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Abstract. In this paper we consider the problem of estimating f , the conditional density of Y given X, by using an independent
sample distributed as (X,Y ) in the multivariate setting. We consider the estimation of f (x, ·) where x is a fixed point. We define
two different procedures of estimation, the first one using kernel rules, the second one inspired from projection methods. Both
adaptive estimators are tuned by using the Goldenshluger and Lepski methodology. After deriving lower bounds, we show that these
procedures satisfy oracle inequalities and are optimal from the minimax point of view on anisotropic Hölder balls. Furthermore,
our results allow us to measure precisely the influence of fX(x) on rates of convergence, where fX is the density of X. Finally,
some simulations illustrate the good behavior of our tuned estimates in practice.

Résumé. Dans cet article, nous considérons le problème de l’estimation de f , la densité conditionnelle de Y sachant X, en utilisant
un échantillon de même loi que (X,Y ), dans le cadre multivarié. On considère l’estimation de f (x, ·) où x est un point fixé.
Nous définissons deux procédures d’estimation différentes, la première utilisant des estimateurs à noyau, alors que la seconde
s’inspire des méthodes de projection. Les deux procédures adaptatives sont calibrées en utilisant la méthodologie proposée par
Goldenshulger et Lepski. Une fois obtenu le calcul des bornes inférieures du risque, nous montrons que ces procédures satisfont
des inégalités oracles et sont optimales du point de vue minimax sur les boules de Hölder anisotropes. De plus, nos résultats nous
permettent de mesurer précisément l’influence de fX(x) sur les vitesses convergence, où fX est la densité de X. Finalement, des
simulations numériques illustrent le bon comportement de nos procédures calibrées en pratique.

MSC: 62G05; 62G20

Keywords: Conditional density; Adaptive estimation; Kernel rules; Projection estimates; Oracle inequality; Minimax rates; Anisotropic Hölder
spaces

1. Introduction

1.1. Motivation

In this paper, we consider the problem of conditional density estimation. For this purpose, we assume we are given an
i.i.d. sample (Xi, Yi) of couples of random vectors (for any i, Xi ∈ Rd1 and Yi ∈ Rd2 , with d1 ≥ 1 and d2 ≥ 1) with
common probability density function fX,Y and marginal densities fY and fX : for any y ∈Rd2 and any x ∈ Rd1 ,

fY (y) =
∫
R

d1
fX,Y (u, y)du, fX(x) =

∫
R

d2
fX,Y (x, v)dv.
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The conditional density function of Yi given Xi = x is defined by

f (x, y) = fX,Y (x, y)

fX(x)

for all y ∈ Rd2 and x ∈ Rd1 such that fX(x) > 0. Our goal is to estimate f using the observations (Xi, Yi). The
conditional density is much more informative than the simple regression function and then its estimation has many
practical applications: in Actuaries (Efromovich [17]), Medicine (Takeuchi et al. [37]), Economy (Hall et al. [26]),
Meteorology (Jeon and Taylor [29]) among others. In particular, due to recent advances in ABC methods, the problem
of conditional density estimation in the multivariate setting is of main interest.

Indeed, the ABC methodology, where ABC stands for approximate Bayesian computation, offers a resolution of
untractable-yet-simulable models, that is models for which it is impossible to calculate the likelihood. The standard
ABC procedure is very intuitive and consists in

• simulating a lot of parameters values using the prior distribution and, for each parameter value, a corresponding
dataset;

• comparing this simulated dataset to the observed one;
• finally, keeping the parameter values for which distance between the simulated dataset and the observed one is

smaller than a tolerance level.

That is a crude nonparametric approximation of the target posterior distribution (the conditional distribution of the
parameters given the observation). Even if some nonparametric perspectives have been considered (see Blum [8] or
Biau et al. [6]), we easily imagine that, using the simulated couples (parameters and datasets), a good nonparametric
estimation of the posterior distribution can be a credible alternative to the ABC method. Such a procedure has to
consider that the conditional density has to be estimated only for the observed value in the conditioning.

All previous points clearly motivate our work and in the sequel, we aim at providing an estimate with the follow-
ing 4 requirements:

1. The estimate has to be fully data-driven and implementable in a reasonable computational time.
2. The parameters of the method have to adapt to the function f in the neighborhood of x. Tuning the hyperparameters

of the estimate has to be an easy task.
3. The estimate should be optimal from the theoretical point of view in an asymptotic setting but also in a nonasymp-

totic one.
4. Estimating f in neighborhoods of points x where fX(x) is equal or close to 0 is of course a difficult task and a

loss is unavoidable. Studying this loss and providing estimates that are optimal with respect to this problem are the
fourth motivation of this paper.

To address the problem of conditional density estimation, the first idea of statisticians was to estimate f by the
ratio of a kernel estimator of the joint density fX,Y and a kernel estimator of fX : see Rosenblatt [33], Chen et al. [12],
or also Hyndman et al. [27], De Gooijer and Zerom [15] for refinements of this method. An important work in this
line is the one of Fan et al. [18] who extend the Rosenblatt estimator by a local polynomial method (see also Hyndman
and Yao [28]). The estimators introduced in the ABC literature are also of this kind: a linear (or quadratic) adjustment
is realized on the data before applying the classic quotient estimator (Beaumont et al. [4], Blum [8]). Other directions
are investigated by Bouaziz and Lopez [9] who use a single-index model, or Györfi and Kohler [25] who partition
the space and obtain a piecewise constant estimate. All these papers have in common to involve a ratio between two
density estimates, though we can mention Stone [36] for a spline tensor based maximum likelihood estimator. An
original approach which rather involves a product is the copula one of Faugeras [20]. But his method depends on a
bandwidth, that remains to select from the data. In particular, for all of these methods, the second requirement is not
satisfied.

The practical choice of the bandwidth and cross-validation methods are studied in Bashtannyk and Hyndman
[3] and [19]. However, no theoretical result is associated to this study. The first adaptive results can be found in
Clémençon [13] for the estimation of the transition density of a Markov chain, which is a very similar problem to the
one of conditional density estimation (set Yi = Xi+1). He uses thresholding of wavelet estimator. Afterwards, using
different methods, the works of Brunel et al. [10] or Efromovich [16] yield oracle inequalities and minimax rates of
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convergence for anisotropic conditional densities. The case of inhomogeneous regularities is studied in Akakpo and
Lacour [1] or Sart [34] in the case of Markov chains. Still for global adaptive approach, we can cite Chagny [11] who
applies the Goldenshluger–Lepski methodology to warped bases and Cohen and Le Pennec [14] who use a model
selection approach with Kullback risk. All the previous authors use a global risk and either consider integration with
respect to fX(x)dx or assume that fX is bounded from below by a constant (as it is done in regression estimation). We
are interested in precisely studying this assumption to show that it is unavoidable in some sense.

1.2. Our strategy and our contributions

Our strategy to estimate f is based on the Goldenshluger and Lepski methodology proposed in the seminal papers
Goldenshluger and Lepski [22,23] in the case of density estimation and extended to the white noise and regression
models in Goldenshluger and Lepski [24]. This strategy detailed in Section 2 allows us to derive two procedures:
kernel and projection rules. If they seem different, they are based on similar ideas and they lead to quite similar
theoretical results. Our method automatically selects a regularization parameter, and in particular a bandwidth for
kernel rules. Note that the tolerance level in ABC methods can be reinterpreted as a regularization parameter.

Unlike most of previous works of the literature, we shall not use a global risk and we will evaluate the quality of
an estimator f̂ at a fixed point x ∈ R and in the L2-norm with respect to the variable y. In other words, we will use
the risk

Rx(f̂ , q) = (
E
[‖f̂ − f ‖q

x,2

])1/q
, (1.1)

where for any function g,

‖g‖x,2 =
(∫

R
d2

g2(x, y)dy

)1/2

. (1.2)

The previously mentioned motivating applications show that the tuning parameter has to depend on x, which is
not the case of other cited-above adaptive methods. As shown later, combined with the Goldenshluger and Lepski
methodology, considering this risk allows us to derive estimates satisfying this property. Furthermore, for a given x,
y �→ f (x, y) is a density, so it is natural for us to study the estimation pointwisely in x.

From the theoretical point of view, we establish nonasymptotic meaningful oracle inequalities and rates of con-
vergence on anisotropic Hölder balls Hd(α,L). More precisely, in Proposition 1 and Theorem 4, we establish lower
bounds in oracle and minimax settings. Then, upper bounds of the risk for our adaptive kernel procedure are estab-
lished (see Theorems 1, 2 and 5). If the density fX is smooth enough, Corollary 1 shows that upper and lower bounds
match up to constants in the asymptotic setting. Then, there is a natural question: is this assumption on the smooth-
ness of fX mandatory? We prove that the answer is no by establishing the upper bound of the risk for our adaptive
projection estimate (see Theorems 3 and 6). In particular, the latter achieves a polynomial rate of convergence on
anisotropic Hölder balls with rate exponent ᾱ/(2ᾱ + 1), where ᾱ is the classical anisotropic smoothness index. To
our knowledge, this rate exponent is new in the conditional density estimation setting for the pointwise risk in x. Our
result also explicits the dependence of the rate with respect to L on the one hand and to fX(x) on the other hand,
which is not classical. Indeed, as previously recalled, estimation is harder when fX(x) is small and this is the reason
why most of the papers assume that fX is bounded from below by a constant. For kernel rules, our study is sharp
enough to measure precisely the influence of fX(x) on the performance of our procedure. Under some conditions and
if the sample size is n, we show that the order of magnitude of minimax rates (that are achieved by our procedure), is
(nfX(x))ᾱ/(2ᾱ+1). We conclude that our setting is equivalent to the setting where fX is locally bounded from 0 by 1
but we observe nfX(x) observations instead of n.

Finally, we study our procedures from a practical point of view. We aim at completing theoretical results by study-
ing tuning issues. More precisely, our procedures are data driven and tuning parameters depend on x and on an
hyperparameter η, a constant that has to be tuned. We lead a precise study that shows how to choose η in practice. We
also show that reconstructions for various examples and various values of n are satisfying. All these results show that
our procedures fulfill requirements listed in Section 1.1.
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1.3. Overview and notations

Our paper is organized as follows. In Section 2, we present the Goldenshluger and Lepski methodology in the setting
of conditional density estimation. In Sections 4 and 5 respectively, kernel and projection rules are derived and studied
in the oracle setting by using assumptions of Section 3. Rates of convergence on anisotropic Hölder balls are studied in
Section 6. Then a simulation study is lead in Section 7, where we focus on tuning aspects of our procedures. Finally,
in Section 8 and in the Appendix, we prove our results. To avoid too tedious technical aspects, most of proofs are
only given for d1 = d2 = 1 but can easily be extended to the general case. In the sequel, we assume that the sample
size is 2n. The first n observations (X1, Y1), . . . , (Xn,Yn) are used to estimate f , whereas Xn+1, . . . ,X2n are used to
estimate fX when necessary. We recall that for any i, Xi ∈ Rd1 and Yi ∈ Rd2 and we set d = d1 + d2.

In addition to notations Rx(·, ·) and ‖ · ‖x,2 introduced in (1.1) and (1.2), we use for any 1 ≤ q < ∞ ‖ · ‖q , the
classical Lq -norm of any function g:

‖g‖q
q =

∫ ∣∣g(x)
∣∣q dx.

Some assumptions on functions f and fX , specified in Section 3, will depend on the following neighborhood of x,
denoted Vn(x): Given A a positive real number and (kn)n any positive sequence larger than 1 only depending on n

and such that kn goes to +∞, we set:

Vn(x) =
d1∏

i=1

[
xi − 2A

kn

, xi + 2A

kn

]
.

Note that the size of Vn(x) goes to 0. Then, we set

‖f ‖∞ = sup
t∈Vn(x)

sup
y∈Rd2

f (t, y) ∈ [0,+∞], ‖fX‖∞ = sup
t∈Vn(x)

fX(t) ∈ [0,+∞]

and

δ = inf
t∈Vn(x)

fX(t) ≥ 0.

Our results will strongly depend on these quantities. Finally, for any u ∈R, we set {u}+ = max(u,0).

2. Methodology

2.1. The Goldenshluger–Lepski methodology

This section is devoted to the description of the Goldenshluger–Lepski methodology (GLM for short) in the setting of
conditional density estimation.

The GLM consists in selecting an estimate from a family of estimates, each of them depending on a parameter m.
Most of the time, choosing this tuning parameter can be associated to a regularization scheme: if we take m too small,
then the estimate oversmooths; if we take m too large, data are overfitted.

So, given a set of parameters Mn, for any m ∈ Mn, we assume we are given a smoothing linear operator denoted
Km and an estimate f̂m. For any m ∈ Mn, f̂m is related to Km(f ) via its expectation and we assume that E[f̂m] is
close to (or equal to) Km(f ). The main assumptions needed for applying the GLM are

Km ◦Km′ = Km′ ◦Km (2.1)

and

Km(f̂m′) = Km′(f̂m) (2.2)
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for any m,m′ ∈ Mn. The GLM is a convenient way to select an estimate among (f̂m)m∈Mn
which amounts to

selecting m ∈ Mn and can be described as follows: For ‖ · ‖ a given norm and σ a function to be chosen later, we set
for any m in Mn,

A(m) := sup
m′∈Mn

{∥∥f̂m′ −Km′(f̂m)
∥∥− σ

(
m′)}

+.

Then we estimate f by using f̂ := f̂m̂, where m̂ is selected as follows:

m̂ := arg min
m∈Mn

{
A(m) + σ(m)

}
.

This choice can be seen as a bias–variance tradeoff, with σ(m) an estimator of the standard deviation of f̂m and A(m)

an estimator of the bias (see later). Let us now fix m ∈Mn. Using (2.2), we have:

‖f̂ − f ‖ = ‖f̂m̂ − f ‖
≤ ∥∥f̂m̂ −Km̂(f̂m)

∥∥+ ∥∥Km(f̂m̂) − f̂m

∥∥+ ‖f̂m − f ‖
≤ A(m) + σ(m̂) + A(m̂) + σ(m) + ‖f̂m − f ‖
≤ 2A(m) + 2σ(m) + ∥∥f̂m −Km(f )

∥∥+ ∥∥Km(f ) − f
∥∥.

But

A(m) = sup
m′∈Mn

{∥∥f̂m′ −Km′(f̂m)
∥∥− σ

(
m′)}

+

≤ ξ(m) + B(m)

with for any m ∈Mn,

ξ(m) := sup
m′∈Mn

{∥∥(f̂m′ −Km′(f )
)− (

Km′(f̂m) − (Km′ ◦Km)(f )
)∥∥− σ

(
m′)}

+

and

B(m) := sup
m′∈Mn

∥∥Km′(f ) − (Km′ ◦Km)(f )
∥∥.

We finally obtain:

‖f̂ − f ‖ ≤ 2B(m) + 2σ(m) + ∥∥f̂m −Km(f )
∥∥+ ∥∥f −Km(f )

∥∥+ 2ξ(m). (2.3)

Now, let us assume that

‖|K‖| := sup
m∈Mn

‖|Km‖| < ∞, (2.4)

where ‖|Km‖| is the operator norm of Km associated with ‖ · ‖. In this case, B(m) is upper bounded by ‖f −Km(f )‖
up to the constant ‖|K‖|, which corresponds to the bias of f̂m if

Km(f ) = E[f̂m]. (2.5)

Furthermore, using (2.1) and (2.2), for any m ∈ Mn,

ξ(m) ≤ sup
m′∈Mn

{(
1 + ‖|K‖|)∥∥f̂m′ −Km′(f )

∥∥− σ
(
m′)}

+.
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Then we choose σ such that, with high probability, for any m ∈Mn,

∥∥f̂m −Km(f )
∥∥ ≤ σ(m)/

(‖|K‖| + 1
)
. (2.6)

So, (2.3) gives that, with high probability,

‖f̂ − f ‖ ≤ C inf
m∈Mn

{∥∥f −Km(f )
∥∥+ σ(m)

}
, (2.7)

where C depends only on ‖|K‖|. Since under (2.5), σ(m) controls the fluctuations of f̂m around its expectation,
σ 2(m) can be viewed as a variance term and the oracle inequality (2.7) justifies our procedure. Previous computations
combined with the upper bound of A(m) also justify why A(m) is viewed as an estimator of the bias.

Now, we illustrate this methodology with two natural smoothing linear operators: convolution and projection. The
natural estimates associated with these operators are kernel rules and projection rules respectively. Next paragraphs
describe the main aspects of both procedures and discuss assumptions (2.1), (2.2), (2.4) and (2.5) which are the key
steps of the GLM.

2.2. Convolution and kernel rules

Kernel rules are the most classical procedures for conditional density estimation. To estimate f , the natural approach
consists in considering the ratio of a kernel estimate of fX,Y with a kernel estimate of fX . Actually, we use an alterna-
tive approach and to present our main ideas, we assume for a while that fX is known and positive.

We introduce a kernel K , namely a bounded integrable function K such that
∫∫

K(u,v)dudv = 1 and ‖K‖2 < ∞.
Then, given a regularization parameter, namely a d-dimensional bandwidth h belonging to a set Hn to be specified
later, we set

Kh(u, v) = 1∏d
i=1 hi

K

(
u1

h1
, . . . ,

ud1

hd1

,
v1

hd1+1
, . . . ,

vd2

hd

)
, u ∈Rd1 , v ∈Rd2 .

Then, we use the setting of Section 2.1 except that regularization parameters are denoted h, instead of m to match with
usual notation of the literature. Similarly, the set of bandwidths is denoted by Hn, instead of Mn. For any h ∈ Hn, we
set:

∀g ∈ L2, Kh(g) = Kh ∗ g,

where ∗ denotes the standard convolution product and

f̂h(x, y) := 1

n

n∑
i=1

1

fX(Xi)
Kh(x − Xi, y − Yi). (2.8)

The regularization operator Kh corresponds to the convolution with Kh. Note that

E
[
f̂h(x, y)

] = (Kh ∗ f )(x, y).

Therefore 3 of 4 assumptions of the GLM are satisfied, namely (2.1), (2.2) and (2.5). Unfortunately, (2.4) is satisfied
with ‖ ·‖ the classic L2-norm but not with ‖ ·‖x,2, as adopted in this paper. We shall see how to overcome this problem
later on.

Another drawback of this description is that f̂h is based on the knowledge of fX . A kernel rule based on f̂X , an
estimate of fX , is proposed in Section 4.2 where we define σ (see (2.6)) to apply the GLM methodology and then to
obtain oracle inequalities similar to (2.7). Additional terms in oracle inequalities will be the price to pay for using f̂X
instead of fX .
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2.3. Projection

We introduce a collection of models (Sm)m∈Mn
and for any m, we denote Km the projection on (Sm, 〈·, ·〉X) where

〈·, ·〉X is the scalar product defined by:

∀g,g′,
〈
g,g′〉

X
=

∫ ∫
g(u, y)g′(u, y)fX(u)dudy. (2.9)

Of course, (2.1) is satisfied, but as for kernel rules, (2.4) is not valid with ‖ · ‖ = ‖ · ‖x,2. Now, we introduce the
following empirical contrast:

for all function t, γn(t) = 1

n

n∑
i=1

[∫
R

t2(Xi, y)dy − 2t (Xi, Yi)

]
,

so that E(γn(t)) is minimum when t = f (see Lemma 1 in Section 5.2). Given m in Mn, the conditional density can
be estimated by:

f̂m ∈ arg min
t∈Sm

γn(t). (2.10)

Unlike kernel rules, this estimate does not depend on fX but (2.2) and (2.5) are not satisfied even if for large values of
n, Km(f ) ≈ E[f̂m]. Therefore, we modify this approach to overcome this problem. The idea is the following. Let us
denote Sm∧m′ = Sm ∩Sm′ . Taking inspiration from the fact that Km ◦Km′(f ) = Km∧m′(f ), set for any (m,m′) ∈ M2

n,

K̃m(f̂m′) = f̂m∧m′ .

This operator is only defined on the set of the estimators f̂m but verifies (2.2). Now the previous reasoning can be
reproduced and the GLM described in Section 2.1 can be applied by replacing Km′ by K̃m′ in A(m) and by setting

ξ(m) := sup
m′∈Mn

{∥∥(f̂m′ −Km′(f )
)− (

K̃m′(f̂m) − (Km′ ◦Km)(f )
)∥∥− σ

(
m′)}

+.

In Section 5.2, we define σ such that for all m,m′ ∈ Mn, σ(m ∧ m′) ≤ σ(m′) and similarly to (2.6), with high
probability, for any m ∈ Mn,

∥∥f̂m −Km(f )
∥∥ ≤ σ(m)

2
.

Then, for all m,m′ ∈Mn,

∥∥K̃m′(f̂m) − (Km′ ◦Km)(f )
∥∥ = ∥∥f̂m∧m′ −Km∧m′(f )

∥∥ ≤ σ(m ∧ m′)
2

≤ σ(m′)
2

so that ξ(m) vanishes with high probability. Thus, we shall be able to derive oracle inequalities in this case as well.

2.4. Discussion

We have described two estimation schemes for which the GLM is appropriate: kernel and projection rules. In these
schemes, the main commutative properties of the GLM, namely (2.1) and (2.2), are satisfied. Due to the particular
choice of the loss-function ‖ · ‖x,2, the property (2.4) is not satisfied. However in both schemes, we shall be able to
prove that for any function g∥∥Km(g)

∥∥
x,2 ≤ C sup

t∈Vn(x)

‖g‖t,2 (2.11)

where C is a constant, Vn(x) is the neighborhood of x introduced in Section 1.3, and this property will allow us to
control the bias term B(m), as well as the term ξ(m). In the sequel, we shall cope with the following specific features
of each scheme:
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• For kernel rules, when fX is known, (2.5) is satisfied and these estimates lead to straightforward application of the
GLM. But, when fX is unknown, serious difficulties will arise.

• For projection rules, the dependence on the knowledge of fX will be weaker but since (2.5) is not satisfied, the
control of the bias term will not be straightforward.

Beyond these aspects, our main task in next sections will be to derive for each estimation scheme a function σ that
conveniently controls the fluctuations of preliminary estimates as explained in Section 2.1.

3. Assumptions

In this section, we state our assumptions on f and fX .

(H1) The conditional density f is uniformly bounded on Vn(x) ×Rd2 : ‖f ‖∞ < ∞.
(H2) The density fX is uniformly bounded on Vn(x): ‖fX‖∞ < ∞.
(H3) The density fX is bounded away from 0 on Vn(x): δ > 0. In the sequel, without loss of generality, we assume

that δ ≤ 1.

Assumptions (H1) and (H2) are very mild. Note that under (H1), since f is a conditional density, for any t ∈ Vn(x),∫
f (t, v)dv = 1 and

sup
t∈Vn(x)

‖f ‖2
t,2 ≤ sup

t∈Vn(x),y∈Rd2

f (t, y)

∫
f (t, v)dv = ‖f ‖∞ < ∞. (3.1)

Assumption (H3) is not mild but is in some sense unavoidable. As said in Introduction, one goal of this paper is to
measure the influence of the parameter δ on the performance of the estimators of f .

For the procedures considered in this paper, if fX is unknown, we need a preliminary estimator of fX denoted f̂X
that is constructed with observations (Xi)i=n+1,...,2n. Then, we first assume that f̂X satisfies the following condition:

δ̂ := inf
t∈Vn(x)

∣∣f̂X(t)
∣∣ > 0. (3.2)

For estimating fX , f̂X has to be rather accurate:

∀λ > 0, P

(
sup

t∈Vn(x)

∣∣∣∣ fX(t) − f̂X(t)

f̂X(t)

∣∣∣∣ > λ

)
≤ κ exp

{−(logn)3/2}, (3.3)

where κ is a constant only depending on λ and fX . Theorem 4 in Bertin et al. [5] proves the existence of an estimate
f̂X satisfying these properties.

4. Kernel rules

In this section, we study the data-driven kernel rules we propose for estimating the conditional density f . They are
precisely defined in Section 4.2 and their theoretical performances in the oracle setting are studied in Section 4.3.
Before doing this, in Section 4.1, we establish a lower bound of the risk for any kernel estimate.

4.1. Lower bound for kernel rules

In this section, we consider the kernel estimate f̂h defined in (2.8) for h ∈ Hn. In particular, fX is assumed to be known.
For any fixed h ∈ Hn, we provide a lower bound of the risk of f̂h with q = 2 by using the following bias–variance
decomposition:

R2
x(f̂h,2) = E

[‖f̂h − f ‖2
x,2

] = ‖Kh ∗ f − f ‖2
x,2 +

∫
var

(
f̂h(x, y)

)
dy.
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Proposition 1. Assume that (H1) is satisfied. Then if K(x,y) = K(1)(x)K(2)(y) with K(1) supported by [−A,A]d1 ,
for any h ∈Hn, we have for any n,

R2
x(f̂h,2) ≥ ‖Kh ∗ f − f ‖2

x,2 + ‖K(2)‖2
2

n
∏d

i=1 hi

×
∫ [K(1)(s)]2

fX(x − (s1h1, . . . , sd1hd1))
ds + C1

n
,

where C1 depends on ‖K‖1 and ‖f ‖∞. If we further assume that fX is positive and continuous on a neighborhood of
x, then if maxHn → 0 when n → +∞,

R2
x(f̂h,2) ≥ ‖Kh ∗ f − f ‖2

x,2 + ‖K‖2
2

fX(x)n
∏d

i=1 hi

× (
1 + o(1)

)+ O

(
1

n

)
, (4.1)

when n → +∞.

The proof of Proposition 1 is given in Section 8. The lower bounds of Proposition 1 can be viewed as benchmarks
for our procedures. In particular, our challenge is to build a data-driven kernel procedure whose risk achieves the lower
bound given in (4.1). It is the goal of the next section where we modify f̂h by estimating fX when fX is unknown.

4.2. Kernel estimator

Let us now define more precisely our kernel estimator. We consider the kernel K defined in Section 2.2, but following
assumptions of Proposition 1, we further assume until the end of the paper that following conditions are satisfied.

• The kernel K is of the form K(u,v) = K(1)(u)K(2)(v), u ∈ Rd1 , v ∈Rd2 .
• The function K(1) is supported by [−A,A]d1 .

Our data-driven procedure is based on f̂X (see Section 3) and is defined in the following way. We naturally replace f̂h

defined in (2.8) with

f̂h(x, y) = 1

n

n∑
i=1

1

f̂X(Xi)
Kh(x − Xi, y − Yi). (4.2)

Then, we set

σ(h) = χ√
δ̂n

∏d
i=1 hi

with χ = (1 + η)
(
1 + ‖K‖1

)‖K‖2, (4.3)

where δ̂ is defined in (3.2) and η > 0 is a tuning parameter. The choice of this parameter will be discussed in Section 7
but all theoretical results are true for any η > 0. We also specify the set Hn:

(CK) For any h = (h1, . . . , hd) ∈ Hn, we have for any i, h−1
i is a positive integer and

kn ≤ 1

hi

, ∀i ∈ {1, . . . , d1}, 1∏d1
i=1 hi

≤ δ̂n

(logn)3
and log2(n) ≤ 1∏d

i=d1+1 hi

≤ n.

The GLM described in Section 2.2 can be applied and we estimate f with f̂ = f̂
ĥ

where

ĥ = ĥ(x) := arg min
h∈Hn

{
A(h) + σ(h)

}
,

A(h) := sup
h′∈Hn

{‖f̂h′ − f̂h,h′ ‖x,2 − σ
(
h′)}

+,
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and

f̂h,h′(x, y) = 1

n

n∑
i=1

[
f̂X(Xi)

]−1
(Kh ∗ Kh′)(x − Xi, y − Yi) = (Kh′ ∗ f̂h)(x, y). (4.4)

In the case where fX is known, f̂X is replaced by fX and δ̂ by δ. In particular, we obtain the expressions of Section 2.2
except that now σ is specified.

4.3. Oracle inequalities for kernel rules

We establish in this section oracle inequalities for our estimator f̂ with in mind the benchmarks given in (4.1). To
shed lights on the performance of our procedure and on the role of δ, we first deal with the case where fX is known.
We first state a trajectorial oracle inequality and then a control of the risk.

Theorem 1. Assume that the density fX is known so that f̂X = fX . We also assume that (H1), (H3) and (CK) are
satisfied. If δn ≥ 1, we have with probability larger than 1 − C exp{−(logn)5/4},

‖f̂ − f ‖x,2 ≤ inf
h∈Hn

{
C1 sup

t∈Vn(x)

‖Kh ∗ f − f ‖t,2 + C2√
δn

∏d
i=1 hi

}
, (4.5)

where C1 = 1 + 2‖K‖1, C2 = (1 + η)‖K‖2(3 + 2‖K‖1) and C depends on K , η and ‖f ‖∞. Furthermore, for any
q ≥ 1,

Rx(f̂ , q) ≤ C̃1 inf
h∈Hn

{
sup

t∈Vn(x)

‖Kh ∗ f − f ‖t,2 + 1√
δn

∏d
i=1 hi

}
+ C̃2√

n
, (4.6)

where C̃1 depend on K , η and q and C̃2 depends on K , η, ‖f ‖∞ and q .

Due to the assumptions on Hn, the last term of the right hand side of (4.6), namely C̃2/
√

n, is negligible with
respect to the first one. Furthermore, since σ 2(h) is proportional to (δn

∏n
i=1 hi)

−1, the latter can be viewed as a
variance term (see Section 2.1). Then right hand sides of (4.5) and (4.6) correspond to the best tradeoff between a
bias term and a variance term, so (4.5) and (4.6) correspond indeed to oracle inequalities. Next, we can compare
the (squared) upper bound of (4.6) and the lower bound of (4.1) when q = 2 and fX is continuous. We note that
these bounds match up to leading constants, asymptotically negligible terms and up to the fact that terms of (4.6) are
computed on Vn(x) instead at x (note that the size of Vn(x) goes to 0 when n → +∞ and δ and fX(x) are close).
Actually, since (2.4) is not valid for ‖ · ‖ = ‖ · ‖x,2, we use Inequality (2.11). This explains why we need to compute
suprema of the bias term on Vn(x). Theorem 1 shows the optimality of our kernel rule.

From these results, we can also draw interesting conclusions with respect to the term δ that appears in the variance
term. From (4.1), we already know that the term δ is unavoidable. Of course, the lower δ the worse the performance
of f̂ . Actually, in the oracle context, our setting is (roughly speaking) equivalent to the classical setting where fX is
lower bounded by an absolute constant (see Brunel et al. [10] for instance), but with δn observations to estimate f

instead of n. A similar remark will hold in the minimax framework of Section 6.
The following theorem deals with the general case where fX is unknown and estimated by f̂X .

Theorem 2. We assume that (H1), (H2), (H3), (CK), (3.2) and (3.3) are satisfied. If δn ≥ 1, we have with probability
larger than 1 − C exp{−(logn)5/4},

‖f̂ − f ‖x,2 ≤ inf
h∈Hn

{
C1 sup

t∈Vn(x)

‖Kh ∗ f − f ‖t,2 + C2√
δ̂n

∏d
i=1 hi

}
+ C3

δ
sup

t∈Vn(x)

∣∣f̂X(t) − fX(t)
∣∣, (4.7)
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where C1 = 1 + 2‖K‖1, C2 = (1 + η)‖K‖2(3 + 2‖K‖1), C3 depends on K , η and ‖f ‖∞ and C depends on K , η, fX
and ‖f ‖∞. Furthermore, for any q ≥ 1,

Rx(f̂ , q) ≤ C̃1 inf
h∈Hn

{
sup

t∈Vn(x)

‖Kh ∗ f − f ‖t,2 + 1√
δn

∏d
i=1 hi

}
+ C̃2

δ
E1/q

(
sup

t∈Vn(x)

∣∣f̂X(t) − fX(t)
∣∣q)+ C̃3√

n
,

where C̃1 depend on K , η and q , C̃2 depends on K , η, q and ‖f ‖∞ and C̃3 depends on K , η, fX , ‖f ‖∞ and q .

The main difference between Theorems 2 and 1 lie in the terms involving supt∈Vn(x) |f̂X(t) − fX(t)| in right hand

sides. Of course, if fX is regular enough, we can build f̂X so that this term is negligible. But in full generality, this
unavoidable term due to the strong dependence of f̂h on f̂X , may be cumbersome. Therefore, even if Theorem 1
established the optimality of kernel rules in the case where fX is known, it seems reasonable to investigate other rules
to overcome this problem.

5. Projection rules

Unlike previous kernel rules that strongly depend on the estimation of fX , this section presents estimates based on the

least squares principle. The dependence on f̂X is only expressed via the use of δ̂ and ‖f̂X‖∞ := supt∈Vn(x) |f̂X(t)|. For
ease of presentation, we assume that d1 = d2 = 1 but following results can be easily extended to the general case (see
Section 6.3).

5.1. Models

As previously, we are interested in the estimation of f when the first variable is in the neighborhood of x, so we still
use Vn(x) defined in Section 1.3. We introduce a collection of models (Sm)m∈Mn

.

Definition 1. Let Mn be a finite subset of {0,1,2, . . .}2. For each m = (m1,m2) ∈ Mn and given two L2(R)-
orthonormal systems of bounded functions (ϕm

j )j∈Jm and (ψm
k )k∈Km , we set

Fm1 = Span
(
ϕm

j , j ∈ Jm

)
, Hm2 = Span

(
ψm

k , k ∈ Km

)
and the model Sm is

Sm = Fm1 ⊗ Hm2 =
{
t, t (x, y) =

∑
j∈Jm

∑
k∈Km

am
j,kϕ

m
j (x)ψm

k (y), am
j,k ∈R

}
.

Finally, we denote

Dm1 = |Jm| and Dm2 = |Km|,
respectively the dimension of Fm1 and Hm2 .

In this paper, we only focus on systems (ϕm
j )j∈Jm based on Legendre polynomials. More precisely, the estimation

interval [x − 2A,x + 2A] is split into 2m1 intervals of length 4A2−m1 :

Il = Im
l = [

x − 2A + 4A(l − 1)2−m1, x − 2A + 4Al2−m1
)
, l = 1, . . . ,2m1 .

Then Jm = {(l, d), l = 1, . . . ,2m1, d = 0, . . . , r}, Dm1 = (r + 1)2m1 and for any u,

ϕm
j (u) = ϕm

l,d(u) =
√

2m1

2A

√
2d + 1

2
Pd

(
Tl(u)

)
1Il

(u),
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where Pd is the Legendre polynomial with degree d on [−1,1], and Tl is the affine map which transforms Il into
[−1,1].

In the y-direction, we shall also take piecewise polynomials. In the sequel, we only use the following two assump-
tions: for all m,m′ ∈ Mn, Dm2 ≤ Dm′

2
⇒ Hm2 ⊂ Hm′

2
, and there exists a positive real number φ2 such that for all

m ∈Mn for all u ∈ R,∑
k∈Km

(
ψm

k

)2
(u) ≤ φ2Dm2 .

Note that this assumption is also true for Fm1 . Indeed the spaces spanned by the ϕm
j ’s are nested and, for all u ∈

[x − 2A,x + 2A],
2m1∑
l=1

r∑
d=0

ϕm
l,d(u)2 ≤ 2m1

2A

r∑
d=0

2d + 1

2
= 2m1

4A
(r + 1)2 = r + 1

4A
Dm1

using properties of the Legendre polynomials. Therefore, with φ1 = (r + 1)/(4A), for any u ∈ [x − 2A,x + 2A],∑
j

(
ϕm

j

)2
(u) ≤ φ1Dm1 .

5.2. Projection estimator

As in Brunel et al. [10] and following Section 2.3, we introduce the following empirical contrast:

γn(t) = 1

n

n∑
i=1

[∫
R

t2(Xi, y)dy − 2t (Xi, Yi)

]
.

We have the following lemma whose proof is easy by using straightforward computations. We use the norm ‖ · ‖X

associated with the dot product 〈·, ·〉X defined in (2.9), so we have for any t ,

‖t‖2
X =

∫ ∫
t2(u, y)fX(u)dudy.

Lemma 1. Assume that the function
∑

j∈Jm

∑
k∈Km

âm
j,kϕ

m
j ψm

k minimizes the empirical contrast function γn on Sm,
then

ĜmÂm = Ẑm, (5.1)

where Âm denotes the matrix with coefficients (âm
j,k)j∈Jm,k∈Km ,

Ĝm =
(

1

n

n∑
i=1

ϕm
j1

(Xi)ϕ
m
j2

(Xi)

)
j1,j2∈Jm

and Ẑm =
(

1

n

n∑
i=1

ϕm
j (Xi)ψ

m
k (Yi)

)
j∈Jm,k∈Km

.

Similarly, if Km(f ) is the orthogonal projection of f on (Sm, 〈·, ·〉X), it minimizes on Sm

t �→ γ (t) = ‖t − f ‖2
X − ‖f ‖2

X = E
(
γn(t)

)
and if Km(f ) = ∑

j∈Jm

∑
k∈Km

am
j,kϕ

m
j ψm

k then,

GmAm = Zm,

where Am denotes the matrix with coefficients (am
j,k)j∈Jm,k∈Km , Gm = E(Ĝm) = (〈ϕm

j1
, ϕm

j2
〉X)j1,j2∈Jm and

Zm = E(Ẑm) =
(∫ ∫

ϕm
j (u)ψm

k (y)f (u, y)fX(u)dudy

)
j∈Jm,k∈Km

.
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From this lemma, we obtain that E(γn(t)) is minimum when t = f , which justifies the use of γn.
Then, to derive f̂m an estimate of f , we use (5.1) as a natural consequence of the minimization problem (2.10).

But if Ĝm is not invertible, Âm can be not uniquely defined.
Since x is fixed, we can define, for each m = (m1,m2), the index lm1 = lm1(x) such that x belongs to Ilm1

(actually,

since the estimation interval is centered in x, lm1 = 2m1−1 + 1). Furthermore, since we use a piecewise polynomial

system, the Gram matrix Ĝm is a block diagonal matrix with blocks Ĝ
(1)
m , . . . , Ĝ

(2m1 )
m , where

Ĝ(l)
m =

(
1

n

n∑
i=1

ϕm
l,d1

(Xi)ϕ
m
l,d2

(Xi)

)
0≤d1,d2≤r

.

In the same way, we can define for l = 1, . . . ,2m1

Ẑ(l)
m =

(
1

n

n∑
i=1

ϕm
l,d(Xi)ψ

m
k (Yi)

)
0≤d≤r,k∈Km

.

Now, and by naturally using the blockwise representation of Ĝm, we define the collection of estimators (f̂m)m∈Mn

as:

f̂m(x, y) =
r∑

d=0

∑
k∈Km

âm
(lm1 ,d),kϕ

m
lm1 ,d (x)ψm

k (y)

and

(
âm
(lm1 ,d),k

)
0≤d≤r,k∈Km

:= Â
(lm1 )
m :=

{
(Ĝ

(lm1 )
m )−1Ẑ

(lm1 )
m if min(Sp(Ĝ

(lm1 )
m )) > (1 + η)−2/5δ̂,

0 otherwise,

where η is a positive real number. Here, for a symmetric matrix M , Sp(M) denotes the spectrum of M , i.e. the set of
its eigenvalues. This expression allows us to overcome problems if Ĝm is not invertible. Note that, when r = 0, where
r is maximal degree of Legendre polynomials, this estimator can be written

f̂m(x, y) =
∑
j∈Jm

∑
k∈Km

∑n
i=1 ϕm

j (Xi)ψ
m
k (Yi)∑n

i=1 ϕm
j (Xi)2

ϕm
j (x)ψm

k (y).

Now, to choose a final estimator among this collection, as explained in Section 2.3, we denote m ∧ j = (m1 ∧ j1,

m2 ∧ j2) = (min(m1, j1),min(m2, j2)) and by using f̂X introduced in Section 3, we set

σ(m) = χ̂

√
Dm1Dm2

δ̂n
with χ̂2 = (1 + η)2(4φ1φ2(r + 1)

) ‖̂fX‖∞
δ̂

, (5.2)

where ‖̂fX‖∞ = ‖f̂X‖∞ and δ̂ is defined in (3.2). We also specify the models we use: The following condition is the
analog of (CK):

(CM) For any m ∈ Mn,

kn(r + 1) ≤ Dm1 ≤ δ̂n

(logn)3
and log2(n) ≤ Dm2 ≤ n.

The GLM described in Section 2.2 can be applied and we estimate f with f̃ = f̂m̂ where

m̂ = m̂(x) := arg min
m∈Mn

{
A(m) + σ(m)

}
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and

A(m) := sup
m′∈Mn

[‖f̂m′ − f̂m′∧m‖x,2 − σ
(
m′)]

+.

The next section studies the performance of the estimate f̃ .

5.3. Oracle inequality for projection estimators

We establish in this section oracle inequalities for the projection estimate in the same spirit as for the kernel rule. We
recall that Km(f ) is the orthogonal projection of f on (Sm, 〈·, ·〉X) where 〈·, ·〉X is the dot product defined in (2.9).
The following result is the analog of Theorem 2.

Theorem 3. We assume that (H1), (H2), (H3), (CM), (3.2) and (3.3) are satisfied. If δn ≥ 1, we have with probability
larger than 1 − C exp{−(logn)5/4},

‖f̃ − f ‖x,2 ≤ inf
m∈Mn

(
C1 sup

t∈Vn(x)

∥∥Km(f ) − f
∥∥

t,2 + 5

2
χ̂

√
Dm1Dm2

δ̂n

)

with χ̂ defined in (5.2), C1 = 1 + 2(r + 1)δ−1‖fX‖∞ and C depends on φ1, φ2, r, η,‖f ‖∞ and fX . Furthermore, for
any q ≥ 1

Rx(f̃ , q) ≤ C̃1 inf
m∈Mn

(
sup

t∈Vn(x)

∥∥Km(f ) − f
∥∥

t,2 +
√

Dm1Dm2

δn

)
+ C̃2√

n
,

where C̃1 depends on φ1, φ2, r, η,‖fX‖∞, δ and q and C̃2 depends on φ1, φ2, r, η,‖f ‖∞, fX and q .

As for Theorem 2, using the definition of σ , the right hand sides correspond to the best tradeoff between a bias term
and a variance term. Note that unlike kernel rules, the performances of f̃ do not depend on the rate of convergence
of f̂X for estimating fX . But there is a price to pay: due to a rougher control of the bias term, χ̂ depends on δ̂ and the
leading constants C1 and C̃1 depend on δ. In particular, when fX is known, conclusions drawn from Theorem 1 do not
hold here. However, in the case where r = 0 (the basis in the first coordinate is simply the histogram basis), we can
use the simpler penalty term χ̂ = (1 + η)

√
4φ1φ2 and the previous result still holds. To prove this, it is sufficient to

use the basis (‖ϕj‖−1
X ϕj ⊗ ψk)j,k which is orthonormal for the scalar product 〈·, ·〉X .

6. Rates of convergence

In this section, minimax rates of convergence will be computed on Hölder balls Hd(α,L). We recall that for two
d-tuples of positive reals α = (α1, . . . , αd) and L = (L1, . . . ,Ld),

Hd(α,L) =
{
f :Rd → R s.t. ∀1 ≤ i ≤ d

∥∥∥∥∂mf

∂xm
i

∥∥∥∥∞
≤ Li,m = 0, . . . , �αi�

and for all t ∈R

∥∥∥∥∂�αi�f
∂x

�αi�
i

(· + tei) − ∂�αi�f
∂x

�αi�
i

(·)
∥∥∥∥∞

≤ Li |t |αi−�αi�
}
,

where for any i, �αi� = max{l ∈ N: l < αi} and ei is the vector where all coordinates are null except the ith one which
is equal to 1. In the sequel, we use the classical anisotropic smoothness index defined by

ᾱ =
(

d∑
i=1

1

αi

)−1

and introduced in the seminal paper Kerkyacharian et al. [30]. See also Goldenshluger and Lepski [21].
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6.1. Lower bound

We have the following result that holds without making any assumption. It is proved in Section 8.3 of Bertin et al. [5].

Theorem 4. There exists a positive constant C not depending on L nor n such that, if n is large enough,

inf
Tn

sup
(f,fX)∈H̃(α,L)

{(
fX(x)

)(2ᾱ)/(2ᾱ+1)
E‖f − Tn‖2

x,2

} ≥ C

(
d∏

i=1

L
1/αi

i

)(2ᾱ)/(2ᾱ+1)

n−(2ᾱ)/(2ᾱ+1),

where the infimum is taken over all estimators Tn of f based on the observations (Xi, Yi)i=1,...,n and H̃(α,L) is the
set such that the conditional density f belongs to Hd(α,L) and the marginal density fX is continuous.

Note that we consider the ball H̃(α,L) which may be (slightly) smaller than the ball H(α,L). Actually, we wish
to point out the dependence of the lower bound with respect to n, α and L as usual but also to fX(x), which is less
classical. The goal in next sections is to show that our procedures achieve the lower bound of Theorem 4.

6.2. Upper bound for kernel rules

In this section, we need an additional assumption on f .

(H4) There exists a compact set B , such that for all t ∈ Vn(x), the function y �→ f (t, y) has a support included into B .
We denote by |B| the length of the compact set B .

This assumption could be avoided at the price of studying the risk restricted on B . Moreover, to study the bias of the
kernel estimator, we consider for any M = (M1, . . . ,Md) the following condition.

(BKM) For any i ∈ {1, . . . , d}, for any 1 ≤ j ≤ Mi , we have

∫
R

|xi |j
∣∣K(x)

∣∣dxi < ∞ and
∫
R

x
j
i K(x)dxi = 0.

We refer the reader to Kerkyacharian et al. [30] for the construction of a kernel K satisfying (BKM) and previous
required conditions. We obtain the following result showing the optimality of our first procedure from the minimax
point of view, up to the rate for estimating fX .

Theorem 5. We assume that (H1), (H2), (H3), (H4), (CK), (3.2) and (3.3) are satisfied. Let M = (M1, . . . ,Md) such
that (BKM) is satisfied. Then if f belongs to Hd(α,L) such that �αi� ≤ Mi for all i = 1, . . . , d , the kernel rule f̂

satisfies for any q ≥ 1,

R
q
x (f̂ , q) ≤ C̃1

(
d∏

i=1

L
1/αi

i

)(qᾱ)/(2ᾱ+1)

(nδ)−(qᾱ)/(2ᾱ+1) + C̃2

δq
E

(
sup

t∈Vn(x)

∣∣f̂X(t) − fX(t)
∣∣q)+ C̃3n

−q/2,

where C̃1 depend on K , η and q , C̃2 depends on K , η, q and ‖f ‖∞ and C̃3 depends on K , η, fX , ‖f ‖∞ and q .

If the leading term in the last expression is the first one, then, up to some constants, the upper bound of Theorem 5
matches with the lower bound obtained in Theorem 4 (note that δ is close to fX(x)) when q = 2. In this case, our
estimate is adaptive minimax. To study the second term, we can use Theorem 4 of Bertin et al. [5] that proves that,
in our setting, there exists an estimate f̂X achieving the rate (log/n)β̄/(2β̄+1) if fX ∈ Hd1(β, L̃) and we obtain the
following corollary.
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Corollary 1. We assume that (H1), (H2), (H3), (H4), (CK) and (BKM) are satisfied. We also assume that fX ∈
Hd1(β, L̃) such that for any i = 1, . . . , d1, L̃i > 0 and 0 < βi ≤ β

(m)
i with some known β

(m)
i > 0. Then if f belongs to

Hd(α,L) such that �αi� ≤ Mi for all i = 1, . . . , d , the kernel rule f̂ satisfies for any q ≥ 1,

R
q
x (f̂ , q) ≤ C1

((
d∏

i=1

L
1/αi

i

)(qᾱ)/(2ᾱ+1)

(nδ)−(qᾱ)/(2ᾱ+1) + 1

δq

(
logn

n

)(qβ̄)/(2β̄+1)
)

+ C2n
−q/2,

where C1 is a constant not depending on L, n and δ and C2 is a constant not depending on L and n.

From the corollary, we deduce that if β̄ > ᾱ and if δ is viewed as a constant, then the leading term is the first one.
Furthermore, in this case, the rate is polynomial and the rate exponent is the classical ratio associated with anisotropic
Hölder balls: ᾱ/(2ᾱ + 1). Our result also explicits the dependence of the rate with respect to L and δ.

6.3. Upper bound for projection estimates

In the same way, we can control the bias for our second procedure of estimation in order to study the rate of conver-
gence. Let us briefly explain how the procedure defined in Section 5 can be extended to the estimation of conditional
anisotropic densities f : Rd1 × Rd2 → R with d1, d2 ≥ 2. The contrast is still the same and the estimators f̂m have
to be defined for m = (m1, . . . ,md) with a polynomial basis on hyperrectangles: see Akakpo and Lacour [1] for a
precise definition. The model dimension is now

Dm1 =
d1∏

i=1

ri2
mi ,

where r1, . . . , rd1 are the maximum degrees. Then, the selection rule to define f̃ is unchanged, except that in (5.2)

χ̂2 = (1 + η)2

(
4φ1φ2

d1∏
i=1

ri

)
‖̂fX‖∞

δ̂
.

In order to control precisely the bias, we introduce the following condition.

(BMr) Hm2 is a space of piecewise polynomials with degrees bounded by rd1+1, . . . , rd , with Dm2 = ∏d
i=d1+1 ri2mi .

This allows us to state the following result.

Theorem 6. We assume that (H1), (H2), (H3), (H4), (CM), (3.2) and (3.3) are satisfied. Let r = (r1, . . . , rd) such that
(BMr) is satisfied. Then if f belongs to Hd(α,L) such that αi < ri for all i = 1, . . . , d , the projection rule f̃ satisfies
for any q ≥ 1,

R
q
x (f̃ , q) ≤ C̃

(
d∏

i=1

L
1/αi

i

)(qᾱ)/(2ᾱ+1)

n−(qᾱ)/(2ᾱ+1),

where C̃ depend on A, |B|, r,α, δ and ‖fX‖∞.

Thus, even if the control of δ is less accurate, the projection estimator achieves the optimal rate of convergence
whatever the regularity of fX .

7. Simulations

In this section we focus on the numerical performances of our estimators. We first describe the algorithms. Then, we
introduce the studied examples and we illustrate the performances of our procedures with some figures and tables.
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7.1. Estimation algorithms

For both methods (kernel or projection), we need a preliminary estimator of fX . In order to obtain an accurate estimator
of fX , we use a pointwise Goldenshluger–Lepski procedure which consists in the following for estimating fX at x.
This preliminary estimator is constructed using the sample (Xi)i=n+1,...,2n. Let us define for h > 0,

pen(n,h) = 2.2‖K‖2
(
1 + ‖K‖1

)√ | logh|f̃X(x)

nh
, (7.1)

where f̃X is a preliminary estimator of fX obtained by the rule of thumb (see Silverman [35]), and K is the classical
Gaussian kernel. The value 2.2 is the adjusted tuning constant which was convenient on a set of preliminary simula-
tions. Given H a finite set of bandwidths (actually H is a set of 10 bandwidths centered at the bandwidth obtained by
the rule of thumb) and for h,h′ ∈ H , consider

f̂h(x) = 1

n

2n∑
i=n+1

Kh(x − Xi) and f̂h,h′(x) = 1

n

2n∑
i=n+1

(Kh ∗ Kh′)(x − Xi).

We consider

A(h, x) := max
h′∈H

{∣∣f̂h,h′(x) − f̂h′(x)
∣∣− pen

(
n,h′)}

+.

Finally we define h0 by

h0 := arg min
h∈H

{
A(h, x) + pen(n,h)

}
(7.2)

and we consider the following procedure of estimation: f̂X(x) = f̂h0(x).
Now, the algorithm for the kernel estimation of f is entirely described in Section 4.2 and we perform it with K the

Gaussian kernel and a set of 10 bandwidths in each direction, that means that the size of Hn is 10d1+d2 . The quantity
‖f̂h′ − f̂h,h′ ‖x,2 is made easy to compute with some preliminary theoretical computations (in particular, note that for
the Gaussian kernel Kh ∗ K ′

h = Kh′′ with h′′2 = h2 + h′2). The only remaining parameter to tune is η which appears
in the penalty term σ (see (4.3)).

In the same way, we follow Section 5.2 to implement the projection estimator. Matrix computations are easy to
implement and make the implementation very fast. We only present the case of polynomials with degrees r = s = 0,
i.e. histograms, since the performance is already good in this case. Again, the only remaining parameter to tune is η

which appears in the penalty term σ (see (5.2)). Note that in the programs, it is possible to use nonintegers mi and in
fact this improves the performance of the estimation. However, to match with the theory we shall not tackle this issue.

7.2. Simulation study and analysis

We apply our procedures to different examples of conditional density functions with d1 = d2 = 1. More precisely, we
observe (Xi, Yi)i=1,...,n such that

Example 1. The Xi ’s are i.i.d. uniform variables on [0,1] and

Yi = 2X2
i + 5 + εi

(
1.3 − |Xi |

)1/2
, i = 1, . . . , n,

where the εi ’s are i.i.d. reduced and centered Gaussian variables, independent of the Xi ’s. Note that we also studied
heavy-tailed noises in this example (i.e. the εi ’s are variables with a standard Cauchy distribution) and the results
were almost identical.

Example 2. The Xi ’s are i.i.d. uniform variables on [0,1] and the distribution of the Yi ’s is a mixture of a normal
distribution and an exponential distribution: Yi ∼ 0.75εi + 0.25(2 +Ei), where εi is a zero-mean normal distribution
with standard deviation 2 + Xi and Ei is exponential with parameter 2.
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Fig. 1. Plots of true function f (x, ·) (plain line) versus kernel estimator f̂ (x, ·) (dashed line) and projection estimator f̃ (x, ·) (dot-dashed line) in
x = 0 (n = 1000) for Example 3 (left) and Example 4 (right).

Example 3. The Xi ’s are i.i.d. and their common distribution is a mixture of two normal distributions,
0.5N (0,1/81) + 0.5N (1,1/16) and

Yi = X2
i + 1 + εi

(
1.3 + |Xi |

)1/2
, i = 1, . . . , n,

where the εi ’s are i.i.d. reduced and centered Gaussian variables, independent of the Xi ’s.

Example 4. The Xi ’s are i.i.d. and their common distribution is a mixture of two normal distributions,
0.5N (0,1/81) + 0.5N (1,1/16) and the distribution of the Yi ’s is a mixture of a normal distribution and an expo-
nential distribution: Yi ∼ 0.75εi + 0.25(2 + Ei), where εi is a zero-mean normal distribution with standard deviation
2 + Xi and Ei is exponential with parameter 2.

We simulate our observations for three sample sizes: n = 250, n = 500 and n = 1000. In Figure 1, we illustrate the
quality of reconstructions for both estimates when fX is unknown. We use η = −0.2 for the projection estimator and
η = 1 for the kernel estimator (see the discussion below).

To go further, for each sample size, we evaluate the mean squared error of the estimators, in other words

MSE(f̂ ) =
∫ (

f̂ (x, y) − f (x, y)
)2 dy,

where f̂ is either the kernel rule or the projection estimate. In Appendix B, we give approximations of the MSE based
on N = 100 samples for different values of η.

Now, let us comment our results from the point of view of tuning, namely we try to answer the question: how to
choose the parameter η? We first focus on kernel rules. Tables of Appendix B show that, often, the optimal value is
η = 1. More precisely, it is always the case for Examples 1 and 2. For Examples 3 and 4, when η = 1 is not the optimal
value, taking η = 1 does not deteriorate the risk too much. So, for kernel rules, the choice η = 1 is recommended even
if larger values can be convenient in some situations. To shed more lights on these numerical results, in Figure 2, we
draw the MSE for the kernel rule in function of the parameter η. We observe that the shape of the curve is the same
whatever the example. If η is too small the risk blows up, which shows that the assumption η > 0 in theoretical results
is unavoidable at least asymptotically. Furthermore, we observe that if η is too large, then the estimate oversmooths
and the risk increases but without explosion for η not too far from the minimizer. Similar phenomena have already
been observed for wavelet thresholding rules for density estimation (see Section 2.2 of Reynaud-Bouret et al. [32]).
Tuning kernel rules is then achieved.
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Fig. 2. MSE(f̂ ) for n = 500, Example 1 (x = 0.5), Example 2 (x = 0.5), Example 3 (x = 0), Example 4 (x = 0).

We now deal with projection rules. Unfortunately, the plateau phenomenon of Figure 2 does not happen for projec-
tion estimators. In this case, the optimal value for η seems to change according to the example. Tuning this procedure
is not so obvious. Note that performances of kernel and projections rules are hardly comparable since they are respec-
tively based on a Gaussian kernel function and piecewise constant functions.

For kernel rules, we study the influence of the knowledge of fX . Tables B.1 and B.3 show that when fX is known
results are a bit better as expected, but the difference is not very significant. Since projections rules are less sensitive
to the estimate f̂X , we only show results with fX unknown. Finally, to study the dependence of estimation with respect
to x, we focus on Tables B.5 and B.6 that show that in Example 3 estimation is better at x = 0 and x = 1 than at
x = 0.36. This was expected since the density design is smaller at x = 0.36 and this confirms the role of δ in the
rate of convergence of both estimators (see Theorems 2 and 3). Similar conclusions can be drawn for Example 4.
Finally, we wish to mention that the ratio between the risk of our procedures and the oracle risk (the upper bounds of
Theorems 1, 2 and 3) remains bounded with respect to n, which corroborates our theoretical results.

8. Proofs

In this section, after giving intermediate technical results, we prove the results of our paper. Most of the time, as
explained in Introduction, we only consider the case d1 = d2 = 1. We use notations that we have previously defined.
The classical Euclidean norm is denoted ‖ · ‖. Except if the context is ambiguous, from now on, the ‖ · ‖∞-norm shall
denote the supremum either on R, on Vn(x) or on Vn(x) ×R. We shall also use for any function g

‖g‖∞,2 := sup
t∈Vn(x)

‖g‖t,2.

This section is divided into two parts: Section 8.1 (respectively Section 8.2) is devoted to the proofs of the results
for the kernel rules (respectively for the projection rules). We first prove in Section 8.1.1 the lower bound stated in
Proposition 1. Main results for kernel rules, namely Theorems 1 and 2 are proved in Section 8.1.2. They depend
on several intermediate results that are proved in Sections 8.1.3–8.1.6 (see the sketch of proofs in Section 8.1.2).
Theorem 5 that derives rates for kernel rules is proved in Section 8.1.7. For projection rules, the main theorem, namely
Theorem 3, is proved in Section 8.2.1. It is based on intermediate results shown in Sections 8.2.2–8.2.4. Finally,
Theorem 6 that derives rates for projection rules is proved in Section 8.2.5. As usual in nonparametric statistics, our
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results are based on sharp concentration inequalities that are stated in Lemmas 2, 3 and 4. These lemmas and other
technical results stated in Lemmas 5 and 6 are proved in Appendix A.

Lemma 2 (Bernstein Inequality). Let (Ui) be a sequence of i.i.d. variables uniformly bounded by a positive constant
c and such that EU2

1 ≤ v. Then

P

(∣∣∣∣∣1

n

n∑
i=1

Ui −E[Ui]
∣∣∣∣∣ ≥ ε

)
≤ 2 exp

(
−min

(
nε2

4v
,
nε

4c

))
.

Note that Lemma 2 is a simple consequence of Birgé and Massart [7], p. 366.

Lemma 3 (Talagrand Inequality). Let U1, . . . ,Un be i.i.d. random variables and νn(a) = 1
n

∑n
i=1[τa(Ui) −

E(τa(Ui))] for a belonging to A a countable subset of functions. For any ζ > 0,

P

(
sup
a∈A

∣∣νn(a)
∣∣ ≥ (1 + 2ζ )H

)
≤ 2 max

(
exp

(
−ζ 2

6

nH 2

v

)
, exp

(
−min(ζ,1)ζ

21

nH

M

))

with

sup
a∈A

sup
u

∣∣τa(u)
∣∣ ≤ M, E

[
sup
a∈A

∣∣νn(a)
∣∣] ≤ H, sup

a∈A
Var

(
τa(U1)

) ≤ v.

Let ρ > 1 and consider the event

Λρ = {
ρ−1δ ≤ δ̂ ≤ ρδ

}∩ {
ρ−2‖fX‖∞ ≤ ‖f̂X‖∞ ≤ ρ2‖fX‖∞

}
.

We have the following lemma.

Lemma 4. Condition (3.3) implies that

P
(
Λc

ρ

) ≤ B1e−(logn)3/2

with some positive constant B1 that depends on fX and ρ.

Lemma 5. For any integrable functions f1 and f2, if the support of u �→ f2(u, y) is included in [−2A/kn,2A/kn]d1

for all y, then we have

‖f1 ∗ f2‖x,2 ≤ sup
t∈Vn(x)

‖f1‖t,2 × ‖f2‖1,

Lemma 6. We use notations of Definition 1. Let m = (m1,m2) be fixed. For any function τ , the projection Km(τ) of
τ on Sm verifies∥∥Km(τ)

∥∥
x,2 ≤ (r + 1)‖fX‖∞δ−1 sup

t∈Vn(x)

‖τ‖t,2.

8.1. Proofs for the kernel estimator

8.1.1. Proof of Proposition 1
We just need to control:∫

var
(
f̂h(x, y)

)
dy = 1

n

∫
var

([
fX(X1)

]−1
Kh(x − X1, y − Y1)

)
dy

= 1

n

∫ (
E
[[

fX(X1)
]−2

K2
h(x − X1, y − Y1)

]
− (

E
[[

fX(X1)
]−1

Kh(x − X1, y − Y1)
])2)dy.
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First, by using Lemma 5 and (3.1),∫ (
E
[[

fX(X1)
]−1

Kh(x − X1, y − Y1)
])2 dy =

∫
(Kh ∗ f )2(x, y)dy

≤ ‖Kh‖2
1 × sup

t∈Vn(x)

‖f ‖2
t,2 ≤ ‖K‖2

1‖f ‖∞.

Furthermore,∫
E
[[

fX(X1)
]−2

K2
h(x − X1, y − Y1)

]
dy =

∫ ∫ ∫
K2

h(x − u,y − v)f (u, v)
[
fX(u)

]−1 dudv dy

=
∫ (

K
(1)
h1

)2
(x − u)

[
fX(u)

]−1 du × ‖K(2)‖2
2

h2

= ‖K(2)‖2
2

h1h2
×

∫ [K(1)(s)]2

fX(x − sh1)
ds.

Now assume that fX is positive and continuous on a neighborhood of x. Since maxHn → 0 when n → +∞, then
h1 → 0. Then we have

∣∣∣∣
∫

fX(x)[K(1)(s)]2

fX(x − sh1)
ds − ∥∥K(1)

∥∥2
2

∣∣∣∣ ≤
∫ [

K(1)(s)
]2
∣∣∣∣ fX(x)

fX(x − sh1)
− 1

∣∣∣∣ds

≤ max|v|≤Ah1

∣∣∣∣ fX(x)

fX(x + v)
− 1

∣∣∣∣
∫ [

K(1)(s)
]2 ds = o(1).

8.1.2. Proof of Theorems 1 and 2
We introduce

g(x, y) = fX,Y (x, y)

f̂X(x)
= fX(x)

f̂X(x)
f (x, y).

We consider the set Γ = Γ1 ∩ Γ2 where

Γ1 =
{
∀h,h′ ∈ Hn: ‖Kh ∗ f̂h′ − Kh ∗ Kh′ ∗ g‖x,2 ≤ χ1√

δ̂nh′
1h

′
2

}
,

Γ2 =
{
∀h′ ∈Hn: ‖f̂h′ − Kh′ ∗ g‖x,2 ≤ χ2√

δ̂nh′
1h

′
2

}

and

χ1 = (1 + η)‖K‖1‖K‖2, χ2 = (1 + η)‖K‖2.

We shall use following propositions that deal with the general case when fX is estimated by f̂X . When fX is known,
it can easily be checked that these propositions also hold with g replaced by f and δ̂ by δ. We also use the set Λρ

studied in Lemma 4 with ρ = (1 + η/2)2.
Let us give a sketch of the proof. The main steps for proving Theorems 1 and 2 are the following. We first prove

an oracle inequality for the function g on the set Γ (Proposition 2). Then, in Proposition 3, we prove that the event
Γ occurs with large probability by using Lemma 3. Finally, Proposition 4 studies the impact of replacing g by f .
Proposition 5 gives a polynomial control in n of our estimate that is enough to control its risk on Γ c by using
Proposition 3 and Lemma 4.
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Proposition 2. On the set Γ , we have the following result.

‖f̂ − g‖x,2 ≤ inf
h∈Hn

{
C1‖Kh ∗ g − g‖∞,2 + C2

1√
δ̂nh1h2

}
,

where C1 = 1 + 2‖K‖1 and C2 = (1 + η)‖K‖2(3 + 2‖K‖1).

Proposition 3. Under (H1), (H3) and (CK), we have:

P
(
Γ c ∩ Λρ

) ≤ C exp
{−(logn)5/4},

where C depends on K , η and ‖f ‖∞.

Proposition 4. Assume that (H1), (H2) and (CK) are satisfied. On Λρ :

‖Kh ∗ g − g‖∞,2 ≤ ‖Kh ∗ f − f ‖∞,2 + Cδ−1‖f̂X − fX‖∞,

‖g − f ‖x,2 ≤ Cδ−1‖f̂X − fX‖∞,

where C depends on η, K and ‖f ‖∞.

Proposition 5. Assume that (CK) is satisfied. For any h ∈ Hn,

‖f̂h‖x,2 ≤ ∥∥K(1)
∥∥∞

∥∥K(2)
∥∥

2(logn)−3n3/2.

The first part of Theorem 1 can be deduced from Propositions 2 and 3. Note that in the case of Theorem 1, since
fX is known, g = f and P(Λρ) = 1. The second part of Theorem 1 is a consequence of Proposition 5, (3.1) and (4.5).
Since

‖f̂ − f ‖x,2 ≤ ‖f̂ − g‖x,2 + ‖g − f ‖x,2

and

Γ ∩ Λρ = (
Γ ∪ Λc

ρ

)∩ Λρ,

the first part of Theorem 2 is a consequence of Propositions 2, 3 and 4 combined with Lemma 4. The second part of
Theorem 2 is a consequence of Proposition 5, (3.1) and (4.7).

8.1.3. Proof of Proposition 2
We apply the GLM as explained in Section 2 with f̂h given in (4.2) for estimating g, Mn = Hn, ‖ · ‖ = ‖ · ‖x,2,

σ(h) = χ/

√
δ̂nh1h2, and the operator Kh is the convolution product with Kh. Note that (2.1), (2.2) and (2.5) are

satisfied but not (2.4). But we have:

B(h) = sup
h′∈Hn

∥∥Kh′(g) − (Kh′ ◦Kh)(g)
∥∥

x,2 ≤ ‖K‖1 sup
t∈Vn(x)

∥∥g −Kh(g)
∥∥

t,2,

using Lemma 5 and the equality ‖Kh′ ‖1 = ‖K‖1. Let us fix h ∈Hn. We obtain Inequality (2.3) in our case:

‖f̂ − g‖x,2 ≤ 2B(h) + 2σ(h) + ∥∥f̂h −Kh(g)
∥∥

x,2 + ∥∥g −Kh(g)
∥∥

x,2 + 2ξ(h)

with

ξ(h) = sup
h′∈Hn

{∥∥(f̂h′ −Kh′(g)
)− (

Kh′(f̂h) − (Kh′ ◦Kh)(g)
)∥∥

x,2 − σ
(
h′)}

+.
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But, on Γ , ∀h,h′ ∈Hn, ‖f̂h′ −Kh′(g)‖x,2 ≤ χ2/

√
δ̂nh′

1h
′
2 and ‖Kh′(f̂h)− (Kh′ ◦Kh)(g)‖x,2 ≤ χ1/

√
δ̂nh′

1h
′
2, so that

ξ(h) = 0. Then, on Γ ,

‖f̂ − g‖x,2 ≤ 2B(h) + 2σ(h) + χ2√
δ̂nh1h2

+ ∥∥g −Kh(g)
∥∥

x,2

≤ (
2‖K‖1 + 1

)
sup

t∈Vn(x)

∥∥g −Kh(g)
∥∥

t,2 + 2χ + χ2√
δ̂nh1h2

with 2χ + χ2 = 2χ1 + 3χ2 = (1 + η)(2‖K‖1 + 3)‖K‖2.

8.1.4. Proof of Proposition 3
We respectively denote P̃ and Ẽ the probability distribution and the expectation associated with (X1, Y1), . . . , (Xn,Yn).
Thus

Γ1 =
{
∀h,h′ ∈ Hn:

∥∥f̂h,h′ − Ẽ[f̂h,h′ ]∥∥
x,2 ≤ χ1√

δ̂nh′
1h

′
2

}
,

Γ2 =
{
∀h′ ∈Hn:

∥∥f̂h′ − Ẽ[f̂h′ ]∥∥
x,2 ≤ χ2√

δ̂nh′
1h

′
2

}
.

To prove Proposition 3, we study Γ c
1 ∩ Λρ and Γ c

2 ∩ Λρ . So first, let assume we are on the event Λρ . Note that on
Λρ , we have δ̂−1 ≤ ρδ−1 and for all u ∈ Vn(x), |g(u, v)| ≤ f (u, v)ρ (see the proof of Lemma 4). We denote for any
x, y, u and v,

w(x,y,u, v) = [
f̂X(u)

]−1
(Kh ∗ Kh′)(x − u,y − v).

We can then write:

f̂h,h′(x, y) = 1

n

n∑
i=1

w(x,y,Xi,Yi)

and with B the unit ball in L2(R) endowed with the classical norm and A a dense countable subset of B,

∥∥f̂h,h′ − Ẽ[f̂h,h′ ]∥∥
x,2 = sup

a∈B

∫
a(y)

(
f̂h,h′(x, y) − Ẽ

[
f̂h,h′(x, y)

])
dy

= sup
a∈A

∫
a(y)

(
f̂h,h′(x, y) − Ẽ

[
f̂h,h′(x, y)

])
dy

= sup
a∈A

1

n

n∑
i=1

∫
a(y)

[
w(x,y,Xi,Yi) − Ẽ

(
w(x,y,Xi,Yi)

)]
dy.

Hence, one will apply the inequality of Lemma 3 with τa,x(Xi, Yi) = ∫
a(y)w(x, y,Xi, Yi)dy. First, we have:

(
Ẽ
[∥∥f̂h,h′ − Ẽ[f̂h,h′ ]∥∥

x,2

])2 ≤ Ẽ
[∥∥f̂h,h′ − Ẽ[f̂h,h′ ]∥∥2

x,2

]
= Ẽ

[∫ (
f̂h,h′(x, y) − Ẽ

[
f̂h,h′(x, y)

])2 dy

]

=
∫

var
(
f̂h,h′(x, y)

)
dy
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= 1

n

∫
var

([
f̂X(X1)

]−1
(Kh ∗ Kh′)(x − X1, y − Y1)

)
dy

≤ 1

n

∫
Ẽ
([

f̂X(X1)
]−2

(Kh ∗ Kh′)2(x − X1, y − Y1)
)

dy

≤ 1

δ̂n

∫ ∫ ∫
(Kh ∗ Kh′)2(x − u,y − v)g(u, v)dudv dy.

But we have

(Kh ∗ Kh′)2(x − u,y − v) =
(∫ ∫

Kh′(x − u − s, y − v − t)Kh(s, t)ds dt

)2

≤
∫ ∫

K2
h′(x − u − s, y − v − t)

∣∣Kh(s, t)
∣∣ds dt × ‖K‖1.

Therefore, since for any u,
∫

f (u, v)dv = 1 and K(x,y) = K(1)(x)K(2)(y),

(
Ẽ
[∥∥f̂h,h′ − Ẽ[f̂h,h′ ]∥∥

x,2

])2

≤ ‖K‖1

δ̂n

∫ ∫ ∣∣Kh(s, t)
∣∣(∫ ∫ ∫

K2
h′(x − u − s, y − v − t)g(u, v)dudv dy

)
ds dt

= ‖K‖1

δ̂n

∫ ∫ ∣∣Kh(s, t)
∣∣(∫ (∫ (∫ (

K
(1)

h′
1

)2
(x − u − s)

(
K

(2)

h′
2

)2
(y − v − t)dy

)
g(u, v)dv

)
du

)
ds dt

≤ ‖K‖1‖K(2)‖2
2ρ

δ̂nh′
2

∫ ∫ ∣∣Kh(s, t)
∣∣(∫ (

K
(1)

h′
1

)2
(x − u − s)du

)
ds dt

= ‖K‖2
1‖K(1)‖2

2‖K(2)‖2
2ρ

δ̂nh′
1h

′
2

= ‖K‖2
1‖K‖2

2ρ

δ̂nh′
1h

′
2

.

Consequently, we obtain Ẽ[‖f̂h,h′ − Ẽ[f̂h,h′ ]‖x,2] ≤ H , with

H = ‖K‖1‖K‖2ρ
1/2√

δ̂nh′
1h

′
2

. (8.1)

Now, let us deal with v which is an upper bound of supa∈A var(τa,x(X1, Y1)).

sup
a∈A

var
(
τa,x(X1, Y1)

) ≤ sup
a∈A

Ẽ

[(∫
a(y)w(x, y,X1, Y1)dy

)2]

≤ sup
a∈A

Ẽ

[∫ ∣∣w(x,y,X1, Y1)
∣∣dy

∫
a2(y)

∣∣w(x,y,X1, Y1)
∣∣dy

]

≤ sup
u,v

∫ ∣∣w(x,y,u, v)
∣∣dy sup

y
Ẽ
[∣∣w(x,y,X1, Y1)

∣∣].
Now,

sup
u,v

∫ ∣∣w(x,y,u, v)
∣∣dy = sup

u,v

∫ ∣∣[f̂X(u)
]−1

(Kh ∗ Kh′)(x − u,y − v)
∣∣dy

≤ 1

δ̂
sup
u,v

∫ ∣∣∣∣
∫ ∫

K
(1)

h′
1
(x − u − s)K

(2)

h′
2
(y − v − t)Kh(s, t)ds dt

∣∣∣∣dy
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≤ 1

δ̂
sup
u,v

∫ ∫ ∣∣Kh(s, t)
∣∣(∫ ∣∣K(1)

h′
1
(x − u − s)

∣∣∣∣K(2)

h′
2
(y − v − t)

∣∣dy

)
ds dt

≤ ‖K‖1‖K(2)‖1‖K(1)‖∞
δ̂h′

1

and

sup
y

Ẽ
[∣∣w(x,y,X1, Y1)

∣∣] = sup
y

∫ ∫ ∣∣w(x,y,u, v)
∣∣fX,Y (u, v)dudv

= sup
y

∫ ∫ ∣∣(Kh ∗ Kh′)(x − u,y − v)
∣∣g(u, v)dudv

≤ ‖g‖∞ sup
y

∫ ∫ (∫ ∫ ∣∣Kh(x − u − s, y − v − t)
∣∣∣∣Kh′(s, t)

∣∣ds dt

)
dudv

≤ ‖g‖∞‖K‖2
1 ≤ ‖f ‖∞ρ‖K‖2

1

since on Λρ , ‖g‖∞ ≤ ρ‖f ‖∞ and where ‖g‖∞ = sup(t,v)∈Vn(x)×R |g(t, v)|. Thus, we set

v = ‖K‖3
1‖K(2)‖1‖K(1)‖∞ρ‖f ‖∞

δ̂h′
1

. (8.2)

Finally, we deal with M which has to be an upper bound of supa∈A supu supv | ∫ a(y)w(x, y,u, v)dy|

sup
a∈A

sup
u

sup
v

∣∣∣∣
∫

a(y)w(x, y,u, v)dy

∣∣∣∣ = sup
u,v

∥∥w(x, ·, u, v)
∥∥

2

≤ 1

δ̂
sup
u,v

(∫
(Kh ∗ Kh′)2(x − u,y − v)dy

)1/2

.

We have:∫
(Kh ∗ Kh′)2(x − u,y − v)dy =

∫ (∫ ∫
Kh′(x − u − s, y − v − t)Kh(s, t)ds dt

)2

dy

≤ ‖K‖1

∫ ∫ ∣∣Kh(s, t)
∣∣(∫ K2

h′(x − u − s, y − v − t)dy

)
ds dt

≤ ‖K‖2
1‖K(1)‖2∞‖K(2)‖2

2

h′2
1 h′

2

.

Therefore, we can set

M = ‖K‖1‖K(1)‖∞‖K(2)‖2

δ̂h′
1

√
h′

2

. (8.3)

So, since ρ = (1 + η/2)2, Lemma 3 implies that for any ζ > 0,

P̃

(∥∥f̂h,h′ − Ẽ[f̂h,h′ ]∥∥
x,2 ≥ (1 + 2ζ )

‖K‖1‖K‖2(1 + η/2)√
δ̂nh′

1h
′
2

)

≤ 2 max

(
exp

{
−ζ 2C1(K,‖f ‖∞)

h′
2

}
, exp

{−ζ min(1, ζ )C2(K,η)

√
nh′

1δ̂
})

,
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where C1(K,‖f ‖∞) and C2(K,η) are positive constants that depend on K and ‖f ‖∞ and K and η respectively.
Similarly we have for any ζ > 0,

P̃

(∥∥f̂h′ − Ẽ[f̂h′ ]∥∥
x,2 ≥ (1 + 2ζ )

‖K‖2(1 + η/2)√
δ̂nh′

1h
′
2

)

≤ 2 max

(
exp

{
−ζ 2C3(K,η,‖f ‖∞)

h′
2

}
, exp

{−ζ min(1, ζ )C4(K,η)

√
nh′

1δ̂
})

,

where C3(K,η,‖f ‖∞) and C4(K,η) are positive constants that depend on K , η and ‖f ‖∞ and K and η respectively.

Let ζ = η/(4 + 2η) so that (1 + 2ζ )(1 + η/2) = (1 + η). For (h′
1, h

′
2) ∈ Hn, (logn)3

ρn
≤ (logn)3

ρδn
≤ (logn)3

δ̂n
≤ h′

1 < 1 and

1
n

≤ h′
2 < 1

(logn)2−1
. So, −

√
nh′

1δ̂ ≤ −(logn)3/2 and − 1
h′

2
< −(logn)2 + 1. Therefore, on Λρ ,

∑
h,h′∈Hn

P̃

(∥∥f̂h,h′ − Ẽ[f̂h,h′ ]∥∥
x,2 ≥ (1 + η)

‖K‖1‖K‖2√
δ̂nh′

1h
′
2

)
≤ ρ2n4e−C5(K,η,‖f ‖∞)(logn)3/2

≤ C6
(
K,η,‖f ‖∞

)
e−(logn)5/4

, (8.4)

with C5(K,η,‖f ‖∞) and C6(K,η,‖f ‖∞) positive constants depending on K , η and ‖f ‖∞. We have a similar result

for
∑

h′∈Hn
P̃(‖f̂h′ − Ẽ[f̂h′ ]‖x,2 ≥ (1 + η)

‖K‖2√
δ̂nh′

1h
′
2

). Now to conclude, note that the right hand side of Inequality (8.4)

is not random. This allows us to obtain the result of the proposition.

8.1.5. Proof of Proposition 4
We have the following decomposition

Kh ∗ g − g = Kh ∗ g − Kh ∗ f + Kh ∗ f − f + f − g. (8.5)

Next, on Λρ ,

∣∣Kh ∗ g(x, y) − Kh ∗ f (x, y)
∣∣ =

∣∣∣∣
∫ ∫

Kh(x − u,y − v)
(
g(u, v) − f (u, v)

)
dudv

∣∣∣∣
=

∣∣∣∣
∫ ∫

Kh(x − u,y − v)
f (u, v)

f̂X(u)

(
fX(u) − f̂X(u)

)
dudv

∣∣∣∣
≤ sup

t∈Vn(x)

∣∣fX(t) − f̂X(t)
∣∣δ̂−1

∫ ∫ ∣∣Kh(x − u,y − v)
∣∣f (u, v)dudv

≤ sup
t∈Vn(x)

∣∣fX(t) − f̂X(t)
∣∣δ−1ρ

∫ ∫ ∣∣Kh(x − u,y − v)
∣∣f (u, v)dudv.

Now by using (3.1), we have:

∫ (∫ ∫ ∣∣Kh(x − u,y − v)
∣∣f (u, v)dudv

)2

dy

≤ ‖K‖1

∫ ∫ ∫ ∣∣Kh(x − u,y − v)
∣∣f 2(u, v)dudv dy

≤ ‖K‖1‖K(2)‖1

∫ ∫ ∣∣K(1)
h1

(x − u)
∣∣f 2(u, v)dudv ≤ ‖f ‖∞‖K‖2

1.
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Then we deduce that

‖Kh ∗ g − Kh ∗ f ‖∞,2 ≤ Cδ−1 sup
t∈Vn(x)

∣∣fX(t) − f̂X(t)
∣∣, (8.6)

where C depends on ρ, ‖f ‖∞ and K . Moreover we have on Λρ :

‖g − f ‖2
t,2 =

∫
f 2(t, y)

f̂2
X(t)

(
f̂X(t) − fX(t)

)2 dy

≤ ‖f ‖∞δ̂−2
∣∣f̂X(t) − fX(t)

∣∣2 ≤ Cδ−2
∣∣fX(t) − f̂X(t)

∣∣2,
where C depends on ρ and ‖f ‖∞. The last line, (8.5) and (8.6) allow us to conclude.

8.1.6. Proof of Proposition 5
For any h ∈Hn, we have

1

nδ̂h1
≤ 1

(logn)3
,

1

h2
≤ n.

Therefore,

‖f̂h‖2
x,2 ≤

∫ (
1

n

n∑
i=1

∣∣f̂X(Xi)
∣∣−1 1

h1

∣∣∣∣K(1)

(
x − Xi

h1

)∣∣∣∣ 1

h2

∣∣∣∣K(2)

(
y − Yi

h2

)∣∣∣∣
)2

dy

≤
∫ (

1

n

n∑
i=1

1

δ̂h1

∥∥K(1)
∥∥∞

1

h2

∣∣∣∣K(2)

(
y − Yi

h2

)∣∣∣∣
)2

dy

≤ n(logn)−6
∥∥K(1)

∥∥2
∞

n∑
i=1

∫
1

h2
2

∣∣∣∣K(2)

(
y − Yi

h2

)∣∣∣∣
2

dy

≤ n3(logn)−6
∥∥K(1)

∥∥2
∞
∥∥K(2)

∥∥2
2,

which proves the result.

8.1.7. Proof of Theorem 5
We first assume that d1 = d2 = 1. Using conditions (BKM), we then have:

(Kh ∗ f )(x, y) − f (x, y)

=
∫ ∫

K(u,v)
[
f (x − uh1, y − vh2) − f (x, y)

]
dudv

=
∫ ∫

K(u,v)
[
f (x − uh1, y − vh2) − f (x, y − vh2) + f (x, y − vh2) − f (x, y)

]
dudv

=
∫ ∫

K(u,v)

[
(−uh1)

�α1�

�α1�!
(

d�α1�

dx�α1� f (x + ũh1, y − vh2) − d�α1�

dx�α1� f (x, y − vh2)

)]
dudv

+
∫ ∫

K(u,v)

[
(−vh2)

�α2�

�α2�!
(

d�α2�

dy�α2� f (x, y + ṽh2) − d�α2�

dy�α2� f (x, y)

)]
dudv,

where |ũ| ≤ |u| and |ṽ| ≤ |v|. If f ∈H2(α,L), this implies that∣∣(Kh ∗ f )(x, y) − f (x, y)
∣∣ ≤ C1L1h

α1
1 + C2L2h

α2
2 ,
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where C1 and C2 depend on α1, α2 and K . We can easily generalize this result to the case d1, d2 ≥ 2 and we obtain:

∣∣(Kh ∗ f )(x, y) − f (x, y)
∣∣ ≤ C

d∑
i=1

Lih
αi

i ,

with a constant C depending on α and K . Now taking

hi = L
−1/αi

i Δ
−1/αi
n , Δn =

(
d∏

i=1

L
1/αi

i

)−ᾱ/(2ᾱ+1)

(δn)ᾱ/(2ᾱ+1),

we obtain that

1√
δn

∏d
i=1 hi

= Δ−1
n

and

sup
t∈Vn(x)

‖Kh ∗ f − f ‖t,2 ≤ C(δn)−ᾱ/(2ᾱ+1)

(
d∏

i=1

L
1/αi

i

)ᾱ/(2ᾱ+1)

,

using (H4) and where C is a positive constant that does not depend on δ, n and L. By using Theorem 2, this concludes
the proof of Theorem 5.

8.2. Proofs for the projection estimator

The structure of the proof of the main theorem, namely Theorem 3, is similar to the structure of the proofs for kernel
rules. It is detailed along Section 8.2.1.

8.2.1. Proof of Theorem 3
First, let

Γ = {∀m ∈ Mn:
∥∥f̂m −Km(f )

∥∥
x,2 ≤ σ(m)/2

}
.

To prove Theorem 3, we follow the GLM, as explained in Section 2, with ‖ · ‖ = ‖ · ‖x,2, and the operator Km is the
projection on Sm. In this case, using Lemma 6,

B(m) = sup
m′∈Mn

∥∥Km′(f ) − (Km′ ◦Km)(f )
∥∥

x,2 ≤ (r + 1)‖fX‖∞δ−1 sup
t∈Vn(x)

∥∥f −Km(f )
∥∥

t,2.

Moreover for all m,m′ ∈ Mn, Km′ ◦ Km = Km∧m′ , with m ∧ m′ = (min(m1,m
′
1),min(m2,m

′
2)), and σ(m ∧ m′) ≤

σ(m′). As already explained in Section 2, we introduce K̃m(f̂m′) = f̂m∧m′ and

ξ(m) = sup
m′∈Mn

{∥∥(f̂m′ −Km′(f )
)− (

K̃m′(f̂m) − (Km′ ◦Km)(f )
)∥∥

x,2 − σ
(
m′)}

+.

Let us fix m ∈Mn. We obtain inequality (2.3) in our case:

‖f̃ − f ‖x,2 ≤ 2B(m) + 2σ(m) + ∥∥f̂m −Km(f )
∥∥

x,2 + ∥∥f −Km(f )
∥∥

x,2 + 2ξ(m).

But, on Γ , for all m,m′ in Mn, ‖f̂m′ − Km′(f )‖x,2 ≤ σ(m′)/2 and ‖f̂m∧m′ − Km∧m′(f )‖x,2 ≤ σ(m′)/2, so that
ξ(m) = 0. Then, on Γ ,

‖f̃ − f ‖x,2 ≤ 2B(m) + 2σ(m) + σ(m)

2
+ ∥∥f −Km(f )

∥∥
x,2

≤ (
2(r + 1)‖fX‖∞δ−1 + 1

)
sup

t∈Vn(x)

∥∥f −Km(f )
∥∥

t,2 + 5

2
σ(m). (8.7)
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Now, let ‖ · ‖n be the empirical norm defined by

‖t‖n =
(

1

n

n∑
i=1

t2(Xi)

)1/2

and lm1 be the index such that x belongs to the interval Ilm1
. For ρ = (1 + η)1/5, let

Ωρ =
{
∀m,∀t ∈ Span

(
ϕm

lm1 ,d

)
0≤d≤r

,‖t‖2
n ≥ ρ−1

∫
t2(u)fX(u)du

}
.

The heart of the proof of Theorem 3 is the following concentration result:

Proposition 6. Assume that assumptions (H1), (H2), (H3) and (CM) are satisfied. There exists C > 0 only depending
on η,φ1, φ2, r , ‖f ‖∞ and ‖fX‖∞ and δ such that

P
(
Γ c ∩ Λρ ∩ Ωρ

) ≤ C exp
{−(logn)5/4}.

Proposition 6 and the following result show that the event Γ occurs with large probability.

Proposition 7. Assume that assumptions (H2), (H3) and (CM) are satisfied. Then,

P
(
Ωc

ρ ∩ Λρ

) ≤ C exp
{−(logn)5/4},

where C is a constant only depending on ρ,φ1, r,‖fX‖∞ and δ.

Then, using Lemma 4 and Propositions 6 and 7,

P
(
Γ c

) ≤ P
(
(Γ ∩ Λρ ∩ Ωρ)c

) = P
(
Γ c ∩ Λρ ∩ Ωρ

)+ P
(
Ωc

ρ ∩ Λρ

)+ P
(
Λc

ρ

) ≤ Ke− log5/4(n) (8.8)

with K depending on η,φ1, φ2, r , ‖f ‖∞ and fX . Then, the first part of Theorem 3 is proved. To deduce the second
part, we use the following proposition.

Proposition 8. For all m ∈Mn,

‖f − f̂m‖2
x,2 ≤ 2‖f ‖∞ + 2(1 + η)4/5δ̂−2(r + 1)φ2

1φ2D
2
m1

D2
m2

.

Using assumption (CM), it implies that ‖f − f̂m̂‖2
x,2 ≤ C̃2

3n4, where C̃3 depends on η, r,φ1, φ2 and ‖f ‖∞. Then,
by using (8.7) which is true on Γ ∩ Λρ we have

E‖f̃ − f ‖q

x,2 = E‖f̃ − f ‖q

x,21Γ ∩Λρ +E‖f̃ − f ‖q

x,21(Γ ∩Λρ)c

≤ C̃4

(
sup

t∈Vn(x)

∥∥f −Km(f )
∥∥

t,2 +
√‖fX‖∞

δ

√
Dm1Dm2

δn

)q

+ C̃
q

3 n2qP
(
(Γ ∩ Λρ ∩ Ωρ)c

)
,

where C̃4 depends on η,φ1, φ2, r,‖fX‖∞ and δ. Using (8.8), this concludes the proof of Theorem 3.

8.2.2. Proof of Proposition 6
First, we introduce some preliminary material. For any matrix M , we denote

‖M‖2 = sup
x �=0

‖Mx‖
‖x‖ , ‖M‖F =

(∑
j,k

|Mj,k|2
)1/2
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the operator norm and the Frobenius norm. We shall use that for any matrices M and N ,

‖M‖2 ≤ ‖M‖F , ‖MN‖2 ≤ ‖M‖2‖N‖2, ‖MN‖F ≤ ‖M‖2‖N‖F .

Now we fix m ∈ Mn. Then the index lm1 such that x belongs to the interval Ilm1
is fixed. For the sake of simplicity,

we denote it by l. Note that Il ⊂ Vn(x), since 2−m1 ≤ k−1
n . We set

F (l)
m1

= Span
(
ϕm

l,d

)
0≤d≤r

.

Moreover we denote

Ĝ = Ĝ(l)
m , Ẑ = Ẑ(l)

m , Â = Â(l)
m , ϕd = ϕm

l,d , ψk = ψm
k .

The elements of Â are denoted (âd,k)d,k instead of (âm
(lm1 ,d),k)d,k . We also introduce

G = E(Ĝ) = (〈ϕd1 , ϕd2〉X
)

0≤d1,d2≤r

and

Z = E(Ẑ) =
(∫ ∫

ϕd(u)ψk(y)f (u, y)fX(u)dudy

)
0≤d≤r,k∈Km

.

By using Lemma 1, the coefficients (am
j,k) of Km(f ) in the basis verify the matrix equation GA = Z where the

coefficients of the matrix A are Ad,k = am
(lm1 ,d),k but are denoted ad,k for short. We shall use the following algebra

result. If M is a symmetric matrix,

min
(
Sp(M)

) = min
u

u∗Mu

u∗u
.

Then

min
(
Sp(G)

) = min
u

u∗Gu

u∗u
= min

t∈F
(l)
m1

∫
t2(u)fX(u)du

‖t‖2
2

≥ δ (8.9)

and, in the same way,

min
(
Sp(Ĝ)

) = min
u∗Ĝu

u∗u
= min

t∈F
(l)
m1

‖t‖2
n

‖t‖2
2

,

so that

on Ωρ min
(
Sp(Ĝ)

) ≥ ρ−1δ. (8.10)

Now, let us begin the proof of Proposition 6. Since

(
f̂m −Km(f )

)
(x, y) =

r∑
d=0

∑
k∈Km

(âd,k − ad,k)ϕd(x)ψk(y)

we deduce

∥∥f̂m −Km(f )
∥∥2

x,2 =
∑

k

(∑
d

(âd,k − ad,k)ϕd(x)

)2

≤
∑
d

ϕ2
d(x)

∑
k

∑
d

(âd,k − ad,k)
2

≤ φ1Dm1‖Â − A‖2
F .
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On Λρ , δ ≥ ρ−1δ̂. Then, using (8.10), on Ωρ ∩ Λρ , min(Sp(Ĝ)) ≥ ρ−2δ̂ = (1 + η)−2/5δ̂, so we are in the case where
Â = Ĝ−1Ẑ. From now on, we always assume that we are on Ωρ ∩ Λρ . We have:

‖Â − A‖F ≤ ∥∥(Ĝ−1 − G−1)Z∥∥
F

+ ∥∥Ĝ−1(Ẑ − Z)
∥∥

F

≤ ∥∥Ĝ−1 − G−1
∥∥

2‖Z‖F + ∥∥Ĝ−1
∥∥

2‖Ẑ − Z‖F .

Since Ĝ is symmetric, ‖Ĝ−1‖2 is equal to the spectral radius of Ĝ−1. And, using (8.10), its eigenvalues are positive,
then ∥∥Ĝ−1

∥∥
2 = (

min
(
Sp(Ĝ)

))−1 ≤ ρδ−1.

In the same way, using (8.9),

∥∥G−1
∥∥

2 = (
min

(
Sp(G)

))−1 ≤ δ−1.

Then,∥∥Ĝ−1 − G−1
∥∥

2 = ∥∥Ĝ−1(G − Ĝ)G−1
∥∥

2 ≤ ρδ−2‖G − Ĝ‖2 ≤ ρδ−2‖G − Ĝ‖F .

Thus

‖Â − A‖F ≤ ρδ−2‖G − Ĝ‖F ‖Z‖F + ρδ−1‖Ẑ − Z‖F .

Moreover, since for any function s,
∑

d〈s, ϕd〉2 ≤ ∫
Il

s2(u)du, where 〈·, ·〉 denotes the standard L2 dot product,

‖Z‖2
F =

r∑
d=0

∑
k∈Km

〈∫
ϕd(u)f (u, ·)fX(u)du,ψk

〉2

≤
r∑

d=0

∫ (∫
ϕd(u)f (u, y)fX(u)du

)2

dy

≤
∫ ∫

Il

f 2(u, y)f2
X(u)dudy ≤ ‖fX‖2∞‖f ‖∞

(
4A2−m1

)
.

Finally (still on Ωρ ∩ Λρ ),∥∥f̂m −Km(f )
∥∥

x,2 ≤ C3‖Ĝ − G‖F + ρδ−1
√

φ1Dm1‖Ẑ − Z‖F .

Here C3 = ‖fX‖∞ρδ−2(r + 1)
√‖f ‖∞. Thus, with Pρ(·) = P(· ∩ Λρ ∩ Ωρ), we can write:

Pρ

(∥∥f̂m −Km(f )
∥∥

x,2 ≥ σ(m)

2

)
≤ P1,m + P2,m

with ⎧⎨
⎩

P1,m = Pρ(‖Ẑ − Z‖F ≥ σ(m)

2ρ2δ−1
√

φ1Dm1
),

P2,m = Pρ(‖Ĝ − G‖F ≥ σ(m)
2ρC3

(ρ − 1)).

[1] Study of P1,m: Let νn(t) = 1
n

∑n
i=1 t (Xi, Yi) −E(t (Xi, Yi)) and

S(l)
m = F (l)

m1
⊗ Hm2 =

{
t, t (x, y) =

r∑
d=0

∑
k∈Km

bd,kϕd(x)ψk(y), bd,k ∈R

}
.
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Then,

sup
t∈S

(l)
m ,‖t‖2≤1

∣∣νn(t)
∣∣2 =

∑
d,k

∣∣νn(ϕd ⊗ ψk)
∣∣2 =

∑
d,k

∣∣∣∣∣1

n

n∑
i=1

ϕd(Xi)ψk(Yi) −E
(
ϕd(Xi)ψk(Yi)

)∣∣∣∣∣
2

= ‖Ẑ − Z‖2
F .

We are reduced to bound:

Pρ

(
sup

t∈S
(l)
m ,‖t‖2≤1

∣∣νn(t)
∣∣ ≥ σ(m)

2ρ2δ−1
√

φ1Dm1

)
.

To deal with this term, we use Lemma 3. So, we consider A a dense subset of {t ∈ S
(l)
m ,‖t‖2 ≤ 1} and we compute

M,H and v.
• First, if t = ∑

d,k bdkϕd ⊗ ψk then

∣∣t (u, v)
∣∣2 =

∣∣∣∣∑
d,k

bdkϕd(u)ψk(v)

∣∣∣∣
2

≤
∑
d,k

b2
dk

∑
d,k

∣∣ϕd(x)ψk(v)
∣∣2 ≤ ‖t‖2

2φ1Dm1φ2Dm2 .

Thus supt∈A ‖t‖∞ ≤ √
φ1φ2Dm1Dm2 and we can take M = √

φ1φ2Dm1Dm2 .
• Secondly, we recall

sup
t∈S

(l)
m ,‖t‖2≤1

∣∣νn(t)
∣∣2 =

∑
d,k

∣∣∣∣∣1

n

n∑
i=1

ϕd(Xi)ψk(Yi) −E
(
ϕd(Xi)ψk(Yi)

)∣∣∣∣∣
2

.

Since the data are independent,

Var

(
1

n

n∑
i=1

ϕd(Xi)ψk(Yi)

)
= 1

n
Var

(
ϕd(X1)ψk(Y1)

)
.

We deduce:

∑
k

E

∣∣∣∣∣1

n

n∑
i=1

ϕd(Xi)ψk(Yi) −E
(
ϕd(Xi)ψk(Yi)

)∣∣∣∣∣
2

≤ 1

n

∫ ∫
ϕ2

d(u)
∑

k

ψ2
k (v)fX(u)f (u, v)dudv

≤ φ2Dm2

n

∫
ϕ2

d(u)fX(u)

(∫
f (u, v)dv

)
du

≤ φ2Dm2

n
‖fX‖∞.

Hence,

E sup
t∈A

ν2
n(t) ≤ (r + 1)‖fX‖∞

φ2Dm2

n

so that we can take H 2 = (r + 1)‖fX‖∞φ2Dm2/n.
• Thirdly

Var
(
t (X1, Y1)

) ≤ E
∣∣t (X1, Y1)

∣∣2
≤

∫ ∫
t2(u, v)fX(u)f (u, v)dudv

≤ ‖t‖2
2‖f ‖∞‖fX‖∞

and then we can take v = ‖f ‖∞‖fX‖∞.
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Finally

ζ 2nH 2

6v
= ζ 2(r + 1)φ2

6‖f ‖∞
Dm2,

min(ζ,1)ζnH

21M
= min(ζ,1)ζ

√
(r + 1)‖fX‖∞

21
√

φ1

√
n

Dm1

.

According to condition (CM), on Λρ , since δ ≤ 1, Dm1 ≤ ρn/(logn)3 and Dm2 ≥ (logn)2. Thus Talagrand’s Inequal-
ity gives

Pρ

[
sup
t∈A

∣∣νn(t)
∣∣ ≥ (1 + 2ζ )H

]
≤ 2 exp

(−C log3/2(n)
)

with C only depending on η, ζ, r,φ1, φ2,‖f ‖∞,‖fX‖∞. Moreover,

(1 + 2ζ )H = (1 + 2ζ )
√

(r + 1)‖fX‖∞φ2

√
Dm2

n

and, since δ > ρ−1δ̂ and ‖̂fX‖∞ > ρ−2‖fX‖∞ on Λρ ,

σ(m)

2ρ2δ−1
√

φ1Dm1

≥ ρ−4(1 + η)
√

(r + 1)‖fX‖∞φ2

√
Dm2

n
.

Then, since ρ5 = 1 + η, choosing ζ such that 1 + 2ζ = ρ gives

σ(m)

2ρ2δ−1
√

φ1Dm1

≥ (1 + 2ζ )H

and then

P1,m ≤ 2 exp
(−C log3/2(n)

)
.

[2] Study of P2,m: We now have to bound (with large probability) the term

‖Ĝ − G‖2
F =

∑
d,d ′

∣∣∣∣∣1

n

n∑
i=1

ϕdϕd ′(Xi) −E
[
ϕdϕd ′(Xi)

]∣∣∣∣∣
2

.

We use Bernstein’s Inequality (Lemma 2): Since supu∈R |ϕd(u)ϕd ′(u)|∞ ≤ φ1Dm1 and

E
∣∣ϕdϕd ′(X1)

∣∣2 ≤
∫ ∫

ϕ2
dϕ2

d ′(u)fX(u)du ≤ φ1‖fX‖∞Dm1,

the assumptions of Lemma 2 are satisfied with c = φ1Dm1 and v = φ1‖fX‖∞Dm1 . If we set ε = C4

√
Dm1Dm2

n
, with

C4 = (ρ − 1)(1 + η)
√

φ1φ2‖fX‖∞/(ρ3C3δ
√

r + 1) then, on Λρ ,

ε ≤ (ρ − 1)σ (m)

2ρC3(r + 1)
.

Moreover on Λρ , since δ ≤ 1,

nε2

v
= C2

4

φ1‖fX‖∞
Dm2 ≥ C2

4

φ1‖fX‖∞
(logn)2,

nε

c
= C4

φ1

√
nDm2

Dm1

≥ C4

φ1
√

ρδ
(logn)5/2 ≥ C4

φ1
√

ρ
(logn)5/2.
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Then, using Lemma 2,

Pρ

[
‖Ĝ − G‖F ≥ (ρ − 1)

σ (m)

2C3ρ

]
≤

∑
d,d ′

Pρ

(∣∣∣∣∣1

n

n∑
i=1

ϕdϕd ′(Xi) −E
[
ϕdϕd ′(Xi)

]∣∣∣∣∣ ≥ (ρ − 1)σ (m)

2ρC3(r + 1)

)

≤ 2(r + 1)2 exp
(−C5 log2(n)

)
,

with C5 only depending on η, r,φ1, φ2,‖f ‖∞,‖fX‖∞ and δ. Finally, we denote

Mn = {
(m1,m2),2m1 ≤ ρδn,Dm2 ≤ n

}
which verifies Mn ⊂ Mn on Λρ . Gathering all the terms together, we obtain

Pρ

(
∃m ∈ Mn,

∥∥f̂m −Km(f )
∥∥

x,2 ≥ σ(m)

2

)
≤ Pρ

(
∃m ∈ Mn,

∥∥f̂m −Km(f )
∥∥

x,2 ≥ σ(m)

2

)

≤
∑

m∈Mn

P1,m + P2,m

≤
∑

m∈Mn

4(r + 1)2 exp
(−C6 log3/2(n)

)

≤ 4(r + 1)2ρδn2 exp
(−C6 log3/2(n)

)
,

with C6 depending on η, r,φ1, φ2,‖f ‖∞,‖fX‖∞ and δ, which yields Proposition 6.

8.2.3. Proof of Proposition 7
In this section, we denote

‖t‖2
X :=

∫
t2(u)fX(u)du.

We recall that lm1 is the index such that x belongs to the interval Ilm1
and as in Section 8.2.2, we set:

F
(lm1 )
m1 = Span

(
ϕm

lm1 ,d

)
0≤d≤r

.

We want to bound

P
(
Ωc ∩ Λρ

) = P
(∃m1,∃t ∈ Span

(
ϕm

lm1 ,d

)
0≤d≤r

,‖t‖2
n < ρ−1‖t‖2

X and Λρ

)
.

Under (CM), we have: kn(r + 1) ≤ Dm1 ≤ δ̂n/(logn)3, and on Λρ , we have: 2m1 ≤ ρδn. Let μn be the empirical
process defined by

μn(t) = 1

n

n∑
i=1

t (Xi) −E
(
t (Xi)

)
.

Then, μn(t
2) = ‖t‖2

n − ‖t‖2
X , which implies that

P
(
Ωc ∩ Λρ

) ≤
∑

m1,2m1 ≤ρδn

P

(
sup

t∈F
(lm1 )

m1 ,‖t‖X=1

∣∣μn

(
t2)∣∣ > 1 − ρ−1

)
.

But, for all t ∈ F
(lm1 )
m1 such that ‖t‖X = 1∣∣μn

(
t2)∣∣2 ≤ δ−2

∑
d,d ′

μ2
n

(
ϕm

lm1 ,dϕm
lm1 ,d ′

)
.
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Using Lemma 2, we easily prove as in Section 8.2.2 that ∀m ∈Mn

P
(∣∣μn

(
ϕm

lm1 ,dϕm
lm1 ,d ′

)∣∣ > (
1 − ρ−1)δ/(r + 1)

) ≤ 2 exp
(−K(logn)3)

with K depending on ρ,φ1, r,‖fX‖∞, δ. Then

P
(
Ωc ∩ Λρ

) ≤
∑

m1,2m1 ≤ρδn

P

(∑
d,d ′

μ2
n

(
ϕm

lm1 ,dϕm
lm1 ,d ′

)
>

(
δ
(
1 − ρ−1))2

)

≤
∑

m1,2m1 ≤ρδn

∑
d,d ′

P
(∣∣μn

(
ϕm

lm1 ,dϕm
lm1 ,d ′

)∣∣ > δ
(
1 − ρ−1)/(r + 1)

)

≤ 2(r + 1)2
∑

m1,2m1 ≤ρδn

exp
(−K(logn)3) ≤ 2(r + 1)2ρδn exp

(−K log3(n)
)
,

which yields the result.

8.2.4. Proof of Proposition 8
First, as already noticed, ‖f ‖2

x,2 ≤ ‖f ‖∞. Now let m be a fixed element of Mn. Then we denote l = lm1 the index
such that x belongs to the interval Il and moreover we denote

Ĝ = Ĝ(l)
m , Ẑ = Ẑ(l)

m , Â = Â(l)
m , ϕd = ϕm

l,d , ψm
k = ψk.

The elements of Â are denoted (âd,k)d,k instead of (âm
(lm1 ,d),k)d,k .

If Sp(Ĝ) ≥ (1 + η)−2/5δ̂ (otherwise Â = 0),

∥∥Ĝ−1
∥∥

2 = ρ
(
Ĝ−1) = (

min
(
Sp(Ĝ)

))−1 ≤ (1 + η)2/5δ̂−1.

Therefore, we have:

‖Â‖2
F ≤ ∥∥Ĝ−1

∥∥2
2‖Ẑ‖2

F ≤ (1 + η)4/5δ̂−2
∑
d,k

∣∣∣∣∣1

n

n∑
i=1

ϕd(Xi)ψk(Yi)

∣∣∣∣∣
2

≤ (1 + η)4/5δ̂−2
∑
d,k

φ1φ2Dm1Dm2

≤ (1 + η)4/5δ̂−2(r + 1)φ1φ2Dm1D
2
m2

.

Finally

‖f̂m‖2
x,2 =

∑
k∈Km

(
r∑

d=0

âdkϕd(x)

)2

≤ ‖Â‖2
F φ1Dm1

≤ (1 + η)4/5δ̂−2(r + 1)φ2
1φ2D

2
m1

D2
m2

.

8.2.5. Proof of Theorem 6
We first assume that d1 = d2 = 1. We denote K1

m the projection on Fm1 endowed with the scalar product (g,h)X =∫
g(z)h(z)fX(z)dz, and K2

m the projection on Hm2 endowed with the usual scalar product (g,h)us = ∫
g(z)h(z)dz.

The projection Km(f ) can be written for any u and any y,

Km(f )(u, y) =
∑

k∈Km

(
f 1(u, ·),ψm

k

)
us

ψm
k (y) = K2

m

(
f 1(u, ·))(y),
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where f 1(·, y) = K1
m(f (·, y)). Thus we have the factorization

(
Km(f ) − f

)
(u, ·) = K2

m

(
f 1(u, ·) − f (u, ·))+K2

m

(
f (u, ·))− f (u, ·)

and applying Pythagora’s theorem

∥∥Km(f ) − f
∥∥2

x,2 = ∥∥K2
m

(
f 1(x, ·) − f (x, ·))∥∥2

2 + ∥∥K2
m

(
f (x, ·))− f (x, ·)∥∥2

2

≤ ∥∥f 1(x, ·) − f (x, ·)∥∥2
2 + ∥∥K2

m

(
f (x, ·))− f (x, ·)∥∥2

2.

Now, we shall use the following result. Let τ be a univariate function belonging to the Hölder space H1(α,L) on a
interval with length b. If S is the space of piecewise polynomials of degree bounded by r > α − 1 based on the regular
partition with 2J pieces, then there exists a constant C(α,b) only depending on α and b such that

d∞(τ, S) := inf
t∈S

‖t − τ‖∞ ≤ C(α,b)L2−Jα

(see for example Lemma 12 in Barron et al. [2]). Let K the orthogonal projection on S endowed with some scalar
product. We denote

‖|K‖| = sup
t∈L∞\{0}

‖K(t)‖∞
‖t‖∞

.

Then, for all t ∈ S, since K(t) = t ,∥∥τ −K(τ )
∥∥∞ = ∥∥τ − t +K(t − τ)

∥∥∞ ≤ (
1 + ‖|K‖|)‖t − τ‖∞.

We obtain:∥∥τ −K(τ )
∥∥∞ ≤ (

1 + ‖|K‖|) inf
t∈S

‖t − τ‖∞ ≤ (
1 + ‖|K‖|)C(α,b)L2−Jα.

It remains to bound ‖|K‖| in the following cases.
• Case 1: S is the space of piecewise polynomials of degree bounded by r1, endowed with (·, ·)X (S = Fm1 ,

K = K1
m). It is sufficient to apply Lemma 6 to the function τ(u, y) = t (u)ψm

k (y) to obtain ‖|K‖| ≤ (r1 + 1)‖fX‖∞δ−1.
• Case 2: S is the space of piecewise polynomials of degree bounded by r2, endowed with the usual dot product

(S = Hm2 , K = K2
m). Then it is sufficient to apply the previous case with fX identically equal to 1, to obtain ‖|K‖| ≤

(r2 + 1).
Finally, we have obtained the following result: if τ is a univariate function belonging to the Hölder space H1(α,L)

then ∥∥τ −K1
m(τ)

∥∥∞ ≤ C
(
α,A, r1,‖fX‖∞/δ

)
LD−α

m1
,∥∥τ −K2

m(τ)
∥∥∞ ≤ C

(
α, |B|, r2

)
LD−α

m2
.

Now f (x, ·) belongs to the Hölder space H1(α2,L2) then∥∥K2
m

(
f (x, ·))− f (x, ·)∥∥∞ ≤ C2L2D

−α2
m2

with C2 depending on α2, |B| and r2. Moreover, for all y ∈ B , f (·, y) belongs to the Hölder space H1(α1,L1) then∣∣f 1(x, y) − f (x, y)
∣∣ ≤ ∥∥K1

m

(
f (·, y)

)− f (·, y)
∥∥∞ ≤ C1

(
α1,A, r,‖fX‖∞/δ

)
L1D

−α1
m1

with C1 not depending on y. Finally, since the support of f (x, ·), f 1(x, ·),K2
m(f (x, ·)) is compact, we obtain∥∥Km(f ) − f

∥∥
x,2 ≤ C0

(
L1D

−α1
m1

+ L2D
−α2
m2

)
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with C0 depending on A, |B|, r, α1, α2 and ‖fX‖∞ and δ. We can easily generalize this result to the case d1, d2 ≥ 2
and we obtain:

∥∥Km(f ) − f
∥∥

x,2 ≤ C

d∑
i=1

Li2
−αimi

for C a constant. To conclude, by using Theorem 3, it remains to find (m1, . . . ,md) that minimizes

(m1, . . . ,md) �→
d∑

i=1

Li2
−αimi +

√∏d
i=1 2mi

δn
.

Solving this minimization problem shows that 2mi has to be equal to L
1/αi

i Δ
1/αi
n up to a constant and

Δn =
(

d∏
i=1

L
1/αi

i

)−ᾱ/(2ᾱ+1)

(δn)ᾱ/(2ᾱ+1).

It gives the result.

Appendix A: Proofs of technical results

A.1. Proof of Lemma 3

We apply the Talagrand concentration inequality given in Klein and Rio [31] to the functions si(x) = τa(x) −
E(τa(Ui)) and we obtain

P

(
sup
a∈A

∣∣νn(a)
∣∣ ≥ H + λ

)
≤ 2 exp

(
− nλ2

2(v + 4HM) + 6Mλ

)
.

Then we modify this inequality following Birgé and Massart [7], Corollary 2, p. 354. It gives

P

(
sup
a∈A

∣∣νn(a)
∣∣ ≥ (1 + ζ )H + λ

)
≤ 2 exp

(
−n

3
min

(
λ2

2v
,

min(ζ,1)λ

7M

))
. (A.1)

To conclude, we set λ = ζH .

A.2. Proof of Lemma 4

The lemma is a consequence of (3.3) used with λ = ρ − 1, λ = 1 − ρ−1, λ = ρ2 − 1 or λ = 1 − ρ−2. Indeed, under
(3.3), with probability 1 − κ exp(−(logn)3/2), for all t ∈ Vn(x), |fX(t) − f̂X(t)| ≤ λ|f̂X(t)|, which implies

(1 − λ)
∣∣f̂X(t)

∣∣ ≤ ∣∣fX(t)
∣∣ ≤ (1 + λ)

∣∣f̂X(t)
∣∣

and then

(1 + λ)−1
∣∣fX(t)

∣∣ ≤ ∣∣f̂X(t)
∣∣ ≤ (1 − λ)−1

∣∣fX(t)
∣∣.

Thus, with probability 1 − κ exp(−(logn)3/2), (1 + λ)−1δ ≤ δ̂ ≤ (1 − λ)−1δ and (1 + λ)−1‖fX‖∞ ≤ ‖f̂X‖∞ ≤
(1 − λ)−1‖fX‖∞.
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A.3. Proof of Lemma 5

We have:

‖f1 ∗ f2‖2
x,2 =

∫
(f1 ∗ f2)

2(x, y)dy =
∫ (∫ ∫

f1(x − u,y − v)f2(u, v)dudv

)2

dy

≤
∫ (∫ ∫

f 2
1 (x − u,y − v)

∣∣f2(u, v)
∣∣dudv ×

∫ ∫ ∣∣f2(u, v)
∣∣dudv

)
dy

= ‖f2‖1

∫ ∫ ∥∥f1(x − u, ·)∥∥2
2

∣∣f2(u, v)
∣∣dudv ≤ sup

t∈Vn(x)

‖f1‖2
t,2 × ‖f2‖2

1.

A.4. Proof of Lemma 6

Let l the index such that x belongs to the interval Il . We denote

ϕd = ϕm
l,d , ψk = ψm

k , I (τ ) =
(∫ ∫

ϕd(u)ψk(y)τ (u, y)fX(u)dudy

)
0≤d≤r,k∈Km

and

Km(τ)(x, y) =
∑

k

∑
d

bd,kϕd(x)ψk(y).

Lemma 1 shows that the matrix of coefficients B = (bd,k)0≤d≤r,k∈Km verifies the equation GB = I (τ ), with

G = E(Ĝ) = (〈ϕd1 , ϕd2〉X
)

0≤d1,d2≤r
.

Now, using (8.9),

∥∥Km(τ)
∥∥2

x,2 =
∑

k

(∑
d

bd,kϕd(x)

)2

≤
∑
d

ϕ2
d(x)

∑
k

∑
d

b2
d,k

≤ φ1Dm1‖B‖2
F ≤ φ1Dm1

∥∥G−1
∥∥2

2

∥∥I (τ )
∥∥2

F
≤ φ1Dm1δ

−2
∥∥I (τ )

∥∥2
F
.

Now we denote ProjHm2
the usual L2 orthogonal projection on Hm2 and (·, ·)us the standard L2 dot product. Notice

that for any function s ∈ L2(R),
∑

k∈Km
(s,ψk)

2
us = ∫ |ProjHm2

(s)|2(y)dy ≤ ∫
s2(y)dy. Then

∥∥I (τ )
∥∥2

F
=

r∑
d=0

∑
k∈Km

(∫
ϕd(u)τ(u, ·)fX(u)du,ψk

)2

us

≤
r∑

d=0

∫ (∫
ϕd(u)τ(u, y)fX(u)du

)2

dy ≤
∫ (∫

Il

τ 2(u, y)f2
X(u)du

)
dy

using that for any function s,
∑

d(
∫

sϕd)2 ≤ ∫
Il

s2. Next, using that Il is an interval with length 4A(r + 1)D−1
m1

,

∥∥I (τ )
∥∥2

F
≤ sup

t∈Il

‖τ‖2
t,2

∫
Il

f2
X(u)du ≤ 4A(r + 1)D−1

m1
‖fX‖2∞ sup

t∈Il

‖τ‖2
t,2.

Finally∥∥Km(τ)
∥∥2

x,2 ≤ φ1Dm1δ
−24A(r + 1)D−1

m1
‖fX‖2∞ sup

t∈Il

‖τ‖2
t,2 ≤ (r + 1)2‖fX‖2∞δ−2 sup

t∈Vn(x)

‖τ‖2
t,2

and the lemma is proved.
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Appendix B: Tables for simulation results

In this appendix, for each example and each procedure, we give the approximated mean squared error based on
N = 100 samples for different values of n, different values of the parameter η and different values of x. We give in
bold the minimal value of the approximated mean squared error. For the kernel estimator and Examples 1 and 2, we
distinguish the case where fX is known or not.

Table B.1
Mean squared error for the kernel estimator at x = 0.5 for Example 1

Example 1 fX known fX unknown

η = −0.2 0.5 1 2 3 −0.2 0.5 1 2 3

n = 250 1.285 0.061 0.017 0.020 0.029 1.368 0.033 0.028 0.042 0.062
n = 500 0.673 0.019 0.009 0.010 0.018 0.685 0.016 0.009 0.011 0.018
n = 1000 0.336 0.013 0.006 0.006 0.009 0.329 0.013 0.006 0.007 0.010

Table B.2
Mean squared error for the projection estimator at x = 0.5 for Example 1

Example 1 fX unknown

η = −0.2 0.5 1 2 3

n = 250 0.492 0.192 0.222 0.232 0.231
n = 500 0.087 0.076 0.119 0.211 0.229
n = 1000 0.051 0.047 0.055 0.070 0.138

Table B.3
Mean squared error for the kernel estimator at x = 0.5 for Example 2

Example 2 fX known fX unknown

η = −0.2 0.5 1 2 3 −0.2 0.5 1 2 3

n = 250 0.038 0.008 0.006 0.007 0.009 0.042 0.008 0.006 0.008 0.009
n = 500 0.021 0.006 0.004 0.005 0.006 0.025 0.006 0.004 0.005 0.007
n = 1000 0.01 0.004 0.003 0.004 0.005 0.012 0.004 0.003 0.004 0.005

Table B.4
Mean squared error for the projection estimator at x = 0.5 for Example 2

Example 2 fX unknown

η = −0.2 0.5 1 2 3

n = 250 0.154 0.104 0.128 0.152 0.158
n = 500 0.064 0.070 0.090 0.103 0.123
n = 1000 0.047 0.060 0.063 0.074 0.088
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Table B.5
Mean squared error for the kernel estimator at x = 0, x = 0.36 and x = 1 for Example 3

Example 3 fX unknown

x η = −0.2 0.5 1 2 3

n = 250 0 0.514 0.016 0.013 0.012 0.019
0.36 0.092 0.062 0.080 0.112 0.134
1 1.709 0.015 0.009 0.009 0.016

n = 500 0 0.269 0.013 0.013 0.009 0.010
0.36 0.109 0.040 0.039 0.063 0.094
1 0.601 0.010 0.009 0.006 0.008

n = 1000 0 0.126 0.011 0.011 0.008 0.006
0.36 0.104 0.029 0.024 0.037 0.056
1 0.265 0.006 0.007 0.004 0.004

Table B.6
Mean squared error for the projection estimator at x = 0, x = 0.36 and x = 1 for Example 3

Example 3 fX unknown

x η = −0.2 0.5 1 2 3

n = 250 0 0.029 0.035 0.041 0.051 0.060
0.36 0.186 0.188 0.183 0.172 0.170
1 0.033 0.038 0.044 0.064 0.099

n = 500 0 0.020 0.028 0.033 0.036 0.038
0.36 0.169 0.184 0.177 0.172 0.170
1 0.027 0.029 0.030 0.032 0.035

n = 1000 0 0.012 0.018 0.023 0.031 0.034
0.36 0.160 0.161 0.166 0.170 0.169
1 0.023 0.025 0.028 0.029 0.028

Table B.7
Mean squared error for the kernel estimator at x = 0, x = 0.36 and x = 1 for Example 4

Example 4 fX unknown

x η = −0.2 0.5 1 2 3

n = 250 0 0.016 0.007 0.007 0.009 0.013
0.36 0.082 0.03 0.037 0.048 0.055
1 0.026 0.006 0.006 0.009 0.0119

n = 500 0 0.009 0.004 0.004 0.006 0.009
0.36 0.057 0.019 0.023 0.034 0.043
1 0.016 0.005 0.005 0.006 0.008

n = 1000 0 0.004 0.003 0.003 0.004 0.005
0.36 0.037 0.013 0.014 0.021 0.03
1 0.008 0.003 0.003 0.004 0.005
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Table B.8
Mean squared error for the projection estimation in x = 0, x = 0.36, x = 1 for Example 4

Example 4 fX unknown

x η = −0.2 0.5 1 2 3

n = 250 0 0.028 0.030 0.032 0.036 0.040
0.36 0.103 0.102 0.099 0.096 0.095
1 0.030 0.036 0.038 0.049 0.066

n = 500 0 0.022 0.024 0.024 0.029 0.032
0.36 0.098 0.099 0.097 0.094 0.094
1 0.026 0.027 0.028 0.033 0.036

n = 1000 0 0.020 0.020 0.021 0.021 0.023
0.36 0.082 0.083 0.093 0.095 0.094
1 0.023 0.023 0.022 0.026 0.028
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