∈ N, Sn 6= S0) ∈ (0, 1), (3.110)
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which is also the expected number of vertices visited by the walk per unit of time, in the large
n limit. It was recently suggested in [97] that tilted interlacements (which is a space-modulated
version of the random interlacement introduced by Sznitman and briefly presented in Sections 2.3.2
and 4.5.2) could give a microscopic description of the Swiss cheese in the discrete set-up. In an
ongoing project with D. Erhard we attack the problem of determining the precise microscopic limit
and conjecture the following:

Conjecture 3.28. For all b < κd if d ∈ {3, 4}, or for b small enough if d ≥ 5, A any finite set in
Zd and x 6= 0,

lim
n→∞

P(Rn ∩ (A+ bxn1/dc) = ∅ | |Rn| ≤ bn) =

∫
exp(−φ2

b(x− y)cap(A))φb(y)dy∫
φb(y)dy

, (3.111)

where φb is the RSD solution to the corresponding variational problem.

In words, this means that, conditional on having an atypically small volume, the trace of the
random walk in the neighbourhood of bxn1/dc (up to a randomly located center) is that of a random
interlacement with intensity φ2

b(x). We do not use tilted interlacements to formulate our conjecture,
but φb does modulate in space the intensity of the random interlacement. In order to simplify the
problem and remove the question of the random center, we propose to consider a random walk
running up to time n = buNdc (u > 0) on a torus of size N . In this set-up, the conjecture becomes:

Conjecture 3.29. Let P(N) be the law of the simple random walk on (Z/NZ)d and suppose that
S0 is uniformly distributed on (Z/NZ)d. Let

κd,u := lim
N→∞

1

n
E(N)(|Rn|). (3.112)

For b < κd,u we have

lim
N→∞

P(N)(Rn ∩A = ∅ | |Rn| ≤ bn) =

∫
y∈(R/Z)d

exp(−uφ2
b(y)cap(A))dy. (3.113)

where φb is the RSD solution to the corresponding variational problem on the torus.

We have implicitly stated that in each mentioned case there is a unique RSD minimiser to
the variational problem (modulo space shifts). This statement, which has not yet been proved, is
actually a substantial part of our ongoing work. We have a proof on the full space, but the case of
the torus seems challenging. Finally, we also refer to [9,11] for recent developments in the pathwise
description of folding in this context.

3.6.2 The Random Interacting Partially Directed Self-Avoiding Walk

The interacting partially directed self-avoiding walk (IPDSAW) is another instance of a polymer
model that undergoes a folding (or collapse) transition. This model, which was introduced by
Zwanzig and Lauritzen in 1968 [142] and later studied via transfer matrix methods and combi-
natorial tools, has been recently investigated with a probabilistic approach and a random walk
representation which has led to new rigorous results [38,40,41,106]. The polymer is represented by
a two-dimensional self-avoiding square lattice path whose steps are only in the right, up or bottom
direction, or equivalently, by a series of oriented vertical stretches:

ΩL =
⋃

1≤N≤L

LN,L, LN,L =
{
` ∈ ZN :

∑
1≤n≤N

|`n|+N = L
}
. (3.114)

Here, L is the total length of the polymer, which contains N vertical stretches with respective
lengths (`n)1≤n≤N . The Hamiltonian of the IPDSAW counts the number of self-touchings, which
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are defined as the pairs of non-consecutive monomers which are adjacent on the lattice:

HL(`1, . . . , `N ) =
∑

1≤n<N

(|`n| ∧ |`n+1|)1{`n`n+1<0}. (3.115)

Letting β ∈ [0,∞) be the strength of the interaction, the free energy of the model is defined by:

f(β) = lim
L→∞

1

L
logZL,β , ZL,β =

∑
`∈ΩL

eβHL(`). (3.116)

As β increases the model exhibits a non-trivial phase transition, which can be written in terms
of the excess free energy f∗(β) = f(β) − β ≥ 0 and happens at a critical point βc ∈ (0,∞). The
system indeed goes from an extended regime, when β < βc and f∗(β) > 0, to a collapsed regime,
when β > βc and f∗(β) = 0. In the extended regime, there are of order L vertical stretches which
are of O(1) length, while in the collapsed regime the number of self-touchings is saturated and the
polymer forms a macroscopic bead with O(

√
L) vertical stretches which are of O(

√
L) length. Close

to criticality, the free energy behaves like

f∗(β) ∼ (Cst)(βc − β)3/2, β ↑ βc, (3.117)

with an explicit constant. We refer to the review paper [39] and references therein for a more
complete account of all the available results, including scaling limits in the extended, collapsed and
critical regimes.

Whether impurities would affect the phase transition of the IPDSAW is listed in [39] as one
of the physically relevant and mathematically challenging open questions. This would amount to
introduce inhomogeneities in the Hamiltonian (3.115). Does an arbitrary small disorder round up
the phase transition in (3.117)? Does the Harris criterion apply in this context (see Section 1.2)? In
an ongoing project with N. Pétrélis and N. Torri, we introduce a toy model of a disordered IPDSAW
for which we hope to prove disorder relevance, via a chaos expansion of the partition function.
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Chapter 4

Wiener sausage percolation

This chapter is based on joint works with D. Erhard and J. Mart́ınez [66,67].

We consider a continuum percolation model on Rd, where d ≥ 1. The occupied set is given by
the union of independent Wiener sausages with radius r ≥ 0 running up to time t and starting
from random points that are distributed according to a homogeneous Poisson point process. This
“Wiener sausage percolation” model could be seen as a simple model for defects randomly dis-
tributed in a medium and propagating at random. In Section 4.1 we give a more precise definition
of the model and in Section 4.2 we present our two main results: (i) we establish a non-trivial per-
colation transition as t grows as soon as r is small enough and d ≥ 2 (with r > 0 when d ≥ 4) (ii)
we investigate the asymptotic behaviour of the critical time when d ≥ 4 and the radius r converges
to 0. The proofs of these two results are respectively sketched in Sections 4.3 and 4.4. We close the
chapter in Section 4.5 with a discussion on the results, related models and open questions.

Notation. For every d ≥ 1, we denote by Lebd the Lebesgue measure on Rd. We use ‖ · ‖ for the
Euclidean norm on Rd. The open ball with center z and radius r with respect to the Euclidean
norm is denoted by B(z, r). For all I ⊆ R+, we denote by BI the set {Bt, t ∈ I}.

4.1 Definition of the model

The model we consider in this chapter falls into the category of Boolean models. This is a class of
continuum percolation models which are obtained by putting independent copies of a (possibly ran-
dom) set at the locations of a point process, usually chosen to be a Poisson point process. The most
standard example is that of a Boolean model of disks, when the basic set is chosen as a Euclidean
ball with a possibly random radius. The Boolean model of disks was first introduced by Gilbert [78]
to study infinite communication networks, see also Meester and Roy [101] for an overview. Here we
consider the case when the basic set is a Wiener sausage, that is the set of all points within a fixed
distance to the trajectory of a standard Brownian motion.

We now give a more precise mathematical defintion. Let E be a Poisson point process with
intensity λ Lebd, where λ > 0. Conditionally on E , we give ourselves a collection of independent
Brownian motions {(Bxt )t≥0, x ∈ E} such that for each x ∈ E ,Bx0 = x and (Bxt −x)t≥0 is independent
of E Let P and E be the probability measure and expectation of Brownian motion, respectively. We
denote by

W x,r
[0,t] =

⋃
0≤s≤t

B(Bxs , r) = Bx[0,t] ⊕ B(0, r) (4.1)

65
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the Wiener sausage with radius r, started at x and running up to time t.

The object of interest is the occupied set defined by

Ot,r :=
⋃
x∈E

W x,r
[0,t], Ot :=

⋃
x∈E

Bx[0,t], t ≥ 0, r > 0. (4.2)

Two points x and y in Rd are said to be connected in Ot,r if and only if there exists a continuous
function γ : [0, 1] 7→ Ot,r such that γ(0) = x and γ(1) = y. A subset of Ot,r is connected if and
only if all of its points are pairwise connected. In the following a connected subset of Ot,r is called
a component. A component is bounded if it is contained in B(0, R) for some R > 0. Otherwise,
the component is said to be unbounded. A cluster is a connected component which is maximal in
the sense that it is not strictly contained in another connected component. We say that there is
percolation at parameters (t, r) if Ot,r contains at least one unbounded cluster.

Remark 4.1. A more rigorous definition of the model described above can be done along similar
lines as in [101, Section 1.4] for the Boolean percolation model. One consequence of that construction
is the ergodicity of Ot,r with respect to space shifts.

Remark 4.2. The case t = 0 and r > 0 coincides with the Boolean model of disks with deterministic
radius r, for which we know there is a nontrivial percolation phase transition as soon as d ≥ 2: there
exists λc(r) ∈ (0,∞) (depending also on the dimension) such that for all λ < λc(r) the set O0,r has
a.-s. no unbounded cluster, and such that for λ > λc(r) it a.s. has one. We refer to Theorem 2.1
in Gouéré [79] for the fact that λc(r) > 0 and to Meester and Roy [101, Remark on p.52] for the
fact that λc(r) <∞.

4.2 Results

We first investigate the percolation phase transition as t grows and λ, r are fixed.

Theorem 4.3. We have the following three cases.

• Let d = 1. For all t ≥ 0, the set Ot has almost surely no unbounded cluster.

• Let d ∈ {2, 3}. There exists tc = tc(λ, d) > 0 such that for t < tc, Ot has almost surely no
unbounded cluster, whereas for t > tc, Ot has almost surely a unique unbounded cluster.

• Let d ≥ 4 and r > 0 small enough so that λ < λc(r) (recall Remark 4.2). There exists
tc = tc(λ, d, r) > 0 such that for t < tc, Ot,r has almost surely no unbounded cluster, whereas
for t > tc, it has almost surely a unique unbounded cluster.

Hence there is a non-trivial percolation phase transition as soon as d ≥ 2, with the extra con-
dition that the radius of the Wiener sausages is chosen positive but small enough when d ≥ 4. The
reason why the radius needs to be positive in this case is that the paths of two independent d-
dimensional standard Brownian motions do not intersect when d ≥ 4 (except at a possibly common
starting point). They do when d ≤ 3, see [104, Theorem 9.1].

We now assume that d ≥ 4 and consider the behaviour of the critical time as the radius converges
to zero and the intensity is kept fixed to λ = 1. For this reason, we shall now write tc(r) instead
of tc(1, r). Let us mention that no simple scaling argument seems to immediately yield bounds
on tc(r). Indeed, since for each d there are three parameters (λ, t and r), it is not possible to
scale two parameters independently of the third one. One may expect that tc(r) goes to ∞ as
r → 0, since tc(0) = ∞. Note that this is not an immediate consequence of continuity since the
event {Ot does not percolate} is not the increasing union of the events {Ot,r does not percolate}
for r > 0. The following theorem however confirms our intuition and determines at which speed the
convergence takes place.
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Theorem 4.4. Let d ≥ 4. There is a constant c = c(d) and r0 ∈ (0, 1) such that for all r ∈ (0, r0),

c−1
√

log(1/r) ≤ tc(r) ≤ c
√

log(1/r), if d = 4,

c−1r(4−d)/2 ≤ tc(r) ≤ c r(4−d)/2, if d ≥ 5.
(4.3)

4.3 Sketch of the proof of Theorem 4.3

Non-percolative regime. The main idea to prove non-percolation at small times is to dominate Ot,r
by a Boolean percolation model with radius distribution given by the maximal displacement of a
Brownian motion before time t. Standard results on the Boolean model yield non-percolation at
small times. Let us mention that in the case d ≥ 4, additional work is required. Indeed, we need
to discard the possibility that λ is supercritical for all t > 0 and subcritical at t = 0, which means
proving continuity of the critical intensity of the Boolean model w.r.t. the radius distribution at δr
(Dirac mass at r). This is obtained in [66, Proposition 2.2]. The proof requires a renormalization
procedure and extends a finite box criterion for non-percolation in the Boolean model to radius
distributions with an exponential tail. To our knowledge, such a criterion had only been proved
for bounded radii. Moreover, we suspect that it could be extended to radius distributions with
sufficiently thin polynomial tails.

Percolative regime. To establish the existence of a percolation phase, we distinguish between two
cases:
(1) For d ∈ {2, 3}, we use a coarse-graining argument. More precisely, we divide Rd into boxes and
we consider an edge percolation model on the coarse-grained graph whose vertices are identified
as the centers of the boxes and the edges connect nearest neighbours. An edge connecting nearest
neighbours, say x and x′ in Zd, is said to be open if (i) both boxes associated to x and x′ contain at
least one point of the Poisson point process, say y and y′, and (ii) the Brownian motions starting
from y and y′ intersect each other. A domination result by Liggett, Schonmann and Stacey [98]
finally shows that percolation in that coarse-grained model occurs if one suitably chooses the size
of the boxes and let time run for long enough. This implies percolation of our original model.
(2) For d ≥ 4, our strategy is to construct a (d − 1)-dimensional supercritical Boolean model in-
cluded in Ot,r. This supercritical model is obtained by considering the trace left by the Wiener
sausages on some hyperplane.

Uniqueness of the unbounded cluster. The difficulty in the uniqueness proof lies in extending the
Burton-Keane argument to the continuous setting. For this purpose, we exploit ideas from Meester
and Roy [100, 101]. The case d = 3 turns out to be the most delicate one and requires new ideas
such as a careful cutting-and-glueing procedure on the Brownian paths.

4.4 Sketch of the proof of Theorem 4.4

Let us first restrict to d ≥ 5. We use a technique which has been used in the context of Boolean
percolation. This technique consists in exploring the cluster containing the origin, which we denote
by C(0), and comparing it to a (multitype) Galton-Watson branching process, see for instance [101,
Section 3.3]. For simplicity, we assume that there is a Poisson point at the origin. The Wiener
sausages intersecting the Wiener sausage starting at the origin are called first generation sausages, all
other sausages intersecting the first generation sausages constitute the second generation sausages,
and so on. Let us define

N (x) =
{
y ∈ E \ {x} : W x,r

[0,t] ∩W
y,r
[0,t] 6= ∅

}
, x ∈ E . (4.4)
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From what we explained above, we get the following decomposition of C(0):

E0 = {0}, En+1 =

{⋃
y∈En N (y) \

⋃n
k=0 Ek if En 6= ∅

∅ if En = ∅
, n ∈ N0. (4.5)

Here En is interpreted as the set of elements in C(0) at generation n. The idea is to dominate the
process {|En|}n∈N0

by a branching process which eventually becomes extinct, thus proving that
C(0) contains finitely many Poisson points, which in turn proves non-percolation. If this branching
process would be close (in some reasonable sense) to a Galton Watson process, then it would be
enough to control the mean number of offsprings of the Wiener sausage started at the origin.

In order to evaluate the mean number of sausages in the first generation, we use a relation
between the probability that a Brownian motion intersects a Borel set A ⊆ Rd and the Newtonian
capacity of A, which we denote by cap(A) (see e.g. [104,117,130] for reminders on potential theory
and capacity). This relation writes:

P(A ∩Bx[0,∞) 6= ∅) ∼ (cst)‖x‖2−dcap(A), as ‖x‖ → ∞. (4.6)

Let us then use the rough approximation

P(W 0,r
[0,t] ∩W

x,r
[0,t] 6= ∅) ≈ (cst)‖x‖2−dE[cap(W 0,2r

[0,t] )] (4.7)

and make the following observations:

• The x’s that contribute to the first generation should be at distance of order
√
t from the

origin, by Brownian scaling.

• The quantity E[cap(W x,2r
[0,t] )] is of order trd−4 (we come back below to this non-trivial fact).

• There are of order ‖x‖d−1 Wiener sausages starting at distance ‖x‖ from the origin.

By combining all these elements we compute that there should be about t2rd−4 Wiener sausages
intersecting the origin. As a consequence, a transition should happen when t2rd−4 = 1, that is the
critical number of offsprings for a Galton-Watson process, which leads to a critical time of order

r
4−d
2 .

However, the Wiener sausages of the first generation are not distributed as Wiener sausages
but as Wiener sausages conditioned to intersect W 0,r

[0,t]. These are subject to a size biasing effect,

meaning that their capacities have a bias towards larger values, compared to the unconditioned
Wiener sausage. To overcome this difficulty, we partition the set of Poisson points according to the
capacities of their associated Wiener sausages:

Cj =
{
x ∈ E : cap(W x,2r

[0,t] ) ∈ [j, j + 1)trd−4
}
, j ∈ N0, (4.8)

and we employ a multitype branching argument.

As we have seen, the proof of Theorem 4.4 strongly relies on the evaluation of the Newto-
nian capacity of a Wiener sausage, which is performed via moment and large deviations estimates,
see [67, Sections 4.2 and 5]. When d ≥ 5, the fact that cap(W 0,1

[0,t]) grows at most linearly with t

comes from sub-additivity arguments, while the fact that it grows at least linearly with t comes
from evaluating the Coulomb energy of a Wiener sausage, see [67, Lemma 5.1]. The multiplicative
factor rd−4 that appears when changing the radius from one to r is easily deduced from Brownian
and capacity scaling.
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The case d = 4 needs some amendments. The multitype Galton-Watson argument is essentially
the same, except that we classify the Wiener sausages not only depending on the capacity but also
on the outradius. Most importantly, the estimates on the capacity of one Wiener sausage are more
subtle and therefore require a more careful analysis than in the high dimensional case d ≥ 5. This is
due to the logarithmic correction in the increase of the mutual intersection local time (intersection
of two independent Wiener sausages) in four dimensions. We find in this case that E[cap(W 0,r

[0,t])] is

of order t/ log(tr−2), which leads to a critical time of order
√

log(1/r).

Remark 4.5. Limit theorems for the capacity of both random walks and Wiener sausages have
been recently obtained in a series of papers by Asselah, Schapira and Sousi [10,12–14]. Exponential
moments for the inverse capacity of Wiener sausages are considered by van den Berg, Bolthausen
and den Hollander [136]. For similar moment estimates in the case of simple random walk, we refer
to Ráth and Sapozhnikov [119, 120] and Chang and Sapozhnikov [43, Equation (4)], which uses an
estimate of Lawler [94]. See also Lawler’s monograph [95] on the closely related question of random
walk intersections.

4.5 Discussion

4.5.1 Comments on the results

(1) In Theorem 4.3 we investigated a phase transition in t, but we could play with the intensity
λ instead. Indeed, multiplying the intensity λ by a factor η changes the typical distance between
two Poisson points by a factor η−1/d. Thus, by scale invariance of Brownian motion, the percolative
behaviour of the model is the same when we consider the Brownian paths up to time η−2/dt instead.

(2) Theorem 4.3 is stated only for r = 0 when d ≤ 3, but the result would be the same for r positive
and small enough. If r is too large then λ > λc(r) so the model is supercritical at all times.

(3) If d ≥ 4 and λ > λc(r) then O0,r already contains an unbounded component. Therefore there
is percolation at all times. In that case, van den Berg, Meester and White [134] proved a stronger
result: almost-surely, for all t ≥ 0, the set ∪x∈EB(Bxt , r) contains an unbounded component.

(4) For completeness, we state that r 7→ tc(r) stays bounded as r → 0 when d ∈ {2, 3}. Continuity
at r = 0 is not immediate, but we expect that it follows from a finite-box criterion of percolation.
Theorem 4.4 shows in particular that when d ≥ 4 the critical time is continuous at r = 0, since
tc(0) =∞.

4.5.2 Related models: dynamic Boolean percolation and random inter-
lacement

In this section we present two related models.

Random plane networks and mobile sensors. The study of continuum percolation models can be
traced back (at least) to the work of Gilbert [78] on random plane networks. Gilbert was interested
in modeling infinite communication networks of stations with range r > 0. Another application that
is mentioned in his work is the modeling of a contagious infection, when each individual gets infected
when it is at distance less than r to an infected individual. C̆erný, Funken and Spodarev [42] describe
the target detection area of a network of mobile sensors initially distributed at random and moving
according to Brownian dynamics. However, in this work the focus is on numerical computations of
coverage probabilities rather than on percolation. In a similar spirit, Kesidis, Kostantopoulos and
Phoha [88] provide formulas for the detection time of a target particle positioned at the origin.
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Peres, Sinclair, Sousi and Stauffer [108,109] also study a network of mobile sensors. However, they
consider ∪x∈EB(Bxt , r) at each fixed time instead of Ot,r and focus on questions related to detec-
tion and coverage. The model of mobile sensors is also known under the name of dynamic Boolean
percolation, see van den Berg, Meester and White [134].

Random interlacement. Random interlacement is a Poisson point process on infinite random walk
paths obtained when looking at the trace of a simple random walk on the torus (Z/NZ)d started
from the uniform distribution, running up to time uNd and letting N ↗ ∞, see Sznitman [131]
and Section 2.3.2 of this mémoire. We expect that, as t ↑ ∞ , λ ↓ 0 and λt stays constant, while r
is fixed, our model shares features with a continuous version of random interlacements, see [132].
Indeed, in the regime described above, the number of Brownian trajectories entering a set A is a
Poisson random variable with intensity proportional to λt cap(A), which is a key feature of random
interlacements. Moreover, the product of λt serves as an intensity parameter. This limiting regime
exhibits long-range dependence, in the sense that if A1 and A2 are two bounded sets, then

Cov(1l{A1∩Ot 6=∅}, 1l{A2∩Ot 6=∅}) ∼ c dist(A1, A2)2−d, (4.9)

as dist(A1, A2) ↗ ∞, t ↗ ∞ and λt stays constant. Indeed, the left-hand side becomes asymp-
totically equivalent to the difference between cap(A1 ∪ A2) and cap(A1) + cap(A2), which has the
desired order.

We refer to Menshikov, Molchanov and Sidorenko [102] for other physical motivations of con-
tinuum percolation.

4.5.3 Open questions

We close the chapter with a few open questions.

(1) When d ≥ 2, is there percolation at criticality?

(2) Can we prove a sharper version of Theorem 4.4? Namely, is there a constant c∗ ∈ (0,∞) such
that

lim
r→0

tc(r)/f(r) = c∗, with f(r) =

{
r(4−d)/2, d ≥ 5,√

log(1/r), d = 4
? (4.10)

(3) Is there a way to define a limiting random subset of Rd as we set time to t(r) = cf(r) (see
(4.10)) and intensity to λ = 1 in our model, and let r ↓ 0? Would this limiting object have a
percolation phase transition in c and if so, would the critical value of c coincide with the con-
stant c∗ in (4.10)? Note that one should beforehand perform a change of parameters. Indeed,
for any pair of distinct points x and y in Rd, the intersection of W x,r

[0,∞) and W y,r
[0,∞) becomes

eventually empty as d ≥ 4 and r ↓ 0, meaning that percolation occurs out of arbitrarily large
boxes and is thus not visible in the limit. To fix this issue, one may set time to a fixed value,
say t = 1, so that intersections of Wiener sausages occur in a bounded space window and, in
order to be consistent with the previous scaling, let the intensity parameter λ go to infinity

while r = (c2/λ)
1
d−4 if d ≥ 5 and r = λ−

1
4 exp(−λ/c) if d = 4, with the same constant c.
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[42] Černý, R., Funken, S., and Spodarev, E. On the Boolean model of Wiener sausages.
Methodol. Comput. Appl. Probab. 10, 1 (2008), 23–37.

[43] Chang, Y., and Sapozhnikov, A. Phase transition in loop percolation. Probab. Theory
Related Fields 164, 3-4 (2016), 979–1025.

[44] Cheliotis, D., Chino, Y., and Poisat, J. The random pinning model with correlated
disorder given by a renewal set. Ann. H. Lebesgue 2 (2019), 281–329.

[45] Cheliotis, D., and den Hollander, F. Variational characterization of the critical curve
for pinning of random polymers. Ann. Probab. 41, 3B (2013), 1767–1805.

[46] Chen, X. Random walk intersections, vol. 157 of Mathematical Surveys and Monographs.
American Mathematical Society, Providence, RI, 2010.

[47] Chen, X., Dagard, V., Derrida, B., Hu, Y., Lifshits, M., and Shi, Z. The derrida–
retaux conjecture on recursive models. arXiv:1907.01601 (07 2019).

[48] Coddington, E. A., and Levinson, N. Theory of ordinary differential equations. McGraw-
Hill Book Company, Inc., New York-Toronto-London, 1955.
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