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SUPPLEMENTARY MATERIAL OF NONPARAMETRIC BAYESIAN
ESTIMATION FOR MULTIVARIATE HAWKES PROCESSES

By SoPHIE DONNET*, VINCENT RIVOIRARD! AND JUDITH ROUSSEAUT*

INRA, Université Paris Saclay*, Université Paris-Dauphine! and University of Oxford:

In this supplement, we provide in Section 1 additional numerical results. Section 2 is devoted to
the proofs of Theorems 1 and 2 (Sections 2.1 and 2.2). We also prove Corollary 1 in Section 2.3 and
Lemma 1 in Section 2.4. In Section 2.5, we state and prove technical lemmas which are necessary for
the main results of the paper. Finally, Section 2.6 is devoted to the proofs of results of Section 2.3 of

[1].

1. Supplementary material for the simulation Section. In this section, we present two
additional elements. First, in Table 1 we present a detailed version of the number of observations
resulting from the chosen simulation parameters for the three scenarios.

Neuron k 1 2 3 4 5 6 7 8
T=5 415.96  227.88

K =2 =10 840.24  457.92
=20 1667.16 903.44
K—38 =10 801.72  399.36 799.28 194.16 390.68 397.76 396.24 399.20

= 428.24  206.60
=10 841.64 412.80
=20 1731.48 838.40
TABLE 1
Mean numbers of events on each neuron for the three simulation scenarios (the average is done over all the simulated
datasets)

T
T
T
T=20 1601.68 805.68 1599.20 392.36 788.20 796.64 794.40 802.32
T
K=2 with smooth hx, T
T

In Figure 1, we then present the posterior density of r; and v, for one given dataset and the
regularized distribution of the posterior mean of v; and vy over the 25 simulated datasets for the
regular histogram prior (upper panel) and the random histogram prior (bottom panel). We thus
illustrate the fact that both priors provide very similar results.

2. Supplementary material for the proof section.

2.1. Proof of Theorem 1. To prove Theorem 1, we apply the general methodology of Ghosal and
van der Vaart [2], with modifications due to the fact that exp(Lz(f)) is the likelihood of the distribution
of (N k)k:l,‘.., K on [0,7T] conditional on Gy and that the metric d; 7 depends on the observations. We
set M = M+/loglogT’, for M a positive constant. Let

Ac={feF; dir(fo,f) < Ke}
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(a) Results for the regular histogram prior distribution : On the left, posterior distribution of 14 (top) and v
(bottom) with T'=5, T = 10 and T = 20 for one dataset. On the right, regularized distribution of the posterior

mean of (v1,vz) (E [ud(Nf’m)te[O)T]]) 4 over the 25 simulated datasets.
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(b) Results for the random histogram prior distribution : On the left, posterior distribution of 11 (top) and v
(bottom) with T'=5, T = 10 and T = 20 for one dataset. On the right, regularized distribution of the posterior

mean of (v, v2) (I/F: [V@|(Nt5im)te[0,T]]> L o5 OVer the 25 simulated datasets.

sim=1...25
Fig 1: Results of scenario 1 : influence of the prior distribution (random or regular histogram) on the
inference of (vg)g=12
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and for j > 1, we set

(2.1) S;=A{f € Fr; dir(f, fo) € (Kjer, K(j + l)er]},
where Fr = {f = (v&)k, (" o)) € F; (hie)ke € Hr}. So that, for any test function ¢,

. Lo (f)—Lr(fo) 4T G
I (Afyppe, IN) = Jaiager ) _
TET f]__eLT(f)_LT(fO)dH(f) Dr
e2(rr+1)Teq.
<lge +1 or. +éla +/ ertidng)
Crstp) MG

e2(kr+1)Teq, X

— Lo(f)~Lr(fo) (1 _
i ]IQT H(B(eTv T)) jZZMT /.FT ]lfGSje (1 ¢)dH(f)

and
B [0 (4517, V)] < Po(€2) + o (Dp < 207 VTH(Bler, B)) + Baloto,
62(KT+1)T6% 0o
* Bt " 2 [, B0 B [tatses, (0 - oG] an(s) |

since

Eo [/]:c eLT(f)*LT(fo)d[[(f) _ H(F%),
T

=E, [Eo [/ el (=L (o) gr1( £)|Go
Fr

] :Eg [Ef [/]:c dl__[(f)|g0

T

which is controlled by using Assumption (ii). Since elrr+1)Teq oL (f)=Lr(fo) > 1{LT(f)*LT(fO)Z*(HT‘Fl)TE%}7

_ _ d11(f) _ 2
< o2 +1)TE2 < / Lo (f)—Lr(fo) < =2k +1)Te
Py <DT <e TH(B(GT,B))> < Py er) e H(B(GT,B)) <e T

dI1(f) —(kp+1)TéE?
< 7 <K T
Py (/B(GT,B) ]1{LT(f)—LT(fo)Z—(nT—o—l)TeQT}H(B(ET’B)) e T

dII(f)
Ko [‘[B(G%B) ]1{LT(f)*LT(f0)<*(HT+1)T€2T} H(B(6T7B))}

(1 - e*(NTJrl)Te%)
J5er.m) Po (L (fo) = Lr(f) > (kr + 1)Te3) dII(f)
(B(er, B)) (1— e (1 +17%)

- log log(T) log?(T)
~ Te% 9

<

<
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by using Lemma 2 of Section 4.2 of [1]. Remember we have set p/H = ||hY ol and pe = [[hgell1-

Since hy, and h%jg are non-negative functions, f_s hM( u)du < pk,z, OT ° h%é( u)du < pkj? and note
that

K 7 K -
Tar(ff) = Y [ w4y / (hie — B,0)(t — 5)dANY| dt
=1 -

K
> ;/0 (VZ_V£+Z/ hkf—hkﬁ(t—S)de>dt
0 T
> 2 T(vy z)+/0 (;/tA(hk,Z hio)(t )dNS>dt,

then for any £ =1,..., K,

0 1 < T v 0 k
Vyp — Ve + T Z/ / (hkj — hk7€)(t — S)dNS dt
k=1 0 t—A

K
N*[0,T — A]
Ve — V? + Z(Pk,e - Pg,e)#

dl,T(fa fO) >

1 0 A 1 T T—s
WL / (ot — h ) (w)dudN® + & / / (hiot — h ) (w)dud N
T ) als ™ ’ T Jr-alJo ’ ’

T A T—s
W+pr o, / / hi.o(w)dudN* + / / hie.o(u)dudNF
—s T—A

K
NF T A T=s
- <y§’+z Py 0, / / hY o (u)dudNF + /T ) / h., dude>‘

k=1

This implies for f € S; that

Ve+ZPM OT 4 SV?JrZPg,zWJrK(j%-I)eT
(2.2) - . P )
ve+ ZPMN [_TA’T] = V? ZP%,@N [O’;: — 4 —K(j+Der
k=1 k=1
On Qrp,
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so that, for 1" large enough, for all j > 1 S; C F; with
Fj={f € Fr; v < pi + 1+ Kjer,Vl < K},

since

K

(23) W =0+ i
k=1

Let (fi)i=1,.., N; be the centering points of a minimal L;-covering of F; by balls of radius (jer with
¢ = 1/(6No) (with No defined in Section 2 of [1]) and define ¢(;) = max;—1__n; ¢y, ; where ¢y, ; is the
individual test defined in Lemma 1 associated to f; and j (see Section 4.1 of [1]). Note also that there
exists a constant Cy such that

Nj < (Co(1 + jer)/jer)™ N(Cjer/2, Hr, ||.l1)

where N (Cjer/2, Hr, ||.]]1) is the covering number of Hp by Li-balls with radius (jer /2. There exists
Cx such that if jer < 1 then N; < Cxe K18UTIN (Cjer/2, Hr, |.]1) and if jer > 1 then N; <
CrN (Cjer/2,Hr, ||.]l1). Moreover j — N (Cjer/2,Hr,].]l1) is monotone non-increasing, choosing
J > 2¢p/¢, we obtain that

N < CK<</<O)K6KlogT€xoT62T7

from hypothesis (iii) in Theorem 1. Combining this with Lemma 1, we have for all j > 2¢/(,
EO[]IQTd)(j)] < A/'jefoz(jeT/\er%) < eKlogT6x0T6%efmgT(jeT/\jQE%)

_ . 2 9
fsu]g Eo [Ef[lo,Lfes, (1 — ¢(;))|Go]] S e 2T Uerniter),
S

for x5 a constant. Set ¢ = max;> . ¢(;y with Mr > 2¢o/(, then

lez ')
EO[]lQTQb] SeKlogTexoTe% § : ef:rgTe%jQ_i_ § : eszgeTj Sefa:zTe%M%/Q

j=Mr i>enl

and .
> / Eo [Ef [Tap1ses, (1 — ¢)|Go]] dII(f) S e 22 TerM/2,
j=Mg /T
Therefore, using Assumption (i),
2k +1)Ted,

H(B(eTa B)) jz

Mt

/f Eo [y [, 1 ses, (1 — 6)Go]] dII(f) = o(1)

if M is a constant large enough, which terminates the proof of Theorem 1.
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2.2. Proof of Theorem 2. The proof of Theorem 2 follows the same lines as for Theorem 1, except
that the decomposition of Fr is based on the sets F; and Hr;, ¢ > 1 and j > Mr for some M7 > 0.
For each ¢ > 1, j > My, consider SZ{J a maximal set of (jer-separated points in F; N Hp,; (with a
slight abuse of notations) and ¢; ; = maxy, ¢ st ¢p, with ¢ defined in Lemma 1. Then,

1S5 < Cr(¢/Go) X5 DN (Cjer /2, Hei, |1-1)-

Setting Nr;; := f]'-TmHT,i llfegjeLT(f)*LT(fO)dH(f), using similar computations as for the proof of
Theorem 1, we have
) DT eZ(ﬁT+1)Te2T
o [I1 (4517, IN)] < Bo(05) + By (Dr < e 2TV HI(Ber, B))) + {1 TIF)
+oo +o0o +oo +4o00
NT e 2(kr+1)TeZ
+E0 ]IQTZ Z ¢Zj A + (B(GT B))EO ]IQTZ Z 1_¢Z] NTZ]
i=1 j=Mrp =1 j=Mr

Assumptions of the theorem allow us to deal with the first three terms. So, we just have to bound the
last two ones. Using the same arguments and the same notations as for Theorem 1,

400 +4o0
Eo ]]'QTZ Z (1 _¢z‘j)NT,ij = Z/ |:]1QT]lf€S (1 —¢ ) Lr(f)— LT(fO)] dH(f)
i=1 j=Mrp ‘FTﬂHT’J =Mr
+oo
= 2/ EO [Ef[]lQT]lfeSj(l - ¢z])|g0]] dH(f)
FrOHr; j=Mr
+oo
<y / Z g2 TUernfeq) < omaaT G M7 /2,
i=1 fT”HTﬂ j=Mr

Now, for 7 a fixed positive constant smaller than x9, setting 7r; = II(Hr;), we have

< Py (D < e 2 VTEN(B(er, B)) ) + P (36,1); y/Fridsg > e TV D 0 )
=1 j=Mr

+oo0 +oo NT”
Eo ]]'QTZ Z bij = Dr

foo +oo (NT+1)T€T

T (erni*e) E, 1 / Loeo elbr(D=Lr(fo) gy _
+23% ¢ V”Tln(B(eT,B)) O Jry 15 lir)]
i T
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Now,

+o0o +0o0
Py <3(i,j); VATidig > ¢ 1TOrNE) 0 QT) <YV Y, TN DR, 1]

i=1 j=Mrp

+o0 +o0
Sy Y et T U P KD N (e /2, Ha g, | 1)

i=1 j=Mry

“+00
< O TEME2N™ N (Coer, Hea, |- 11) = o(1).
=1
But, we have

Eo []IQT/ ]leSjeLT(f)LT(fO)dH(f|/HT,i):| <1
Fr

and
+oo 400 v +oo 2(kr+1)Te
NTz] _~Te2. M2 € T T
Eqn |1 E E . ) < § S oY e M7, 1) = of1
’ QTz‘ 1 j=M . Dr | ™ I e I(B(er, B)) +oll) =elD),
=1 j=Mr =

for M a constant large enough. This terminates the proof of Theorem 2.

2.3. Proof of Corollary 1. Let wp — 400. The proof of Corollary 1 follows from the usual convexity
argument, so that R
Hf - fOHl S wreT + E” |:Hf - f0||1]l‘|f—f0H1>wT€T|N:| )

together with a control of the second term of the right hand side similar to the proof of Theorem 3.
We write

E™ (IS = foll s sl swrerIN] < E7 [I1f = foliTay, oreryeLa, IN] +E™ |If = folliLag, V]
and since [ || f — fol1dIL(f) < ||follx + [ || fIl1dII(f) < o,

Py <IE7T |:||f — f0||11AL1(wT5T)C]1A8T|N:| > wT€T> < Py (Qi,T) + Py (DT < €_ClT6%)

eCl Te%

L o U Bl Py @11 (i (o ) < )Gl ()

WreT

< o(1) + o(1) / 1 — foladI1(f) = (1),
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where the last inequality comes from the proof of Theorem 3. Similarly, using the proof of Theorem 1,

Py (IETr [Hf - f0||1]lAgT|N} > wTeT) < Py (27) + Po (DT < 6_61T5%> + Eo[la, ¢

eclTe%

/A i If = folliEo [Ef [(1 — Qs)]lQT]l{dLT(fo,f)>aT}} Igo} dI(f)

wreT
1)+ o(1) / If = folndri(f),

and Po(||f — fol1 > 3wrer) = o(1). Since this is true for any wy — +oo, this terminates the proof.
2.4. Proof of Lemma 1. For the sake of completeness, we recall the statement of Lemma 1.

LEMMA 1. Let j > 1, fi € F; and define the test
Pg= r{laXK <]1{NZ(AM)—AZ(Al,e;fo)ZjTET/s} Vv ]I{NZ(Aﬁ —AL(AS @fo)ZjTET/S}) )

with for all ¢ < K, Ay = {t € [0, T M(f1) > M(fo)}, AAvs fo) = fy La,,(DM(fo)dt and

Af(A (Af 43 fo) = fo Lag (t)A\L(fo)dt. Then

Eo []IQT(Z)ﬁ,j] + sup Eq []Ef []].QT]lfesj(l — ¢f1,j)|g0“ < (2K + 1) max e*ml,ZTjET(\/@/\jET)7
I f=f1ll1<jer/(6No) ¢

with Ny is defined in Section 2 of [1] and

1, = min <36, 1/(4096.9),1/ <1024K, /;4))) :

PrOOF OF LEMMA 1. Letj > 1 and f1 = ((V]i)kzl,...,Ky(h%’k)k,ézl,...,K) S fj. Let ¢ € {1,. . .,K}
and let

PiAre = ]I{Nl(Al,z)—AZ(Al,e;fo)ZijT/S}'

By using (2.3), observe that on the event Qr,

T K 1 s
/ M(fo)ds = 0T + Z/ / hY (s — u)dN¥ds
0 /0 Js—a
K 1= T
< V?T + Z/ / ]lu<s§,4+uh27€(s - u)dst{f
k=1 —-A JO

and for T large enough,

K

T
(2.4) / No(fo)ds < )T+ pf JNF[=A,T] < 2T,
0 k=1
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Let j < y/Wer! and @ = x152T €2, for z1 a constant. We use inequality (7.7) of [4], with 7 = T,

Hy=14,,(t), v=2Tu) and My = N*(A1 ) — A(A14; fo)- So,

2

Po ({Ne(Au) — A (A fo) = V2vz + g} N QT) < 15T,

If z; < 1/(1()24/12) and z1 < 36, we have that

.2T 2 .T
(2.5) V2vr + g =2y/pdz1jTer + WTET < 24/ pday (1 + ?) jTer < J 8€T'

Then

Py ({NZ(ALZ) — A Ay g; fo) > ﬂ;T} N QT> < e T

Ifj> \/,uge;l, we apply the same inequality but with x = x¢jTer with zg = HM? x x1. Then,

0, 0,
w1y g Ter Ty pggTer
V2vx + L 2 uoxl uojeTT—i— _— <2 uoxleeT + < J
3 ¢ ¢ 3 ¢ 3

where we have used (2.5). It implies

T ‘
Py ({NZ(AM) — A(Ay g fo) > J SGT} N QT) < emwoiTer,
Finally Eq [HQT¢j7A1,Z] < e~ 1 Tier(VuAjer) Now, assume that

/ ) — M)t > / (X (fo) — M)
A

AS,
Then
M(F) — M TIN(FD) = N fo) dt
2 2 Avg
Let f = ((Vk)k=1.... k> (he )k e=1,. K) € Sj satisfying || f — fi1|[1 < (jer for some ¢ > 0. Then,
T N
N =X < Tl =+ [ [ S e = Lot = wan | o
o [Ji-A
T it
(2.7) < Tlvg — v} + Z/ / |(hieye — hig)(t — w)|dNYdt
—Jo Ji-a

< Tlve — vg| + m,?XNk[—AvT] D ke = hiolls < TNo|If = filla

k
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and ||AE(f) — A(f1)ll1 < TNoCjer. Since f € S;, there exists £ (depending on f) such that

IX(F) = X (fo)llr = jTer.
This implies in particular that if No¢ < 1,
IN(f1) = A (fo)lle = IX(F) = A(fo)llr — TNoCjer > (1 — No¢)T jer.
We then have
A(Ave f) = M (Avg fo) = A (Are f) — A(Avg 1) + A (Avg f1) — A (Ave fo)
> SN =N+ [ ) - X

Aie

U 1\
> IN() - A () + I AR

> ~TNocjer + T _ (15— aoc/2)Ter,

Taking ¢ = 1/(6Np) leads to

Ey []lfesj(l - ¢j,A1,e)]lQT’go] = Ey [ﬂfeé‘j]l{NZ(AM)—M(Al,g;fo)quT/s}]lQT‘gO]

IN

Ef []lfGSJ']l{Ne(A1,z)—1\£(A1,e;f)S—jT€T/8}]IQT ‘go]

s B |:1{NZ(Al,5)7AZ(A1,Z§f)§*jT6T/8}]IQT’g0:|'

Note that we can adapt inequality (7.7) of [4], with H; = 1.4, ,(¢) to the case of conditional probability
given Gy since the process E; defined in the proof of Theorem 3 of [4], being a supermartingale, satisfies

Ef[E:|Go] < Eg =1 and, given that from (2.2) and (2.4),

T K
/ No(f)ds < T+ prgN*[—A,T) < 2T + K(j + 1)Tep =
0 k=1

for T large enough, we obtain
By []l{Nf(Al,g)—Achl,e;f)S—M—g}ﬂ%\90] <e "

We use the same computations as before, observing that © = v+ K(j + 1)Ter.
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Ifj< \/uge;l we set © = 11j2Te, for 21 a constant. Then,

V20 + % < Vouz+ g + 2K (j + DTera
-2 2
x15°Te
2\/ Wz jTer + 7”3 L+ V2K (j + Derz1jTer

<
< 2 (14 V) iTer + 2/ RiermiTer
<

(2\/% (1 + {) + 2\/1(7> jTer.

Therefore, if z; < min (36, 1/(409649), 1/ (10241(\/;72)), then

T
NoTE g < 8€T.

Ifj > \/,uge;l, we set x = xojTer with xg = \/;72 X x1. Then,

2f)x+§ < Vovr+ 2 +\/2K]+1T6Tx

HARYAY) jTeT
2 ,ugxl ,U,ZJETT—F 2K(j+ DT ery/ 1 a:leeT

<
] T14/ ngTﬁT ) jTer
< 2 ,ugxl]TeT—i— — 3 +2\/K\/,u2m1]TeT < g
Therefore,
—x1Tj€ ONje
E, []1{NZ(Al’z)_M(Awf)S_jTeT/g}]1QT|g0] < e~niTier(VilAjer)
Now, if
[ ot =i < [ i - Al
1,0 1,0
then , ,
A —A
1,0

and the same computations are run with A; , playing the role of A{ ,. This ends the proof of Lemma 1.
O

2.5. Technical lemmas.
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2.5.1. Control of the number of occurrences of the process on a fized interval.

LEMMA 2. For any M > 1, for any o > 0, there exists a constant C,, only depending on fy such
that for any T > 0, the set

Qp = max sup NY([t — A,t)) < CylogT
T {ee{lw-,K}te[O%} ([ )) & }

satisfies

and for any 1 <m < M

¢ mn 2
Eop| max  sup (N (It — A,t))) X 1lge | < 27—/,
T

te{l,....K} tefo,1)

for T large enough.

PROOF. For the first part, we split the interval [—A;T] into disjoint intervals of length A and we
use Proposition 2 of [4]. For the second part, we set

X := max sup Nt t— At X 1lae >0
46{1,...7K} tG[O,T} < ([ ))) QT

and the equality

+oo
Eo[X™] = / ma™Py(X > x)da
0

CqlogT +00
= / ma™ Py (X > 2) da +/ maz™ Py (X > z) da
0 CalogT

CqologT B +00
< m(Cyq logT)m_lf Py(27)dx +/ mz™ Py (X > z)dx
0 CqlogT
+o0
< m(CylogT)™T™* +/ ma™ Py (X > z) dx.
CqlogT

Furthermore, for T' large enough,

“+oo +oo
/ maz™ 1 Py(X > x)dx < / ma™ 1Py ( max _ sup (NE([t - A,t))) > x) dx

CologT CologT ee{1,...K} tefo,17]
+o0
< / ma™ Py max sup (NZ([t - A,t))) >z | de
CalogT Le{1,...,.K} te[0,e2/Ca]
+oo
< / ma™ " exp(—ax/Cy)dz < T~/
CqlogT
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2.5.2. Control of N[0,T]. Let k € {1,..., K}. We have the following result.

LEMMA 3. Forany k € {1,...,K}, for all « > 0 there exists 59 > 0 such that
N[0, T log T)3 Y
POQ[T]—N% > gy /1% >>=0<T ).

- T
ProoF oF LEMMA 3. We use Proposition 3 of [4] and notations introduced for this result. We de-
note N[—A4, 0) the total number of points of N in [— A, 0), all marks included. Let 7 := dp+/(log T)3/T,

with dg a constant. We have
T5T TaT
> 72 ) + Py ( > 72 >

(2.8)
- K
Ne(fo) = 12 + / SR, (t — 5)ANE = Z 0 (N,
=AYy

—

- < N¥[0,T)

T
> | WG - e

> 5T> <Py (‘N’“[O,T] - /T M (fo)dt

0

and we observe that

with Z(N) = \i(fo), where & is the shift operator introduced in Proposition 3 of [4]. We then have
Z(N)<b(1+ N[-A,0))
with
b= mkaxmax{ulg, max Hh2,k||oo}~
So, for any o > 0, the second term of (2.8) is O(T'~%) for dy large enough depending on a and fy. The

first term is controlled by using Inequality (7.7) of [4] with T =T, z = 2¢T0%, H, = 1,v = p)T+Té7/2
and

T
My = N0.7) = [ X

We take xg a positive constant such that \/Sugwo < 1, so that, for T large enough

Tor

T Z \/21}1“*’-@/3.

Therefore, we have

T6T T T
Py <|MT| > 2) < P <\MT| > V2vz + 2/3 and / MF(fo)dt < v> + Py (/ AF(fo)dt > v)
0 0
T
< 2ex(-a) + Fo (| [ DG - i > T
0

< 2exp(—x05(2)(log T)3) +O0(T™*) =0(T""),

which terminates the proof. O
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2.5.3. Lemma on E¢[Z; ¢]. We have the following result which is useful to prove Theorem 3 of [1].

LEMMA 4. For for all f € Fr such that dyr(f, fo) < er, there exists { (depending on f and f°)
such that on Qr,

T
EflZ1] = Cj”f — 1Ol
T
where C' is a constant depending on f°.

PROOF. By using the first bound of (2.2), we observe that on Qr, for any ¢, since inf, v > 0, then
inf, 1Y > 0 (by using (2.3)) and we obtain that Zle Pr,e and ZkK:1 vy, are bounded. Therefore || f]|;
is bounded. On Qp, since ep > dp, still using (2.2), for any ¢,

K K K

Vet Y prepi — Mer < v+ ol Sve+ Y propy + Mer
k=1 k=1 k=1

for M a constant large enough. By using the formula

K K

Ve + Z Proik = e, V) + Z Pg,zﬂg =,
k=1 k=1

we obtain

(e = 1) = Y prelpe — 1) | < Mer,
B

which means that
1(Ig — p") (= 1°)||oe < Mer.

Therefore, since ||p|| = [|p7|| (pp’ and p”'p have the same eigenvalues),

I = pollz = [1(Za = p") ™ (La = ") (1 = p0)l2
< (1= pl) " VEIUa = p") (1= 1)l
< (1= |lpl) "' VEMer.

Since f € Fpr, 1 —||p|| > ur 2 elT/?’(log T)!/S. Therefore,  is bounded. As in [4], we denote Q; a
measure such that under Q¢ the distribution of the full point process restricted to (—oo, 0] is identical
to the distribution under Py and such that on (0, 00) the process consists of independent components
each being a homogeneous Poisson process with rate 1. Furthermore, the Poisson processes should be
independent of the process on (—oo,0]. From Corollary 5.1.2 in [5] the likelihood process is given by

K 4 K
Li(f) = ex (Kt— Xo(f)du + lo <Aﬁ<f>>dN5).
p ];1/0 ;/0 g
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Let 7 > 0 satisfying
ATK? 1 ming I/?,

0< <= and r< 2T
-7k ~2 M T="Tacr

with C{, an upper bound of ||f — fol|1-

e Assume that for any ¢,

ve —vy| < 7| f = foll1. Then, for any ¢,

‘I/@/—V?/ <t|f=folh=7 Z|Vk—l/lg‘+zuhk,é—h2,£“1
k k0
and K
ver =R < 3 Jve = v < g 2 e = gl
Y kL

Let ¢ such that
e~ by = e { S e el .
k k

Then, for any ¢,

0 TK2 0
(2.9) v —vp| < K Zk: ke = Pl
and
1F=Fl = D e = v+ DD e — b ol
Iz vk

TK2 0
(2.10) < (1_7K+K);|hk,e—hk,e|h-
We denote

0 = {gfn;gNk 0,4]=0, NH0,4] =1, N*[-4,0] <adu Vk'},

15
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where a is a fixed constant chosen later We then have

EflZme = 57 Ef Vﬂ—Ve+§ / hu—hu(A—S)de]
T 0 A~ 0 .
= 9 DB sy, N¥ 0,410 Nkj0, 4)=1 |Ve — Ve + /0 (ke = by ) (A = s)dN;
k
1 0 4 0 k
Z 2JT ZEQf EA(f)]lman/¢k Nk/[O’A]:O]lNk[O,A]Zl Vg - Vz + /0 (hkj - hk‘,ﬁ)(A — S)st
k

N
ve— 1+ / (hio — hY)(A — 5)AN?
0

] |

> g X5 it

Note that on €,

A " A , ,
Ca(f) = exp (KA—; / v (f)dH; / log()! <f>>dNt)

> yrexp(KA)exp (— Z /OA )\t,(f)dt>
> yrexp(KA)exp ( Z/ (Vk/ / th”k’ t— u)de ) dt)
—a45
> vy exp (KA AZW> exp ( / Z pknk/dN )
A g
> Vgexp (KA A Z Vk’) exp <—GA Z Lk Z Pk — Z Pkk’)
o

Since on Fr,

VE eXp (KA —A Z Vk’) exp (-CLAZ Mg Zpk//k/ — Z Pk;k’) > VkeiKaAcl > V]gefKaACH /2 > C(f()),

k/ k.// kl k/

where C and C(fy) are some constants, we have, by definition of Qy,

Iy = Eg, |La(f)lg,

-
ve— R+ / (hios — h )(A — 5)dN*
0

|

A-
vy — V? + / (h;@g — h%g)(A — S)de
0

> C(fo)Eq, |Lnko,a=1

|

X Qp(NY[-4,0] < adpup W) x Qp(max N[0, 4] = 0).
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Under Qy, N¥[0, A] ~ Poisson(A). If U ~ Unif([0, A]),

Eq,

N
Tyeo411 /0 (ot — B0.0) (A — 5)ANE

] = E[|(hae—h)(A—U)|] Qp(N*0,4] = 1)

1 A

- / |(hk£—h24)(A—s)‘ds><AefA
A 0 ’ ”

- e_A”hW_hg,zHl-

We also have, using (2.9),

_ TK?
EQf []lNk[OA ‘VZ—VZH = Ae A‘I/g—V?‘ SA@ A ZHhk@ hkz”l
Furthermore,
@f(g}%l\f’“ [0, A] = 0) = exp(—(K — 1)A),
and
Qs (N¥[-A,0] < adpp VK) > 1-3 0y (Nk’[ A,0] > aA,uk/)
k./
S oS A _5:1,
- aApg a

with ¢ = 2K. Finally,

Iy = 5C(fo)exp(—=KA) <1 1AZ—K2>”hké
and using (2.10),
Ef[Zms > 2JTZIk
> ZZIC(fU)eXp( KA) (1 ATKQ)ZHhkehkf”l
> CEH]C_JCOHh

where C' depends on fj.
e We now assume that there exists ¢ such that

lve = 0| = 7|1 f = follr-



18 S. DONNET ET AL.

In this case, using similar arguments, still with a = 2K,

T
Ef[Zm] > ]P’f[{maxNk[O Al = 0}] ‘I/g—ljg‘
’ 2JT

v

Euf—foﬂlEQf [EA ﬂ{makak[o Al= 0}}

Y

E\\f—foHlE@f [ﬁA ) frmax, N#[0,A]=0) L{nk[— AO]<aA,uk,‘v’k}}

v

7T
EHf — foll1exp (KA AZW —aAY mea) Eq, []I{N[O A1=0} Lov v AO]<aA,uk}]
k// k/

T T
> — — —A r —aA r — ’ > (C— —
> 4=]THf follx eXp( Ek/ Vi —a Ek, (ke — Vi )) > JTHf foll1

for C depending on fy. Lemma 4 is proved.
O

2.5.4. Upper bound for the Laplace transform of the number of points in a cluster. In the next

lemma, we refine the proof of Lemma 1 of [4]. Given an ancestor of type ¢, we denote W* the number
of points in its cluster. We have the following result.

LEMMA 5. Assume ||p|| < 1 and consider t such that 0 <t < 1;\)%‘ log (1;“”;"'”). Then, we have
forany t €{1,...,K},

1+ |||
Elexp(tW!)] <
/ 20|

Moreover, if ||p|| < 1/2, then there exist two absolute constants co and Co such that if VKt < co, then
Elexp(tW*)] < Co. Finally,

E W =17(1 — pT) ey

PROOF OF LEMMA 5. We introduce K‘(n) € R the vector of the number of descendants of the
nth generation from a single ancestral point of type ¢, with KZ(O) = ey, where (ey); = 1y—¢. More
precisely, (K*(n)) is the number of descendants of the nth generation and of the type k from a single

ancestral point of type £. Then,
o0
WE=1" x Y K'(n)
n=0

We now set for any 0 € R,
60(0) = log (E[exp(07 K (1))

and

¢(0) = (61(0), ..., oK (0))".
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Note that
K'(1); ~P(pey), Vi<K

and

K

Zlog (Ef[exp(G K ) me (exp(6;) —1).

7j=1
Therefore,

Ope(6
(D6@)es = 2200 = s ex(ty)
J

and for any = € RE | since | p| := SUPg ||zf=1 2|2

K K 2
ID(O)x]|5 = Z(Zpe,jexp(ej)xj)

= ZZ plp);irexp(0;)z; exp(6;)x;
i J

= " pu

el llol3 = lloll® Zw exp(20;)

IN

with v the vector of R¥ such that v; = exp(6;)z;. So,

Do)l < HpHmjaxexp(|0j|)§Hp”e||9||2.

So, by applying the mean value theorem,

16(8)112 = l16(6) — ()2 < lIplle!”I=[|6]]-

We use a modification of the arguments in the proof of Lemma 1 of [4]. Writing g1(0) = 6 + ¢(0), we

have forn > 3

E; |/ (Choo K°H) :n«:f | 0T (SRS KU (D, {eeTK%n)‘Kﬁ(n_ 1)7__.’[(6(1)“

—E, [ 0T(2’,§:2Kf(k»e(ew(e))TK@(n—l)] —E; [69T<zz;§ Kf(k»em(e)TKf(n—l)}

= -GBTKZ(O)egnfl(H)TKZ(l)} = el9n(®)0).

with the induction formula: ¢,,(0) = 6 + ¢(gn—1(0)) for n > 2. In particular,

lgr (0112 < 10]12(1 + [lplle!”l2) and [|ga(8)ll2 < [16]l2 + llplle!# =1 @] g1 (6)]2.

19

=B [ (im0 K ))e<9+¢(gl(e>>)TK‘<n—2>} [ 07T (125 KA (k) gzw)TKl(n—z)]



20 S. DONNET ET AL.
We now set C':= (14 [pl)/(1 = [lpll) > 1. Then, if [lgn—1(0)[]2 < [|0]l2(1 + C),
lgn(@)l2 < [18]l2(1 + [[pll (L + C)el 20+ < j6]|2(1 + C)

as soon as

(2.11) 19]l2 < (1+ C) " 1og(C/(pll(1 + €))) = & _QHPH log <12+||/|)|ﬁ)”> :

Since ||p|| < 1, the previous upper bound is positive. Note that under (2.11), ||0]|2 < log(C/||pll), and
lgr (0112 < 10l12(1 + [lplle!”l2) < [16]12(1 + |l “/1eD) < [|9]l2(1 + ©).
We finally obtain that under (2.11),
gn(@)]2 < 10]2(1 +C), Vn=>1.

Since for any m, n > >_p_o(K*(k))m is increasing and W* = 17 x 3°°°  K*(n), we have by monotone
convergence that for t > 0,
Eflexp(tW)] = lim_exp(gn(t1)s).

By the previous result, the right hand side is bounded if ¢ is small enough. More precisely, for all
0<t<(1+C) og(C/([lpll(1+O)))/VE,

C L+ pll

l
Eflexp(tW)] < exp(tVE (1 +0) < =y = o

The second point is obvious in view of previous computations. Moreover, since E¢[W*] = 3" [ E;[17 K*(n)]
and since for any v € RX

K K
Effo" K (n)[KY0), ..., K (n = 1)] =Y > K (n—1)j0ppj6 = v p"K'(n - 1).
We obtain by induction that E[17K*(n)] = 17 (pT)"e, and taking the limit, since ||p|| < 1,

E; W =17(1 — pT) ey

2.5.5. Lemma on N™.

LEMMA 6. There exists ¢y such that for all co > 0 such that for T large enough,

Jr—1
Py ( > N™MIn) > c0T> < e~
m=1
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Furthermore, there exists a constant ko > 0 (see the definition of Jr) such that for any f € Fr,

Jr—1

> EfIN™(In)] = o(T).
m=1

PROOF OF LEMMA 6. We use computations of the proof of Proposition 2 of Hansen et al. [4].
To bound N™(I,,), first observe that we only consider points of N whose ancestors are born before
(2m—1)T'/(2Jr), i.e. the distance between the occurrence of an ancestor and I, is at least 2mT'/(2Jr)—
A—(2m—-1)T/(2Jr) =T/(2Jr) — A since

2mT 2 nT
;= 2L,y Gm AT
2Jr 2Jr
Using the cluster representations of the process, for any p € Z and for any ¢ € {1,..., K}, we consider

B, ¢ the number of ancestors of type £ born in the interval [p,p+1]. The B ;s are iid Poisson random
variables with parameter v,. We have

Jr—1 K Byp.e 1 T K 0 Bpe 1 T

Nid] 4 4
> A< XX (Wi (g -4)) +X X X (Whe-g (1o g-a))
m=1 0=1 pe gt k=1 +  ¢=1p=—oc0 k=1 +

T

where W]f i is the number of points in the cluster generated by the ancestor £ which is of type £ and

Ji={p: 1<p<T—-T/(2Jr)}

since

et T T
nglfmc [JT — AT - |
For the first term of the previous right hand side, we have used same arguments as Hansen et al. [4]
and the lower bound of the distance determined previously. For the second term of the right hand
side, since p < 0, this lower bound is at least —p—1+ % — A. Conditioned on the B, ;’s, the variables
(Wﬁk)k are iid with same distribution as W* introduced in Lemma 5. Furthermore, by Lemma 5
applied with f = fo, since ||po|| < 1, we know that for tg > 0 small enough (only depending on ||po||
and K),

]EO [exp(tOWK)] S C(),
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where C is a constant. So, for any ¢ > 0,

K X 1/ 7T
Pra=Ba| 55503 (Wi (g7, 4)) zer

=1 pej’;’ k=1

K Bp,é
T
¢
< exp(—tocT) H H Eo H Eo [exp (to (WM ~ AT + 1) ) |B 4
t=1pe gt k=1 +
K K
< exp(—tocT) H H Eo [(He(to))Prt] = exp ( —tocT + Z Z V) (Hy(to) — 1))7
=lpegt =1 pe g
where T
Hy(ty) :=E to (W* - 1
e(to) o[exp<o< 2AJT+)+)}’
satisfying
Hy(tg) <P o L — AJp))E ¢
o(to) <Po | W5 < ATy 1| +exp(to — Tto/(2AJ7))Eq |exp (toW
< 1+ Co eXp(t() — Tto/(QAJT)).
Therefore,

K
>N VR(Holto) — 1) S (T —T/(2J7) exp(—Tto/(2AJ7)) < e” 0187 = o(tycT)
(=1 pGJ;

by choosing k¢ large enough and then

Pri S exp(—tocT'/2).

Similarly,
0 Bp,i 1
Pro:=Po Z Z Z <W§’k_A (—p—l—i—J—A)) > cT
(=1 p=—o0 k=1 T +
K 0
< exp ( —tocT + Z Z vg (Hyp(to) — 1)),

(=1 p=—o0

where
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satisfying .
Hg’p(to) <14 Cyexp(ty+to/A —Tto/(AJr) + top/A).
Therefore,
K 0
>N v(Hey(to) — 1) S exp(=Tto/(AJr)) = o(tecT)
{=1 p=—0o0
and then

Pro S exp(—tocT'/2).

Finally, there exists ¢y (only depending on tg, so only depending on ||po|| and K) such that for all
co > 0 such that for 7" large enough

Jr—1
( Z N™(I,) > CUT> < e~CocoT
and the first part of the lemma is proved.

For the second part, we only consider the case 1/2 < ||p|| < 1. The case ||p|| < 1/2 can be derived
easily using following computations. We have:

Jr—1
ZE[N’”( m)l = Er1+Era,

with
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: _ 1=l Lt{pll
and, with t = NI log( Mol )

Vv

(1—1pl)? Z u2 on Fr, since for x > 0, x < €%, by using Lemma 5,

K
tT
Sl (- e H) TRy [ V] S w
=1
_a-leb?r K 1 _
SA— o)t 2 Sy S e CoeT log T) 23 M,
=

for C" depending on A and K. Similarly,

(—llplD3T

K
Ery ST —|pl)%e 2Ar Zw.
=1

Choosing xg small enough,

O]

2.6. Proofs of results of Section 2.3 of [1]. This section is devoted to the proofs of results of
Section 2.3 of [1].

2.6.1. Proof of Corollary 3. The main difference with the case of the regular partition is the control
of the LL1-entropy. This is more complicated than the regular grid histogram prior and we apply instead
Theorem 2 of [1]. Because of the equivalence between the parameterization in ¢ or in u, we sometimes
huwtg as hyag. Let J and (w,u) and (w’,u') belonging to S;. Then, for all ¢ > 0, if 6 = ¢’ = 1,
t; —tj| < Cermin(|t; —tj—1|,[t; — tj4a]) for all j and 3°, |wj — w}| < er then

Pt — Bw’,ﬂ,]”l < Nty — Bw’,t,JHl + Hﬁw’,t,J — Bw’,t’J”l

J J
< Z lwj — wj] +4ZC€TW;~
j=1 j=1
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Consider e > 0 and Uy = {u € Sy, min; u; > er}, under the Dirichlet prior on u

J
IL, (U5 7] J) < ZH(UJ‘ <er)= ZP?‘Ob( Beta(a, (J — 1)a) <er) < Jef < e~°Ter
isJ j=1

if loger < —(c/a+ 1)Te2 if J < Jy(T/logT)V/?+Y) =. J; p. We define Hr = {hwu.s,J < JiT;u €
Ujr}. To apply Theorem 2 of [1], we need to construct the slices Hr; of Hp. Let ery = eT/ for
1 < ¢ <L =log(ler)/logr and 0 < 7 < 1 is fixed and er 1 = 1. Without loss of generality
we can assume that log(er)/logT € N. For (uq,---,uy) let k; be defined by u; € (er,,erk+1)
and (Ni,---,Np) be given by card{j,u; € (erys, ere+1)} = Ng so that >, N, = J and consider a
configuration o = (ki,--- , ky); denote by U (o) the set of u € S; satisfying the configuration o, we
define Hr o7 = {(w,u) € Sy xUsr(0c)} and Hr the collection of Hr, y with J < J; 7. We have, by
symmetry for all o = (ky,--- , k) compatible with (N1, -, Np) writing Ny = Ny +--- + Ny

I Usr(o)) =11, (QZL:I{(UNe_l-f—la eyuy,) € (eT,ZflveT,Z)NZ})

I'(aJ)
(@) %

IN
=

eg?il)/(prl)vol (mezl{(UNg_ﬁl’ sug,) € (ene-t, eT’Z)NZ})

th

Lf
['(aJ) @ DNe/(E+1) N/ (E+1)
(a) P T T

IN

—
<

We now construct a net (u @) j < Ny, 7) such that for all u € Ujr(o) there exists ul9) satisfying
[t — | < eTu( 7) /\u( ) for all 4, with t; = ZZ L. If |t — t(j | < erery,; Nerp,,, then [t; —tz(])] <
eTu(J ) /\ug_)1 Therefore, given a configuration (k1, - - - , ks) compatible with (/Vy,--- , Nr), we can cover

Ujr(o) using

1/(ki+1)—1/ (ki Nkis1) —2N,
<H <H6T€+1€T£ .
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J
The covering number of S; by balls of radius (er is bounded by (é) and

It := Z MN(GT,HTJJ)
<ZF<<€T> ZNJ ;U r(o))
S (o)) S fat2 2\] awy
<Z\/7<<€T> Z F(a)JN1!~--NL!eXp [lOgGTZNe <2(€+1)_€>] eT2N L

(N1, ,NL)
1 i Ji,T L—1 Né(z(eH) %) —2N/L
S(ap) @l 8 I 11—
€ Ny! N Nyl Ng! _
Cer ooy M et s pe PLPL-1

for any p1,---,pr > 0 with Ze . pe = 1. Taking p, = 1/(L + 1) and since o > 6, Q&Jfl) — % > 0 for
all £ > 1, leading to

Ji,T

Jir
Ip < 720 1 2011 log Ju m+(L+1) log(L+1) Z Z HpNg < KJirlogT
~ Cer Ny!- NL'
J=1(Ny,- ,Np)

for some K > 0 and condition (2.3) of [1] is verified.

2.6.2. Proof of Corollary 4. The proof is based on Rousseau [6], where mixtures of Beta densities
are studied for density estimation, and using Theorem 2 of [1]. Note that for all hy, ho

[(h1(2))+ — (h2(2))+| < [hi(z) — ha(z)]

so that Corollary 4 of [1] is proved by studying
B(er,B) = {(Vlm (9e.)0)ks m}?«X|Vk —vp| <er, max 9ok — goxll2 < er, max lge,k]l0 < B}
in the place of B(ep, B) and by controlling the LL;-entropy associated to

J
G110 =1 Yo,p; P = ij&j, ¢j € [e1, 1 —el]; o € [agr, arr]; Z lpjl=1,J < Jir
J=1 J

where

e1 = e_aoTEQT, QoT = exp (—TCOEQT) ;i = a1T264T, Jir = JlTl/(QBH)(log T)(5_2)/(45+2),
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with cg,a1,a0,J1 > 0 and gop = fol Ja,cdP(€). From the proof of Theorem 2.1 in Rousseau [6],
we have that for all ¢ > 0 we can choose ag,cy, 1 > 0 such that II (Qf’T) < e—Tet and Gir
can be cut into the following slices: we group the components into the intervals [es, esy1] or [1 —
err1,1 — eg] with ey = e(l)/e and er, = T~ for some ¢t > 0, and the interval [er,.,1 — er,]. For
each of these intervals we denote N (¢) the number of components which fall into the said interval,
N(O) = Teic(eperi)U(i—ersri—en) i £ < Jp, and N(Ly+1) = 35 Leeer,1—ep,) - Let J < Jir
Gi0(J) ={ga,p € G175 N(£) = ky, ZLTH = J} with o denoting the configuration (ki,- - , kL, 41).
From Rousseau [6] Section 4.1, for all { > 0, we have

Lr—1 Ky Lpy—1 kg
N(¢er,Gro () 1) < (Cer)™er ] (awﬂl_bw)) < (¢er) ™M I (alg(l/l)>

=1 Cerer =1 0+ 1)C€T€w

and

I'J+1) vz o ke /2 atl _ a+l
II(Gi1,)(J) < /1T ]_[LT+1I‘ 172 pry s pre<clegly —e™), €< Lr—1
= (=1

1)/(04+1 . .
and pp r, < 1. Since edtl _ e?“ < e‘gill < €§a+ /) and since J! > Hgfq k,!, we obtain

/41
CJy,rlogT
Y D NEer,Guo(d), |- 1)/ I(Gro () S Jirerrles Z LT+1 ol 11 <€(€+1)>
JSJI,T g f (=1
_ Jl TeCJl’TlogT
as soon as a > 3, where ¢! = LTH 1/(£(£+1)). Therefore condition (2.3) of [1] is verified. We now

study the Kullback-Leibler condltlon (i). Again, we use Theorem 3.1 in Rousseau [6], so that for all
fo € H(B,L) and all B > 0 there exists fi such that ||fo — ga,f, [l S @ —B/2 when « is large enough

~

and go 5, = fo Ja,ef1(€)de, and where f; is either equal to fo ifg<2or f1 =/ 23@1 ! wj/a7/2, with

w; a polynomial function with coefficients depending on fo [ < j. From that, we construct a finite
mixture approximation of g, r,. Note that even if fy is positive, fi is not necessarily so. Hence to use
the convexity argument of Lemma A1 of Ghosal and van der Vaart [3] we write f; as m4 f14 —m_fi —
with fi 4+, f1,— > 0 and probability densities. In the case where m_ = 0 then f; _ = 0. We approximate
Ja,fr.. and ga f _ separately. Contrarywise to what happens in Rousseau [6], here we want to allow
fo to be null in some sub-intervals of [0, 1]. Hence we adapt the proof of Theorem 3.2 of Rousseau
[6] to this set up. Let f be a probability density on [0, 1] we construct a discrete approximation of
Ja,f- Let €g = a o for some Hy > 0 and define €j = eo(1+ By/loga/a)! for j = 1,---,J, with
Jo = O(Valoga) and B > 0 a constant. We then have, from Lemma 7 below that there exists a
signed measure Py with at most N = O(y/a(log a)3/?) supporting points on [e1,1 — €;], such that

90,2 = follz < 90,7 = G, ll2 + 190, = folloo S @25 lgapyllos < [l folloo+o(1), Po=_ pide,.
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As in Rousseau [6] Theorem 3.2, we can assume that |p;| > a4 for some fixed A large enough.
Following from Section 4.1 of Rousseau [6], There exists A’ > 0 such that if P satisfies max; |P(U;) —
pil < a=A|pi|, with U; = [e;(1 — )(1 — a~4), (1 — €)(1 + a4")] then

190,70 = garpll2 < @2, lga,plloe < [l follos + 0(1).
As in Rousseau [6], if e7 = egT—#/(28+1) (1og T)%8/(46+2)  then

L (Bler [ follow +1)) = e T
for some c¢; > 0, which terminates the proof of Corollary 4.

_LEMMA 7. Assume that f is a bounded probability density on [0, 1], then for all By > 0 there exists
No > 0 and a signed measure Py with at most N < Nov/a(log)®/? on [e1,1 — €] such that

19a.f = gapollz S ™, |lgarlloo < C,

where C' is a constant depending on || fol|so-

PRrROOF OF LEMMA 7. On each of the intervals (e;_1,€;) we construct a probability P; having sup-
port on (€j_1,€;) with cardinality smaller than N; < Njlog o and such that
f]l(e €5)
2.12 o 12 < B, f=_2 919
( ) Hga,f] ga,Pg ”2 ~ f] f;;_j_l f(ﬁ)dﬁ
where By can be chosen arbitrarily large by choosing Ny large enough. To prove (2.12) we use the
same ideas as in the proof of Theorem 3.2 of [6]. For all j =2,---,J —2 on (€j_1,€;), there exists P;
with at most N7 log a terms such that if = € [0, 1],

a—H
‘ga,fj - ga,Pj‘ (.’E) S m(1 — I’)

where H can be chosen as large as need be, by choosing N; large enough. Moreover, let < ¢y or
x> 1— €, then for all € € (e1,1 — €1), if 7 < € then /e < J, = (1 + By/loga/a)~! and

Jae(x) S Varexp (a [lof(f/;) — (logz)/a + log((1 = ‘Te)/(l — 6>)D

If ¢, < e < 1/4 then the function € — % —log(e/z)/a + w is increasing and

Ga,e(2) S \/6& exp (a [log(éa) (1 + 204 + 5§$2) + 0(333)) — 1+ 5;1])

—B2/3+Hy —B2/4
Sa BT <o B

by choosing B? > 12Hj. The same reasoning can be applied to & > 1 — ¢y, which terminates the
proof. O
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