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1 Proof of Proposition 1 of [1]

Let us introduce

Zp =
√
p sup

x
|Fp(x)− F̂ (x)| and Wp =

√
p sup

x
|Fp(x)− F (x)|

so that Wp
L−−−→

p→∞
K. But, with Up := Zp −Wp, |Up| ≤ √

p supx |F̂ (x)− F (x)| P−−−→
p→∞

0. Therefore, by using

the Slutsky Lemma,

Zp = Up +Wp
L−−−→

p→∞
K.

2 Proof that Test 1 is asymptotically of level α.

To prove that Test 1 is of level α, it is sufficient to prove Equation (2) of [1] with F̂ (x) = (1 − e−λ̂x)1x>0

and to apply Proposition 1 of [1]. But for all x > 0,

|F̂ (x) − F (x)| = e−min(λ,λ̂)x
(

1− e−|λ̂−λ|x
)

≤ |λ̂− λ|xe−min(λ,λ̂)x ≤ |λ̂− λ|
min(λ̂, λ)

e−1.

Therefore
√

p(n) sup
x

|F̂ (x) − F (x)| ≤
√

p(n)|λ̂− λ|
min(λ, λ̂)

.
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It is well known that λ̂ is the maximum likelihood estimate of λ and that
√
n(λ̂−λ) is asymptotically normal.

Therefore
√

p(n)|λ̂−λ| tends in probability to 0 whereas min(λ, λ̂) tends to λ. Therefore Equation (2) of [1]

is satisfied.

3 Proof of Proposition 2 of [1]

When we are dealing with Poisson processes, or more general counting processes, the previous asymptotic

approach should be taken with care because the total number of points is random. Indeed if one observes

a Poisson process Na,p, aggregated over p trials, with constant intensity, then conditionnally to the event

{Na,p([0, Tmax]) = ntot}, the repartition of the points is uniform. So the following test is exactly of level α.

1. Compute FNa,p([0,Tmax]) as in Equation (3) of [1].

2. Compute supt∈[0,1] |FNa,p([0,Tmax](t)− t|.

3. Reject when this last quantity exceeds the random quantity kNa,p([0,Tmax]),1−α, where kntot,1−α is the

exact and non asymptotic quantile of KS, on the event {Na,p([0, Tmax]) = ntot}.

Therefore, one can easily state that underH0: ” The process is a homogeneous Poisson process”, the following

upper bounds holds,

P(the previous test rejects H0) =

+∞
∑

ntot=0

P(the test rejects H0|Na,p([0, Tmax]) = ntot)P(N
a,p([0, Tmax]) = ntot)

≤ α

+∞
∑

ntot=0

P(Na,p([0, Tmax]) = ntot) = α.

Now to turn this argument into an asymptotic argument and use
√

Na,p([0, Tmax] k̃1−α instead of

kNa,p([0,Tmax],1−α, we need a random version of the convergence of KSntot
. Actually one can prove the

following lemma, which shows that the previous replacement leads indeed to a test of asymptotic level α.

Lemma 1. If the p processes are homogeneous Poisson processes, then

√

Na,p([0, Tmax]) sup
t∈[0,1]

|FNa,p([0,Tmax])(t)− t| L−−−→
p→∞

K.

Proof. Let W be a variable whose distribution is K. We set

Zp =
√

Na,p([0, Tmax]) sup
t∈[0,1]

|FNa,p([0,Tmax])(t)− t|.
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Let f be a bounded continuous function and let us consider for any positive integer nmin,

|E[f(Zp)]− E[f(W )]| =

∣

∣

∣

∣

∣

+∞
∑

ntot=0

(E[f(Zp)|Na,p([0, Tmax]) = ntot]− E[f(W )])P(Na,p([0, Tmax]) = ntot)

∣

∣

∣

∣

∣

≤
+∞
∑

ntot≥nmin

∣

∣

∣
E[f(Zp)|Na,p([0, Tmax]) = ntot]− E[f(W )]

∣

∣

∣
P(Na,p([0, Tmax]) = ntot)

+ 2‖f‖∞P(Na,p([0, Tmax]) < nmin).

On the one hand, for any ε > 0, there exists nmin such that for any ntot ≥ nmin,

∣

∣

∣
E[f(Zp)|Na,p([0, Tmax]) = ntot]− E[f(W )]

∣

∣

∣
< ε.

On the other hand, Na,p([0, Tmax]) =
∑p

i=1 Ni([0, Tmax]) is a sum of p i.i.d. variables and therefore

tends almost surely and in probability to infinity. Therefore there exists pmin such that for all p > pmin,

P(Na,p([0, Tmax]) < nmin) < ε, which implies that

|E[f(Zp)]− E[f(W )]| ≤ (1 + 2‖f‖∞)ε,

which proves the convergence in distribution.

As already stated, if N is an inhomogeneous Poisson process with compensator Λ, N = {Λ(T ) : T ∈ N}

is a homogeneous Poisson process with intensity 1 by the time-rescaling theorem [2,3]. Assume now that we

observe p i.i.d. Poisson processes Ni with compensator Λ. The previous transformation on each of the Ni

leads to Ni, the Ni’s being p homogeneous Poisson processes of intensity 1 on [0,Λ(Tmax)]. One can therefore

consider the aggregated process N a,p, to which we associate the c.d.f. FNa,p([0,Λ(Tmax)]) as in Equation (3)

of [1]. We can apply the previous lemma and we have:

√

N a,p([0,Λ(Tmax)]) sup
t∈[0,1]

|FNa,p([0,Λ(Tmax)])(t)− t| L−−−→
p→∞

K. (1)

But, using the original aggregated process Na,p, one can also write

FNa,p([0,Λ(Tmax)](t) =
1

N a,p([0,Λ(Tmax)])

∑

T∈Na,p

1{T/Λ(Tmax)≤t}

=
1

Na,p([0, Tmax])

∑

X∈Na,p

1{Λ(X)/Λ(Tmax)≤t}.

The function Λ(.)/Λ(Tmax) is a continuous c.d.f. from [0, Tmax] to [0, 1]. Therefore we obtain:

√

Na,p([0, Tmax]) sup
x∈[0,Tmax]

∣

∣

∣

∣

∣

1

Na,p([0, Tmax])

∑

X∈Na,p

1{X≤x} −
Λ(x)

Λ(Tmax)

∣

∣

∣

∣

∣

L−−−→
p→∞

K. (2)

The end of the proof of Proposition 2 of [1] is then similar to the proof of Proposition 1 of [1].
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3.0.1 Proof that Test 2 is asymptotically of level α

Here F̂ = FNa,n([0,Tmax]). Hence, since

√

Na,n([0, Tmax]) sup
x

|FNa,n([0,Tmax])(x) − F (x)| L−−−→
p→∞

K,

by the Slutsky’s lemma, it is sufficient to prove that

Na,p(n)([0, Tmax])/N
a,n([0, Tmax])

P−−−→
p→∞

0, (3)

and use Proposition 2 of [1] to conclude the proof. But since the numerator is equivalent to p(n)Λ(Tmax)

and the denominator to nΛ(Tmax), by the law of large number, (3) is obvious.

4 Proof that Test 3 is asymptotically of level α

Here

F̂ (t) =

∫ t

0 λ̂(u)du
∫ Tmax

0 λ̂(u)du
.

Then for all t one can write that

F̂ (t)− F (t) =

∫ t

0
λ̂(u)du

∫ Tmax

0 λ̂(u)du
−

∫ t

0
λ(u)du

∫ Tmax

0 λ(u)du

=

∫ t

0 λ̂(u)du
∫ Tmax

0
λ̂(u)du

−
∫ t

0 λ(u)du
∫ Tmax

0
λ̂(u)du

+

∫ t

0 λ(u)du
∫ Tmax

0
λ̂(u)du

−
∫ t

0 λ(u)du
∫ Tmax

0
λ(u)du

=

∫ t

0
[λ̂(u)− λ(u)]du
∫ Tmax

0
λ̂(u)du

+

∫ t

0
λ(u)du

∫ Tmax

0
λ(u)du

∫ Tmax

0
[λ(u)− λ̂(u)]du

∫ Tmax

0
λ̂(u)du

.

Therefore

sup
t

|F̂ (t)− F (t)| ≤ 2

∫ Tmax

0
|λ̂(u)− λ(u)|du

∫ Tmax

0
λ̂(u)du

.

Therefore
√

p(n) supt |F̂ (t)−F (t)| P−−−→
p→∞

0 which ensures Equation (4) of [1]. Applying Proposition 2 of [1]

concludes the proof.

5 Explicit construction of the cumulated process and its asymptotical properties

If N , as a general point process, has compensator Λ and conditional intensity λ, the time-rescaling theorem in

its general form [2–4] states that N = {X = Λ(T ) : T ∈ N} is an homogeneous Poisson process with intensity

1 until the time Λ(Tmax) which is a random predictable time and therefore a stopping time. Here we observe

p i.i.d. point processes Ni with intensity λi and compensator Λi. In particular, for all t, the Λi(Tmax) are

i.i.d. We apply the previous transformation to all the Ni’s, hence generating the Ni’s, p homogeneous Poisson
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processes on [0, Xmax
i ] with the random stopping time Xmax

i = Λi(Tmax). Let (Ni,x)x≥0 = (Ni([0, x]))x≥0

be the corresponding counting process. We cumulate the counting processes in the following way: for any

x ≤ ∑p
i=1 X

max
i , we set:

N c,p
x =

kx
∑

i=1

Ni,Xmax
i

+N (kx)

x−
∑kx

i=1
Xmax

i

, (4)

where kx is the only index in {0, ..., (p− 1)}, such that

kx
∑

i=1

Xmax
i ≤ x <

kx+1
∑

i=1

Xmax
i .

Because each Xmax
i is a stopping time, due to the strong Markov property of Poisson processes, the cumu-

lation still guarantees that the jumps of N c,p, that are identified with the points of the point process N c,p,

form an homogeneous Poisson process of intensity 1 on [0,
∑p

i=1 X
max
i ]. Let us fix some θ > 0 such that

E[Λi(Tmax)] > θ. One can prove the following result.

Lemma 2. For all θ > 0 such that E(Λi(Tmax)) > θ,

√

N c,p([0, pθ]) sup
u∈[0,1]

∣

∣

∣

∣

∣

∣

1

N c,p([0, pθ])

∑

X∈N c,p,X≤pθ

1{X/(pθ)≤u} − u

∣

∣

∣

∣

∣

∣

L−−−→
p→∞

K.

Proof. Using the cumulation described in (4), let us complete N c,p with another independent homogeneous

Poisson process with intensity 1 and infinite support beyond
∑p

i=1 X
max
i , hence obtaining N ′ an homoge-

neous Poisson process of intensity 1 on R+. Let us denote

Zp =
√

N c,p([0, pθ]) sup
u∈[0,1]

∣

∣

∣

∣

∣

∣

1

N c,p([0, pθ])

∑

X∈N c,p,X≤pθ

1{X/(pθ)≤u} − u

∣

∣

∣

∣

∣

∣

.

We define Z ′
p with the same expression except that N c,p is replaced by N ′. The point process defined by

{X/(pθ)/X ∈ N ′∩[0, pθ]} is a Poisson process with intensity pθ on [0, 1]. It can therefore also be viewed as an

aggregated process of p i.i.d Poisson processes with intensity θ. Therefore Z ′
p can be viewed as the quantity

appearing in Lemma 1 showing that Z ′
p tends in distribution to K. So following the same proof, it remains

to show that for any bounded continuous function f , |E(f(Zp))−E(f(Z ′
p))| tends to 0. But N c,p ∩ [0, pθ] =

N ′∩[0, pθ] on the event {∑p
i=1 X

max
i > pθ}. Therefore |E(f(Zp))−E(f(Z ′

p))| ≤ 2‖f‖∞P(
∑p

i=1 X
max
i ≤ pθ).

But by the law of large numbers,

1

p

p
∑

i=1

Xmax
i

P−−−→
p→∞

E(Λi(Tmax)) > θ.

Hence P(
∑p

i=1 X
max
i ≤ pθ) tends to 0, which concludes the proof.
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One can go back to the classical time t by introducing the cumulated point process

∀t ≥ 0, N c,p
t =

jt
∑

i=1

Ni,Tmax
+Njt,t−jtTmax

,

where jt = ⌊t/Tmax⌋. One can also introduce

∀t ≥ 0, Λc,p(t) =

jt
∑

i=1

Λi(Tmax) + Λ(jt)(t− jtTmax).

The function Λc,p(.) is a continuous non decreasing function and therefore, one can consider its generalized

inverse function (Λc,p)−1. Therefore one can rewrite Lemma 2 as follows:

√

N c,p([0, (Λc,p)−1(pθ)]) sup
t∈[0,(Λc,p)−1(pθ))]

∣

∣

∣

∣

∣

∣

1

N c,p([0, (Λc,p)−1(pθ)])

∑

T∈Nc,p,T≤(Λc,p)−1(pθ)

1{T≤t} −
Λc,p(t)

pθ

∣

∣

∣

∣

∣

∣

L−−−→
p→∞

K.

6 Proof of Theorem 1 of [1]

Now we want to replace Λc,p by an estimate of the type

∀ t ≥ 0, Λ̂c,p(t) =

jt
∑

i=1

∫ Tmax

0

λ̂idu +

∫ t−jtTmax

0

λ̂(jt)du.

Since Λ̂c,p is also continuous and non-decreasing, one has the following equality:

sup
t∈[0,(Λ̂c,p)−1(pθ)]

∣

∣

∣

∣

∣

∣

1

N c,p((Λ̂c,p)−1(pθ))

∑

T∈Nc,p,T≤(Λ̂c,p)−1(pθ)

1{T≤t} −
Λ̂c,p(t)

pθ

∣

∣

∣

∣

∣

∣

=

sup
u∈[0,1]

∣

∣

∣

∣

∣

∣

1

N̂ c,p([0, pθ])

∑

X∈N̂ c,p,X≤pθ

1{X/(pθ)≤u} − u

∣

∣

∣

∣

∣

∣

,

with N̂ c,p the cumulated process obtained with N̂i = {X =
∫ T

0
λ̂i(u)du : T ∈ Ni} instead of Ni in (4).

Since Λc,p(pTmax)/p =
∑

i X
max
i /p tends in probability to E(Λi(Tmax)) > θ, with probability tending to

1, pθ belongs to [0,Λc,p(pTmax)]. Moreover,

∣

∣

∣

∣

∣

Λ̂c,p(pTmax)− Λc,p(pTmax)

p

∣

∣

∣

∣

∣

≤ 1

p

p
∑

i=1

∫ Tmax

0

∣

∣

∣
λ̂i(u)− λi(u)

∣

∣

∣
du,

where the right hand side tends to 0 in probability. Therefore Λ̂c,p(pTmax)/p also tends in probability

to E(Λi(Tmax)) > θ and with probability tending to 1, pθ belongs to [0, Λ̂c,p(pTmax)]. Therefore both

(Λ̂c,p)−1(pθ) and (Λc,p)−1(pθ) are strictly smaller than pTmax with probability tending to 1. Furthermore,
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if (Λ̂c,p)−1(pθ) < pTmax and (Λc,p)−1(pθ) < pTmax,

∣

∣

∣
Λc,p((Λ̂c,p)−1(pθ))− Λc,p((Λc,p)−1(pθ))

∣

∣

∣
=

∣

∣

∣
Λc,p((Λ̂c,p)−1(pθ))− pθ

∣

∣

∣

=
∣

∣

∣
Λc,p((Λ̂c,p)−1(pθ))− Λ̂c,p((Λ̂c,p)−1(pθ))

∣

∣

∣

≤
p

∑

i=1

∫ Tmax

0

∣

∣

∣
λ̂i(u)− λi(u)

∣

∣

∣
du.

Hence, by assumption, for δ > 0, if

Ωδ =
{∣

∣

∣
Λc,p((Λ̂c,p)−1(pθ)) − Λc,p((Λc,p)−1(pθ))

∣

∣

∣
≤ δ

√
p
}

,

for any ε > 0, there exists p0, such that for any p ≥ p0, P(Ωδ) ≥ 1− ǫ. On Ωδ, one has therefore that

pθ − δ
√
p ≤ Λc,p((Λ̂c,p)−1(pθ)) ≤ pθ + δ

√
p

and

∣

∣

∣
N c,p([0, (Λ̂c,p)−1(pθ)])−N c,p([0, (Λc,p)−1(pθ)])

∣

∣

∣
=

∣

∣

∣
N c,p([0,Λc,p((Λ̂c,p)−1(pθ))]) −N c,p([0, pθ])

∣

∣

∣

≤ max [N c,p([0, pθ + δ
√
p])−N c,p([0, pθ]) , N c,p([0, pθ])−N c,p([0, pθ − δ

√
p])] .

In the previous expression, we consider the maximum of two independent Poisson variables (denoted U and

V ) with parameter δ
√
p. For any u > 0,

P

[
∣

∣

∣
N c,p([0, (Λ̂c)−1(pθ)])−N c,p([0, (Λc)−1(pθ)])

∣

∣

∣
≥ (δ + u)

√
p or Ωc

δ

]

≤ ǫ+ P(max{U, V } ≥ (δ + u)
√
p)

≤ ǫ+ 2 exp

(

− pu2

2
√
pδ +

√
pu

)

.

By taking u = δ, the last expression shows that

p−1/2|N c,p([0, (Λ̂c,p)−1(pθ)])−N c,p([0, (Λc,p)−1(pθ)])| P−−−→
p→∞

0. (5)

If we are able to show that

√

N c,p([0, pθ]) sup
u∈[0,1]

∣

∣

∣

∣

∣

∣

1

N̂ c,p([0, pθ])

∑

X∈N̂ c,p,X≤pθ

1{X/(pθ)≤u} − u

∣

∣

∣

∣

∣

∣

L−−−→
p→∞

K,

since N c,p([0, (Λ̂c,p)−1(pθ)])/N c,p([0, (Λc,p)−1(pθ)]) tends to 1 in probability, this will imply the result by

using Slustky’s Lemma. Now, we clip Λc,p and Λ̂c,p and we set for any t,

Λ̄c,p(t) = min(Λc,p(t), pθ) and
¯̂
Λc,p(t) = min(Λ̂c,p(t), pθ).
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Therefore, Λ̄c,p(·)/(pθ) and ¯̂
Λc,p(·)/(pθ) are continuous c.d.f. and

sup
u∈[0,1]

∣

∣

∣

∣

∣

∣

1

N̂ c,p([0, pθ])

∑

X∈N̂ c,p,X≤pθ

1{X/(pθ)≤u} − u

∣

∣

∣

∣

∣

∣

= sup
t>0

∣

∣

∣

∣

∣

∣

∣

1

N c,p([0, (
¯̂
Λc,p)−1(pθ)])

∑

T∈Nc,p,T≤(
¯̂
Λc,p)−1(pθ)

1{T≤t} −
¯̂
Λc,p(t)

pθ

∣

∣

∣

∣

∣

∣

∣

.

But since pθ belongs to [0, Λ̂c,p(pTmax)] with probability tending to 1, the right hand side is equal to

Ap = sup
t>0

∣

∣

∣

∣

∣

∣

1

N c,p([0, (Λ̂c,p)−1(pθ)])

∑

T∈Nc,p,T≤(Λ̂c,p)−1(pθ)

1{T≤t} −
¯̂
Λc,p(t)

pθ

∣

∣

∣

∣

∣

∣

with probability tending to 1. So it is sufficient to prove that Ẑp :=
√

N c,p([0, pθ])Ap tends in distribution

to K. Note that

Ẑp =
√

N c,p([0, (Λc,p)−1(pθ)]) sup
t>0

∣

∣

∣

∣

∣

∣

1

N c,p([0, (Λ̂c,p)−1(pθ)])

∑

T∈Nc,p,T≤(Λ̂c,p)−1(pθ)

1{T≤t} −
¯̂
Λc,p(t)

pθ

∣

∣

∣

∣

∣

∣

.

We denote:

Z̃p =
√

N c,p([0, (Λc,p)−1(pθ)]) sup
t>0

∣

∣

∣

∣

∣

∣

1

N c,p([0, (Λc,p)−1(pθ)])

∑

T∈Nc,p,T≤(Λc,p)−1(pθ)

1{T≤t} −
¯̂
Λc,p(t)

pθ

∣

∣

∣

∣

∣

∣

Zp =
√

N c,p([0, (Λc,p)−1(pθ)]) sup
t>0

∣

∣

∣

∣

∣

∣

1

N c,p([0, (Λc,p)−1(pθ)])

∑

T∈Nc,p,T≤(Λc,p)−1(pθ)

1{T≤t} −
Λ̄c,p(t)

pθ

∣

∣

∣

∣

∣

∣

.

But Zp is also equal with probability tending to 1 to

√

N c,p([0, (Λc,p)−1(pθ)]) sup
t>0

∣

∣

∣

∣

∣

∣

1

N c,p([0, (Λ̄c,p)−1(pθ)])

∑

T∈Nc,p,T≤(Λ̄c,p)−1(pθ)

1{T≤t} −
Λ̄c,p(t)

pθ

∣

∣

∣

∣

∣

∣

=

√

N c,p([0, (Λc,p)−1(pθ)]) sup
u∈[0,1]

∣

∣

∣

∣

∣

∣

1

N c,p([0, pθ])

∑

X∈N c,P ,X≤pθ

1{X/(pθ)≤u} − u

∣

∣

∣

∣

∣

∣

,

because pθ belongs to [0,Λc,p(pTmax)] with probability tending to 1. Using Lemma 2 as before, we have that

Zp tends in distribution to K. It is consequently sufficient to prove that Ẑp − Z̃p and Z̃p − Zp tend both in

probability to 0. We have:

∣

∣

∣
Ẑp − Z̃p

∣

∣

∣
≤

√

N c,p([0, (Λc,p)−1(pθ)]) sup
t>0

∣

∣

∣

∣

∣

∣

1

N c,p([0, (Λc,p)−1(pθ)])

∑

T∈Nc,p,T≤(Λc,p)−1(pθ)

1{T≤t}

− 1

N c,p([0, (Λ̂c,p)−1(pθ)])

∑

T∈Nc,p,T≤(Λ̂c,p)−1(pθ)

1{T≤t}

∣

∣

∣

∣

∣

∣

≤ 2
√

N c,p([0, pθ])

∣

∣

∣
N c,p([0, (Λ̂c,p)−1(pθ)]) −N c,p([0, (Λc,p)−1(pθ)])

∣

∣

∣

max
(

N c,p([0, (Λ̂c,p)−1(pθ)]), N c,p([0, (Λc,p)−1(pθ)])
) ,

8



which tends to 0 in probability by (5). Furthermore, if (Λ̂c,p)−1(pθ) < pTmax and (Λc,p)−1(pθ) < pTmax,

∣

∣

∣
Z̃p − Zp

∣

∣

∣
≤

√

N c,p([0, (Λc,p)−1(pθ)]) sup
t>0

∣

∣

∣

∣

∣

¯̂
Λc,p(t)

pθ
− Λ̄c,p(t)

pθ

∣

∣

∣

∣

∣

≤
√

N c,p([0, (Λc,p)−1(pθ)])

pθ
sup

t≤pTmax

∣

∣

∣
Λ̂c,p(t)− Λc,p(t)

∣

∣

∣

≤
√

N c,p([0, pθ])

pθ

p
∑

i=1

∫ Tmax

0

∣

∣

∣
λ̂i(u)− λi(u)

∣

∣

∣
du.

Since N c,p([0, pθ]) is also the sum of p i.i.d. Poisson variables, it behaves like a multiple of p by the law of

large numbers. Therefore, by using Equation (7) of [1], Z̃p − Zp
P−−−→

p→∞
0.

7 Proof that Test 4 is of level α asymptotically

We apply Theorem 1 of [1] with λ̂i = ((λi)f̂ )+. Since the λi’s are positive, one has that for all u,

∣

∣

∣
λ̂i(u)− λi(u)

∣

∣

∣
≤

∣

∣

∣
(λi)f̂ (u)− λi(u)

∣

∣

∣
,

which gives exactly Equation (7) of [1].
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4. Brémaud P: Point processes and queues. New York: Springer-Verlag 1981. [Martingale dynamics, Springer Series
in Statistics].

9


