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This paper studies nonparametric estimation of parameters of multivari-
ate Hawkes processes. We consider the Bayesian setting and derive posterior
concentration rates. First, rates are derived for L1-metrics for stochastic in-
tensities of the Hawkes process. We then deduce rates for the L1-norm of
interactions functions of the process. Our results are exemplified by using
priors based on piecewise constant functions, with regular or random parti-
tions and priors based on mixtures of Betas distributions. We also present a
simulation study to illustrate our results and to study empirically the inference
on functional connectivity graphs of neurons

1. Introduction. In this paper we study the properties of Bayesian nonparametric proce-
dures in the context of multivariate Hawkes processes. The aim of this paper is to give some
general results on posterior concentration rates for such models and to study some families
of nonparametric priors.

1.1. Hawkes processes. Hawkes processes, introduced by Hawkes [27] and Hawkes and
Oakes [28], are specific point processes which are extensively used to model data whose
occurrences depend on previous occurrences of the same process. First introduced in the uni-
variate setting, they can be easily extended to model marked or multivariate point processes
[18].

To describe multivariate Hawkes processes, we consider a multivariate point process
(Nt)t := (N1

t , . . . ,NK
t )t , each component Nk

t recording the time of occurrences of events
of the kth component of a system or equivalently the number of events of the kth component
until time t . Under mild general assumptions, a multivariate counting process is characterized
by its intensity process (λ1

t , . . . , λ
K
t ), informally given by

λk
t dt = P

(
Nt

k has a jump in [t, t + dt]|Gt−
)
,

where Gt− denotes the sigma-field generated by N = (N1, . . . ,NK) up to time t (exclud-
ing t). In this paper we concentrate on linear Hawkes processes. The intensities associated
with the class of linear mutually exciting Hawkes processes are of the form

λk
t = νk +

K∑
�=1

∫ t−

−∞
h�,k(t − u)dN�

u,

where h�,k , is nonnegative, supported by R+ and is called the interaction function of N� on
Nk and νk > 0 is the spontaneous rate associated with the process Nk . We recall that the
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previous integral means∫ t−

−∞
h�,k(t − u)dN�

u = ∑
T �

i ∈N�:T �
i <t

h�,k

(
t − T �

i

)
,

where the T �
i ’s are the random points of N� (see [2]).

Hawkes processes have been extensively used in a wide range of applications. They are
used to model earthquakes [33, 45, 48], interactions in social networks [5, 17, 30, 31, 44, 46,
47], financial data [1, 4, 6, 7, 20], violence rates [32, 37], genomes [12, 25, 42] or neuronal
activities [11, 16, 26, 34–36, 39, 40], to name but a few.

Parametric inference for Hawkes models based on the likelihood is the most common
in the literature, and we refer the reader to [12, 33] for instance. Nonparametric estimation
has first been considered by Reynaud-Bouret and Schbath [42] who proposed a procedure
based on minimization of an �2-criterion penalized by an �0-penalty for univariate Hawkes
processes. Their results have been extended to the multivariate setting by Hansen, Reynaud-
Bouret and Rivoirard [26] where the �0-penalty is replaced with an �1-penalty. The resulting
Lasso-type estimate leads to an easily implementable procedure providing sparse estimation
of the structure of the underlying connectivity graph. To generalize this procedure to the high-
dimensional setting, Chen, Witten and Shojaie [15] proposed a simple and computationally
inexpensive edge screening approach, whereas Bacry, Gaïffas and Muzy [5] combine �1 and
trace norm penalizations to take into account the low rank property of their self-excitement
matrix. Very recently, to deal with nonpositive interaction functions, Chen, Shojaie, Shea-
Brown and Witten [14] combine the thinning process representation and a coupling construc-
tion to bound the dependence coefficient of the Hawkes process. Other alternatives based on
spectral methods [3] or estimation through the resolution of a Wiener–Hopf system [8] can
also been found in the literature. These are all frequentist methods; Bayesian approaches for
Hawkes models have received much less attention. To the best of our knowledge, the only
contributions for the Bayesian inference are due to Rasmussen [38] and Blundell, Beck and
Heller [9] who explored parametric approaches and used MCMC to approximate the posterior
distribution of the parameters.

1.2. Our contribution. In this paper, we study nonparametric posterior concentration
rates, when T → +∞, for estimating the parameter f = ((νk)k=1,...,K, (h�,k)k,�=1,...,K) by
using realizations of the multivariate process (Nk

t )k=1,...,K for t ∈ [0, T ]. Analyzing asymp-
totic properties in the setting where T → +∞ means that the observation time becomes very
large, hence providing a large number of observations. Note that along the paper, K , the
number of observed processes, is assumed to be fixed and can be viewed as a constant. Con-
sidering K → +∞ is a very challenging problem beyond the scope of this paper. Using the
general theory of Ghosal and van der Vaart [22], we express the posterior concentration rates
in terms of simple and usual quantities associated to the prior on f and under mild conditions
on the true parameter. Two types of posterior concentration rates are provided: the first one is
in terms of the L1-distance on the stochastic intensity functions (λk)k=1,...,K , and the second
one is in terms of the L1-distance on the parameter f (see precise notation below). To the
best of our knowledge, these are the first theoretical results on Bayesian nonparametric infer-
ence in Hawkes models. Moreover, these are the first results on L1-convergence rates for the
interaction functions h�,k . In the frequentist literature, theoretical results are given in terms
of either the L2-error of the stochastic intensity, as in [5] and [8], or in terms of the L2-error
on the interaction functions themselves, the latter being much more involved, as in [42] and
[26]. In [42], the estimator is constructed using a frequentist model selection procedure with
a specific family of models based on piecewise constant functions. In the multivariate setting
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of [26], more generic families of approximation models are considered (wavelets of Fourier
dictionaries) and then combined with a Lasso procedure but under a somewhat restrictive
assumption on the type and size of the models that can be used to construct their estima-
tors (see Section 5.2 of [26]). Our general results do not involve such strong conditions and,
therefore, allow us to work with approximating families of models that are quite general. Our
conditions are very similar to the conditions proposed in the context of density estimation in
[21] so that most of the priors which have been studied in the context of density estimation
can now be easily adapted to the context of the interaction functions of multivariate Hawkes
processes. In particular, we have applied these conditions to two families of prior models
on the interaction functions h�,k : priors based on piecewise constant functions, with regular
or random partitions, and priors based on mixtures of Betas distributions. From the posterior
concentration rates we also deduce a frequentist convergence rate for the posterior mean, seen
as a point estimator. We finally propose an MCMC algorithm to simulate from the posterior
distribution for the priors constructed from piecewise constant functions, and a simulation
study is conducted to illustrate our results.

1.3. Formal definitions, notation and assumptions. We first recall the formal definition
of multivariate Hawkes processes, and we define our setup. In the sequel, for any R-valued
function h, we denote by ‖h‖p its Lp-norm. Consider the probability space (X ,G,P). For
any k and any set A, we denote by Nk(A) the number of occurrences of Nk in A. We can
define linear multivariate Hawkes processes as follows.

DEFINITION 1. Let T > 0. We consider f = ((νk)k=1,...,K, (h�,k)k,�=1,...,K) such that
for all k, �, νk > 0 and h�,k is nonnegative and integrable. Let (Nt)t = (N1

t , . . . ,NK
t )t , and

assume that GT ⊂ G with Gt = G0 ∨ σ(Ns, s ≤ t), for some G0 ⊂ G. Then, the process (Nt)t
adapted to (Gt )t is a linear multivariate Hawkes process with parameter f if:

– almost surely, for all k 	= �, (Nk
t )t and (N�

t )t never jump simultaneously;
– for all k, the intensity process (λk

t (f ))t of (Nk
t )t is given by

(1.1) λk
t (f ) = νk +

K∑
�=1

∫ t−

−∞
h�,k(t − u)dN�

u.

Conditions of Definition 1 on f ensure existence and uniqueness of a pathwise Hawkes
process (Nt)t = (N1

t , . . . ,NK
t )t such that Nk

t < ∞ almost surely for any k and any t . Fur-
thermore, Theorem 7 of [10] shows that if the K × K matrix ρ, with

(1.2) ρ�,k =
∫ +∞

0
h�,k(t) dt, �, k = 1, . . . ,K,

has a spectral radius strictly smaller than 1, then there exists a unique stationary distribu-
tion for the multivariate process N = (Nk)k=1,...,K with intensities given by (1.1) and finite
average intensity.

Given a parameter f = ((νk)k=1,...,K, (h�,k)k,�=1,...,K), we denote by ‖ρ‖ the spectral
norm of the matrix ρ associated with f and defined in (1.2). We recall that ‖ρ‖ provides
an upper bound of the spectral radius of ρ.

Let A > 0 be a given known constant, set

H = {
(h�,k)k,�=1,...,K;h�,k is integrable, h�,k ≥ 0,‖h�,k‖∞ < ∞,

support(h�,k) ⊂ [0,A],∀k, � ≤ K
}
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and

F = {
f = (

(νk)k=1,...,K, (h�,k)k,�=1,...,K

);0 < νk < ∞,∀k ≤ K,

(h�,k)k,�=1,...,K ∈ H
}
.

In the sequel, for T > 0, we assume that we observe N , a linear Hawkes process with true
parameter f0 = ((ν0

k )k=1,...,K, (h0
�,k)k,�=1,...,K) ∈ F , until time T . Denote by ρ0 the matrix

such that ρ0
�,k = ∫ A

0 h0
�,k(t) dt , and assume that ‖ρ0‖ < 1. For the sake of simplicity, we

assume σ(Ns, s < 0) ⊂ G0 so G0 = G0 ∨ σ(Ns, s < 0), and we denote by P0 the stationary
distribution of N (associated to f0) and by P0(·|G0) the conditional distribution of N given
G0. Finally, E0 is the expectation associated with P0.

Now, let f = ((νk)k=1,...,K, (h�,k)k,�=1,...,K) ∈ F , and we define λt (f ) = (λk
t (f ))k=1,...,K

for all t ≥ 0 where

λk
t (f ) = νk +

K∑
�=1

∫ t−

t−A
h�,k(t − u)dN�

u.

From Chapter II of [2], if

(1.3) LT (f ) :=
K∑

k=1

[∫ T

0
log

(
λk

t (f )
)
dNk

t −
∫ T

0
λk

t (f ) dt

]
,

and

dPf (·|G0) = eLT (f )−LT (f0) dP0(·|G0),

then Pf (·|G0) is a conditional probability distribution on (X ,G) and, under Pf , N is a multi-
variate Hawkes process with intensity process (λt (f ))0≤t≤T . Note that if the spectral radius
of ρ is less than 1, then, under Pf , N is a stationary multivariate Hawkes process. With a
slight abuse of notation, we also denote, at times, LT (λ) in place of LT (f ). In the sequel, Ef

is the expectation with respect to Pf .
Now, given two parameters f = ((νk)k=1,...,K, (h�,k)k,�=1,...,K) and f ′ = ((ν′

k)k=1,...,K,

(h′
�,k)k,�=1,...,K) belonging to F , we set

(1.4)
∥∥f − f ′∥∥

1 =
K∑

k=1

∣∣νk − ν′
k

∣∣ + K∑
k=1

K∑
�=1

∥∥h�,k − h′
�,k

∥∥
1

and

d1,T

(
f,f ′) = 1

T

K∑
k=1

∫ T

0

∣∣λk
t (f ) − λk

t

(
f ′)∣∣dt.

Note that d1,T is a data-dependent pseudodistance on F . We denote by N (u,H0, d) the
covering number of a set H0 by balls with respect to a metric d with radius u. We set for any
�, μ0

� the mean of λ�
t (f0) under P0:

μ0
� = E0

[
λ�

t (f0)
]
.

We also write uT � vT if |uT /vT | is bounded when T → +∞ and, similarly, uT � vT if
|vT /uT | is bounded. Finally, if � is a set �c denotes its complement.
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1.4. Overview of the paper. In Section 2, Theorem 1 first states the posterior conver-
gence rates obtained for stochastic intensities. Theorem 2 constitutes a variation of this first
result. From these results we derive L1-rates for the parameter f (see Theorem 3) and for
the posterior mean (see Corollary 1). Examples of prior models satisfying conditions of these
theorems are given in Section 2.3. In Section 3 numerical results are provided. Finally, Sec-
tion 4 provides the proof of Theorem 3 (Section 4.3). Before that, to deal with the posterior
distributions, we construct specific tests (Lemma 1 in Section 4.1) and provide a general con-
trol of the Kullback–Leibler divergence between two given functions (Section 4.2). Proofs of
other results are given in the Supplementary Material [19].

2. Main results. This section contains the main results of the paper. We first provide an
expression for the posterior distribution.

2.1. Posterior distribution. Recall that we restrict ourselves to the setup where for all �,
k, h�,k has support included in [0,A] for some fixed known A > 0. This hypothesis is very
common in the context of Hawkes processes; see [26].

Hence, in the following we assume that we observe the process (Nk)k=1,...,K on [−A,T ],
but we base our inference on the log-likelihood (1.3) which is associated to the observation
of (Nk)k=1,...,K on [0, T ]. We consider a Bayesian nonparametric approach and denote by
� the prior distribution on the parameter f = ((νk)k=1,...,K, (h�,k)k,�=1,...,K). The posterior
distribution is then formally equal to

�(B|N,G0) =
∫
B exp(LT (f )) d�(f |G0)∫
F exp(LT (f )) d�(f |G0)

.

We approximate it by the following pseudo-posterior distribution, which we write �(·|N)

(2.1) �(B|N) =
∫
B exp(LT (f )) d�(f )∫
F exp(LT (f )) d�(f )

,

which thus corresponds to choosing d�(f ) = d�(f |G0).

2.2. Posterior convergence rates for d1,T and L1-metrics. In this section we give two re-
sults of posterior concentration rates, one in terms of the stochastic distance d1,T and another
one in terms of the L1-distance, which constitutes the main result of this paper. We define

�T =
{

max
�∈{1,...,K} sup

t∈[0,T ]
N�[t − A, t) ≤ Cα logT

}
∩

{
K∑

�=1

∣∣∣∣N�[−A,T ]
T

− μ0
�

∣∣∣∣ ≤ δT

}

with δT = δ0(logT )3/2/
√

T and δ0 > 0 and Cα two positive constants not depending on T .
From Lemmas 2 and 3 in Section 2.5 in the Supplementary Material [19], we have that for
all α > 0 there exist Cα > 0 and δ0 > 0 only depending on α and f0 such that

(2.2) P0
(
�c

T

) ≤ T −α,

when T is large enough. In the sequel, we take α > 1 and Cα accordingly. Note, in particular,
that on �T ,

∑K
�=1 N�[−A,T ] ≤ N0T , with N0 = 1 + ∑K

�=1 μ0
� , when T is large enough. We

then have the following theorem.

THEOREM 1. Consider the multivariate Hawkes process (Nk)k=1,...,K observed on
[−A,T ] with likelihood given by (1.3). Let � be a prior distribution on F . Let εT be a
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positive sequence such that εT = o(1) and log log(T ) log3(T )/(T ε2
T ) = o(1). For B > 0, we

consider

B(εT ,B) :=
{(

νk, (h�,k)�
)
k;max

k

∣∣νk − ν0
k

∣∣ ≤ εT ,

max
�,k

∥∥h�,k − h0
�,k

∥∥
2 ≤ εT ,max

�,k
‖h�,k‖∞ ≤ B

}
and assume the following conditions are satisfied for T large enough:

(i) There exists c1 > 0 and B > 0 such that

�
(
B(εT ,B)

) ≥ e−c1T ε2
T .

(ii) There exists a subset HT ⊂ H, such that

�(Hc
T )

�(B(εT ,B))
≤ e−(2κT +3)T ε2

T ,

where κT := κ log(r−1
T ) � log logT , with rT defined in (4.4) and κ defined in (4.2).

(iii) There exist ζ0 > 0 and x0 > 0 such that

logN
(
ζ0εT ,HT ,‖ · ‖1

) ≤ x0T ε2
T .

Then, there exist M > 0 and C > 0 such that

E0
[
�

(
d1,T (f0, f ) > M

√
log logT εT |N)]

≤ C log log(T ) log3(T )

T ε2
T

+ P0
(
�c

T

) + o(1) = o(1).

Assumptions (i), (ii) and (iii) are very common in the literature about posterior conver-
gence rates. As expressed by Assumption (ii), some conditions are required on the prior on
HT but not on the parameters νk . Except the usual concentration property of ν around ν0

expressed in the definition of B(εT ,B), which is in particular satisfied if ν has a positive
continuous density with respect to Lebesgue measure, we have no further condition on the
tails of the distribution of ν.

REMARK 1. As appears in the proof of Theorem 1, the term
√

log logT appearing in the
posterior concentration rate can be dropped if B(εT ,B) is replaced by

B∞(εT ,B) =
{(

νk, (h�,k)�
)
k;max

k

∣∣νk − ν0
k

∣∣ ≤ εT ,max
�,k

∥∥h�,k − h0
�,k

∥∥∞ ≤ εT

}
,

in Assumption (i). In this case, rT = 1/2 in Assumption (ii) and κT does not depend on T .
This is used for instance in Section 2.3.1 to study random histograms priors whereas mixtures
of Beta priors are controlled using the L2-norm.

Similar to other general theorems on posterior concentration rates, we can consider some
variants. Since the metric d1,T is stochastic, we cannot use slices in the form d1,T (f0, f ) ∈
(jεT , (j +1)εT ) as in Theorem 1 of Ghosal and van der Vaart [22], however, we can consider
other forms of slices, using a similar idea as in Theorem 5 of Ghosal and van der Vaart [23].
This is presented in the following theorem:
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THEOREM 2. Consider the setting and assumptions of Theorem 1 except that assumption
(iii) is replaced by the following one. There exists a sequence of sets (HT ,i)i≥1 ⊂ H with⋃

i HT ,i =HT and ζ0 > 0 such that

(2.3)
∞∑
i=1

N
(
ζ0εT ,HT ,i,‖ · ‖1

)√
�(HT ,i)e

−x0T ε2
T = o(1),

for some positive constant x0 > 0. Then, there exists M > 0 such that

E0
[
�

(
d1,T (f0, f ) > M

√
log logT εT |N)] = o(1).

The posterior concentration rates of Theorems 1 and 2 are in terms of the metric d1,T on
the intensity functions which are data dependent and therefore not completely satisfying to
understand concentration around the objects of interest namely f0. We now use Theorem 1
to provide a general result to derive a posterior concentration rate in terms of the L1-norm.

THEOREM 3. Assume that the prior � satisfies the following assumptions:

(i) There exists εT = o(1) such that εT ≥ δT (see the definition of �T ) and c1 > 0 such
that

(2.4) E0
[
�

(
Ac

εT
|N)] = o(1) and P0

(
DT < e−c1T ε2

T
) = o(1),

where DT = ∫
F eLT (f )−LT (f0) d�(f ) and AεT

= {f ;d1,T (f0, f ) ≤ εT }.
(ii) The prior on ρ satisfies the following property: for all u0 > 0, when T is large enough,

(2.5) �
(‖ρ‖ > 1 − u0(logT )1/6ε

1/3
T

) ≤ e−2c1T ε2
T .

Then, for any wT → +∞,

(2.6) E0
[
�

(‖f − f0‖1 > wT εT |N)] = o(1).

REMARK 2. Condition (i) of Theorem 3 is, in particular, verified under the assumptions
of Theorem 1, with εT = MεT

√
log logT for M a constant.

REMARK 3. Compared to Theorem 1, we also assume (ii), that is, that the prior distribu-
tion puts very little mass near the boundary of space {f ; ‖ρ‖ < 1}. In particular, if under �,
‖ρ‖ has its support included in [0,1 − ε] for a fixed small ε > 0 then (2.5) is verified.

REMARK 4. A close inspection of the proofs shows that all convergence results of The-
orems 1, 2 and 3 are uniform over the class of parameters satisfying the following condition:
there exist c0 > 0, C0 > 0 and e0 ∈ (0,1) such that

(2.7)
c0 ≤ min

k
ν0
k ≤ max

k
ν0
k ≤ C0, max

k,�

∥∥h0
�,k

∥∥∞ ≤ C0, and∥∥ρ0∥∥ ≤ 1 − e0.

A consequence of previous theorems is that the posterior mean f̂ = E
π [f |N ] is converg-

ing to f0 at the rate εT which is described by the following corollary:

COROLLARY 1. Under the assumptions of Theorem 1 or Theorem 2, together with (2.5)
with εT = √

log logT εT and if
∫
F ‖f ‖1 d�(f ) < +∞, then for any wT → +∞

P0
(‖f̂ − f0‖1 > wT εT

) = o(1).
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The proof of Corollary 1 is given in Section 2.3 in the Supplementary Material [19].
The results of Theorem 3 and Corollary 1 lead to L1 convergence results which are weaker

than the L2 convergence results of [26]. But our results allow for a much wider range of
possible dictionaries (prior models in the Bayesian formulation) since, contrariwise to [26],
we do not require the stringent (lower bound) condition on the Gram matrix G made of the
scalar products between λT (ϕj ) and λT (ϕj ′) with (ϕj )j≤J denoting the dictionary used to
construct the estimator (see Inequality (2.4) of Theorem 1 of [26]). It is assumed, in particular,
in [26] (see Proposition 5) that this dictionary has to be an orthonormal basis and some
stringent conditions on J are considered. We see in the following section that no such a
condition is required to apply Theorems 1 to 3, and priors based on overcomplete continuous
dictionaries are easily allowed. Indeed, our assumptions resemble the type of assumptions
considered for density estimation for i.i.d. models, for which a large literature already exists.

2.3. Examples of prior models. The advantage of Theorems 1 and 3 is that the conditions
required on the priors on the functions hk,� are quite standard, in particular, if the functions
hk,� are parameterized in the following way:

hk,� = ρk,�h̄k,�,

∫ A

0
h̄k,�(u) du = 1.

We thus consider priors on θ = (ν�, ρk,�, h̄k,�, k, � ≤ K) following the scheme

ν�
i.i.d.∼ �ν, ρ = (ρk,�)k,�≤K ∼ �ρ, h̄k,�

i.i.d.∼ �h̄,
(2.8)

with �ν , �ρ and �h̄ independent. We consider �ν absolutely continuous with respect to
the Lebesgue measure on R+ with positive and continuous density πν , �ρ a probability
distribution on the set of matrices with positive entries and spectral norm ‖ρ‖ < 1, with
positive density with respect to Lebesgue measures and satisfying (2.5). We now concentrate
on the nonparametric part, namely, the prior distribution �h̄. Then, from Theorems 1 and 3
it is enough that �h̄ satisfies for all 1 ≤ k, � ≤ K ,

�h̄

(∥∥h̄ − h̄0
k,�

∥∥
2 ≤ εT ,‖h̄‖∞ ≤ B

) ≥ e−cT ε2
T ,

for some B > 0 and c > 0 such that there exists HT with

HT ⊂
{
h : [0,A] → R

+,

∫ A

0
h(x) dx = 1

}
satisfying

(2.9) �h̄

(
HT

c) ≤ e−CT ε2
T log logT , logN

(
ζ εT ;HT ; ‖ · ‖1

) ≤ x0T ε2
T ,

for ζ > 0, x0 > 0 and C > 0 large enough. Note that from Remark 1, if we have that for all
�, k

�h̄

(∥∥h̄ − h̄0
k,�

∥∥∞ ≤ εT ,‖h̄‖∞ ≤ B
) ≥ e−cT ε2

T ,

then condition (2.9) can be replaced by

(2.10) �h̄

(
HT

c) ≤ e−CT ε2
T , logN

(
ζ εT ;HT ; ‖ · ‖1

) ≤ x0T ε2
T .

These conditions have been checked for a large selection of types of priors on the set of
densities. We discuss here two cases: one based on random histograms, these priors make
sense in particular in the context of modeling neuronal interactions, and the second based
on mixtures of Betas, because it leads to adaptive posterior concentration rates over a large
collection of functional classes. To simplify the presentation we assume that A = 1 but gener-
alization to any A > 0 is straightforward. Following Remark 4, we also assume in the sequel
that there exist c0 > 0, C0 > 0 and e0 ∈ (0,1) such that Condition (2.7) is satisfied.
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2.3.1. Random histogram prior. These priors are motivated by the neuronal application,
where one is interested in characterizing time zones when neurons are or are not interacting
(see Section 3). Random histograms have been studied quite a lot recently for density estima-
tion, both in semi and nonparametric problems. We consider two types of random histograms:
regular partitions and random partitions histograms. Random histogram priors are defined as
follows. For J ≥ 1,

h̄w,t,J = δ

J∑
j=1

wj

tj − tj−1
1Ij

, Ij = (tj−1, tj ),

J∑
j=1

wj = 1, δ ∼ Bern(p)

(2.11)

and

t0 = 0 < t1 < · · · < tJ = 1.

In both cases, the prior is constructed in the following hierarchical manner:

J ∼ �J , e−c1xL1(x) ��J (J = x),

�J (J > x) � e−c2xL1(x),

L1(x) = 1 or L1(x) = logx,

(w1, . . . ,wJ )|J ∼ �w,

(2.12)

where c1 and c2 are two positive constants. Denoting SJ the J -dimensional simplex, we
assume that the prior on (w1, . . . ,wJ ) satisfies the following property. For all M > 0, for all
w0 ∈ SJ with for any j , w0j ≤ M/J and all u > 0 small enough, there exists c > 0 such that

(2.13)
�w

((
w01 − u/J 2,w01 + u/J 2)

× · · · × (
w0J − u/J 2,w0J + u/J 2))

> e−cJ logJ .

Many probability distributions on SJ satisfy (2.13). For instance, if �w is the Dirichlet dis-
tribution D(α1,J , . . . , αJ,J ) with c3J

−a ≤ αi,J ≤ c4, for a, c3 and c4 three positive constants,
then (2.13) holds; see, for instance, Castillo and Rousseau [13]. Also, consider the following

hierarchical prior allowing some of the wj ’s to be equal to 0. Set Zj
i.i.d.∼ Bern(p), j ≤ J ,

sz = ∑J
j=1 Zj and (j1, . . . , jsz) the indices corresponding to Zj = 1. Then,

(wj1, . . . ,wjsz
) ∼D(α1,J , . . . , αsz,J ), c3J

−a ≤ αi,J ≤ c4,

wj = 0 if Zj = 0.

Regular partition histograms correspond to tj = j/J for j ≤ J , in which case we write h̄w,J

instead of h̄w,t,J ; while in random partition histograms, we put a prior on (t1, . . . , tJ ). We
now consider Hölder balls of smoothness β ∈ (0,1] and radius L0 > 0, denoted H(β,L0) :=
{g; |g(x) − g(y)| ≤ L0|x − y|β} and prove that the posterior concentration rate associated
with both types of histogram priors is bounded by εT = ε0(logT/T )β/(2β+1) for 0 < β ≤ 1,
where ε0 is a constant large enough. From Remark 1 we use the version of assumption (i)
based on

B∞(εT ,B) =
{(

νk, (h�,k)�
)
k;max

k

∣∣νk − ν0
k

∣∣ ≤ εT ,max
�,k

∥∥h�,k − h0
�,k

∥∥∞ ≤ εT

}
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and need to verify (2.10). Then, applying Lemma 4 of the Supplementary Material of
Castillo and Rousseau [13], we obtain that for each 1 ≤ k, � ≤ K such that h̄0

k,� 	= 0 and

h̄0
k,� ∈H(β,L0),

�
(∥∥h̄w,J − h̄0

�,k

∥∥∞ ≤ 2L0J
−β |J )

� pe−cJ logT

for some c > 0 and �J (J = J0�(T / logT )�1/(2β+1)) � e−c1J0(T / logT )1/(2β+1)L1(T ) if J0 is a
constant. If h̄0

�,k = 0, then �(‖h̄w,J − h̄0
�,k‖∞ = 0) = 1 − p, so that

�
(
B∞(εT ,B)

)
� εK

T × [
(1 − p)p

]K2 × e−K2c1J0(T / logT )1/(2β+1)L1(T ) � e−c′T ε2
T ,

for some c′ > 0. This result holds both for the regular grid and random grid histograms with a
prior on the grid points (t1, . . . , tJ ) given by (u1, . . . , uJ ) ∼ D(α, . . . , α) with uj = tj − tj−1.
Then, condition (2.5) is verified if �(‖ρ‖ > 1 −u) � e−a′u−a

with a > 3/β and a′ > 0, for u

small enough. This condition holds for any β ∈ (0,1] if there exist a′, τ > 0 such that when
u is small enough

(2.14) �
(‖ρ‖ > 1 − u

)
� e−a′e−1/uτ

.

Moreover, set HT = {h̄w,J , J ≤ J1(T / logT )1/(2β+1)} for J1 a constant, then for all ζ > 0,
logN (ζ εT ,HT ,‖·‖1)� J1(T / logT )1/(2β+1) logT . Therefore, (2.10) is checked. We finally
obtain the following corollary:

COROLLARY 2 (Regular partition). Under the random histogram prior (2.11) based on
a regular partition and verifying (2.12) and (2.13) and if (2.14) is satisfied, then if for any
k, � = 1, . . . ,K , h0

k,� belongs to H(β,L) for 0 < β ≤ 1, for any wT → +∞,

E0
[
�

(‖f − f0‖1 > wT (T / logT )−β/(2β+1)|N)] = o(1).

To extend this result to the case of random partition histogram priors, we consider the
same prior on (J,w1, . . . ,wJ ) as in (2.12) and the following condition on the prior on
t = (t1, . . . , tK). Writing u1 = t1, uj = tj − tj−1, we have that u = (u1, . . . , uJ ) belongs
to the J -dimensional simplex SJ , and we consider a Dirichlet distribution on (u1, . . . , uJ ),
D(α, . . . , α) with α ≥ 6. The arguments used to the regular partition apply also to the case of
the random partition apart from the computation of the entropy, which is more involved here.

COROLLARY 3. Consider the random histogram prior (2.11) based on random partition
with a prior on w = (w1, . . . ,wJ ) satisfying (2.12) and (2.13) and with a Dirichlet prior on
u = (tj − tj−1, j ≤ J ) with parameter α ≥ 6. If (2.14) is satisfied, then if for any k, � =
1, . . . ,K , h0

k,� belongs to H(β,L) for 0 < β ≤ 1, for any wT → +∞,

E0
[
�

(‖f − f0‖1 > wT (T / logT )−β/(2β+1)|N)] = o(1).

The proof of this corollary is given in Section 2.6 in the Supplementary Material [19]. In
the following section we consider another family of priors suited for smooth functions hk,�

and based on mixtures of Beta distributions.

2.3.2. Mixtures of betas. The following family of prior distributions is inspired by
Rousseau [43]. Consider functions

hk,� = ρk,�

(∫ 1

0
gαk,�,ε dMk,�(ε)

)
+
,

gα,ε(x) = �(α/(ε(1 − ε)))

�(α/ε)�(α/(1 − ε))
x

α
1−ε

−1(1 − x)
α
ε
−1,
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where Mk,� are bounded signed measures on [0,1] such that |Mk,�| = 1. In other words, the
above functions are the positive parts of mixtures of Betas’ distributions with parameteriza-
tion (α/ε,α/(1 − ε)) so that ε is the mean parameter. The mixing random measures Mk,�

are allowed to be negative. The reason for allowing Mk,� to be negative is that hk,� is then
allowed to be null on sets with positive Lebesgue measure. The prior is then constructed in
the following way. Writing hk,� = ρk,�h̄k,�, we define a prior on h̄k,� via a prior on Mk,� and

on αk,�. In particular, we assume that Mk,�
i.i.d.∼ �M and αk,�

i.i.d.∼ πα . As in Rousseau [43],
we consider a prior on α absolutely continuous with respect to Lebesgue measure and with
density such that there exists b1, c1, c2, c3,A,C > 0 such that for all u large enough,

πα(c1u < α < c2u) ≥ Ce−b1u
1/2

,

πα

(
α < e−Au) + πα(α > c3u) ≤ Ce−b1u

1/2
.

(2.15)

For instance, if
√

α follows a Gamma distribution, then (2.15) is verified. There are many
ways to construct discrete signed measures on [0,1], for instance, writing

(2.16) M =
J∑

j=1

rjpj δεj
,

the prior on M is then defined by J ∼ �J and conditionally on J ,

rj
i.i.d.∼ Ra(1/2), εj

i.i.d.∼ Gε, (p1, . . . , pJ ) ∼D(a1, . . . , aJ ),

where Ra denotes the Rademacher distribution taking values {−1,1} each with probability
1/2. Assume that Gε has positive continuous density on [0,1] and that there exists A0 > 0
such that

∑J
j=1 aj ≤ A0. Recall that when β > 1, the Hölder ball H(β,L0) is defined as the

set of functions g such that

‖g‖∞ +
�β�∑
�=1

∥∥g(�)
∥∥∞ + sup

x 	=y

|g(�β�)(x) − h(�β�)(y)|
|x − y|β−�β� ≤ L0,

where the last term disappears if β is an integer. We have the following corollary:

COROLLARY 4. Consider a prior as described above. Assume that for all k, � ≤ K

h0
k,� = (g0

k,�)+ for some functions g0
k,� ∈ H(β,L0) with β > 0. If condition (2.14) holds and

if Gε has density with respect to Lebesgue measure verifying

xA1(1 − x)A1 � gε(x) � x3(1 − x)3 for some A1 ≥ 3,

then, for any wT → +∞,

E0
[
�

(‖f − f0‖1 > wT T −β/(2β+1)(logT )5β/(4β+2)
√

log logT |N)] = o(1).

Note that in the context of density estimation, T −β/(2β+1) is the minimax rate, and we
expect that it is the same for Hawkes processes. Indeed, since P0(�

c
T ) goes to 0, the number

of observations is of order T .

3. Numerical illustration in the neuroscience context. It is now well-known that neu-
rons receive and transmit signals as electrical impulses called action potentials. Although ac-
tion potentials can vary somewhat in duration, amplitude and shape, they are typically treated
as identical stereotyped events in neural coding studies. Therefore, an action potentials se-
quence, or spike train, can be characterized simply by a series of all-or-none point events in
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time. Multivariate Hawkes processes have been used in neuroscience to model spike trains
of several neurons and in particular to model functional connectivity between them through
mutual excitation or inhibition [29]. In this section, we conduct a simulation study mimicking
the neural context, through appropriate choices of parameters. The protocol is similar to the
setting proposed in Section 6 of [26].

3.1. Simulation scenarios. We consider three simulation scenarios involving respectively
K = 2 and K = 8 neurons. The scenarios are roughly similar to the one tested in [26]. Follow-
ing the notation introduced in the previous sections, for any (k, �) ∈ {1, . . . ,K}2, hk,� denotes
the interaction function of neuron k over neuron �. We now describe the three scenarios. The
upper bound of each hk,�’s support, denoted [0,A], is set equal to A = 0.04 seconds.

• Scenario 1. We first consider K = 2 neurons and piecewise constant interactions: h1,1 =
30 · 1(0,0.02], h2,1 = 30 · 1(0,0.01], h1,2 = 30 · 1(0.01,0.02], h2,2 = 0.

• Scenario 2. In this scenario, we mimic K = 8 neurons belonging to three independent
groups. The non-null interactions are the piecewise constant functions defined as: h2,1 =
h3,1 = h2,2 = h1,3 = h2,3 = h8,5 = h5,6 = h6,7 = h7,8 = 30 · 1(0,0.02].

We plot the subsequent interactions directed graph between the 8 neurons: the vertices
represent the K neurons and an oriented edge is plotted from vertex k to vertex � if the
interaction function hk,� is non-null.

• Scenario 3. Setting K = 2, we consider non-piecewise constant interactions functions de-
fined as

h1,1(t) = 100 · e−100t1(0,0.04](t), h2,1(t) = 30 · 1(0,0.02](t),

h1,2(t) = 1

2 × 0.004
√

2π
e
− (t−0.02)2

2×0.0042 · 1(0,0.04](t), h2,2(t) = 0.

For any scenario, we consider ν� = 20, � = 1, . . . ,K . For each scenario, we simulate 25
datasets on the time interval [0,22] seconds. The Bayesian inference is performed consid-
ering recordings on three possible periods of length T = 5 seconds, T = 10 seconds and
T = 20 seconds. For any dataset, we remove the initial period of 2 seconds corresponding to
50 times the length of the support of the hk,�-functions, assuming that, after this period, the
Hawkes processes have reached their stationary distribution. Note that the chosen parameters
induce that the mean number of events per neuron and per period of five seconds is approxi-
matively 321 for Scenario 1, 472 for Scenario 2 and 317 for Scenario 3. More details on the
simulated dataset are supplied in the supplementary material [19].

3.2. Prior distribution on f = (ν�, hk,�)k,�∈{1,...,K}. We use the prior distribution de-
scribed in Section 2.3 setting a log-normal prior distribution on the ν�’s of parameter μν ,
s2
ν . About the interaction functions (hk,�)k,�∈{1,...,K}, the prior distribution is defined on the

set of piecewise constant functions, hk,� being written as follows:

(3.1) hk,�(t) = δ(k,�)
J (k,�)∑
j=1

β
(k,�)
j 1[t (k,�)

j−1 ,t
(k,�)
j ](t), ρk,� =

∫ ∞
0

hk,�(t) dt
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with t
(k,�)
0 = 0 and t

(k,�)

J (k,�) = A. Using the notation in Section 2.3, we have if δ(k,�) 	= 0, β(k,�)
j =

ρk,�
ω

(k,�)
j

(t
(k,�)
j −t

(k,�)
j−1 )

. Here, δ(k,�) is a global parameter of nullity for hk,� and model the graph of

interactions: for all (k, �) ∈ {1, . . . ,K}2,

(3.2) δ(k,�) ∼i.i.d. Bern(p).

For all (k, �) ∈ {1, . . . ,K}2, the number of steps (J (k,�)) follows a translated Poisson prior
distribution:

(3.3) J (k,�)|{δ(k,�) = 1
} ∼i.i.d. 1 +P(η).

To minimize the influence of η on the posterior distribution, we consider a hyperprior distri-
bution on the hyperparameter η:

(3.4) η ∼ �(aη, bη).

Given J (k,�), we consider a spike and slab prior distribution on (β
(k,�)
j )j=1,...,J (k,�) . Let us

introduce Z
(k,�)
j ∈ {0,1} such that ∀j ∈ {1, . . . , J (k,�)},

(3.5)
P

(
Z

(k,�)
j = z|δ(k,�) = 1

) = πz ∀z ∈ {0,1},
β

(k,�)
j |{δ(k,�) = 1

} ∼ Z
(k,�)
j × logN

(
μβ, s2

β

)
.

We consider two prior distributions on (t
(k,�)
j )j=1,...,J (k,�) . The first one (referred as the regular

histogram prior) is a regular partition of [0,A]:

(3.6) t
(k,�)
j = j

J (k,�)
A ∀j = 0, . . . , J (k,�).

The second prior distribution is referred as the random histogram prior and

(3.7)

(u1, . . . , uJ (k,�)) ∼ D
(
α′

1, . . . , α
′
J (k,�)

)
,

t
(k,�)
j = A

j∑
r=1

ur ∀j = 1, . . . , J (k,�); t
(k,�)
0 = 0

Equations (3.2)–(3.6) (or (3.7)) define a prior distribution P on (hk,�)k,�, without any con-
straint on ‖ρ‖. The prior is defined by truncating this distribution to the set {‖ρ‖ ≤ 1 − ε}
for an arbitrarily small ε. In practice we have chosen ε = 10−16, which is the precision of the
machine. In the simulation studies, we set the following hyperparameters:

μβ = 3.5, sβ = 1, μν = 3.5, sν = 1,

P
(
Z

(k,�)
j = 1

) = 1/2, P
(
δ(k,�) = 1

) = p = 1/2; α′
j = 2 ∀j.

3.3. Posterior sampling. The posterior distribution is sampled using a standard revers-
ible-jump Markov chain Monte Carlo (RJ-MCMC). Considering the current parameter (ν,h),
ν(c) is proposed using a Metropolis-adjusted Langevin proposal. For a fixed J (k,�), the heights
β

(k,�)
j are proposed using a random walk proposing null or non-null candidates. Changes in

the number of steps J (k,�) are generated by standard birth and death moves [24]. In this
simulation study, we generate chains of length 30,000 removing the first 10,000 burn-in
iterations. The algorithm is implemented in R on an Intel(R) Xeon(R) CPU E5-1650 v3 @
3.50 GHz.
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TABLE 1
Mean computation time (in seconds) for the reversible-jump MCMC algorithms as a function of the scenario, the
observation time interval and the prior distribution (random or regular histogram). The mean is computed over

the 25 simulated datasets

K = 2 K = 8 K = 2 with smooth hk,�

Prior on t : Regular Random Regular Random

T = 5 1508.44 1002.45 823.84
T = 10 1383.72 1459.55 37,225.19 1284.93
T = 20 2529.19 2602.48 49,580.18 1897.17

REMARK 5. Note that, in order to get a better mixing Markov Chain, we first sample the
posterior distribution of f on the unconstraint parameter set, i.e. not taking into account the
constraint ‖ρ‖ ≤ 1 − ε, and we discard all iterations where ‖ρ‖ > 1 − ε.

The computation times (mean over the 25 datasets) are given in Table 1. First note that
the computation time increases roughly as a linear function of T . This is due to the fact that
the heavier task in the algorithm is the integration of the conditional likelihood and the com-
putation time of this operation is roughly a linear function of the length of the integration
(observation) time interval. Besides, because we implemented a reversible-jump MCMC al-
gorithm, the computation time is a stochastic quantity: the algorithm can explore parts of the
domain where the number of bins J (k,�) is large, thus increasing the computation time. More-
over, we remark that the computation time explodes as K increases (due to the fact that K2

interaction functions have to be estimated), reaching computation times greater than a day.

3.4. Results. We describe here the results for each scenario. We consider the previous
scenarios, three observation durations T and two prior distributions. In Table 2, we supply the
estimated L1-distances on the λk’s and the hk,�’s. More precisely, we evaluate the estimated
average posterior expectation of the L1-distances on the hk,�’s:

(3.8) Dh = 1

25

25∑
sim=1

Ê[ 1

K2

K∑
k,�=1

∥∥∥hk,� − h0
k,�

∥∥∥
1
|(N sim

t )t∈[0,T ]],

and the estimated average posterior expectation of the renormalized pseudo-distance d1,T on
the parameters:

(3.9) Dλ = 1

25

25∑
sim=1

Ê

[
1

K
d1,T (f, f0)

∣∣∣(N sim
t

)
t∈[0,T ]

]
,

TABLE 2
Posterior expectations of the distances Dλ and Dh

K = 2 K = 8 K = 2 with smooth hk,�

Prior Regular Random Regular Random

Dλ T = 5 5.79 4.79 5.87
T = 10 3.74 3.16 0.70 4.74
T = 20 2.70 2.05 0.39 3.95

Dh T = 5 0.1423 0.0996 0.1431
T = 10 0.0844 0.0578 0.1199 0.1131
T = 20 0.0564 0.0336 0.0616 0.0945
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where Ê refers to the Monte Carlo estimator obtained as a by product of the RJ-MCMC
algorithm. To compute the Monte Carlo posterior expectations given in Equations (3.8) and
(3.9), we consider the outputs of the reversible jumps MCMC algorithm, then evaluate the
functions hk,� and λk on a fine grid and finally compute the mean. Observe that the distances
have been normalized by the number of estimated functions (K2 for the hk,�’s and K for the
λk’s). As a consequence, we can compare results obtained in the three scenarios and reported
in Table 2.

As expected, Table 2 illustrates the fact that the error decreases as T increases. As we will
detail later, the random histogram prior gives better results than the regular prior. Finally,
performances are better when the true interaction function hk,� are step functions (due to the
form of the prior distribution).

3.4.1. Results for scenario 1: K = 2 with step functions. When K = 2, we estimate the
parameters using both regular and random prior distributions on (t

(k,�)
j ) (equations (3.6) and

(3.7)). One typical posterior distribution of ν� is given in Figure 1a (left), for a randomly
chosen dataset and the regular histogram, clearly showing a smaller variance when the length
of the observation interval increases. We also present the global estimation results, over the
25 simulated datasets for the regular prior. The regularized distribution of the posterior mean
estimators for (ν1, ν2) computed for the 25 simulated datasets (Ê[ν�|(N sim

t )t∈[0,T ]])sim=1...25

is given in Figure 1a on the right panel, showing an expected decreasing variance for the
estimator as T increases. We only supply the plots for the regular histogram prior. The plots
corresponding to the random histogram prior are supplied in the supplementary material [19]
and are similar to the one presented her.

Regarding the estimate of the interaction functions, for the same given dataset, the esti-
mation of the hk,�’s is plotted in Figure 1b (left panel) for the regular prior, with its credi-
ble interval. Its corresponding estimation with the random prior is given in Figure 1b (right
panel). For both prior distributions, the functions are globally well estimated, showing a clear
concentration when T increases. The regions where the interaction functions are null are also
well identified. The estimation associated with the random histogram prior is in general better
than the one supplied by the regular prior. This may be due to several factors. First, the ran-
dom histogram prior leads to a sparser estimation than the regular one. Secondly, it is easier
to design a proposal move in the reversible-jump MCMC algorithm in the former case than
in the latter context.

Moreover, the interaction graph is perfectly inferred since the posterior probability for
δ(2,2) to be 0 is almost 1. For the 25 datasets, we estimate the posterior probabilities P̂(δ(k,�) =
1|(N sim

t )t∈[0,T ]) for k, � = 1,2 and sim = 1, . . . ,25. In Table 3, we display the mean of these
posterior quantities. Even for the shorter observation time interval (T = 5) these quantities—
defining completely the connexion graph—are well recovered. These results are improved
when T increases. Once again, the random histogram prior (3.7) gives slightly better results.

Finally, we also have a look at the conditional intensities λk
t . On Figure 2, we plot 50 real-

izations of the conditional intensity from the posterior distributions. More precisely, for one
given dataset, for 50 parameters θ(i) = ((h

(i)
k,�)k,�, (ν

(i)
k )k=1...K) sampled from the posterior

distribution (issued from the RJ-MCMC chain), we compute the corresponding (λ
k(i)
t ) and

plot them. For the sake of clarity, only the conditional intensity of the first process (k = 1)
is plotted and we restrict the graph to a short time interval [3.2,3.6]. As noticed before, the
conditional intensity is well reconstructed, with a clear improvement of the precision as the
length of the observation time T increases.
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FIG. 1. Results of scenario 1: estimation of (hk,�)k,�=1,2 and (νk)k=1,2.

TABLE 3
Results of Scenario 1. Mean of the posterior estimations: 1

25
∑25

sim=1 P̂(δ(k,�) = 1|(N sim
t )t∈[0,T ]), for the three

observation time intervals and the two prior distributions

� over k: 1 over 1 1 over 2 2 over 1 2 over 2
True value of δ(k,�): 1 1 1 0

Prior

T = 5 Regular 1.0000 0.8970 1.0000 0.0071
Random 1.0000 0.9812 1.0000 0.0196

T = 10 Regular 1.0000 0.9954 1.0000 0.0047
Random 1.0000 1.0000 1.0000 0.0102

T = 20 Regular 1.0000 1.0000 1.0000 0.0099
Random 1.0000 1.0000 1.0000 0.0102
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FIG. 2. Results for scenario 1. Conditional intensity λ1
t : 50 realizations of λ1

t from the posterior distribution for
one particular dataset and 3 lengths of observation interval (T = 5 on the first row, T = 10 on the second row,
and T = 20 on the third row). True conditional intensity in black plain line.

3.4.2. Results for scenario 2: K = 8. In this scenario, we perform the Bayesian inference
using only the regular prior distribution on (t(k,�))(k,�)∈{1,...,K}2 and two lengths of observation
interval (T = 10 and T = 20). Here we set aη = 3 and bη = 1.

The posterior distribution of the νk’s for a randomly chosen dataset is plotted in Figure 3a.
The prior distribution is in dotted line and is flat. The posterior distribution concentrates
around the true value (here 20) with a smaller variance when T increases.

In Figure 3b, we plot the posterior means (with credible regions) of the non-null interaction
functions for the same randomly chosen dataset. The time intervals where the interaction
functions are null are again perfectly recovered. The posterior uncertainty around the non-
null functions hk,� decreases when T increases.

In the context of neurosciences, we are especially interested in recovering the interaction
graph of the K = 8 neurons. In Figure 4a, we consider the same dataset as the one used in
Figures 3a and 3b and plot the posterior estimation of the interaction graph, for respectively
T = 10 on the left and T = 20 on the right. The width and the gray level of the edges are pro-
portional to the estimated posterior probability P̂(δ(k,�) = 1|(Nt)t∈[0,T ]). The global structure
of the graph is recovered (to be compared to the true graph plotted before). We observe that
the false positive edges appearing when T = 10 disappear when T = 20. In Figure 4b, we
consider the mean of the estimates of the graph over the 25 datasets. The resulting graph for
T = 10 is on the left and for T = 20 on the right.

Note that, in this example, for any (k, �) such that the true δ(k,�) = 1, the estimated pos-
terior probability P̂(δ(k,�) = 1|(N sim

t )t∈[0,T ]) is equal to 1, for any dataset and any length of
observation interval. In other words, the non-null interactions are perfectly recovered. In a
simulation scenario with other interaction functions, the results could have been different.

3.4.3. Results for scenario 3: K = 2 with smooth functions. In this context, we perform
the inference using the random histogram prior distribution (3.7). In this case, we set aη = 10
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FIG. 3. Results of Scenario 2 for one given dataset.

and bη = 1, thus encouraging a larger number of steps in the interactions functions. The be-
havior of the posterior distribution of νk is the same as in the other examples. In Figure 5a, we
plot the distribution of (E[νk|(N sim

t )t∈[0,T ]])sim=1...25 for T = 5,10,20 seconds and clearly
observe a decrease of the bias and the variance as the length of the observation period in-
creases. Some estimation of the interaction functions is given in Figure 5b. Due to the choice
of the prior distribution of these quantities, we get a sparse posterior inference. Note that, like
in the other scenarios, the null interaction is clearly identified, making possible to recover to
true posterior graph of interactions.

FIG. 4. Results of Scenario 2: interaction graphs.
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FIG. 5. Results of Scenario 3.

4. Proofs of theorems. In the sequel, specific tests to deal with the numerator of poste-
rior distributions are first built in Section 4.1. The denominator is controlled by using upper
bounds of Section 4.2. We finally provide the proof of Theorem 3 in Section 4.3. Other techni-
cal proofs are provided in the Supplementary Material [19] which contains, in particular, the
proofs of Theorems 1 and 2, the proof of Corollary 1 and the proofs of results of Section 2.3.

4.1. Construction of tests. As usual, the control of the posterior distributions is based on
specific tests. We build them in the following lemma whose proof is given in the Supplemen-
tary Material [19]. Our tests are based on ideas similar to L1-tests for density estimation but
adapted to the more complex framework of Hawkes processes. To build them, we use specific
Bernstein-type concentration inequalities for martingales established in [26], which leads to
the natural use of the L1-loss. Moreover, the subsequent tests also take into account the fact
that the metric is random, which makes their construction slightly more involved.

LEMMA 1. Let j ≥ 1, f1 ∈ Fj and define the test

φf1,j = max
�=1,...,K

(1{N�(A1,�)−��(A1,�;f0)≥jT εT /8} ∨ 1{N�(Ac
1,�)−��(Ac

1,�;f0)≥jT εT /8}),
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with for all � ≤ K , A1,� = {t ∈ [0, T ];λ�
t (f1) ≥ λ�

t (f0)}, ��(A1,�;f0) = ∫ T
0 1A1,�

(t)λ�
t (f0) dt

and ��(Ac
1,�;f0) = ∫ T

0 1Ac
1,�

(t)λ�
t (f0) dt . Then

E0[1�T
φf1,j ] + sup

‖f −f1‖1≤jεT /(6N0)

E0
[
Ef

[
1�T

1f ∈Sj
(1 − φf1,j )|G0

]]
≤ (2K + 1)max

�
e
−x1,�TjεT (

√
μ0

�∧jεT )
,

with N0 is defined in Section 2 and x1,� = min(36,1/(4096μ0
�),1/(1024K

√
μ0

�)).

4.2. Control of the denominator.

LEMMA 2. Let

KL(f0, f ) = E0
[
LT (f0) − LT (f )

]
.

On B(εT ,B),

(4.1) 0 ≤ KL(f0, f ) ≤ κ log
(
r−1
T

)
T ε2

T ,

for T larger than T0, with T0 some constant depending on f0, with

(4.2) κ = 4
K∑

k=1

(
ν0
k

)−1

(
3 + 4K

K∑
�=1

(
AE0

[(
λ�

0(f0)
)2] +E0

[
λ�

0(f0)
]))

and rT is defined in (4.4). Then,

(4.3) P0
(
LT (f0) − LT (f ) ≥ (

κ log
(
r−1
T

) + 1
)
T ε2

T

) ≤ C log log(T ) log3(T )

T ε2
T

,

for C a constant only depending on f0 and B .

PROOF. We consider the set �̃T defined in Lemma 2 in the Supplementary Material [19],
and we set NT = Cα logT . We have

KL
(
f 0, f

) =
K∑

k=1

E0

[∫ T

0
log

(
λk

t (f0)

λk
t (f )

)
dNk

t −
∫ T

0

(
λk

t (f0) − λk
t (f )

)
dt

]

=
K∑

k=1

E0

[∫ T

0
log

(
λk

t (f0)

λk
t (f )

)
λk

t (f0) dt −
∫ T

0

(
λk

t (f0) − λk
t (f )

)
dt

]

=
K∑

k=1

E0

[∫ T

0
�

(
λk

t (f )

λk
t (f0)

)
λk

t (f0) dt

]
,

where for u > 0, �(u) := − log(u) − 1 + u ≥ 0. First, observe that on �̃T ∩ B(εT ,B),

(4.4)

λk
t (f )

λk
t (f0)

≥ νk

ν0
k + ∑K

�=1
∫ t−
t−A h0

�,k(t − u)dN�(u)

≥ mink ν0
k − εT

maxk ν0
k + max�,k ‖h0

�,k‖∞KNT

=: rT .

Furthermore, observe that for u ∈ [rT ,1/2), �(u) ≤ log(r−1
T ), since rT = o(1). And for all

u ≥ 1/2, �(u) ≤ (u − 1)2. Finally, for any u ≥ rT ,

�(u) ≤ 4 log
(
r−1
T

)
(u − 1)2.
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Therefore, on B(εT ,B), we have

0 ≤ KL
(
f 0, f

) ≤ 4 log
(
r−1
T

) K∑
k=1

E0

[∫ T

0

(λk
t (f0) − λk

t (f ))2

λk
t (f0)

1�̃T
dt

]
+ RT

≤ 4 log
(
r−1
T

) K∑
k=1

(
ν0
k

)−1
E0

[∫ T

0

(
λk

t (f0) − λk
t (f )

)2
dt

]
+ RT ,

where

RT =
K∑

k=1

E0

[
1�̃c

T

∫ T

0

(
− log

(
λk

t (f )

λk
t (f0)

)
− 1 + λk

t (f )

λk
t (f0)

)
λk

t (f0) dt

]
.

We first deal with the first term. Using stationarity of the process and Proposition 2 of [26],

E0

[∫ T

0

(
λk

t (f0) − λk
t (f )

)2
dt

]

≤ 2T
(
ν0
k − νk

)2 + 2
∫ T

0
E0

[(
K∑

�=1

∫ t−

t−A

(
h�,k − h0

�,k

)
(t − u)dN�(u)

)2]
dt

≤ 2T ε2
T + 4K

∫ T

0
E0

[
K∑

�=1

(∫ t−

t−A

(
h�,k − h0

�,k

)
(t − u)λ�

u(f0) du

)2
]

dt

+ 4K

∫ T

0
E0

[
K∑

�=1

(∫ t−

t−A

(
h�,k − h0

�,k

)
(t − u)

(
dN�

u − λ�
u(f0) du

))2
]

dt

≤ 2T ε2
T + 4K

K∑
�=1

∥∥h�,k − h0
�,k

∥∥2
2

∫ T

0

∫ t−

t−A
E0

[(
λ�

u(f0)
)2]

dudt

+ 4K

∫ T

0

K∑
�=1

∫ t−

t−A

(
h�,k − h0

�,k

)2
(t − u)E0

[
λ�

u(f0)
]
dudt

≤ 2T ε2
T + 4KT

K∑
�=1

∥∥h�,k − h0
�,k

∥∥2
2

(
AE0

[(
λ�

0(f0)
)2] +E0

[
λ�

0(f0)
])

≤ T ε2
T

(
2 + 4K

K∑
�=1

(
AE0

[(
λ�

0(f0)
)2] +E0

[
λ�

0(f0)
]))

.

We now deal with RT . We have, on B(εT ,B),

λk
t (f )

λk
t (f0)

≤ (
ν0
k

)−1

(
νk +

K∑
�=1

‖h�,k‖∞ sup
t∈[0,T ]

N�([t − A, t)
))

≤ (
ν0
k

)−1

(
ν0
k + εT + B

K∑
�=1

sup
t∈[0,T ]

N�([t − A, t)
))

.

(4.5)

Conversely,

(4.6)
λk

t (f )

λk
t (f0)

≥ (
ν0
k − εT

)(
ν0
k +

K∑
�=1

∥∥h0
�,k

∥∥∞ sup
t∈[0,T ]

N�([t − A, t)
))−1

.
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So, using Lemma 2 in the Supplementary Material [19], if α is an absolute constant large
enough, RT = o(1) and RT = o(T ε2

T ). Choosing κ = 4
∑K

k=1(ν
0
k )−1(3 + 4K

∑K
�=1(A ×

E0[(λ�
0(f0))

2] +E0[λ�
0(f0)])) terminates the proof of (4.1). Note that if B(εT ,B) is replaced

with B∞(εT ,B) (see Remark 1), then

λk
t (f )

λk
t (f0)

≤ 1 + |νk − ν0
k | + ∑

� ‖h�,k − h�,k‖∞NT

ν0
k

and

λk
t (f )

λk
t (f0)

≥ 1 − |νk − ν0
k | + ∑

� ‖h�,k − h�,k‖∞NT

ν0
k

so that we can take rT = 1/2 and RT = o(T ε2
T ).

We now study

LT := LT (f0) − LT (f ) −E0
[
LT (f0) − LT (f )

]
.

We have for any integer QT such that x := T/(2QT ) > A,

LT (f0) − LT (f )

=
K∑

k=1

(∫ T

0
log

(
λk

t (f0)

λk
t (f )

)
dNk

t −
∫ T

0

(
λk

t (f0) − λk
t (f )

)
dt

)

=
QT −1∑
q=0

∫ 2qx+x

2qx

K∑
k=1

(
log

(
λk

t (f0)

λk
t (f )

)
dNk

t − (
λk

t (f0) − λk
t (f )

)
dt

)

+
QT −1∑
q=0

∫ 2qx+2x

2qx+x

K∑
k=1

(
log

(
λk

t (f0)

λk
t (f )

)
dNk

t − (
λk

t (f0) − λk
t (f )

)
dt

)

=:
QT −1∑
q=0

Fq +
QT −1∑
q=0

F̃q .

Note that Fq is a measurable function of the points of N appearing in [2qx − A;2qx + x)

denoted by F(N|[2qx−A;2qx+x)). Using Proposition 3.1 of [41], we consider an i.i.d. se-
quence (Mx

q )q=0,...,QT −1 of Hawkes processes with the same distribution as N but restricted
to [2qx − A;2qx + x) and such that for all q , the variation distance between Mx

q and
N|[2qx−A;2qx+x) is less than 2P0(Te > x − A), where Te is the extinction time of the pro-
cess. We then set for any q , Gq = F(Mx

q ). We have built an i.i.d. sequence (Gq)q=0,...,QT −1
with the same distributions as the Fq ’s. Furthermore, for any q ,

P0(Fq 	= Gq) ≤ 2P0(Te > x − A).

We now have, by stationarity,

P0
(
LT ≥ T ε2

T

) = P0
(
LT (f0) − LT (f ) −E0

[
LT (f0) − LT (f )

] ≥ T ε2
T

)
= P0

(
QT −1∑
q=0

(
Fq −E0[Fq]) +

QT −1∑
q=0

(
F̃q −E0[F̃q]) ≥ T ε2

T

)

≤ 2P0

(
QT −1∑
q=0

(
Fq −E0[Fq]) ≥ T ε2

T /2

)
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≤ 2P0

(
QT −1∑
q=0

(
Gq −E0[Gq]) ≥ T ε2

T /2

)
+ 2P0(∃q;Fq 	= Gq)

≤ 2P0

(
QT −1∑
q=0

(
Gq −E0[Gq]) ≥ T ε2

T /2

)
+ 4QT P0(Te > x − A).

We first deal with the first term of the previous expression:

P0

(
QT −1∑
q=0

(
Gq −E0[Gq]) ≥ T ε2

T /2

)
≤ 4

T 2ε4
T

Var0

(
QT −1∑
q=0

Gq

)

≤ 4

T 2ε4
T

QT −1∑
q=0

Var0(Gq) ≤ 4QT

T 2ε4
T

Var0(G0)

= 4QT

T 2ε4
T

Var0(F0).

Now, by setting dM(k)
t = dNk

t − λk
t (f0) dt ,

Var0(F0) ≤ E0
[
F 2

0
]

≤ E0

[(
K∑

k=1

∫ T
2QT

0
log

(
λk

t (f0)

λk
t (f )

)
dNk

t

−
K∑

k=1

∫ T
2QT

0

(
λk

t (f0) − λk
t (f )

)
dt

)2]

�
K∑

k=1

E0

[(∫ T
2QT

0
�

(
λk

t (f )

λk
t (f0)

)
λk

t (f0) dt

+
∫ T

2QT

0
log

(
λk

t (f0)

λk
t (f )

)
dM(k)

t

)2]

�
K∑

k=1

E0

[(∫ T
2QT

0
�

(
λk

t (f )

λk
t (f0)

)
λk

t (f0) dt

)2]

+E0

[(∫ T
2QT

0
log

(
λk

t (f0)

λk
t (f )

)
dM(k)

t

)2]

�
K∑

k=1

T

QT

E0

[∫ T
2QT

0
�2

(
λk

t (f )

λk
t (f0)

)(
λk

t (f0)
)2

dt

]

+E0

[∫ T
2QT

0
log2

(
λk

t (f0)

λk
t (f )

)
λk

t (f0) dt

]
.

Note that on �̃T , for any t ∈ [0;T/(2QT )],

0 ≤ �

(
λk

t (f )

λk
t (f0)

)
λk

t (f0) ≤ C1(B,f0)N 2
T ,
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where C1(B,f0) only depends on B and f0. Then,

E0

[
1�̃T

∫ T
2QT

0
�2

(
λk

t (f )

λk
t (f0)

)(
λk

t (f0)
)2

dt

]

≤ C1(B,f0)N 2
T ×E0

[
1�̃T

∫ T
2QT

0
�

(
λk

t (f )

λk
t (f0)

)
λk

t (f0) dt

]
and using the same arguments as for the bound of KL(f 0, f ), the previous term is bounded
by log(r−1

T )N 2
T × (T /QT )ε2

T up to a constant. Since for any u ≥ 1/2, we have | log(u)| ≤
2|u − 1|; we have for any u ≥ rT ,∣∣log(u)

∣∣ ≤ 2 log
(
r−1
T

)|u − 1|
and

E0

[
1�̃T

∫ T
2QT

0
log2

(
λk

t (f0)

λk
t (f )

)
λk

t (f0) dt

]

≤ 4 log2(
r−1
T

)(
ν0
k

)−1
E0

[
1�̃T

∫ T
2QT

0

(
λk

t (f0) − λk
t (f )

)2
dt

]
� log2(

r−1
T

)
(T /QT )ε2

T .

By taking α ≥ 2 and using Lemma 2 in the Supplementary Material [19], we obtain

E0

[
1�̃c

T

∫ T
2QT

0
�2

(
λk

t (f )

λk
t (f0)

)(
λk

t (f0)
)2

dt

]

+E0

[
1�̃c

T

∫ T
2QT

0
log2

(
λk

t (f0)

λk
t (f )

)
λk

t (f0) dt

]
= o

(
T Q−1

T ε2
T

)
.

Finally,

Var0(F0) ≤ C2(B,f0) log
(
r−1
T

)
N 2

T × (T /QT )2ε2
T ,

for C2(B,f0) a constant only depending on B and f0, and

P0
(
LT ≥ T ε2

T

) ≤ 8C2(B,f0) log
(
r−1
T

)
N 2

T × (T /QT ) × (1/
(
T ε2

T

)
+ 4QT P0(Te > x − A).

It remains to deal with the last term of the previous expression. The proof of Proposition 3
of [26] shows that there exists a constant D only depending on f0 such that if we take x =
D logT , which is larger than A for T large enough, then 4QT P0(Te > x − A) = o(T −1).
We now have log(r−1

T )N 2
T × (T /QT ) = O(log log(T ) log3(T )), which ends the proof of the

lemma. �

4.3. Proof of Theorem 3. Define

AL1(wT εT ) = {
f ∈F; ‖f − f0‖1 ≤ wT εT

}
,

then �(AL1(wT εT )c|N) ≤ �(Ac
εT

|N) + �(AL1(wT εT )c ∩ AεT
|N). Using Assumption (i),

we just need to prove that

(4.7) E0
[
1�1,T

�
(
AL1(wT εT )c ∩ AεT

|N)] = o(1)

for some well chosen set �1,T ⊂ �T such that

(4.8) P0
(
�c

1,T ∩ �T

) = o(1).
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Using (2.2) in the Supplementary Material [19], there exists C0 such that for all f ∈ AεT
, on

�T ,
∑

� ν� + ∑
�,k ρ�,k ≤ C0. Therefore, on �T ,

AL1(wT εT )c ∩ AεT
⊂

{
f ∈ F; ‖f − f0‖1 > wT εT ,

∑
�

(
ν� + ∑

k

ρ�,k

)
≤ C0

}
.

We set uT := u0(logT )1/6ε
1/3
T with u0 a large constant to be chosen later. Let FT = {f ∈

F; ‖ρ‖ ≤ 1 − uT }. From Assumption (ii),

�
(
Fc

T

) ≤ e−2c1T ε2
T

for T large enough. Following the same lines as in the proof of Theorem 1, we then have

E0
[
1�1,T

�
(
AL1(wT εT )c ∩ AεT

|N)]
≤ P0

(
DT < e−c1T ε2

T
)

+ ec1T ε2
T

∫
AL1 (wT εT )c∩FT

E0
[
Pf

(
�1,T ∩ {

d1,T (f, f0) ≤ εT

}|G0
)]

d�(f )

+ e−c1T ε2
T ,

(4.9)

where Pf denotes the stationary distribution when the true parameter is f . We will now prove
that

sup
f ∈AL1 (wT εT )c∩FT

Pf

(
�1,T ∩ {

d1,T (f, f0) ≤ εT

}|G0
) = o

(
e−c1T ε2

T
)
.

Let Zm,� be defined by

Zm,� =
∫ (2m+1)T /(2JT )

2mT/(2JT )

∣∣∣∣∣ν� − ν0
� +

K∑
k=1

∫ t−

t−A

(
hk,� − h0

k,�

)
(t − s) dNk

s

∣∣∣∣∣dt

with JT such that JT = �κ0(logT )−1T u2
T � and κ0 a constant chosen later. Note that JT →

+∞ and T/JT → +∞ when T → +∞. Since T d1,T (f, f0) ≥ max1≤�≤K

∑JT −1
m=1 Zm,�, we

have that

Pf

(
�1,T ∩ {

d1,T (f, f0) ≤ εT

}|G0
)

≤ min
1≤�≤K

Pf

(
�1,T ∩

{
JT −1∑
m=1

Zm,� ≤ εT T

}∣∣∣G0

)

≤ min
1≤�≤K

Pf

(
�1,T ∩

{
JT −1∑
m=1

(
Zm,� −Ef [Zm,�])

≤ εT T − (JT − 1)Ef [Z1,�]
}∣∣∣G0

)
.

From Lemma 4 in the Supplementary Material [19], we have that there exists � (depend-
ing on f and f 0) such that Ef [Z1,�] ≥ CT ‖f − f0‖1/JT for some C > 0 so that if
f ∈ AL1(wT εT )c, then, since wT → +∞,

Pf

(
�1,T ∩ {

d1,T (f, f0) ≤ εT

}|G0
)

≤ max
�

Pf

(
�1,T ∩

{
JT −1∑
m=1

[
Zm,� −Ef [Zm,�]] ≤ −CT ‖f − f0‖1

2

}∣∣∣G0

)
.
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The problem in dealing with the right-hand side of the above inequality is that the Zm,�’s
are not independent. We therefore show that we can construct independent random variables
Z̃m,� such that, conditionally on G0,

∑JT −1
m=1 (Zm,� − Ef [Zm,�]) is close to

∑JT −1
m=1 (Z̃m,� −

Ef [Z̃m,�]) on �1,T . For all 1 ≤ m ≤ JT − 1, define N0,m the subcounting measure of N

generated from the ancestors of any type born on [(2m − 1)T /(2JT ), (2m + 1)T /(2JT )] and
the K-multivariate point process N̄m defined by

N̄m = N − N0,m.

Denote

Z̃m,� =
∫ (2m+1)T /(2JT )

2mT/(2JT )

∣∣∣∣∣ν� − ν0
� +

K∑
k=1

∫ t−

t−A

(
hk,� − h0

k,�

)
(t − s) dN0,m,k

s

∣∣∣∣∣dt,

where N0,m,k if the kth coordinate of N0,m. Observe that if Im = [2mT/(2JT ) − A, (2m +
1)T /(2JT )], then N̄m(Im) is the number of points of N̄m lying in Im. We have

|Zm,� − Z̃m,�|

=
∣∣∣∣∣
∫ (2m+1)T /(2JT )

2mT/(2JT )

(∣∣∣∣∣ν� − ν0
� +

K∑
k=1

∫ t−

t−A

(
hk,� − h0

k,�

)
(t − s) dNk

s

∣∣∣∣∣
−

∣∣∣∣∣ν� − ν0
� +

K∑
k=1

∫ t−

t−A

(
hk,� − h0

k,�

)
(t − s) dN0,m,k

s

∣∣∣∣∣
)

dt

∣∣∣∣∣
≤ 1N̄m(Im) 	=0

K∑
k=1

∫ (2m+1)T /(2JT )

2mT/(2JT )

∫ t−

t−A

∣∣(hk,� − h0
k,�

)
(t − s)

∣∣dN̄m,k
s dt

≤ 1N̄m(Im) 	=0

K∑
k=1

∥∥hk,� − h0
k,�

∥∥
1N̄

m,k(Im) ≤ ‖f − f0‖1N̄
m(Im).

(4.10)

Let �1,T = �T ∩ {∑JT −1
m=1 N̄m(Im) ≤ CT/8}. In Lemma 6 in the Supplementary Material

[19], we prove that there exists c̃0 such that P0(�
c
1,T ∩ �T ) ≤ e−Cc̃0T , and (4.8) is satisfied.

Using (4.10), we have on �1,T

(4.11) |Zm,� − Z̃m,�| ≤ ‖f − f0‖1CT/8.

Lemma 6 in the Supplementary Material [19] proves that there exists a constant κ0 > 0 (see
the definition of JT ) such that

∑JT −1
m=1 Ef [N̄m(Im)] ≤ CT/8, so that

JT −1∑
m=1

∣∣Ef [Zm,�] −Ef [Z̃m,�]
∣∣ ≤

JT −1∑
m=1

Ef |Zm,� − Z̃m,�|

≤ ‖f − f0‖1

JT −1∑
m=1

Ef

[
N̄m(Im)

] ≤ C‖f − f0‖1T/8

and

Pf

(
�1,T ∩ {

d1,T (f, f0) ≤ εT

}|G0
)

≤ max
�

Pf

(
�1,T ∩

{
JT −1∑
m=1

[
Zm,� −Ef [Zm,�]] ≤ −CT ‖f − f0‖1

2

}∣∣∣G0

)

≤ Pf

(
JT −1∑
m=1

(−Z̃m,� +Ef (Z̃m,�)
) ≥ CT ‖f − f0‖1/4

∣∣∣G0

)
.
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Since by construction the Z̃m,� are positive, independent, identically distributed and indepen-
dent of G0, the Bernstein inequality gives

Pf

(
JT −1∑
m=1

(−Z̃m,� +Ef (Z̃m,�)
) ≥ CT ‖f − f0‖1/4

∣∣∣G0

)
≤ e

− C2T 2‖f −f0‖2
1

32(JT −1)Ef (Z̃2
1,�

)
.

We have to bound Ef (Z̃2
1,�). Observe that

Z̃m,� ≤
∫ (2m+1)T /(2JT )

2mT/(2JT )

∣∣ν� − ν0
�

∣∣dt

+
∫ (2m+1)T /(2JT )

2mT/(2JT )

K∑
k=1

∫ t−

t−A

∣∣(hk,� − h0
k,�

)
(t − s)

∣∣dN0,m,k
s dt

≤ T

2JT

∣∣ν� − ν0
�

∣∣ + K∑
k=1

∥∥hk,� − h0
k,�

∥∥
1N

0,m,k(Im)

and

Ef

[
Z̃2

1,�

] ≤ T 2

2J 2
T

∣∣ν� − ν0
�

∣∣2 + 2K

K∑
k=1

∥∥hk,� − h0
k,�

∥∥2
1Ef

[
N0,1,k(I1)

2]

≤ T 2

J 2
T

‖f − f0‖2
1

(
1

2
+ 2K maxk Ef [N0,1,k(I1)

2]J 2
T

T 2

)
.

We then have to bound T −2J 2
T maxk Ef [N0,1,k(I1)

2]. Using notation of Lemma 6 in the
Supplementary Material [19], we have

Ef

[
N0,1,k(I1)

2] ≤ Ef

[(
K∑

�=1

∑
T/(2JT )≤p≤3T/(2JT )

Bp,�∑
k=1

W�
k,p

)2]

≤ KT

JT

K∑
�=1

∑
T/(2JT )≤p≤3T/(2JT )

Ef

[(Bp,�∑
k=1

W�
k,p

)2]

≤ KT

JT

K∑
�=1

∑
T/(2JT )≤p≤3T/(2JT )

Ef

[
Ef

[(Bp,�∑
k=1

W�
k,p

)2∣∣∣Bp,�

]]

≤ KT 2

J 2
T

K∑
�=1

(
ν2
� + ν�

)
Ef

[(
W�)2]

.

We now bound Ef [(W�)2] by using Lemma 5 in the Supplementary Material [19]. Without
loss of generality, we can assume that ‖ρ‖ > 1/2. We take t = 1−‖ρ‖

2
√

K
log(

1+‖ρ‖
2‖ρ‖ ) and

Ef

[(
W�)2] ≤ 2t−2

Ef

[
exp

(
tW�)] � t−2 �

(
1 − ‖ρ‖)−4

and

T −2J 2
T max

k
Ef

[
N0,1,k(I1)

2]
�

(
1 − ‖ρ‖)−4

.
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Therefore, since f ∈ FT , there exists a constant C′
K only depending on K such that

Pf

(
JT −1∑
m=1

(−Z̃m,� +Ef (Z̃m,�)
) ≥ CT ‖f − f0‖1/4

∣∣∣G0

)

≤ e−C′
KJT (1−‖ρ‖)4

≤ e−C′
KJT u4

T � e−C′
Kκ0(logT )−1T u6

T � e−C′
Kκ0u

6
0T ε2

T ,

where the last inequality follows from the definition of uT and JT . We obtain the desired
bound as soon as u0 is large enough, namely,

sup
f ∈AL1 (wT εT )c∩FT

Pf

(
�1,T ∩ {

d1,T (f, f0) ≤ εT

}|G0
) = o

(
e−c1T ε2

T
)
.

Using (4.9) and Assumption (i), we then have that (4.7) is true which proves the theorem.

SUPPLEMENTARY MATERIAL

Supplement to “Nonparametric Bayesian estimation for multivariate Hawkes pro-
cesses” (DOI: 10.1214/19-AOS1903SUPP; .pdf). The supplement material contains addi-
tional numerical results and the proofs of all theoretical results needed previously.
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