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Theorem 1 of [1] does not explicit particular basis on which the interaction functions are expansed. It is

stated in its general form as follows. Note that [1] is a proceedings and therefore no proof has been given of the

result in [1]. If n i.i.d. trials are recorded, each trial i corresponds to the observation of Ni = (N
(1)
i , ..., N

(M)
i ),

the multivariate Hawkes process whose intensity is given by the predictable transformation denoted ψi.

Furthermore, to each trial i, we can associate an intensity λi and a contrast γ(i). The global least-squares

contrast over the n trials can also be seen as

γn(f) =

n
∑

i=1

γ(i)(f). (1)

We use the following notation: for any predictable processes H = (H
(1)
i , ..., H

(M)
i )i=1,...n, K =

(K
(1)
i , ...,K

(M)
i )i=1,...,n, set

H •N =
n
∑

i=1

M
∑

m=1

∫ T2

T1

H
(m)
i,t dN

(m)
i (t), (2)

H ⋄K =

n
∑

i=1

M
∑

m=1

∫ T2

T1

H
(m)
i,t K

(m)
i,t dt, (3)

and H⋄2 = H ⋄H.

In general, we use a dictionary Φ of known functions of H and we only consider linear combinations of

functions of Φ for estimating f∗:

fa =
∑

ϕ∈Φ

aϕϕ, for a ∈ R
Φ . (4)
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Then, by linearity of ψ, one can rewrite (1) as

γn(fa) = −2a′bn + a′Gna, (5)

where for any ϕ and ϕ̃ in Φ,

(bn)ϕ = ψ(ϕ) •N and (Gn)ϕ,ϕ̃ = ψ(ϕ) ⋄ ψ(ϕ̃).

Given a vector of positive weights d, the Lasso estimate of f∗ is f̃n := fãn
where ãn is a minimizer of

the following ℓ1-penalized least-square contrast:

ãn ∈ arg min
a∈RΦ

{−2a′bn + a′Gna+ 2d′|a|}. (6)

Then Theorem 1 of [1] is stated as follows:

Theorem 1. We introduce the following two events:

ΩV,B = {∀ϕ ∈ Φ, sup
t∈[T1,T2],m,i

|ψ
(m)
i,t (ϕ)| ≤ Bϕ and (ψ(ϕ))2 •N ≤ Vϕ},

for positive deterministic constants Bϕ and Vϕ and

Ωc =
{

∀ a ∈ R
Φ, a′Gna ≥ c a′a

}

, (7)

for a positive constant c. Let x and ε be strictly positive constants and for all ϕ ∈ Φ,

dϕ =

√

2(1 + ε)V̂ µ
ϕ x+

Bϕx

3
, (8)

with

V̂ µ
ϕ =

µ

µ− φ(µ)
(ψ(ϕ))2 •N +

B2
ϕx

µ− φ(µ)

for a real number µ such that µ > φ(µ), where φ(µ) = exp(µ)− µ− 1. Then, with probability larger than

1− 4
∑

ϕ∈Φ





log
(

1 +
µVϕ

B2
ϕ
x

)

log(1 + ε)
+ 1



 e−x − P((ΩV,B ∪ Ωc)
c),

the following inequality holds

[ψ(f̃n)− λ]⋄2 ≤ C inf
a∈RΦ







[ψ(fa)− λ]⋄2 +
1

c

∑

ϕ∈S(a)

d2ϕ







,

where C is an absolute positive constant and where S(a) is the support of a, i.e. its coordinates with non-zero

coefficients.
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Proof. We use the notation of [2] and transposition of this notation. First by scaling the data, it is always

possible to assume that A = 1. We have at hand n×M point processes N
(i)
m . In the more general case, we

need to model each λ(m,i), intensity of N
(i)
m , by a

ψ
(m,i)
fn

(t) = µ(m,i) +
∑

ℓ,j

∫ t−

−∞

g
(m,i)
ℓ,j (t− u)dN

(ℓ)
j (u),

where fn belongs to Hn which replaces the space H:

Hn = (R×L2((0, 1])
nM )nM =

{

fn =
(

(µ(m,i), (g
(m,i)
ℓ,j )ℓ=1,...,M, j=1,...,n)m=1,...,M, i=1,...n

)

:

g
(m,i)
ℓ,j with support in (0, 1] and ‖fn‖

2 =
∑

m,i

(µ(m,i))2 +
∑

m,i

∑

ℓ,j

∫ 1

0

g
(m,i)
ℓ,j (t)2dt <∞







.

For every fn =
(

(µ(m,i), (g
(m,i)
ℓ,j )ℓ=1,...,M, j=1,...,n)m=1,...,M, i=1,...n

)

in Hn, we denote for each m and i,

f (m,i)
n = (µ(m,i), (g

(m,i)
ℓ,j )ℓ=1,...,M, j=1,...,n.

In the same way for every f =
(

(µ(m), (g
(m)
ℓ,j )ℓ=1,...,M, j=1,...,n

)

m=1,...,M
in H,we denote for each m and i,

f (m) = (µ(m), (g
(m)
ℓ,j )ℓ=1,...,M, j=1,...,n.

Now our dictionary Φ of H can be transformed into a dictionary Φn of Hn by stating that for any ϕ in

Φ we associate a ϕn in Hn such that for all i,m, ϕ
(m,i)
n = ϕ(m). Therefore it is easy to see that the vector b

of [2] associated to fn is actually our vector bn and that the matrix G of [2] is our matrix Gn. The V and

B are in the same way translated and the present result is a pure application of Theorem 2 of [2]
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