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We are interested in reconstructing the initial condition of a non-linear partial differential equation (PDE), namely
the Fokker-Planck equation, from the observation of a Dyson Brownian motion at a given time t > 0. The Fokker-
Planck equation describes the evolution of electrostatic repulsive particle systems, and can be seen as the large
particle limit of correctly renormalized Dyson Brownian motions. The solution of the Fokker-Planck equation can
be written as the free convolution of the initial condition and the semi-circular distribution. We propose a non-
parametric estimator for the initial condition obtained by performing the free deconvolution via the subordination
functions method. This statistical estimator is original as it involves the resolution of a fixed point equation, and
a classical deconvolution by a Cauchy distribution. This is due to the fact that, in free probability, the analogue
of the Fourier transform is the R-transform, related to the Cauchy transform. In past literature, there has been a
focus on the estimation of the initial conditions of linear PDEs such as the heat equation, but to the best of our
knowledge, this is the first time that the problem is tackled for a non-linear PDE. The convergence of the estimator
is proved and the integrated mean square error is computed, providing rates of convergence similar to the ones
known for non-parametric deconvolution methods. Finally, a simulation study illustrates the good performances
of our estimator.
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1. Introduction

Letting the initial condition of a partial differential equation (PDE) be random is interesting for con-
sidering complex phenomena or for introducing uncertainty and irregularity in the initial state. There
is a large literature on the subject, and we can mention that this has been studied for the Navier-Stokes
equation, to account for the turbulence arising in fluids with high velocities and low viscosities (see
[17,37]), for the Burgers equation that is used in astrophysics (see [6,10,21,22] or also the survey by
[36]), for the wave equations, to study the solutions with low-regularity initial data (see [11,12,35]) or
for the Schrödinger PDE (see [9]). The Burgers PDE or the vortex equation, associated to the Navier-
Stokes PDE by considering the curl of the velocity, are of the McKean-Vlasov type as introduced and
studied in [26,31]. Numerical approximations of such PDEs with random initial conditions have been
considered in [32,34]. In this paper, we are interested in the Fokker-Planck PDE which is another case
of McKean-Vlasov PDE [14]. This equation models the motion of particles with electrostatic repulsion
and a probabilistic interpretation that we will adopt has been considered in [8].
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A question naturally raised in this context is to estimate the random initial condition, given the
observation of the PDE solution at a given fixed time t > 0. For linear PDEs, this inverse problem is
solved by deconvolution techniques, and this has been explored for PDEs such as the heat equation
or the wave equation by Pensky and Sapatinas [29,30]. For the 1d-heat equation, it is known that the
solution at time t , say νt (dx), is the convolution of the initial condition ν0(dx) with Green function
Gt , which is a Gaussian transition function associated with the standard Brownian motion (Bt )t≥0. The
probabilistic interpretation of the heat equation is built on this observation, and νt can be viewed as the
distribution of Xt = X0 + Bt where X0 is distributed as ν0. Taking the Fourier transforms changes the
convolution problem into a multiplication, which paves the way to reconstruct the initial condition.

Here, we are interested in estimating the initial condition of a non-linear PDE, namely the Fokker-
Planck equation, from the observation of its solution at time t . This equation is:

∂tp(t, x) = −∂x

∫
R2

Hp(t, x)p(t, x)dx, (1.1)

with

Hp(t, x) = lim
ε→0

∫
R\[x−ε,x+ε]

1

x − y
p(t, y)dy,

and for t ∈ R+, x ∈ R, and initial condition p0(x) ∈ L1(R). Contrarily to the examples considered in
[29,30], this PDE is non-linear of the McKean-Vlasov type with logarithmic interactions. To the best
of our knowledge, this is the first work devoted to the deconvolution of a non-linear PDE to recover
the initial condition. The choice of this equation is motivated by its strong similarities with the heat
equation: the standard Brownian motion of the probabilistic interpretation is replaced here by the free
Brownian motion (ht )t≥0 (operator-valued), and the usual convolution by a Gaussian distribution is
replaced by the free convolution by a semi-circular distribution σt characterized by its density with
respect to the Lebesgue measure:

σt (dx) = 1

2πt

√
4t − x21[−2

√
t,2

√
t](x) dx. (1.2)

If x0 admits the spectral measure μ0, then xt = x0 + ht admits

μt = μ0 � σt , (1.3)

as spectral measure, where the operation � is the free convolution and has been introduced by
Voiculescu in [38]. It can be proved that the density p(t, ·) of μt solves (1.1).

For the Fokker-Planck equation, the inverse problem boils down to a free deconvolution, where it
was a usual deconvolution for the heat equation. Recently, the problem of free deconvolution has been
studied by Arizmendi, Tarrago and Vargas [2]. To solve (1.3) in a general setting, subordination func-
tions are used. Here, if the Cauchy transform of a measure μ is defined as Gμ(z) = ∫

R
(z − x)−1dμ(x)

for z ∈ C+, where C+ is the set of complex numbers with positive imaginary part, the subordination
function wfp(z) at time t is related to Gμt by the functional equation

wfp(z) = z + tGμt (wfp(z)). (1.4)

From this, we can recover Gμ0 with the formula Gμ0(z) = Gμt (wfp(z)) and thus p0 (see Lemma
2.7 and (2.12)). More precisely, we prove in Section 2.3 that for any γ > 2

√
t , fμ0∗Cγ

the density of
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the classical convolution of μ0 with the Cauchy distribution of parameter γ , defined by its density
fγ (x) := γ /(π(x2 + γ 2)), satisfies

fμ0∗Cγ
(x) = 1

πt

[
γ − Imwfp(x + iγ )

]
, x ∈ R. (1.5)

Then, estimating p0, the density of μ0, requires an estimation of the subordination function wfp com-
bined with a classical deconvolution step from a Cauchy distribution. Therefore, some statistical decon-
volution tools will be needed and we should mention some recent advances on the topic, for instance
[5,15,19] or [28].

Observations. Additionally to the free deconvolution problem, our observation does not consist in
the operator-valued random variable xt but in its matricial counterpart. More precisely, we observe a
matrix Xn(t) for a given t > 0, assumed to be fixed in the sequel, where

Xn(t) = Xn(0) + Hn(t), t ≥ 0 (1.6)

with Xn(0) a diagonal matrix whose entries are the ordered statistic λn
1(0) < · · · < λn

n(0) of a vec-
tor (dn

i )i∈{1,...n} of n independent and identically distributed (i.i.d.) random variables distributed as
μ0(dx) = p0(x) dx, absolutely continuous with respect to the Lebesgue measure on R, and Hn(t)

a standard Hermitian Brownian motion, as defined in Definition 2.1. As the distribution of Hn(t) is
invariant by conjugation, choosing Xn(0) to be a diagonal matrix is not restrictive.

The purpose is to estimate p0. The observation consists in the matrix Xn(t) at the fixed time t , from
which we can compute the eigenvalues (λn

1(t), . . . , λn
n(t)) and then the associated empirical measure.

Of course, we do not observe directly the initial condition Xn(0).
Let us now explain the link with the Fokker-Planck equation at the level of the particle system of the

eigenvalues. It is known that the eigenvalues (λn
1(t), . . . , λn

n(t)) of Xn(t) solve the following system of
stochastic differential equations (SDE):

dλn
i (t) = 1√

n
dβi(t) + 1

n

∑
j �=i

dt

λn
i (t) − λn

j (t)
, 1 ≤ i ≤ n, (1.7)

where βi are i.i.d. standard real Brownian motions. A rigorous proof can be found e.g. in [1], page
249, Th. 4.3.12, but for the sake of clarity, we will give in Appendix A of the Supplementary Material
[25] a short heuristic explanation on how this particle system arises. Note that the particle system (1.7)
is only introduced for interpretational purpose and will not be used directly in the sequel. Now, if we
denote by

μn
t = 1

n

n∑
i=1

δλn
i (t) (1.8)

the empirical measure of these eigenvalues at time t , then the process (μn
t )t≥0 converges weakly almost

surely as n goes to infinity to the process (μt )t≥0 with density (p(t, ·))t≥0 solution of (1.1), as stated
in Proposition 2.3 below. For n = 1, we recover the classical heat equation as the Dyson Brownian
motion boils down to a standard Brownian motion.

Contributions. Relying on the analysis of [2], we provide, in Theorem-Definition 2.8, a statistical
estimator ŵn

fp(z) for the subordination function. As the Cauchy transform Gμt in (1.4) is not invertible
on the whole domain C

+, the subordination function wfp(z) will be defined only for z ∈ C2
√

t where
Cγ := {z ∈ C

+, Im(z) > γ }. We shall prove the following result.
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Proposition 1.1. Let γ > 2
√

t . Suppose p0 satisfies the condition∫
R

log(x2 + 1)p0(x)dx < +∞. (1.9)

Then:
(i) For any z ∈C2

√
t , the estimator ŵn

fp(z) converges almost surely to wfp(z) as n → ∞.
(ii) The convergence is uniform on Cγ .
(iii) We have the following convergence rate on Cγ :

sup
n∈N

sup
z∈Cγ

E

[
n
∣∣ŵn

fp(z) − wfp(z)
∣∣2]< +∞.

Observe that Condition (1.9) corresponds to the more general assumption that

sup
n≥1

1

n

n∑
i=1

log
(
λn

i (0)2 + 1
)

< ∞ almost surely (a.s.)

in [1], Proposition 4.3.10, and ensures the convergence of μn to the solution of (1.1) by adapting the
proof of [1] to our context with a random initial condition. The simplified Condition (1.9) uses here the
assumption that the diagonal entries in Xn(0) are i.i.d.

To obtain uniform convergence and fluctuations ((ii) and (iii)), we will need to restrict to strict
subdomains of C2

√
t . The fluctuations (iii) are established in the line of the work of Dallaporta and

Février [18].
Proposition 1.1 is the crucial tool to reach the main goal of this paper, namely providing an estimator

of p0. As explained previously, we estimate p0 by combining a free deconvolution step via the use
of ŵn

fp with then a classical deconvolution step. We define our final estimator p̂0,h via its Fourier
transform, denoted p̂�

0,h; from Equation (1.5), it is natural to define it as follows:

p̂�
0,h(ξ) = eγ |ξ |.K�

h(ξ).
1

πt

[
γ − Im ŵn

fp(· + i γ )�(ξ)
]
, ξ ∈ R.

Note that, as usual in nonparametric statistics, the last expression depends on K�
h , a regularization term

defined through the Fourier transform of a kernel function Kh depending on a bandwidth parameter h.
See Equation (2.15) in Definition 2.9 for more details.

We study theoretical properties of p̂0,h by deriving asymptotic rates of the mean integrated square er-
ror of p̂0,h decomposed as the sum of bias and variance terms. The study of the variance term is intricate
and is based on sharp controls of the difference ŵn

fp(z)−wfp(z) provided by Proposition 1.1. We show

in Theorem 4.1 that the variance term is of order e
2γ
h /n as desired for deconvolution with the Cauchy

distribution with parameter γ . The bias term is driven by the smoothness properties of the function
p0. In particular, when p0 belongs to a space of supersmooth densities (see (4.5)), we establish con-
vergence rates, after an appropriate (non-adaptive) choice of the bandwidth parameter h, see Corollary

4.3. For instance, if
∫
R

|p�
0(ξ)|2 exp(2a|ξ |)dξ ≤ L for 0 < L < ∞, then E

[
‖p̂0,h −p0‖2

]= O
(
n

− a
a+γ

)
.

The case of Sobolev regularities is tackled in Corollary 4.5 leading to logarithmic rates of convergence.
We then discuss the connections of our rates of convergence with those obtained in the classical sta-
tistical density deconvolution problem involving a Cauchy distribution of parameter γ . Note that the
exponent in the previous bound reflects the difficulty of our statistical problem: the larger γ , the slower
the rate. Remembering that γ is connected to the observational time t through the condition γ > 2

√
t ,
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it means that for the previous example, our estimate can achieve the polynomial rate n
− a

a+2
√

t+ε for any
ε > 0. The question of whether it is possible to consider smaller values for γ constitutes a challenging
problem. Adaptive choices for h are also a very interesting issue. These problems will be investigated
in another work.

Overview of the paper. Important results, namely Theorem 4.1, Corollary 4.3 and Corollary 4.5,
which constitute the main contributions of the paper, are contained in Section 4. Before that, in Sec-
tion 2, we study the free deconvolution and explain the construction of the estimator p̂0,h of p0. Exis-
tence results and properties of the subordination functions are precisely stated and proved. Section 3 is
devoted to a deeper study of the subordination function and to the proof of Proposition 1.1. Numerical
simulations are provided in Section 5.

Notations. For any z = u+ iv ∈ C+, we denote
√

z := a + ib ∈ C with a =
√

(
√

u2 + v2 + u)/2 and

b =
√

(
√

u2 + v2 − u)/2. We denote the Fourier transform of a function g ∈ L
1(R) by g� : ξ ∈ R �→∫

R
g(x)eixξ dx.

2. Free deconvolution of the Fokker-Planck equation

2.1. Dyson Brownian motions

Let us denote by Hn(C) the space of n-dimensional matrices Hn such that (Hn)
∗ = Hn.

Definition 2.1. Let
(
Bi,j , B̃i,j ,1 ≤ i ≤ j ≤ n

)
be a collection of i.i.d. real valued standard Brownian

motions, the Hermitian Brownian motion, denoted Hn ∈ Hn(C), is the random process with entries{
(Hn(t))k,�, t ≥ 0,1 ≤ k, � ≤ n

}
equal to

(Hn)k,� =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1√
2n

(
Bk,� + i B̃k,�

)
, if k < �

1√
n
Bk,k, if k = �

(2.1)

Let us now define the initial condition, that we will choose independent of the Hermitian Brownian
motion Hn. Recall that μ0 is a probability measure with density p0(x) with respect to the Lebesgue
measure on R. Without loss of generality, we can choose the initial condition Xn(0) to be a diagonal
matrix, with entries (λn

1(0), . . . , λn
n(0)) the ordered statistics of i.i.d. random variables (dn

i )1≤i≤n with
distribution μ0.

For t ≥ 0, let λn(t) = (
λn

1(t), . . . , λn
n(t)

)
denote the ordered collection of eigenvalues of

Xn(t) = Xn(0) + Hn(t). (2.2)

Theorem 2.2 (Dyson). The process
(
λn(t)

)
t≥0 is the unique solution in C (R+,Rn) of the system

(1.7) with initial condition λn
i (0) and where βi are i.i.d. real valued standard Brownian motions. With

probability one and for all t > 0, λn
1(t) < · · · < λn

n(t).

Moreover, we have for any fixed T > 0, the convergence of the process of empirical measures
(μn

t )t≥0 as defined in (1.8), viewed as an element of C
(

[0, T ] ,M1 (R)
)
, the space of continuous
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processes from [0, T ] into the space M1 (R) of probability measure on R, equipped with its weak
topology.

Proposition 2.3. Under Assumption (1.9), for any fixed time T < ∞,
(
μn

t

)
t∈[0,T ] converges almost

surely in C
([0, T ],M1 (R)

)
. Moreover, its limit is the unique measure-valued process (μt )t∈[0,T ]

whose densities satisfy (1.1) with initial condition p0.

For deterministic initial conditions, Theorem 2.2 and Proposition 2.3 are classical results and we
refer to [1], Section 4.3, for a proof. Both results can be easily extended to random initial conditions,
independent of the Hermitian Brownian motion itself. For details, we refer to [27].

2.2. Free deconvolution by subordination method

Our starting point is (1.3), for a fixed time t > 0. Recovering μ0 knowing μt is a free deconvolution
problem. The generic problem of free deconvolution has been introduced and studied by Arizmendi
et al. [2] with the use of the Cauchy transform instead of the Fourier transform. We briefly recall
their results, and adapt them to the present setting where one of the measures is the semi-circular
distribution. The free convolution with a semi-circular distribution allows notably to exhibit better
constants in Theorem 2.6 than the ones of Arizmendi et al. [2] who work in full generality. From a
statistical point of view, this is central in improving the convergence rates to estimate p0. Before, we
need to introduce a few notations and definitions.

Definition 2.4. Let μ be a probability measure on R. The Cauchy transform of μ is defined by:

Gμ(z) =
∫
R

dμ(x)

z − x
, z ∈C \R. (2.3)

The fact is that Gμ (z) = Gμ(z), so the behavior of the Cauchy transform in the lower half-
plane C

− = {z ∈C|Im(z) < 0} can be determined by its behavior in the upper half-plan C
+ =

{z ∈C|Im(z) > 0}. The function Gμ is a bijection from a neighbourhood of infinity to a neighbour-
hood of zero (see [7] for example) and we can define the R-transform of μ by:

Rμ(z) = G<−1>
μ (z) − 1

z
,

where G<−1>
μ (z) is the inverse function of Gμ on a proper neighbourhood of zero. This R-transform

plays the role of the logarithm of the Fourier transform for the free convolution in the sense that for
any probability measures μ1 and μ2,

Rμ1�μ2 = Rμ1 + Rμ2 . (2.4)

Using this formula for statistical deconvolution requires the computation of two inverse functions, and
it is proposed in [2] to use subordination functions which also characterize the free convolution as in
(2.4).

Let us recall the definition of subordination functions due to Voiculescu [39]. We first introduce
Fμ(z) = 1/Gμ(z). As Gμ does not vanish on C

+, Fμ is well defined on C
+. Then:
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Theorem-Def 2.5. There exist unique subordination functions α1 and α2 from C+ onto C+ such that:
(i) for z ∈C

+, Im
(
α1(z)

)≥ Im(z) and Im
(
α2(z)

)≥ Im(z),
and limy→+∞ α1(iy)/(iy) = limy→+∞ α2(iy)/(iy) = 1.
(ii) for z ∈C

+, Fμ1�μ2(z) = Fμ1(α1(z)) = Fμ2(α2(z)) and α1(z) + α2(z) = Fμ1�μ2(z) + z.

Using this result, Belinschi and Bercovici [4], Theorem 3.2, introduce a fixed-point construction of
the subordination functions, which Arizmendi et al. [2] adapt for the deconvolution problem. We state
their result in the special case of the deconvolution by a semi-circular distribution defined in (1.2).
In this case, we have an explicit formula for its Cauchy transform Gσt (z) and its reciprocal function
Fσt (z):

Gσt (z) = z − √
z2 − 4t

2t
, and z − Fσt (z) = t Gσt (z). (2.5)

Before stating the result, let us recall that, for any γ > 0,

Cγ = {
z ∈ C

+∣∣Im(z) > γ
}
.

These domains will appear since Gμ is not invertible on the whole plane C.

Theorem 2.6. There exist unique subordination functions w1 and wfp from C2
√

t onto C
+ such that

following properties are satisfied.

(i) For z ∈ C2
√

t , Im
(
w1(z)

) ≥ 1

2
Im(z) and Im

(
wfp(z)

) ≥ 1

2
Im(z), and also limy→+∞ w1(iy)/

(iy) = limy→+∞ wfp(iy)/(iy) = 1.
(ii) For z ∈ C2

√
t :

Fμ0(z) = Fσt (w1(z)) = Fμt (wfp(z)). (2.6)

(iii) For z ∈C2
√

t :

wfp(z) = z + w1(z) − Fμ0(z). (2.7)

(iv) Denote hσt (w) = w − Fσt (w) = t Gσt (w) and h̃μt (w) = w + Fμt (w) on C
+. We can define the

function Lz as

Lz(w) : = hσt

(̃
hμt (w) − z

)+ z = t.Gσt

(̃
hμt (w) − z

)+ z. (2.8)

For any z ∈ C2
√

t , we have

Lz

(
wfp(z)

)= wfp(z), (2.9)

and for all w such that Im(w) > 1
2 Im(z), the iterated function L◦m

z (w) converges to wfp(z) ∈C
+ when

m → +∞.

One difference between Theorem 2.6 and Theorem-definition 2.5 lies in the fact that the subor-
dination functions are expressed in terms of Fμ0�σt

and Fσt whereas in Theorem-definition 2.5 it
would have been Fμ0 and Fσt . Here the restriction to the domain C2

√
t comes from the fact that

Im(̃hμt (w) − z) appearing in the definition (2.8) of Lz has to be positive. It is worth pointing out
that the constant 2

√
t in C2

√
t that we obtained is better than the one of Arizmendi et al. [2] in a com-

pletely general setting, and which in the present case would be 2
√

2t . This improvement has a key
impact on the convergence rates through the constant γ (see Corollary 4.3).
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The proof of Theorem 2.6 will be sketched in Section 2.4 and then proved in detail in Appendix
B of the Supplementary Material [25]. We now explain how the subordination functions allow us to
construct the estimator of p0.

2.3. Construction of the estimator of p0

Overview of the estimation strategy. Based on Theorem 2.6, we devise the estimation strategy of the
paper. The theorem allows us to get the subordination function wfp as a fixed point of Lz. From there,
we will be able to recover the Cauchy transform of the initial condition μ0 from wfp , as stated in the
following lemma proved at the end of the section:

Lemma 2.7. For any z ∈ C2
√

t ,

Gμ0(z) = 1

t
(wfp(z) − z) = Gμt

(
wfp(z)

)
. (2.10)

Consequently, ∣∣wfp(z) − z
∣∣≤ √

t . (2.11)

Moreover, denoting Cγ the centered Cauchy distribution with parameter γ > 0, one can check that,
for any probability measure μ on R, the density fμ∗Cγ

of the classical convolution of μ by Cγ is given,
for x ∈R, by fμ∗Cγ

(x) = −ImGμ(x + iγ )/π . Using the expression of Gμ0 given by Lemma 2.7 with
γ > 2

√
t , we get that for any x ∈ R,

fμ0∗Cγ
(x) = 1

πt

[
γ − Imwfp(x + iγ )

]
. (2.12)

From this, we can recover the density p0 of μ0 by a classical deconvolution of (2.12) by fγ (see for
instance [13,16] or [24] for Cauchy statistical deconvolution problems or [23] for regularization of
Fredholm equations of the first kind). The subordination function wfp in (2.12) is estimated using the
second equality of Lemma 2.7. In parallel with our work, Tarrago [33] has used the formula (2.12)
to perform spectral deconvolution in a more general setting (including the multiplicative free convo-
lution), but neither the approximation of wfp by its estimator ŵn

fp defined in Theorem-Definition 2.8
below nor the (classical) deconvolution of the Cauchy distribution are treated, which are key difficulties
encountered in our paper. Tarrago uses a different approach based on concentration inequalities when
we use fluctuations in the line of [18]. To get the rates announced in the introduction, we establish very
precise estimates of the error terms (see Section 4).

Proof of Lemma 2.7. Now, from (2.7), (2.6) and (2.5), we write for z ∈ C2
√

t ,

wfp(z) = z + w1(z) − Fμ0(z) = z + w1(z) − Fσt

(
w1(z)

)= z + t.Gσt

(
w1(z)

)
.

So, we obtain

Gσt

(
w1(z)

)= 1

t

(
wfp(z) − z

)
.

Using again (2.6), we obtain both equalities of (2.10). From there, using Theorem 2.6 (i), we have:∣∣wfp(z) − z
∣∣= t.

∣∣Gσt (w1(z))
∣∣= t.

∣∣Gμt (wfp(z))
∣∣≤ t

|Im(wfp(z))| ≤ √
t, �
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Estimator of p0. We do not observe directly the measure μt . The observation is the matrix Xn(t)

at time t > 0 for a given n and therefore its empirical spectral measure as defined in (1.8). Then, for
z ∈C

+, replacing in the procedure Gμt (z) by its natural estimator:

Ĝμn
t
(z) :=

∫
R

dμn
t (λ)

z − λ
= 1

n

n∑
j=1

1

z − λn
j (t)

= 1

n
tr
((

zIn − Xn(t)
)−1

)
. (2.13)

will lead to the following:

Theorem-Def 2.8. There exists a unique fixed point to the following functional equation in w(z):

1

t
(w(z) − z) = Ĝμn

t
(w(z)), for z ∈ C2

√
t (2.14)

This fixed-point is denoted by ŵn
fp(z). We have Im(ŵn

fp(z)) > Im(z)/2 and
∣∣∣ŵn

fp(z) − z

∣∣∣≤ √
t .

The theorem is proved at the end of this section. We shall prove in Section 3 that ŵn
fp(z) is a

convergent estimator of wfp(z) and establish a fluctuation result associated with this convergence,
which is Proposition 1.1. Let us now explain how the estimator of p0 can be obtained from ŵn

fp(z).

Recall that the Fourier transform of the Cauchy distribution Cα with α > 0 is f �
α (ξ) = e−α|ξ | for

ξ ∈ R. Performing the deconvolution from (2.12), the Fourier transform of p0 is the division of the
Fourier transform of the right-hand side of (2.12) by f �

γ (ξ) with γ > 2
√

t . It is now classical to define
our ultimate estimator for the density function p0 from its Fourier transform:

Definition 2.9. Let us consider a bandwidth h > 0 and a regularizing kernel K . We assume that the
kernel K is such that its Fourier transform K� is bounded by a positive constant CK < +∞ and has a
compact support, say [−1,1]. We define the estimator p̂0,h of p0 by its Fourier transform:

p̂�
0,h(ξ) = eγ |ξ |.K�

h(ξ).
1

πt

[
γ − Im ŵn

fp(· + i γ )�(ξ)
]
, (2.15)

where we have defined Kh(·) = 1
h
K
( ·

h

)
.

Note that the assumption on K ensures finiteness of the estimator. These assumptions are for instance
satisfied for the sinc kernel, namely K(x) = sinc(x) = sin(x)/(πx) with Fourier transform K�(ξ) =
1[−1,1](ξ) so that CK = 1. From now on, K will denote the sinc kernel.

2.4. Sketch of proof of Theorem 2.6 and Theorem-Definition 2.8

In [2], the authors prove a more general version of Theorem 2.6. Here, as one of the measure involved
is the semicircular distribution σt , one can use the explicit expressions of Gσt or Fσt to improve the
constants. The detailed proof of the two theorems are postponed to Appendix B of the Supplementary
Material [25].

We start with sketching the proof of Theorem 2.6. Let us define the function Lz as in Equation (2.8):
Lz(w) := hσt

(̃
hμt (w) − z

)+ z. One can check that for any z ∈ C2
√

t , Lz is well defined on C 1
2 Imz

and

that it satisfies the assumptions of the Denjoy-Wolff fixed-point theorem, namely that Lz(C 1
2 Im(z)

) ⊂
C 1

2 Im(z)
and Lz is not a conformal automorphism. Therefore, one can deduce that for any z ∈ C2

√
t ,
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Lz admits a unique fixed point in C 1
2 Im(z)

, denoted by wfp(z) and point (iv) is proved. We then define

w1(z) := Fμt (wfp(z)) + wfp(z) − z, check that Fσt (w1(z)) = Fμt (wfp(z)) and deduce that wfp(z)

and w1(z) satisfy (i), (ii) and (iii).
In the preceding subsection, we have seen how to deduce Lemma 2.7 from Theorem 2.6, getting for

wfp(z) the simple equation 1
t
(wfp(z)−z) = Gμt

(
wfp(z)

)
. It is therefore natural to define an estimator

for wfp(z) by replacing Gμt (z) by its estimator Ĝμn
t
(z). Theorem-Definition 2.8 will be obtained along

similar arguments as above, applying the Denjoy-Wolff fixed point theorem to L̂z(w) := tĜμn
t
(w)+ z.

3. Study of the subordination function

This section is devoted to the proof of Proposition 1.1. We show that ŵn
fp(z) converges uniformly to

wfp(z) on Cγ with γ > 2
√

t . Next, we establish that its fluctuations are of order 1/
√

n.

3.1. Proof of (i) and (ii) of Proposition 1.1

We first state a useful lemma.

Lemma 3.1. For any probability measure μ on R and α > 0, the Cauchy transform Gμ is Lipschitz

on Cα with Lipschitz constant
1

α2
, and one has for any z ∈ Cα ,

∣∣Gμ(z)
∣∣≤ 1

α
.

Proof. For z, z′ ∈ Cα ,

∣∣Gμ(z) − Gμ(z′)
∣∣= ∣∣∣∣∫

R

dμ(x)

z − x
−
∫
R

dμ(y)

z′ − y

∣∣∣∣≤ ∣∣z − z′∣∣ ∫
R

dμ(x)

|(z − x)(z′ − x)| ≤ |z − z′|
α2

.

We also have ∣∣Gμ(z)
∣∣= ∣∣∣∣∫

R

dμ(x)

z − x

∣∣∣∣≤ 1

Im(z)
≤ 1

α
. �

We are now ready to prove the points (i) and (ii) of Proposition 1.1.

Proof of Proposition 1.1(i-ii). Consider z ∈ Cγ with γ > 2
√

t . Using the equations (2.10) and (2.14)
characterizing wfp(z) and ŵn

fp(z), we have∣∣∣ŵn
fp(z) − wfp(z)

∣∣∣= t

∣∣∣Ĝμn
t
(ŵn

fp(z)) − Gμt (wfp(z))

∣∣∣
≤ t

∣∣∣Ĝμn
t
(ŵn

fp(z)) − Ĝμn
t
(wfp(z))

∣∣∣+ t
∣∣Ĝμn

t
(wfp(z)) − Gμt (wfp(z))

∣∣ . (3.1)

By Theorem 2.6, Im(wfp(z)) ≥ 1

2
Im(z) and since Ĝμn

t
is a Lipschitz function on C 1

2 Im(z)
with Lips-

chitz constant
4

Im2(z)
≤ 4

γ 2 , by Lemma 3.1, we have an upper bound for the first term

∣∣∣Ĝμn
t
(ŵn

fp(z)) − Ĝμn
t
(wfp (z))

∣∣∣≤ 4

γ 2
×
∣∣∣ŵn

fp(z) − wfp(z)

∣∣∣ .
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Thus, ∣∣∣ŵn
fp(z) − wfp(z)

∣∣∣≤ 4t

γ 2

∣∣∣ŵn
fp(z) − wfp(z)

∣∣∣+ t
∣∣Ĝμn

t

(
wfp(z)

)− Gμt

(
wfp(z)

)∣∣ ,
implying that ∣∣∣ŵn

fp(z) − wfp(z)

∣∣∣≤ (
tγ 2

γ 2 − 4t

)
× ∣∣Ĝμn

t

(
wfp(z)

)− Gμt

(
wfp(z)

)∣∣ . (3.2)

By Proposition 2.3, since the function x �→ 1
z−x

is continuous and bounded on R for any z ∈ C√
t ,

Ĝμn
t
(wfp(z)) = ∫

R

1
wfp(z)−x

μn
t (dx) converges almost surely to Gμt (wfp(z)) = ∫

R

1
wfp(z)−x

μt (dx).
This concludes the proof of (i). To prove the uniform convergence (ii), we will need Vitali’s con-
vergence theorem, see e.g. [3], Lemma 2.14, p.37-38: on any bounded compact set of C2

√
t , the simple

convergence is in fact a uniform convergence. Moreover, the functions Gμt (z) and Ĝμn
t
(z) decay as

1/|z| when |z| → +∞, implying the uniform convergence of the right-hand side of (3.2) on Cγ , for
γ > 2

√
t and of ŵn

fp(z) to wfp(z). �

3.2. Fluctuations of the Cauchy transform of the empirical measure

We now prove point (iii) of Proposition 1.1. For this purpose, we first decompose:

Ĝμn
t
(z) − Gμt (z) = Ĝμn

t
(z) −E

[
Ĝμn

t
(z)|Xn(0)

]+E
[
Ĝμn

t
(z)|Xn(0)

]− Gμn
0�σt

(z)

+ Gμn
0�σt

(z) − Gμt (z)

=: An
1(z) + An

2(z) + An
3(z). (3.3)

The first term is related to the variance of Ĝμn
t
(z) (conditional on Xn(0)). The second term heuristically

compares the evolution with the Hermitian Brownian motion to its limit. The third term deals with the
fluctuations of the empirical initial condition. A similar decomposition for the first two terms is done
in [18] (for a non-random initial condition) and we will adapt their results. In Propositions 3.2 and 3.3
below, we show that the fluctuations of the first two terms are of order 1/n. The third term, which is
associated to a classical central limit theorem, is of order 1/

√
n, as proved in Proposition 3.6.

For the term An
1(z), the result is a direct consequence of Proposition 3 in [18] and we refer to the

detailed computation in [27].

Proposition 3.2. For z ∈ C
+ and n ∈ N,

Var
(
nAn

1(z)|Xn(0)
)= Var

(
nĜμn

t
(z)|Xn(0)

)≤ 10t

Im4(z)
.

3.2.1. Fluctuations of An
2(z)

We start with some additional notations. Let us denote the resolvent of Xn(t) by

Rn,t (z) := (
zIn − Xn(t)

)−1
. (3.4)

Then one can write

Ĝμn
t
(z) = 1

n
Tr
(
Rn,t (z)

)
.
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Then, the bias term is:

nAn
2(z) = E

[
Tr
(
Rn,t (z)

) | Xn(0)
]− nGμn

0�σt
(z), (3.5)

and it is given by an adaptation of [18], Proposition 4, to the case of a random initial condition:

Proposition 3.3. For z ∈ C
+ and n ∈ N,

∣∣nAn
2(z)

∣∣≤ (
1 + 4t

Im2(z)

)
.

(
2t

Im3(z)
+ 12t2

Im5(z)

)
. (3.6)

The term An
2(z) compares E

[
Ĝμn

t
(z)|Xn(0)

]
with Gμn

0�σt
(z). Proceeding as in Theorem-Definition

2.5, with μn
0 and σt , we can define a subordination function wfp(z) such that

Gμn
0�σt

(z) = Gμn
0

(
wfp(z)

)
. (3.7)

Proof. Note that by definition of the resolvent, we have for all z ∈ C+,

|nAn
2(z)| ≤ 2nIm−1(z), (3.8)

which is suboptimal due to the factor n.
We follow the ideas of ‘approximate subordination relations’ of [18]. As our initial condition is

random, the strategy has to be adapted and we introduce the following variants of Rn,t (z) and An
2(z):

R̃n,t (z) :=
((

z − t

n
E
[
Tr
(
Rn,t (z)

) | Xn(0)
])

.In − Xn(0)
)−1

(3.9)

nÃn
2(z) := E

[
Tr
(
Rn,t (z)

) | Xn(0)
]− Tr

(
R̃n,t (z)

)
.

We will bound An
2(z) by using its approximation Ãn

2(z).
Step 1: First, we prove an upper bound for Ãn

2(z), whose proof is postponed to Appendix C of the
Supplementary Material [25]:

Lemma 3.4. For z ∈ C
+, ∣∣nÃn

2(z)
∣∣≤ 2t

Im3(z)
+ 12t2

Im5(z)
.

Step 2: If |Ãn
2(z)| ≥ Im(z)/(2t) then, by (3.8)

|nAn
2(z)| ≤ 4tn|Ãn

2(z)|
Im2(z)

,

and we conclude with Lemma 3.4.
Step 3: We now consider the case where |Ãn

2(z)| < Im(z)/(2t). We have:

An
2(z) = Ãn

2(z) + [
An

2(z) − Ãn
2(z)

]
(3.10)

We will control the difference |An
2(z) − Ãn

2(z)| by Ãn
2(z) and conclude with Lemma 3.4.
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By their definitions:

n
(
An

2(z) − Ãn
2(z)

)=Tr
(
R̃n,t (z)

)− nGμn
0�σt

(z). (3.11)

We follow the trick in [18] which consists in going back to the fluctuations of the subordination func-
tions. In view of (3.7), it is natural to express the first term Tr

(
R̃n,t (z)

)
of (3.11) similarly. As R̃n,t (z)

is a diagonal matrix,

Tr
(
R̃n,t (z)

)=
n∑

j=1

1

z − t
n
E
[
Tr
(
Rn,t (z)

) | Xn(0)
]− λn

j (0)
= nGμn

0
(w̃fp(z)), (3.12)

where

w̃fp(z) := z − t

n
E
[
Tr
(
Rn,t (z)

) | Xn(0)
]

(3.13)

and where λn
j (0) are the eigenvalues of Xn(0). Thus:

An
2(z) − Ãn

2(z) = Gμn
0
(w̃fp(z)) − Gμn

0
(wfp(z)). (3.14)

To continue, we first need the following result proved in Appendix D of the Supplementary Material
[25].

Lemma 3.5 (i). The function wfp(z), defined in (3.7), solves

wfp(z) = z − tGμn
0�σt

(z).

(ii) The function ζ(z) = z + tGμn
0
(z) is well-defined on C

+ and is the inverse of wfp(z) on � = {z ∈
C+, Im(ζ(z)) > 0}. For such z ∈ �, we denote this function w<−1>

fp (z).

Let us prove that under the condition of Step 3, w̃fp(z) ∈ � for all z ∈C
+.

ζ(w̃fp(z)) − z = w̃fp(z) + tGμn
0

(
w̃fp(z)

)− z

= z − t

n
E
[
Tr
(
Rn,t (z)

) | Xn(0)
]+ tGμn

0

(
w̃fp(z)

)− z = −tÃn
2(z), (3.15)

by (3.12). Therefore,

∣∣Im(ζ(w̃fp(z))
)− Im(z)

∣∣≤ ∣∣ζ(w̃fp(z)) − z
∣∣= t

∣∣Ãn
2(z)

∣∣≤ Im(z)

2
. (3.16)

Thus, under the condition of Step 3, w̃fp(z) ∈ �. Denoting z̃ = w<−1>
fp

(
w̃fp(z)

)
, which is well-

defined, we have wfp(̃z) = w̃fp(z). Plugging this into (3.14),

An
2(z) − Ãn

2(z) = Gμn
0�σt

(̃z) − Gμn
0�σt

(z)

= (
z − z̃

)∫
R

μn
0 � σt (dx)(̃

z − x
)
.
(
z − x

) = tÃn
2(z).

∫
R

μn
0 � σt (dx)(̃

z − x
)
.
(
z − x

) ,
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where we used (3.15) for the last equality. From there, using (3.10), we get

|An
2(z)| ≤

∣∣∣1 + t.

∫
R

μn
0 � σt (dx)(̃

z − x
)
.
(
z − x

) ∣∣∣.|Ãn
2(z)| ≤

(
1 + 2t

Im2(z)

)
|Ãn

2(z)|.

This concludes the proof of Proposition 3.3. �

3.2.2. Fluctuations of An
3(z)

Finally, the third step is to control An
3(z) = Gμn

0�σt
(z) − Gμt (z), with μt = μ0 � σt .

Proposition 3.6. For any γ > 2
√

t and for any z such that Im(z) ≥ γ
2 , we have:

∣∣An
3(z)

∣∣≤ γ 2

γ 2 − 4t

∣∣∣∣∫
R

1

z − t.Gμ0�σt
(z) − x

[
dμn

0(x) − dμ0(x)
]∣∣∣∣ (3.17)

and

sup
n∈N

sup
z∈C γ

2

E
[
n
∣∣An

3(z)
∣∣2 ]≤ 8γ 2

(γ 2 − 4t)2
. (3.18)

Proof. Using again the subordination function wfp(z) defined in (3.7) and Lemma 3.5(i), we have

Gμn
0�σt

(z) = Gμn
0

(
wfp(z)

)=
∫
R

dμn
0(x)

wfp(z) − x
=
∫
R

dμn
0(x)

z − tGμn
0�σt

(z) − x
. (3.19)

In this proof, Im(z) ≥ γ /2 ≥ √
t . Note that Im(wfp(z)) ≥ Im(z) (Theorem-Definition 2.5) so that

|z − tGμn
0�σt

(z) − x| ≥ γ

2
≥ √

t, (3.20)

and the integrand in (3.19) is well-defined and upper-bounded by 1/
√

t . Similarly, we can establish
that

Gμ0�σt
(z) =

∫
R

dμ0(x)

z − tGμ0�σt
(z) − x

. (3.21)

Then, we can write

Gμn
0�σt

(z) − Gμ0�σt
(z) = t.

∫
R

Gμn
0�σt

(z) − Gμ0�σt
(z)(

z − t.Gμn
0�σt

(z) − x
)

.
(
z − t.Gμ0�σt

(z) − x
)dμn

0(x)

+
∫
R

1

z − t.Gμ0�σt
(z) − x

[
dμn

0(x) − dμ0(x)
]
.

Thus,

(
Gμn

0�σt
(z) − Gμ0�σt

(z)
)

.

⎡⎣1 − t.

∫
R

1(
z − t.Gμn

0�σt
(z) − x

)
.
(
z − t.Gμ0�σt

(z) − x
)dμn

0(x)

⎤⎦
=
∫
R

1

z − t.Gμ0�σt
(z) − x

[
dμn

0(x) − dμ0(x)
]
.
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Similarly to (3.20), we can show that |z − t.Gμ0�σt
(z) − x| ≥ γ /2. Thus∣∣∣∣∣∣t.

∫
R

1(
z − t.Gμn

0�σt
(z) − x

)
.
(
z − t.Gμ0�σt

(z) − x
)dμn

0(x)

∣∣∣∣∣∣≤ 4t

γ 2
,

consequently,

∣∣An
3(z)

∣∣≤ γ 2

γ 2 − 4t

∣∣∣∣∫
R

1

z − t.Gμ0�σt
(z) − x

[
dμn

0(x) − dμ0(x)
]∣∣∣∣ ,

which gives the first part of the proposition. For the second part (3.18),

E
[
n
∣∣An

3(z)
∣∣2 ]≤

(
γ 2

γ 2 − 4t

)2

nE
[ ∣∣∣∣∫

R

1

z − t.Gμ0�σt
(z) − x

[
dμn

0(x) − dμ0(x)
]∣∣∣∣2 ].

If Im(z) >
γ
2 , the function ϕz(x) = (z− t.Gμ0�σt

(z)−x)−1 is bounded by 2/γ . Then, for any z ∈C γ
2

:

nE
[∣∣∣ ∫

R

ϕz(x)dμn
0(x) −

∫
R

ϕz(x)dμ0(x)

∣∣∣2]= nE
[∣∣∣1

n

n∑
j=1

ϕz

(
λn

j (0)
)−E

[
ϕz

(
λn

j (0)
)]∣∣∣2]

= nVar
(1

n

n∑
j=1

ϕz

(
dn
j

))=
∫
R

|ϕz(x)|2dμ0(x) −
∣∣∣ ∫

R

ϕz(x)dμ0(x)

∣∣∣2 ≤ 8

γ 2
.
�

Conclusion. We can now conclude the proof of Proposition 1.1 (iii). From (3.3), Propositions 3.2, 3.3
and the first part of Proposition 3.6, we obtain that for z ∈ Cγ /2:

E
[|Ĝμn

t
(z) − Gμt (z)|2 | Xn(0)

]≤ C(γ, t)
( 1

n2
+
∣∣∣∣∫

R

1

z − t.Gμ0�σt
(z) − x

[
dμn

0(x) − dμ0(x)
]∣∣∣∣2 ),
(3.22)

where C(γ, t) depends only on γ and t . The proof also shows that γ �→ C(γ, t) is bounded when
γ → +∞ and γ �→ (γ 2 − 4t)2 ×C(γ, t) is bounded when γ → 2

√
t . Therefore there exists a constant

C(t) only depending on t such that

sup
n∈N

sup
z∈Cγ /2

nE
[
|Ĝμn

t
(z) − Gμt (z)|2

]
] = sup

n∈N
sup

z∈Cγ /2

nE
[
E
[|Ĝμn

t
(z) − Gμt (z)|2 | Xn(0)

]]≤ C(t)γ 4

(γ 2 − 4t)2
,

by using the second part of Proposition 3.6. Equation (3.2) implies that for any γ > 2
√

t ,

sup
n∈N

sup
z∈Cγ

E

[
n
∣∣ŵn

fp(z) − wfp(z)
)∣∣2]≤ ( tγ 2

γ 2 − 4t

)2 sup
n∈N

sup
z∈C γ

2

nE
[
|Ĝμn

t
(z) − Gμt (z)|2

]
< +∞,

since z ∈ Cγ implies that Im
(
wfp(z)

) ≥ 1

2
Im(z) >

γ
2 (Theorem 2.6) so that wfp(z) ∈ C γ

2
and point

(iii) of Proposition 1.1 is proved.
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4. Study of the mean integrated squared error

In Section 4.1, we state theoretical results associated with our nonparametric statistical problem. Sec-
tion 4.2 is devoted to the proof of Theorem 4.1.

4.1. Theoretical results

The goal of this section is to study the rates of convergence of E
[‖p̂0,h − p0‖2

]
, the mean integrated

squared error of p̂0,h, relying on the classical bias-variance decomposition of the quadratic risk. By
Parseval’s equality, we obtain:

∥∥p̂0,h − p0
∥∥2 = 1

2π

∥∥p̂�
0,h − p�

0

∥∥2 ≤ 1

π

∥∥p̂�
0,h − K�

h.p�
0

∥∥2 + 1

π

∥∥K�
h.p�

0 − p�
0

∥∥2
. (4.1)

The expectation of the first term is a variance term whereas the second one is a bias term. While the
control of the bias term is very classical, the study of the variance term in (4.1) is much more involved.
The order of the variance term is provided by the following theorem.

Theorem 4.1. Let

� := ∥∥p̂�
0,h − K�

hp�
0

∥∥2
. (4.2)

We assume that there exists a constant C > 0 such that for sufficiently large κ > 0,

μ0
(
(κ,+∞)

)≤ C

κ
. (4.3)

Then, for any γ > 2
√

t , there exists a constant Cvar(t) only depending on t such that for any h > 0 and
n large enough,

E(�) ≤ γ 8

(γ 2 − 4t)4

Cvar(t).e
2γ
h

n
. (4.4)

Theorem 4.1 is proved in Section 4.2. The main point consists in obtaining the optimal n factor

appearing at the denominator. The term e
2γ
h appearing at the numerator is classical in our setting and

comes from the classical deconvolution by a Cauchy distribution (see (2.12) and (2.15)). The smaller
γ the better the rate of convergence but if γ → 2

√
t the leading constant of the upper bound blows up.

Note that Assumption (4.3) is very mild and is satisfied by most classical distributions.
To derive the order of the bias term, we shall consider two classes of densities, supersmooth densities

and densities belonging to Sobolev classes. First assume that p0 belongs to the space Ss(a, r,L) of
supersmooth densities defined for a > 0, L > 0 and r > 0 by:

Ss(a, r,L) =
{
p density such that

∫
R

|p�(ξ)|2e2a|ξ |r dξ ≤ L

}
. (4.5)

In the literature, this smoothness class of densities has often been considered (see [13,16,24]). Most
famous examples of supersmooth densities are the Cauchy distribution belonging to Ss(a, r,L) with
r = 1 and the Gaussian distribution belonging to Ss(a, r,L) with r = 2. To control the bias, we rely on
Proposition 1 in [13] which states that:
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Proposition 4.2. For p0 ∈ Ss(a, r,L), we have:∥∥K�
h.p�

0 − p�
0

∥∥2 ≤ Le−2ah−r

.

Now, using similar computations to those in [24], we obtain from Proposition 4.2 and Theorem 4.1
the rates of convergence of our estimator p̂0,h. We indeed showed that:

MISE := E

[∥∥p̂0,h − p0
∥∥2
]

≤ Le−2ah−r + γ 8

(γ 2 − 4t)4

Cvar(t).e
2γ
h

n
. (4.6)

Minimizing in h the right hand side of (4.6) provides the convergence rate of the estimator p̂0,h. The
rates of convergence are summed up in the following corollary, adapted from the computation of [24].
One can see that there are three cases to consider to derive rates of convergence: r = 1, r < 1 and
r > 1, depending on which the bias or variance term dominates the other. For the sake of completeness
Corollary 4.3 is proved in Appendix E of the Supplementary Material [25].

Corollary 4.3. Suppose that μ0 satisfies Assumption (4.3) and the density p0 belongs to the space
Ss(a, r,L) for a > 0, r > 0 and L > 0. Then, for any γ > 2

√
t and by choosing the bandwidth h

according to Equation (E.1) in the Supplementary Material [25], we have:

E

[
‖p̂0,h − p0‖2]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

O
(
n

− a
a+γ

)
if r = 1

O
(

exp
{

− 2a

(2γ )r

[
logn + (r − 1) log logn +

k∑
i=0

b∗
i (logn)r+i(r−1)

]r})
if r < 1

O
(1

n
exp

{ 2γ

(2a)1/r

[
logn + r − 1

r
log logn +

k∑
i=0

d∗
i (logn)

1
r
−i r−1

r

]1/r})
if r > 1,

(4.7)

where the integer k is such that

k

k + 1
< min

(
r,

1

r

)≤ k + 1

k + 2
,

and where the constants b∗
i and d∗

i solve respectively the following triangular systems:

b∗
0 = − 2a

(2γ )r
, ∀i > 0, b∗

i = − 2a

(2γ )r

i−1∑
j=0

r(r − 1) · · · (r − j)

(j + 1)!
∑

p0+···pj =i−j−1

b∗
p0

· · ·b∗
pj

,

d∗
0 = − 2γ

(2a)1/r , ∀i > 0, d∗
i = − 2γ

(2a)1/r

i−1∑
j=0

1
r

( 1
r

− 1
) · · · ( 1

r
− j

)
(j + 1)!

∑
p0+···pj =i−j−1

d∗
p0

· · ·d∗
pj

Remark 1. For r = 1, the choice h = 2(a + γ )/ log(n) yields the rate of convergence. The optimal
bandwidths for r > 1 and r < 1 are much more intricate (see equations (E.2) and (E.4) in the Supple-
mentary Material [25], and also [24]).

Let us comment the rates of convergence obtained in Corollary 4.3. Recall that we have transformed
the free deconvolution of the Fokker-Planck equation associated with observation of the matrix Xn(t)
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into the deconvolution problem expressed in (2.12). To solve the latter, we have then inverted the con-
volution operator characterized by the Fourier transform of the Cauchy distribution Cγ . The parameter
γ represents the difficulty of our deconvolution problem and consequently, the rates of convergence
heavily depend on γ . The larger γ the harder the problem, as can be observed in rates of convergences
of Corollary 4.3. This is not surprising: as t grows, it becomes naturally harder to reconstruct the initial
condition from the observations at time t and as γ has to be chosen larger than 2

√
t , γ and therefore

the difficulty of the deconvolution problem grows with t accordingly. It remains an open question if
we can take γ smaller.

Now, let us consider Sobolev type regularities. Assume that p0 belongs to the Sobolev class Sb(β,L)

defined for β > 0 and L > 0 as:

Sb(β,L) =
{
p density such that

∫
R

|p�(ξ)|2(1 + ξ2)βdξ ≤ L
}
.

We have the following classical estimate for the integrated bias (see e.g. [16], Proposition 3).

Proposition 4.4. For p0 ∈ Sb(β,L) we have:∥∥K�
h.p�

0 − p�
0

∥∥2 ≤ Lh2β. (4.8)

Using Theorem 4.1, we obtain the following result.

Corollary 4.5. Suppose that μ0 satisfies Assumption (4.3) and the density p0 belongs to the space
Sb(β,L) for β > 0 and L > 0. Then, for any γ > 2

√
t and by choosing the bandwidth h = C log−1(n)

with C > 2γ , we have:

E

[∥∥p̂0,h − p0
∥∥2
]

= O
(
(logn)−2β

)
. (4.9)

Now, let us discuss the optimality of the convergence rates stated in Corollaries 4.3 and 4.5. To
this end, it is relevant to connect them with the minimax rates obtained in the classical statistical den-
sity deconvolution problem by Butucea and Tsybakov in [13] for supersmooth densities or in Fan and
Koo [20] for Sobolev regularities. Here, our estimation strategy converts the initial free deconvolution
problem into the deconvolution problem (2.12) between μ0 and the Cauchy distribution Cγ . Thus, our
observation scheme is more intricate and involved than the framework of classical density deconvolu-
tion tackled in [13] and [20]. If our observations had been distributed according to the density fμ0�Cγ

as in [13] and [20], for a given γ , the upper bound of the variance term given by Theorem 4.1 as well
as the bounds for the bias given by Proposition 4.2 and Proposition 4.4 would have been optimal. Con-
sequently, as part of our strategy, we expect that our rates of convergence cannot be improved for a
given γ .

4.2. Proof of Theorem 4.1

Recall the definition of � in (4.2). By the definition of p̂�
0,h:

� =
∫
R

1

π2t2
e2γ |ξ |.

∣∣K�
h(ξ)

∣∣2 .

∣∣∣[(Im
(
ŵn

fp(�+ iγ )
))� − (

Im
(
wfp(�+ iγ )

))�]
(ξ)

∣∣∣2 dξ.
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Recall that by Lemma 2.7, we have Im
(
wfp(z)

) = t.Im
(
Gμt

(
wfp(z)

)) + Im(z), and similarly by
Theorem-Definition 2.8, Im

(
ŵn

fp(z)
) = t.Im

(
Ĝμn

t

(
ŵn

fp(z)
)) + Im(z) for z ∈ C2

√
t . Since K�

h(ξ) =
K�(hξ), we have

� =
∫
R

e2γ |ξ |.
∣∣K�

h(ξ)
∣∣2 .

1

π2

∣∣∣(ImĜμn
t

(
ŵn

fp(�+ iγ )
)− ImGμt

(
wfp(�+ iγ )

))�

(ξ)

∣∣∣2dξ

≤ e
2γ
h .

C2
K

π2
.

∥∥∥(ImĜμn
t

(
ŵn

fp(�+ iγ )
)− ImGμt

(
wfp(�+ iγ )

))�∥∥∥2

= 2C2
K

π
.e

2γ
h .

∥∥∥ImĜμn
t

(
ŵn

fp(�+ iγ )
)− ImGμt

(
wfp(�+ iγ )

)∥∥∥2
,

by Parseval’s equality. Taking the expectation, and introducing a constant κ > 0 chosen later (depend-
ing on n), we have

E(�) ≤ 2C2
K

π
.e

2γ
h .
(
I κ + J κ) (4.10)

where

I κ =
∫

{x∈R:|x|≤κ}
E

[∣∣∣ImĜμn
t

(
ŵn

fp(x + iγ )
)− ImGμt

(
wfp(x + iγ )

)∣∣∣2]dx (4.11)

J κ =
∫

{x∈R:|x|>κ}
E

[∣∣∣ImĜμn
t

(
ŵn

fp(x + iγ )
)− ImGμt

(
wfp(x + iγ )

)∣∣∣2]dx. (4.12)

To obtain the announced rates of convergence for the MISE, we need to be very careful in establish-
ing the upper bounds for I κ and J κ . For this purpose, we recall Lemma 4.3.17 of [1], with a null initial
condition, which will be useful in the sequel:

Lemma 4.6. Let (ηn
1(t), . . . , ηn

n(t)) be the eigenvalues of Hn(t). With large probability, all the eigen-
values (ηn

j (t)) of Hn(t) belong to a ball of radius M > 0 independent of n. Introduce

A
n,t
M :=

{
∀1 ≤ j ≤ n :

∣∣∣ηn
j (t)

∣∣∣≤ M
}

. (4.13)

There exist Ceig > 0 and Deig > 0 depending on t such that for any M > Deig and any n ∈N
∗

P
(
(A

n,t
M )c

)= P
({

ηn∗(t) > M
})≤ e−n.Ceig .M, (4.14)

with ηn∗(t) := maxi=1,...,n |ηn
i (t)|.

Using this lemma, we can control the tail distribution of E[μn
t ], which is essential to establish very

precise estimates. We recall that λn
1(t) ≤ · · · ≤ λn

n(t) are the eigenvalues of Xn(t) = Xn(0) + Hn(t) in
increasing order. By Weyl’s interlacing inequalities, we have that, for 1 ≤ j ≤ n,

λn
j (0) − ηn∗(t) ≤ λn

j (t) ≤ λn
j (0) + ηn∗(t). (4.15)

Therefore, for 1 ≤ j ≤ n,

E

[
μn

t

({
|λ| > κ

2

})]
≤ E

[
μn

0

({
|λ| > κ

4

})]
+ P

({
ηn∗(t) >

κ

4

})
≤ E

[
μn

0

({
|λ| > κ

4

})]
+ e− n.Ceig .κ

4 .
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Recall that after (1.6), we introduced the notation dn
1 , . . . , dn

n for the i.i.d. random variables with law
μ0 and whose order statistic are the diagonal elements of Xn(0), λn

1(0) < · · · < λn
n(0). We have

E

[
μn

0

({
|λ| > κ

4

})]
= 1

n

n∑
i=1

P

(
|dn

i | > κ

4

)
= μ0

({
|λ| > κ

4

})
,

so that we finally get

E

[
μn

t

({
|λ| > κ

2

})]
≤ μ0

({
|λ| > κ

4

})
+ e− n.Ceig .κ

4 . (4.16)

Now, we successively study I κ and J κ .

4.2.1. Upper bound for I κ

Lemma 4.7. Let us consider γ > 2
√

t . There exist constants C2
I , C2

I and C3
I only depending on M

and t such that

I κ ≤ γ 8

(γ 2 − 4t)4

C1
I

n
+ κC2

I

n2
+ C3

I κe−n.Ceig .M. (4.17)

Before proving Lemma 4.7, let us establish a result that will be useful in the sequel.

Lemma 4.8. Let us consider γ > 2
√

t , p > 1 and M > 0. Then, we have

Ip,γ,M,t :=
∫ +∞

0

∫
R

1[{∣∣∣∣∣λ∣∣− x

∣∣∣− √
t − M

}
∨ γ

2

]p dμ0(λ)dx ≤ C(p,M, t), (4.18)

for C(p,M, t) a finite constant only depending on p, M and t .

Proof. The supremum in the denominator equals to
∣∣|λ|−x

∣∣−√
t −M when x < |λ|−√

t −M −γ /2
(which is possible only if |λ| − √

t − M − γ /2 is positive) or x > |λ| + √
t + M + γ /2. Otherwise the

supremum is γ /2. Hence

Ip,γ,M,t ≤
∫
R

⎧⎪⎨⎪⎩
∫ (

|λ|−√
t−M− γ

2

)
∨0

0

1(
|λ| − x − √

t − M
)p dx +

∫ |λ|+√
t+M+ γ

2

{|λ|−√
t−M− γ

2 }∨0

2p

γ p
dx

+
∫ +∞

|λ|+√
t+M+ γ

2

1[
x − ∣∣λ∣∣− √

t − M
]p dx

}
dμ0(λ)

≤
∫
R

{∫ |λ|−√
t−M

(|λ|−√
t−M)∧ γ

2

1

vp
dv + 2p(2

√
t + 2M + γ )

γ p
+
∫ +∞

γ
2

1

vp
dv

}
dμ0(λ)

≤C(p,M, t) < +∞,

since γ > 2
√

t . This concludes the proof of Lemma 4.8. �
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Proof of Lemma 4.7. We decompose I κ into three parts, I κ ≤ 3
(
I κ

1 + I κ
2 + I κ

3

)
where:

I κ
1 :=

∫
{|x|≤κ}

E

[∣∣∣Ĝμn
t

(
ŵn

fp(x + iγ )
)− Ĝμn

t

(
wfp(x + iγ )

)∣∣∣2]dx,

I κ
2 :=

∫
{|x|≤κ}

E

[∣∣∣Ĝμn
t

(
wfp(x + iγ )

)−E

[
Ĝμn

t

(
wfp(x + iγ )

) | Xn(0)
]∣∣∣2]dx,

I κ
3 :=

∫
{|x|≤κ}

E

[∣∣∣E[Ĝμn
t

(
wfp(x + iγ )

) | Xn(0)
]
− Gμt

(
wfp(x + iγ )

)∣∣∣2]dx.

Step 1: Let us first upper bound I κ
1 . It is relatively easy to bound I κ

1 by an upper bound in C(γ, t)κ/n,
but this will not yield in the end the announced convergence rate. To establish more precise upper
bounds, we use the event A

n,t
M defined in Lemma 4.6. We have I κ

1 = I κ
11 + I κ

12 with

I κ
11 :=

∫
{|x|≤κ}

E

[∣∣∣Ĝμn
t

(
ŵn

fp(x + iγ )
)− Ĝμn

t

(
wfp(x + iγ )

)∣∣∣21A
n,t
M

]
dx,

I κ
12 :=

∫
{|x|≤κ}

E

[∣∣∣Ĝμn
t

(
ŵn

fp(x + iγ )
)− Ĝμn

t

(
wfp(x + iγ )

)∣∣∣21(A
n,t
M )c

]
dx.

For the term I κ
12, we have by Theorem 2.6(i) and Lemma 4.6:

I κ
12 ≤ 16

γ 2
κP((A

n,t
M )c) ≤ 16

γ 2
κe−n.Ceig .M. (4.19)

Let us now consider the term I κ
11:

I κ
11 =

∫
{|x|≤κ}

E

[∣∣∣∣1

n

n∑
j=1

wfp(x + iγ ) − ŵn
fp(x + iγ )(

ŵn
fp(x + iγ ) − λn

j (t)
)
.
(
wfp(x + iγ ) − λn

j (t)
) ∣∣∣∣21A

n,t
M

]
dx

≤
∫

{|x|≤κ}
E

[∣∣∣ŵn
fp(x + iγ ) − wfp(x + iγ )

∣∣∣2

.
1

n

n∑
j=1

1A
n,t
M∣∣ŵn

fp(x + iγ ) − λn
j (t)

∣∣2.∣∣wfp(x + iγ ) − λn
j (t)

∣∣2
]

dx

by convexity. Using (2.11) and (4.15), we have∣∣wfp(x + iγ ) − λn
j (t)

∣∣≥ ∣∣wfp(x + iγ )
∣∣− ∣∣λn

j (t)
∣∣

≥ ∣∣Re(wfp(x + iγ ))
∣∣− ∣∣λn

j (t)
∣∣≥ ∣∣x∣∣− √

t − ∣∣λn
j (0)

∣∣− ηn∗(t).

Since λn
j (t) is real, we also have:∣∣wfp(x + iγ ) − λn

j (t)
∣∣≥ ∣∣Re(wfp(x + iγ ) − λn

j (t))
∣∣≥ ∣∣λn

j (t)
∣∣− ∣∣Re(wfp(x + iγ ))

∣∣
≥ ∣∣λn

j (t)
∣∣− ∣∣x∣∣− √

t ≥ ∣∣λn
j (0)

∣∣− ηn∗(t) − ∣∣x∣∣− √
t .
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Therefore, using Theorem 2.6,∣∣wfp(x + iγ ) − λn
j (t)

∣∣≥ {∣∣∣∣∣λn
j (0)

∣∣− ∣∣x∣∣∣∣∣− √
t − ηn∗(t)

}
∨ γ

2
. (4.20)

In Theorem-Definition 2.8, it is shown that ŵn
fp(z) satisfies a similar inequality as (2.11). Thus, we

obtain with similar computations that:∣∣ŵn
fp(x + iγ ) − λn

j (t)
∣∣∣∣≥ {∣∣∣∣∣λn

j (0)
∣∣− ∣∣x∣∣∣∣∣− √

t − ηn∗(t)
}

∨ γ

2
. (4.21)

Then, using the definition of A
n,t
M and the constant C(γ, t) appearing in (3.22), there exists a constant

C(t) only depending on t such that

I κ
11 ≤

∫
{|x|≤κ}

E

[∣∣∣ŵn
fp(x + iγ ) − wfp(x + iγ )

∣∣∣2

· 1

n

n∑
j=1

1[{∣∣∣∣∣λn
j (0)

∣∣− ∣∣x∣∣∣∣∣− √
t − M

}
∨ γ

2

]4
1A

n,t
M

]
dx

≤ 1

n

n∑
j=1

∫
{|x|≤κ}

E

[
1[{∣∣∣∣∣λn

j (0)
∣∣− ∣∣x∣∣∣∣∣− √

t − M
}

∨ γ
2

]4

×E
[∣∣ŵn

fp(x + iγ ) − wfp(x + iγ )
∣∣2|Xn(0)

]]
dx

≤
( tγ 2

γ 2 − 4t

)2 × C(γ, t)

n

n∑
j=1

∫
{|x|≤κ}

E

[
1[{∣∣∣∣∣λn

j (0)
∣∣− ∣∣x∣∣∣∣∣− √

t − M
}

∨ γ
2

]4

(
1

n2

+
∣∣∣∣∫

R

1

x + iγ − t.Gμ0�σt
(x + iγ ) − λ

[
dμn

0(λ) − dμ0(λ)
]∣∣∣∣2
)]

dx

≤ γ 8

(γ 2 − 4t)4

C(t)

n

(
I κ

111 + I κ
112

)
, (4.22)

where the third inequality comes from (3.22) combined with (3.2), where the fourth inequality comes
from the analysis of the constant C(γ, t) led in Section 3.2.2, and where:

I κ
111 := 1

n2

n∑
j=1

∫
{|x|≤κ}

E

[
1[{∣∣∣∣∣λn

j (0)
∣∣− ∣∣x∣∣∣∣∣− √

t − M
}

∨ γ
2

]4

]
dx

Iκ
112 :=

∫
{|x|≤κ}

E

[∫
1[{∣∣∣∣∣λ∣∣− ∣∣x∣∣∣∣∣− √

t − M
}

∨ γ
2

]4
dμn

0(λ)

∣∣∣∣√n

∫
R

1

x + iγ − t.Gμ0�σt
(x + iγ ) − λ

[
dμn

0(λ) − dμ0(λ)
]∣∣∣∣2

]
dx.
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Now we wish to upper bound I κ
111 and I κ

112 independently of κ . We first deal with I κ
111.

I κ
111 = 1

n

∫
{|x|≤κ}

∫
R

1[{∣∣∣∣∣λ∣∣− ∣∣x∣∣∣∣∣− √
t − M

}
∨ γ

2

]4
dμ0(λ)dx

≤ 2

n

∫ +∞

0

∫
R

1[{∣∣∣∣∣λ∣∣− x

∣∣∣− √
t − M

}
∨ γ

2

]4
dμ0(λ)dx ≤ 2C(4,M, t)

n
, (4.23)

by Lemma 4.8. Let us now consider I κ
112. Using Cauchy-Schwarz inequality, we have:

I κ
112 ≤

√√√√√E

[∫
{|x|≤κ}

(∫ 1[{∣∣∣∣∣λ∣∣− ∣∣x∣∣∣∣∣− √
t − M

}
∨ γ

2

]4
dμn

0(λ)
)2

dx

]
√√√√E

[∫
{|x|≤κ}

∣∣∣∣√n

∫
R

1

x + iγ − t.Gμ0�σt
(x + iγ ) − λ

[
dμn

0(λ) − dμ0(λ)
]∣∣∣∣4 dx

]
(4.24)

The first term can be treated exactly as I κ
111 as:

E

[∫
{|x|≤κ}

(∫ 1[{∣∣∣∣∣λ∣∣− ∣∣x∣∣∣∣∣− √
t − M

}
∨ γ

2

]4
dμn

0(λ)
)2

dx

]

≤ E

[∫
{|x|≤κ}

1( γ
2

)4

(∫ 1[{∣∣∣∣∣λ∣∣− ∣∣x∣∣∣∣∣− √
t − M

}
∨ γ

2

]4
dμn

0(λ)
)

dx

]
= 16n

γ 4
I κ

111. (4.25)

We now focus on the second term of (4.24). As in the proof of Proposition 3.6, if we denote by φx :=
ϕx+iγ : λ �→ (x + iγ − t.Gμ0�σt

(x + iγ ) − λ)−1, the last term can be rewritten as

I κ
1121 :=E

[∫
{|x|≤κ}

∣∣∣∣√n

∫
R

φx(λ)
[
dμn

0(λ) − dμ0(λ)
]∣∣∣∣4 dx

]

=n2
∫

{|x|≤κ}
E

[∣∣∣∣∣∣1n
n∑

j=1

(
φx(d

n
j ) −E(φx(d

n
j )
)∣∣∣∣∣∣

4 ]
dx,

where dn
1 , . . . , dn

n are the non-ordered diagonal elements of Xn(0) (see after Equation (1.6)). Since the
random variables dn

1 , . . . , dn
n are i.i.d. with law μ0, the random variables (φx(d

n
j ) − E(φx(d

n
j )))1≤j≤n

are i.i.d. centered with finite fourth moment. By Rosenthal and then Cauchy-Schwarz inequality, we
have

I κ
1121 ≤ C

n2
n2
∫

{|x|≤κ}
E

(∣∣φx(d
n
1 ) −E

[
φx(d

n
1 )
]∣∣4)dx, (4.26)

for C a constant. We can conclude if the above double integral is bounded independently of κ .
Let us recall now some estimates for the functions φx . As Im

(
Gμ0�σt

(x + iγ )
)
< 0, we have

|x + iγ − tGμ0�σt
(x + iγ ) − λ| ≥ Im(x + iγ − tGμ0�σt

(x + iγ ) − λ) ≥ γ ≥ γ

2
(4.27)
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and the functions φx are bounded by 2/γ . This yields that
∣∣ ∫

R
φx(λ)dμ0(λ)

∣∣ ≤ 2/γ . By Lemma 3.1,

|tGμ0�σt
(x + iγ )| ≤ t

γ
≤

√
t

2 ≤ √
t so that

|x + iγ − tGμ0�σt
(x + iγ ) − λ| ≥ (|x − λ| − √

t) ≥ (
∣∣|x| − |λ|∣∣− √

t). (4.28)

As a consequence,

|x + iγ − tGμ0�σt
(x + iγ ) − λ| ≥ (

∣∣|x| − |λ|∣∣− √
t) ∨ γ

2
. (4.29)

Using that dn
1 has distribution μ0, the double integral in the right hand side of (4.26) becomes:∫

{|x|≤κ}
E

(∣∣φx(d
n
1 ) −E

[
φx(d

n
1 )
]∣∣4)dx

=
∫

{|x|≤κ}

{
E
[|φx(d

n
1 )|4]− 2E

[|φx(d
n
1 )|2φx(d

n
1 )
]
E
[
φx(d

n
1 )
]+E

[
φ2

x(dn
1 )
]
E
[
φx(d

n
1 )
]2

− 2E
[|φx(d

n
1 )|2φx(d

n
1 )
]
E
[
φx(d

n
1 )
]+ 4E

[|φx(d
n
1 )|2]∣∣E[φx(d

n
1 )
]∣∣2

+E
[
φx(d

n
1 )2](

E
[
φx(d

n
1 )
])2 − ∣∣E[φx(d

n
1 )
]∣∣4}

≤I4,γ,0,t + 8

γ
I3,γ,0,t + 24

γ 2
I2,γ,0,t

by using the notation of Lemma 4.8 and by neglecting the term −∣∣E[φx(d
n
1 )
]∣∣4 < 0. The Lemma 4.8

allows us to conclude that I1121 is bounded by a constant only depending on t , since γ > 2
√

t .
We can now conclude Step 1. The last result, together with (4.26), implies that I κ

112 is bounded by a

constant only depending on t . From (4.22) and (4.23), we have that I κ
11 ≤ γ 8

(γ 2−4t)4
C1(M,t)

n
for C1(M, t)

a constant only depending on M and t . Gathering this result with (4.19), we finally obtain that:

I κ
1 ≤ γ 8

(γ 2 − 4t)4

C1(M, t)

n
+ 16

γ 2
κe−n.Ceig .M. (4.30)

Step 2: Let us consider I κ
2 . Using Proposition 3.2, we have:

I κ
2 =

∫
{|x|≤κ}

E

[
Var

(
Ĝμn

t

(
wfp(x + iγ )

) | Xn(0)
)]

dx

=
∫

{|x|≤κ}
E

[
Var

(
An

1

(
wfp(x + iγ )

) | Xn(0)
)]

dx

≤
∫

{|x|≤κ}
10 t

n2Im4
(
wfp(x + iγ )

)dx ≤ 10.24.t.2κ

n2γ 4
≤ 20κ

n2t
. (4.31)

Step 3: Let us now provide an upper bound for I κ
3 . Recall the definitions of An

2(z) and An
3(z) in (3.3):

I κ
3 =

∫
{|x|≤κ}

E

[∣∣An
2

(
wfp(x + iγ )

)+ An
3

(
wfp(x + iγ )

)∣∣2]dx

≤2
∫

{|x|≤κ}
E

[∣∣An
2

(
wfp(x + iγ )

)∣∣2]dx + 2
∫

{|x|≤κ}
E

[∣∣An
3

(
wfp(x + iγ )

)∣∣2]dx. (4.32)
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By using Proposition 3.3 together with Theorem 2.6 (i) and the fact that γ > 2
√

t , we obtain that the
first term in the right hand side is upper-bounded by

2
∫

{|x|≤κ}
E

[∣∣An
2

(
wfp(x + iγ )

)∣∣2]dx ≤ cκ

n2t
,

where c is an absolute constant. Let us now consider the second term in the right hand side of (4.32).
Using the bound of Proposition 3.6,

2
∫

{|x|≤κ}
E

[∣∣An
3

(
wfp(x + iγ )

)∣∣2]dx

≤ 2
γ 4

(γ 2 − 4t)2

∫
R

E

[∣∣∣ ∫
R

1

wfp(x + iγ ) − t.Gμt

(
wfp(x + iγ )

)− v
[dμn

0(v) − dμ0(v)]
∣∣∣2]dx. (4.33)

Recall that μn
0 is the empirical measure of independent random variables (dn

i ) with distribution μ0 and

whose order statistics are the (λn
i (0)). Recalling that

(
wfp(x + iγ ) − t.Gμt

(
wfp(x + iγ )

)− v
)−1 =

ϕwfp(x+iγ )(v), we have that

E

[∣∣∣ ∫
R

ϕwfp(x+iγ )(v)[dμn
0(v) − dμ0(v)]

∣∣∣2]= Var
[1

n

n∑
j=1

ϕwfp(x+iγ )(λ
n
j (0))

]

≤ 1

n
E
[|ϕwfp(x+iγ )(d

n
1 )|2]= 1

n

∫
R

1

|wfp(x + iγ ) − t.Gμt

(
wfp(x + iγ )

)− v|2 dμ0(v). (4.34)

We have:

|wfp(x + iγ ) − t.Gμt

(
wfp(x + iγ )

)− v| ≥ ∣∣Re
(
wfp(x + iγ ) − t.Gμt

(
wfp(x + iγ )

))− v
∣∣

≥ ∣∣Re
(
wfp(x + iγ )

)− v
∣∣− t

∣∣Re
(
Gμt

(
wfp(x + iγ )

))∣∣ .
By Theorem 2.6 (i), we have that:

∣∣Re
(
Gμt

(
wfp(x + iγ )

))∣∣≤ ∣∣∣∣∫
R

dμt(y)

wfp(x + iγ ) − y

∣∣∣∣≤ 1

|Im(wfp(x + iγ ))| ≤ 2

γ
.

Also, by using (2.11), we get that |Re(wfp(x + iγ )) − x| ≤ √
t . Therefore,

|wfp(x + iγ ) − t.Gμt

(
wfp(x + iγ )

)− v| ≥ ∣∣|x| − |v|∣∣− √
t − 2t

γ
. (4.35)

From (4.33), (4.34) and (4.35), we have that:

2
∫

{|x|≤κ}
E

[∣∣An
3

(
wfp(x + iγ )

)∣∣2]dx

≤ 2γ 4

n(γ 2 − 4t)2

∫
R

∫
R

1({∣∣|x| − |v|∣∣− √
t − 2t

γ

}
∨ γ

2

)2
dμ0(v)dx≤ 4γ 4

n(γ 2 − 4t)2
I2,γ,2

√
t,t ,
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by Lemma 4.8. We conclude as for I κ
11 and we obtain

I κ
3 ≤ cκ

n2t
+ 4γ 4

n(γ 2 − 4t)2
I2,γ,2

√
t,t . (4.36)

Gathering (4.30), (4.31) and (4.36) we obtain the result announced in Lemma 4.7. �

4.2.2. Upper bound for J κ

Recall the definition of J κ in (4.10). Our goal is to prove the following bound:

Lemma 4.9. There exist constants C1
J , C2

J and C3
J only depending on t such that, for any κ > γ , we

have:

J κ ≤ C1
J

κ
+ C2

J e− n.Ceig .κ

4 + C3
J μ0

({
|λ| > κ

4

})
. (4.37)

Proof. We decompose J κ ≤ 2(J κ
1 + J κ

2 ) where

J κ
1 :=

∫
{|x|>κ}

E

(∣∣∣ ∫
R

dμn
t (λ)

ŵn
fp(x + iγ ) − λ

∣∣∣2)dx, and J κ
2 :=

∫
{|x|>κ}

∣∣∣ ∫
R

dμt(λ)

wfp(x + iγ ) − λ

∣∣∣2dx.

Let us consider the first term J κ
1 . Using the estimate of Theorem-Definition 2.8, we have for all

x ∈ R that
∣∣Re

(
ŵn

fp(x + iγ )
)− x

∣∣ ≤ √
t and Im

(
ŵn

fp(x + iγ )
) ≥ γ /2. This allows us to prove that

there exists a constant Ct only depending on t such that for all λ ∈R

(x − λ)2 + γ 2

4
≤ Ct

(
Re2(ŵn

fp(x + iγ ) − λ
)2 + γ 2

4

)
. (4.38)

Thus,

J κ
1 ≤

∫
{|x|>κ}

E

∫
R

dμn
t (λ)

Re2
(
ŵn

fp(x + iγ ) − λ
)+ Im2

(
ŵn

fp(x + iγ )
)2

dx

≤ Ct E

[∫
R

dμn
t (λ)

∫
{|x|>κ}

1

(x − λ)2 + γ 2

4

dx

]

= 2Ct

γ
E

[∫
R

dμn
t (λ)

(
π − arctan

(
2

γ
(κ − λ)

)
− arctan

(
2

γ
(κ + λ)

))]
= 2Ct

γ
E

[∫
R

dμn
t (λ)

(
arctan

(
4κγ

4κ2 − 4λ2 − γ 2

)
+ π1{

λ2>κ2− γ 2
4

})] .

We now use the simple bounds | arctanx| ≤ |x| and | arctanx| ≤ π
2 for any x ∈ R. Moreover, one can

easily check that, if λ2 ≤ κ2

2 − γ 2

4 , then

4κγ

4κ2 − 4λ2 − γ 2
≤ 2γ

κ
.

We therefore get

J κ
1 ≤ 2Ct

γ
E

[∫
λ

dμn
t (λ)

(
2γ

κ
+ π

2
1{

λ2> κ2
2 − γ 2

4

} + π1{
λ2>κ2− γ 2

4

})] .
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If we assume moreover that κ > γ , this can be simplified as follows:

J κ
1 ≤Ct

(
4

κ
+ 3π

γ
E

[
μn

t

(
{|λ| > κ

2
}
)])

≤Ct

(
4

κ
+ 3π

γ
μ0

({
|λ| > κ

4

})
+ 3π

γ
e− n.Ceig .κ

4

)
, (4.39)

by using (4.16).
We now go to the second term J κ

2 . The strategy will be very similar to what we did for J κ
1 and we will

give less details. Using the estimate (2.11), we have for all x ∈ R that
∣∣Re

(
wfp(x + iγ )

)− x
∣∣ ≤ √

t ,
which allows us to get that

(x − λ)2 + γ 2

4
≤ Ct

(
Re2(wfp(x + iγ ) − λ

)2 + γ 2

4

)
,

with Ct as above. Thus,

J κ
2 ≤ Ct

∫
{|x|>κ}

∫
λ

dμt(λ)

(x − λ)2 + γ 2

4

dx

≤ 2Ct

γ

∫
λ

dμt(λ)

(
2γ

κ
+ π

2
1{

λ2> κ2
2 − γ 2

4

} + π1{
λ2>κ2− γ 2

4

}) .

Again, if we assume that κ > γ , this can be simplified as follows:

J κ
2 ≤ Ct

(
4

κ
+ 3π

γ
μt

({
|λ| > κ

2

}))
.

Moreover, letting n going to infinity in (4.16), by Proposition 2.3 and dominated convergence, we get
that, for any κ > γ ,

μt

({
|λ| > κ

2

})
≤ μ0

({
|λ| > κ

4

})
,

so that

J κ
2 ≤ Ct

(
4

κ
+ 3π

γ
μ0

({
|λ| > κ

4

}))
. (4.40)

Gathering the upper bounds (4.39) and (4.40), we get that for any κ > γ ,

J κ ≤ Ct

(
8

κ
+ 6π

γ
μ0

({
|λ| > κ

4

})
+ 3π

γ
e− n.Ceig .κ

4

)
. (4.41)

This ends the proof. �

4.2.3. Conclusion

As a result, combining Lemma 4.7 and Lemma 4.9, we have:

I κ + J κ ≤ γ 8

(γ 2 − 4t)4

C1
I

n
+ κC2

I

n2
+ C3

I κe−n.Ceig .M + C1
J

κ
+ C2

J e−nCeig . κ
4 + C3

J μ0

({
|λ| > κ

4

})
.
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We take M the smallest constant only depending on t satisfying conditions of Lemma 4.6 and κ = n.
Using Assumption (4.3), we obtain μ0 ({|λ| > n}) ≤ Cn−1, for some absolute constant C. Then, from
(4.10) and previous computations, there exists a constant Cvar(t) (that depends only on t) such that for
n sufficiently large:

E(�) ≤ γ 8

(γ 2 − 4t)4

Cvar(t).e
2γ
h

n
(4.42)

and Theorem 4.1 is proved.

5. Numerical simulations

In this section, we conduct a simulation study to assess the performances of our estimator p̂0,h designed
in Definition 2.9 based on the n-sample λn(t) := {λn

1(t), . . . , λ
n
n(t)} of (non ordered) eigenvalues. We

consider the sample size n = 4000 and the time value t = 1. We focus on initial conditions following a
Cauchy distribution with scale parameter sd = 5:

p0(x) = 1

π
.

sd

(s2
d + x2)

, x ∈ R.

We also consider the case of a mixture of Gaussian distributions with different variances with p0 the
density of wZ1 + (1 − w)Z2 where w, Z1 and Z2 independent and w ∼ Ber(0.25), Z1 ∼ N (0,1) and
Z2 ∼ N (10,4).

Expression (2.15) is used with the kernel K(x) = sinc(x) = sin(x)/(πx), and the value γ = 2
√

t +
0.01 so that the condition γ > 2

√
t is satisfied. To implement p̂0,h, we approximate integrals involved

in Fourier and inverse Fourier transforms by Riemann sums, so it may happen that p̂0,h(x) is not real.
This is the reason why the density p0 is estimated with Re(p̂0,h), the real part of p̂0,h.

The theoretical bandwidth h proposed in Section 4 cannot be used in practice and we suggest the
following data-driven selection rule, inspired from the principle of cross-validation. We decompose the
quadratic risk for Re(p̂0,h) as follows:

∥∥Re(p̂0,h) − p0
∥∥2 =

∫
R

∣∣Re(p̂0,h(x)) − p0(x)
∣∣2 dx

= ∥∥Re(p̂0,h)
∥∥2 − 2

∫
R

Re(p̂0,h(x))p0(x)dx + ‖p0‖2 .

Then, an ideal bandwidth h would minimize the criterion J with

J (h) := ∥∥Re(p̂0,h)
∥∥2 − 2

∫
R

Re(p̂0,h(x))p0(x)dx, h ∈ R
∗+.

Since J depends on p0 through the second term, we investigate a good estimate of this criterion. For
this purpose, we divide the sample λn(t) into two disjoints sets

λn,E(t) := (λn
i (t))i∈E and λn,Ec

(t) := (λn
i (t))i∈Ec .

There are Vmax :=
(

n

n/2

)
possibilities to select the subsets (E,Ec), which is huge. Hence, to reduce

computational time, we draw randomly V = 10 partitions denoted (Ej ,E
c
j )j=1,...,V . Choosing the grid
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Figure 1. (a): Plots of h �→ Crit(h) and h �→ J (h) (a): for the Cauchy density. (b): for the mixture of Gaussian
densities.

H of 50 equispaced points lying between hmin = 0.25 and hmax = 2.7, our selected bandwidth is

ĥ = argmin
h∈H

Crit(h) (5.1)

with

Crit(h) := min
h′∈H,h′ �=h

1

V

V∑
j=1

(∥∥∥Re(p̂
(Ej )

0,h )

∥∥∥2 − 2
∫
R

Re(p̂
(Ej )

0,h (x))Re(p̂
(Ec

j )

0,h′ (x))dx

)

and our final estimator is then Re(p̂0,ĥ
). In the last expression, p̂

(Ej )

0,h and p̂
(Ec

j )

0,h′ are estimates based on
the samples Ej and Ec

j respectively.
To evaluate our approach, Figure 1 displays the plot of h ∈H �→ Crit(h) and h ∈H �→ J (h) for each

density p0. A close inspection of the graphs shows that the minimizer of the first criterion is a good

Figure 2. Estimation of p0 (a): for the Cauchy density (b): for the mixture of Gaussian densities.
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estimate of the minimizer of the second one. As expected, for both criterions, we observe a plateau
containing minimizers of J and Crit. Outside the plateau, both criterions take large values due to large
variance when h is too small and to large bias when h is too large.

Figure 2 gives the reconstruction provided by Re(p̂0,ĥ
) for each density p0. The results are quite

satisfying, meaning that our estimation procedure seems to perform well in practice for estimating
initial conditions of the Fokker-Planck equation. For further numerical studies, we refer the reader to
[27].
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