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Posterior Concentration Rates for Counting
Processes with Aalen Multiplicative Intensities

Sophie Donnet∗, Vincent Rivoirard†, Judith Rousseau‡, and Catia Scricciolo§

Abstract. We provide sufficient conditions to derive posterior concentration rates
for Aalen counting processes on a finite time horizon. The conditions are designed
to resemble those proposed in the literature for the problem of density estimation,
for instance, in Ghosal et al. (2000), so that existing results on density estimation
can be adapted to the present setting. We apply the general theorem to some
prior models including Dirichlet process mixtures of uniform densities to estimate
monotone nondecreasing intensities and log-splines.

Keywords: Aalen model, counting processes, Dirichlet process mixtures,
posterior concentration rates.

1 Introduction

Estimation of the intensity function of a point process is an important statistical prob-
lem with a long history. Most methods were initially employed for estimating intensities
assumed to be of parametric or nonparametric form in Poisson point processes. How-
ever, in many fields such as genetics, seismology and neuroscience, the probability of
observing a new jump of the studied temporal process may depend on covariates and,
in this case, the intensity of the process is random so that such a feature is not captured
by a classical Poisson model. Aalen models constitute a natural extension of Poisson
models that allows for taking into account this aspect. Aalen (1978) revolutionized point
process analysis developing a unified theory for frequentist nonparametric inference of
multiplicative intensity models which, besides the Poisson model and other classical
models such as right-censoring and Markov processes with finite state space, described
in Section 2.2, encompass birth and death processes as well as branching processes.
We refer the reader to Andersen et al. (1993) for a presentation of Aalen processes
including various other illustrative examples. Classical probabilistic and statistical re-
sults about Aalen processes can be found in Karr (1991), Daley and Vere-Jones (2003,
2008). Recent nonparametric frequentist methodologies based on penalized least-squares
contrasts have been proposed by Brunel and Comte (2005, 2008), Comte et al. (2011)
and Reynaud-Bouret (2006). In the high-dimensional setting, more specific results have
been established by Gäıffas and Guilloux (2012) and Hansen et al. (2015) who consider
Lasso-type procedures.

Dykstra and Laud (1981) consider a Bayesian nonparametric approach to model
hazard rates by extended gamma processes which have the advantage over Dirichlet
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processes that prior probability measures on the corresponding cumulative distribu-
tion functions select absolutely continuous rather than discrete distributions. Bayesian
nonparametric inference for inhomogeneous Poisson point processes is considered by Lo
(1982, 1992) who develops a prior-to-posterior analysis for weighted gamma process pri-
ors to model intensity functions. In the same spirit, Kuo and Ghosh (1997) employ sev-
eral classes of nonparametric priors, including gamma, beta and extended gamma pro-
cesses. Extension to multiplicative counting processes is treated in Lo and Weng (1989)
who model intensities as kernel mixtures with mixing measure distributed according to
a weighted gamma measure on the real line. Along the same lines, Ishwaran and James
(2004) develop computational procedures for Bayesian non- and semi-parametric mul-
tiplicative intensity models using kernel mixtures of weighted gamma measures which
can be viewed as a special case of kernel mixtures of dependent completely random
measures proposed by Lijoi and Nipoti (2014).

Kim (1999) considers priors for the cumulative intensity function based on Lévy
processes and, using conjugacy for the Aalen’s multiplicative counting process model,
derives formulas for the posterior process. Posterior inference is then exemplified in
Poisson processes, right-censoring and Markov processes. Lévy processes are also con-
sidered for nonparametric inference with mixed Poisson processes by Gutiérrez-Peña
and Nieto-Barajas (2003). Other articles mainly focus on exploring prior distributions
on intensity functions with the aim of showing that Bayesian nonparametric inference
for inhomogeneous Poisson processes can give satisfactory results in applications, see,
e.g. Kottas and Sansó (2007).

To the best of our knowledge, there are no results in the literature concerning aspects
of the frequentist asymptotic behaviour of posterior distributions, like consistency and
rates of convergence, for intensity estimation of general Aalen models. There are recent
works on posterior contraction rates for inhomogeneous Poisson processes by Belitser
et al. (2015), Gugushvili and Spreij (2013) and Kirichenko and van Zanten (2015) and
a contribution on posterior consistency for hazard rate estimation with or without cen-
soring by De Blasi et al. (2009). Both types of models are specific examples of Aalen
processes. In this article, we generalize these results by studying rates of convergence
for general Aalen multiplicative intensity models.

As in Belitser et al. (2015), Gugushvili and Spreij (2013) and Kirichenko and van
Zanten (2015), we restrict attention to the estimation of the intensity function over a
bounded interval [0, T ], with fixed T > 0. Although this is restrictive, this setup is realis-
tic in a number of applications where the study takes place during a fixed period of time,
but many subjects are meanwhile observed, see Section 2 for the mathematical formu-
lation. Hence, T can be understood as a deterministic right-truncation. For estimating
intensities of inhomogeneous Poisson processes, the extension to the case T = +∞ can
be performed in a similar way to what is done for density estimation, but this is not
pursued here. Note that in the frequentist literature, minimax convergence rates for the
intensity of a Poisson process on the real line have been derived by Reynaud-Bouret
and Rivoirard (2010). In this case, the rates typically depend on tail conditions on the
intensity or otherwise significantly deteriorate without such conditions.

Quoting Lo and Weng (1989), “the idea of our approach is that estimating a den-
sity and estimating a hazard rate are analogous affairs, and a successful attempt of
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one generally leads to a feasible approach for the other”. Thus, in deriving general suf-
ficient conditions for assessing posterior contraction rates in Theorem 1 of Section 3,
we attempt at stating conditions that resemble those proposed by Ghosal et al. (2000)
for density estimation with independent and identically distributed (i.i.d.) observations.
This allows us to then derive in Section 4 posterior contraction rates for different fam-
ilies of prior distributions such as Dirichlet mixtures of uniform densities to estimate
monotone nondecreasing intensities and log-splines by an adaptation of existing results
on density estimation. Detailed proofs of the main results are reported in Section 6.
Auxiliary results concerning the control of the Kullback–Leibler divergence for intensi-
ties in Aalen models and the existence of tests, which, to the best of our knowledge, are
derived here for the first time and can also be of independent interest, are presented in
Section 7 and Supplementary material (Donnet et al., 2015). Before exposing theoretical
results, Section 2 introduces the setting of Aalen multiplicative intensity models and
presents examples of such models like, for instance, right-censoring models in survival
analysis whose treatment is a guideline of the article.

2 Aalen multiplicative intensity models

2.1 Set-up and notation

Let (Gt)t≥0 be a filtration on a probability space. Let N = (Nt)t≥0 be a counting
process on R+, namely, the sample paths of (Nt)t≥0 are right-continuous step functions
with value 0 at t = 0 and with positive jumps, each one of size 1. In the sequel, Nt

denotes the number of jumps in [0, t]. We assume that, for any t ≥ 0, Nt < ∞ almost
surely. For any Borel set A, we denote by N(A) the number of jumps of N in A. Let
Λ be the compensator of N with respect to (Gt)t≥0, assumed to be finite, so that if
Mt = Nt − Λt, then (Mt)t is a zero-mean (Gt)t-martingale. A non-negative predictable
process λ̃ is called the stochastic intensity of N if Λ can be written as

Λt =

∫ t

0

λ̃(s)ds, t ≥ 0,

see Section II.4.1. of Andersen et al. (1993) or Chapter 2 of Karr (1986) for more details.
We say that N obeys the Aalen multiplicative intensity model, see Aalen (1978), if for
any t,

λ̃(t) = λ(t)Yt,

where λ(·) is a non-negative deterministic function called intensity function and (Yt)t is
a non-negative predictable process. We refer the reader to Kim (1999), Reynaud-Bouret
(2006), Comte et al. (2011) or Hansen et al. (2015). For a detailed description of this
model, see Chapter III of Andersen et al. (1993). Informally, using (2.41) of Karr (1986),

E[N([t, t+ dt]) | Gt− ] = P[N([t, t+ dt]) = 1 | Gt− ]

= P[N([t, t+ dt]) > 0 | Gt− ] = λ(t)Ytdt.
(1)

Note that, almost surely, we have no jumps of N on sets where λ or Y vanishes.
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In this article, we estimate λ on a compact set, say [0, T ], where 0 < T < ∞, by using
a Bayesian posterior distribution based on observations of (Nt)t∈[0, T ] and (Yt)t∈[0, T ].
The posterior distribution is conditioned on the observables (Gt)t∈[0, T ]. To simplify the
presentation, the posterior distribution is denoted by π(· | D), where D represents the
observed data up to time T . Omitting constants independent of λ, the log-likelihood at
λ with respect to the filtration (Gt)t≥0 can be expressed as

�n(λ) =

∫ T

0

log(λ(t))dNt −
∫ T

0

λ(t)Ytdt,

see Proposition 7.2.III of Daley and Vere-Jones (2003) or Theorem 2.31 of Karr (1986).

We are herein interested in asymptotic results: both N and Y depend on an integer
n, and we study estimation of λ (not depending on n) when T is kept fixed and n → ∞.
In Belitser et al. (2015) and the references given in Section 1, asymptotic results for
Aalen multiplicative intensity models are also presented with fixed and finite T and
n going to infinity. More precisely, in Belitser et al. (2015), an inhomogeneous Poisson
process with a T -periodic intensity function is observed up to time nT and n goes to ∞.

2.2 Examples of Aalen multiplicative intensity models

The following examples justify the interest in the Aalen model.

Inhomogeneous Poisson processes

We refer the reader to Kingman (1993) for a good introduction to Poisson processes and
some concrete illustrations. See also Reynaud-Bouret and Rivoirard (2010) or Belitser
et al. (2015) who model the counts of phone calls arriving at a call centre by using
inhomogeneous Poisson processes. Poisson processes correspond to the case where the
process (Yt)t∈[0, T ] is equal to 1. Assume that we observe n independent Poisson processes
with common intensity λ on [0, T ]. This model is equivalent to the model where we
observe a Poisson process with intensity n× λ, so it corresponds to the case Yt = n for
all t ∈ [0, T ]. In this case, if T1, . . . , TNT

are the jump times of N over [0, T ], we have

�n(λ) =

NT∑
i=1

log(λ(Ti))− n

∫ T

0

λ(t)dt.

In this example, D = (Nt)t≤T . Finally, note that when λ depends on covariates, inho-
mogeneous Poisson processes are referred to as Cox processes, see Comte et al. (2011)
or Karr (1986). The setting where processes depend on covariates are not studied in
this article.

Survival analysis

We refer the reader to Chapter I of Andersen et al. (1993) and Chapter 3 of Klein and
Moeschberger (2003) for a wide class of concrete examples in survival analysis.
We first consider right-censoring models that are very popular in biomedical problems,
see, for instance, Example I.3.9 of Andersen et al. (1993) concerning the survival analysis
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with right-censoring of patients with malignant melanoma. We consider n patients and,
for each patient i, we consider its lifetime Ti (a non-negative random variable) with
density f that can be censored and we denote by Ci the censoring time assumed to be
independent of Ti. We face with censoring when, for instance, the patient drops out of a
hospital study: the time of death is not observed, but we know that the patient was still
alive when he left the study. In right-censoring models, we observe (Zi, δi) on [0, T ],
with Zi = min{Ti, Ci} and δi = 1Ti≤Ci . In this case, the processes to be considered are

N i
t = δi × 1Zi≤t and Y i

t = 1Zi≥t.

We assume that the vectors (Ti, Ci)1≤i≤n are i.i.d. and we denote by λ the common
hazard rate of the Ti’s assumed to be finite at least on [0, T ]:

λ(t) =
f(t)

P(T1 > t)
, t ∈ [0, T ]. (2)

Note that we do not force the Zi’s to be supported on [0, T ]. Finally, consider N (resp.,
Y ) by aggregating the n independent processes N i’s (resp., the Y i’s), so

Nt =
n∑

i=1

N i
t and Yt =

n∑
i=1

Y i
t ,

and straightforward computations show that the compensator of N is

Λt =

∫ t

0

λ(s)Ysds, t ∈ [0, T ],

thus right-censoring models obey the Aalen multiplicative model. Expressing the log-
likelihood, we obtain

�n(λ) =

∫ T

0

log(λ(t))dNt −
∫ T

0

λ(t)Ytdt

=
n∑

i=1

δi log(λ(Zi))−
n∑

i=1

∫ Zi

0

λ(t)dt. (3)

Then, using (2), the likelihood is proportional to

n∏
i=1

[f(Zi)]
δi × [S(Zi)]

1−δi ,

where S(x) = P(T1 > x). This expression is expected and coherent with classical refer-
ences, see, for instance, (3.5.6) of Klein and Moeschberger (2003), by interpreting the
previous formula with fixed i: either δi = 1 and we observe Ti whose density is f or
δi = 0 and we just know that Ti > Zi justifying the term [S(Zi)]

1−δi . In this exam-
ple, D = (Zi, δi)i≤n. Note that left-censoring models, where the minimum between the
lifetime and the censoring time is replaced with the maximum, do not obey the Aalen
model since in this case (Yt)t is not predictable. See Andersen et al. (1993).
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Finite state Markov processes

LetX = (X(t))t be a Markov process with finite state space S and right-continuous sam-
ple paths, see Example I.3.10 in Andersen et al. (1993). We assume the existence of inte-
grable transition intensities λhj from state h to state j for h �= j. We assume we are given
n independent copies of the process X denoted by X1, . . . , Xn. The filtration is given
by Gt = σ((X(s)1, . . . , X(s)n), s ≤ t). For any i ∈ {1, . . . , n}, let N ihj

t be the number
of direct transitions for Xi from h to j in [0, t], for h �= j. Then, the intensity of the
multivariate counting process Ni = (N ihj)h �=j is (λhjY

ih)h �=j , with Y ih
t = 1{Xi(t−)=h}.

As before, we can consider N (resp., Y h) by aggregating the processes Ni (resp., the
Y ih’s): Nt =

∑n
i=1 N

i
t, Y

h
t =

∑n
i=1 Y

ih
t and t ∈ [0, T ]. The intensity of each component

(Nhj
t )t of (Nt)t is then (λhj(t)Y

h
t )t and the data D = ((X(s)1, . . . , X(s)n), s ≤ T ).

Note that, for each (h, j), (Nhj
t )t is a univariate Aalen process associated with the

filtration (Gt)t. In this case, N is either one of the Nhj ’s or the aggregation of some
processes for which the λhj ’s are equal. We refer the reader to Andersen et al. (1993),
p. 126, Reynaud-Bouret (2006), Kim (1999) or Comte et al. (2011) for more details.

Censored processes

Previous models can be combined. For instance, as Kim (1999), following Lo (1992),
we can consider censored Poisson processes. More precisely, let M1, . . . , Mn be n i.i.d.
Poisson processes with common intensity λ and let Y 1, . . . , Y n be n i.i.d. non-negative
predictable processes that are independent of the M i’s. For instance, we can consider
Z1, . . . , Zn n i.i.d. random variables and set, for any i, Y i

t = 1Zi≥t. Defining

Nt =
n∑

i=1

∫ t

0

Y i
s dM

i
s,

we obtain a counting process obeying the Aalen multiplicative intensity model since its
compensator can be written as

Λt =

∫ t

0

λ(s)Ysds,

with Yt =
∑n

i=1 Y
i
t which is a non-negative predictable process. In this case, we have

D = (Z1, . . . , Zn, M
1, . . . , Mn).

2.3 Assumptions

Let the true intensity λ0 to be estimated be such that
∫ T

0
λ0(t)dt < ∞. We denote

by P
(n)
λ0

and E
(n)
λ0

the probability measure and the expectation associated with λ0, re-
spectively. We now state some conditions concerning the asymptotic behaviour of Yt.
Define

μn(t) := E
(n)
λ0

[Yt] and μ̃n(t) :=
1

n
μn(t). (4)

We assume the existence of a non-random set Ω ⊆ [0, T ] such that there are positive
constants m1 and m2 satisfying for any n,

m1 ≤ inf
t∈Ω

μ̃n(t) ≤ sup
t∈Ω

μ̃n(t) ≤ m2, (5)



S. Donnet, V. Rivoirard, J. Rousseau, and C. Scricciolo 59

and there exists α ∈ (0, 1) such that, if

Γn :=

{
sup
t∈Ω

|n−1Yt − μ̃n(t)| ≤ αm1

}
∩
{

sup
t∈[0, T ]\Ω

Yt = 0

}
,

then
lim

n→∞
P
(n)
λ0

(Γn) = 1. (6)

These assumptions allow to control quite precisely the number of jumps of the process
N on subsets of Ω. In particular, the number of jumps of N is bounded by the number of
jumps of a Poisson process with intensity nλ(·). This trick allows us to use the classical
machinery for density estimation developed by Ghosal and van der Vaart (2007) in
the density estimation setting. Actually, assumption (6) is very mild as well as the
right-hand side of (5). The left-hand side of (5) is most of the time unavoidable and
variations of it are commonly used in the literature; see, for instance, Kim (1999),
Reynaud-Bouret (2006), Comte et al. (2011) or Hansen et al. (2015). For inhomogeneous
Poisson processes, conditions (5) and (6) are obviously satisfied with m1 = m2 = 1 and
Ω = [0, T ] since, for any t ∈ [0, T ], Yt = μn(t) = n. It may be the case for the other
previously described examples, such as right-censoring, by using the following lemma.

Lemma 1. Assume that Yt can be written as

Yt =

n∑
i=1

Y i
t ,

where Y i
t = 1Zi≥t and the Zi’s are i.i.d. with support denoted by S. Then, (5) and (6)

are satisfied with

– Ω = [0, T ] if MS > T

– Ω = [0, MS ] if MS ≤ T and P(Z1 = MS) > 0,

where MS = maxS.

Proof. For any t ∈ [0, T ], μ̃n(t) = P(Z1 ≥ t) and the right-hand side of (5) is true with
m2 = 1. For the left-hand side, we observe that we can take

m1 = P(Z1 ≥ min{T, MS}).

If MS > T then m1 > 0 by definition of S and [0, T ] \ Ω = ∅. If MS ≤ T , then
m1 = P(Z1 = MS) > 0 and [0, T ] \ Ω = (MS , T ]. By definition of S, for any t > MS ,
Yt = 0 almost surely. To prove (6), we write

sup
t∈Ω

|n−1Yt − μ̃n(t)| = sup
t∈Ω

∣∣∣∣∣ 1n
n∑

i=1

1t≤Zi − P(t ≤ Z1)

∣∣∣∣∣
≤ sup

u∈R

∣∣∣∣∣ 1n
n∑

i=1

1−Zi≤u − P(−Z1 ≤ u)

∣∣∣∣∣ .
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So, for α ∈ (0, 1), the Dvoretzky–Kiefer–Wolfowitz inequality gives

P

(
sup
t∈Ω

|n−1Yt − μ̃n(t)| > αm1

)
≤ 2 exp(−2n(αm1)

2)

and γn = P
(n)
λ0

(Γc
n) goes to 0 at an exponential rate.

The conditions of the previous lemma ensure that the stochastic intensity λ(t)Yt

is bounded from below on Ω, which is classical in the literature (see the previously
mentioned references). This implies that, on any non-empty open interval, the point
process N has positive probability of jumping; see (1). In particular, if the distribution
of the Zi’s is absolutely continuous and supported on [0, T ], then MS = T , but P(Z1 =
MS) = 0 and the assumptions of Lemma 1 are not satisfied with Ω = [0, T ]. This case,
which might be as difficult as the case of posterior asymptotics on the whole positive
real line, is further discussed in Section 5.2.

In the following sections, performance of inferences is only measured over the set Ω
assumed to be known, N has no jumps on [0, T ] \ Ω almost surely.

3 Posterior contraction rates for Aalen counting
processes

In this section, we present the main result providing sufficient conditions for assessing
contraction rates of posterior distributions of intensities in general Aalen models.

Although Aalen processes do not lead to i.i.d. observations and estimating λ, the
deterministic part of the stochastic intensity, is not as estimating a density, there are
strong connections between the two problems and our aim is to provide sufficient con-
ditions similar to those considered in the density estimation problem in Ghosal et al.
(2000). This allows us to appeal to the large literature on posterior concentration rates
for density estimation and apply the existing results that have been proved for various
types of prior models for density estimation to the present framework; see Section 4 for
an illustration of this through various examples.

Before stating the theorem, we need to introduce some more notation. We define the
parameter space as

F =

{
λ : Ω → R+

∣∣∣∣ ∫
Ω

λ(t)dt < ∞
}
.

To emphasize the connections between Aalen intensities and density models, for any
λ ∈ F , we introduce the following parametrization

λ = Mλ × λ̄,

where Mλ =
∫
Ω
λ(t)dt and λ̄ ∈ F1, with F1 = {λ ∈ F :

∫
Ω
λ(t)dt = 1}. We denote by

‖ · ‖1 the L1-norm over F : for all λ, λ′ ∈ F ,

‖λ− λ′‖1 =

∫
Ω

|λ(t)− λ′(t)|dt.
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The Kullback–Leibler divergence of λ ∈ F from λ0 is defined as

KL(λ0; λ) = E
(n)
λ0

[�n(λ0)− �n(λ)]. (7)

For the sake of simplicity, we restrict attention to the case where Mλ and λ̄ are a
priori independent so that the prior probability measure π on F is the product measure
πM ⊗ π1, where πM is a probability measure on R+ and π1 is a probability measure on
F1.

Let vn be a positive sequence such that vn → 0 and nv2n → ∞. For every j ∈ N, we
define

S̄n,j =
{
λ̄ ∈ F1 : ‖λ̄− λ̄0‖1 ≤ 2(j + 1)vn/Mλ0

}
,

where Mλ0 =
∫
Ω
λ0(t)dt and λ̄0 = M−1

λ0
λ0. For H > 0, we define

B̄n(λ̄0; vn, H) =

{
λ̄ ∈ F1 : h2(λ̄0, λ̄) ≤ v2n/(1 + log ‖λ̄0/λ̄‖∞), ‖λ̄0/λ̄‖∞ ≤ nH ,

∥∥λ̄∥∥∞ ≤ H

}
,

where

h2(λ̄0, λ̄) =

∫
Ω

(√
λ̄0(t)−

√
λ̄(t)

)2

dt

is the squared Hellinger distance between λ̄0 and λ̄ and ‖ · ‖∞ stands for the sup-norm.

In what follows, for any set Θ equipped with a semi-metric d and any real number
ε > 0, we denote by D(ε, Θ, d) the ε-packing number of Θ, that is, the maximal number
of points in Θ such that the d-distance between every pair is at least ε. Since D(ε, Θ, d)
is bounded above by the (ε/2)-covering number, namely, the minimal number of balls of
d-radius ε/2 needed to cover Θ, with abuse of language, we will just speak of covering
numbers.

Theorem 1. Assume that conditions (5) and (6) are satisfied and that, for some k ≥ 1,
there exists a constant C1k > 0 such that

E
(n)
λ0

[(∫
Ω

[Yt − μn(t)]
2dt

)k
]
≤ C1kn

k. (8)

Assume that the prior πM on the mass Mλ is absolutely continuous with respect to
Lebesgue measure and has positive and continuous density on R+, while the prior π1 on
λ̄ satisfies the following conditions for some constant H > 0:

(i) There exists Fn ⊆ F1 such that, for a positive sequence vn = o(1) and v2n ≥
(n/ log n)−1,

π1 (Fc
n) ≤ e−(κ0+2)nv2

nπ1(B̄n(λ̄0; vn, H)),

with

κ0 = m2
2Mλ0

{
4

m1

[
1 + log

(
m2

m1

)](
1 +

m2
2

m2
1

)
+

m2(2Mλ0 + 1)2

m2
1M

2
λ0

}
, (9)
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and, for any ξ, δ > 0,

logD(ξ, Fn, ‖ · ‖1) ≤ nδ for all n large enough;

(ii) For all ζ, δ > 0, there exists J0 > 0 such that, for every j ≥ J0,

π1(S̄n,j)

π1(B̄n(λ̄0; vn, H))
≤ eδnmin{(j+1)2v2

n, 1}

and

logD(ζjvn, S̄n,j ∩ Fn, ‖ · ‖1) ≤ δ(j + 1)2nv2n.

Then, there exists a constant J1 > 0 such that

E
(n)
λ0

[π(λ : ‖λ− λ0‖1 > J1vn | D)]

= γn +O((log n)3k/2(nv2n)
−3k/2 + (log n)k(nv2n)

−k + (nv2n)
−2k+1(logn)2k−1),

with γn = P
(n)
λ0

(Γc
n).

If γn = 0, as for the Poisson case, or goes to 0 at an exponential rate, then it is
negligible with respect to the other terms on the right-hand side of the previous equality.
Furthermore, as soon as nv2n � nδ for some δ > 0, the above right-hand side satisfies

E
(n)
λ0

[π(λ : ‖λ− λ0‖1 > J1vn | D)] = γn +O((log n)k(nv2n)
−k)

for k ≥ 1, so that (8) is verified. The exponent k in (8) can be any integer larger than or
equal to 1 and does not influence the posterior contraction rate vn. It however influences

the quantity E
(n)
λ0

[π(λ : ‖λ− λ0‖1 > J1vn | D)] and the larger k, the better.

To the best of our knowledge, the only other papers dealing with posterior contrac-
tion rates in related models are those of Belitser et al. (2015), Gugushvili and Spreij
(2013) and Kirichenko and van Zanten (2015), where inhomogeneous Poisson processes
are considered. Theorem 1 differs in two aspects from their approach. First, we do not
confine ourselves to inhomogeneous Poisson processes; an important consequence of this
difference is that we cannot view the likelihood as that of i.i.d. observations, so that
specific tests need to be constructed. Secondly, our conditions are different: we do not
assume that λ0 is bounded below away from zero and we lower bound the prior mass of
Hellinger-type neighbourhoods of λ0, as in Theorem 2.2 of Ghosal et al. (2000), instead
of sup-norm neighbourhoods. This can lead to significant improvements on the rate in
some cases; see, for instance, Section 4.1. In Theorem 1, our aim is to propose conditions
to assess posterior concentration rates for intensity functions resembling those used in
the density model obtained by parametrizing λ as λ = Mλ × λ̄, with λ̄ a probability
density on Ω.

The proof of Theorem 1 is reported in Section 6. It is an application of Theo-
rems 1 and 3 of Ghosal and van der Vaart (2007) to the setup of counting processes
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by using some properties of martingale processes. Thus, we first prove that neighbour-
hoods Bn(λ̄0; Cvn, k) defined in Section 2 of Ghosal and van der Vaart (2007) contain
B̄n(λ̄0; vn, H) for some H and C > 0. For λ ∈ F such that λ̄ ∈ B̄n(λ̄0; vn, H), we
first express KL(λ0; λ) as a function of the Kullback–Leibler divergence between the
renormalized intensities, which can be regarded as densities; see (20). The expression is
then bounded by using the Hellinger distance h(λ̄0, λ̄). Hence, the main difficulty in this

step is to control E
(n)
λ0

[|�n(λ0)−�n(λ)−E
(n)
λ0

[�n(λ0)−�n(λ)]|2k] for k ≥ 1. We proceed by
using Rosenthal’s inequalities for martingales associated with our counting processes.
These results are presented in Proposition 1 of Section 6. Secondly, we construct tests
based on the L1-distance between intensities. These tests are derived and controlled by
using a specific concentration inequality for counting processes established by Hansen
et al. (2015). See Lemma 2 for the construction of tests and Proposition 2 for the control
of their type I and type II errors.

Remark 1. Condition (8) is obviously satisfied for inhomogeneous Poisson processes
and also when Yt can be written as Yt =

∑n
i=1 Y

i
t , where the Y i

t = 1Zi≥t and the Zi’s
are i.i.d. Indeed, if for every i = 1, . . . , n, we set Vi = 1Zi≥t − P(Z1 ≥ t), then, for
k ≥ 2,

E
(n)
λ0

[(∫
Ω

[Yt − μn(t)]
2dt

)k
]
= E

(n)
λ0

⎡⎢⎣
⎛⎝∫ T

0

(
n∑

i=1

Vi

)2

dt

⎞⎠k
⎤⎥⎦

�
∫ T

0

E
(n)
λ0

⎡⎣( n∑
i=1

Vi

)2k
⎤⎦ dt

�
∫ T

0

⎛⎝ n∑
i=1

E
(n)
λ0

[V 2k
i ] +

(
n∑

i=1

E
(n)
λ0

[V 2
i ]

)k
⎞⎠ dt � nk

by Hölder and Rosenthal’s inequalities; see, for instance, Theorem C.2 of Härdle et al.
(1998). Under mild conditions, similar computations can be performed for finite state
Markov processes.

As explained at the beginning of Section 3, our conditions intentionally resemble
those considered in the density estimation problem. The entropy condition in (ii) of
Theorem 1 is similar to the one of Ghosal et al. (2000). Apart from the mild constraints
‖λ̄0/λ̄‖∞ ≤ nH and ‖λ̄‖∞ ≤ H, the set B̄n(λ̄0; vn, H) is the same as the one considered
in Theorem 2.2 of Ghosal et al. (2000). One can sharpen the rate (to attain a rate close
to the parametric case) by replacing B̄n(λ̄0; vn, H) by

B̃n =

⎧⎨⎩λ̄ ∈ B̄n(λ̄0; vn, H) :

∫ T

0

λ̄0(t)
k∑

j=1

log2j(λ̄0(t)/λ̄(t))dt ≤ v2n

⎫⎬⎭ .

In this case the result of Theorem 1 becomes

E
(n)
λ0

[π(λ : ‖λ− λ0‖1 > J1vn | D)] = γn +O((nv2n)
−k).
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This might be of interest to obtain the parametric rate 1/
√
n in some cases. We now

apply Theorem 1 to various prior models.

4 Illustrations with different families of priors

As discussed in Section 3, the conditions of Theorem 1 to derive posterior contraction

rates are very similar to those considered in the literature for density estimation so

that existing results involving different families of prior distributions can be adapted to

Aalen multiplicative intensity models. Some applications are presented below. We still

denote γn = P
(n)
λ0

(Γc
n).

4.1 Monotone nondecreasing intensity functions

In this section, we deal with estimation of monotone nondecreasing intensity functions,

which is equivalent to considering monotone nondecreasing density functions λ̄ in the

above described parametrization. To construct a prior on the set of monotone nonde-

creasing densities over [0, T ], we use their representation as mixtures of uniform densi-

ties as in Williamson (1956) and consider a Dirichlet process as a prior on the mixing

distribution:

λ̄(·) =
∫ ∞

0

1(T−θ, T )(·)
θ

dP (θ), P | A, G ∼ DP(AG), (10)

where G is a distribution on [0, T ] having density g with respect to Lebesgue measure.

This prior has been studied by Salomond (2014). Here, we extend his results to the

case of monotone nondecreasing intensity functions of Aalen processes. We consider the

same assumption on G as in Salomond (2014): there exist a1, a2 > 0 such that

θa1 � g(θ) � θa2 for all θ in a neighbourhood of 0. (11)

The following result holds.

Corollary 1. Assume that the counting process N verifies conditions (5) and (6) and

that inequality (8) is satisfied for some k ≥ 1. Consider a prior π1 on λ̄ satisfying

conditions (10) and (11) and a prior πM on Mλ that is absolutely continuous with

respect to Lebesgue measure with positive and continuous density on R+. Suppose that

λ0 is monotone non-decreasing and bounded on [0, T ]. Let ε̄n = (n/ log n)−1/3. Then,

there exists a constant J1 > 0 such that

E
(n)
λ0

[π(λ : ‖λ− λ0‖1 > J1ε̄n | D)] = γn +O((log n)k(nε̄2n)
−k).

The proof is reported in Section 6.
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4.2 Log-spline and log-linear priors on λ

For simplicity of presentation, we set T = 1. We consider a log-spline prior of order q
as in Section 4 of Ghosal et al. (2000). In other words, λ̄ is parametrized as

log λ̄θ(·) = θtBJ(·)− c(θ), with exp (c(θ)) =

∫ 1

0

eθ
tBJ (x)dx,

where BJ = (B1, . . . , BJ) is the qth order B-spline defined in de Boor (1978) associated
with K fixed knots, so that J = K + q − 1, see Ghosal et al. (2000) for more details.
Consider a prior on θ in the form J = Jn = �n1/(2α+1)�, α ∈ [1/2, q] and, conditionally
on J , the prior is absolutely continuous with respect to Lebesgue measure on [−M, M ]J

with density bounded from below and above by cJ and CJ , respectively. Consider an
absolutely continuous prior on Mλ having positive and continuous density on R+. We
then have the following posterior concentration result.

Corollary 2. For the above prior, if ‖ log λ0‖∞ < ∞ and λ0 is Hölder with regularity
α ∈ [1/2, q], then, under condition (8), there exists a constant J1 > 0 so that

E
(n)
λ0

[π(λ : ‖λ− λ0‖1 > J1n
−α/(2α+1) | D)] = γn +O(n−k/(2α+1)(logn)k).

Proof. Set εn = n−α/(2α+1). Using Lemma 4.1 of Ghosal et al. (2000), there exists
θ0 ∈ R

J such that h(λ̄θ0 , λ̄0) � ‖ log λ̄θ0 − log λ̄0‖∞ � J−α, which, combined with
Lemma 4.4 of Ghosal et al. (2000), leads to

π1(B̄n(λ̄0; εn, H)) ≥ e−C1nε
2
n .

Lemma 4.5, together with Theorem 4.5 of Ghosal et al. (2000), controls the entropy of
S̄n,j and its prior mass for j larger than some fixed constant J0.

With such families of priors, it is more interesting to work with non-normalized λθ.
We can write

λA,θ(·) = A exp
(
θtBJ(·)

)
, A > 0,

so that a prior on λ is defined as a prior on A, say πA, absolutely continuous with respect
to Lebesgue measure, having positive and continuous density, and the same type of prior
on θ as above is considered. Corollary 2 still holds although it is not a direct consequence
of Theorem 1, since MλA,θ

= A exp(c(θ)) is not a priori independent of λ̄A,θ. However,
introducing A allows adapting Theorem 1 to this case. The practical advantage of the
latter representation is that it avoids computing the normalizing constant c(θ).

In a similar manner, we can replace spline basis with other orthonormal bases, as
considered in Rivoirard and Rousseau (2012), leading to the same posterior concen-
tration rates as in density estimation. More precisely, consider intensities parametrized
as

λ̄θ(·) = e
∑J

j=1 θjφj(·)−c(θ), ec(θ) =

∫
RJ

e
∑J

j=1 θjφj(x)dx,
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where (φj)
∞
j=1 is an orthonormal basis of L2([0, 1]), with φ1 = 1. Write η = (A, θ), with

A > 0, and

λη(·) = Ae
∑J

j=1 θjφj(·) = Aec(θ)λ̄θ(·).
Let A ∼ πA and consider the same family of priors as in Rivoirard and Rousseau (2012):

J ∼ πJ ,

jβθj/τ0
ind∼ g, ∀ j ≤ J, and θj = 0, ∀ j > J,

where g is a positive and continuous density on R and there exist s ≥ 0 and p > 0 such
that

log πJ (J) � −J(log J)s, log g(x) � −|x|p, s = 0, 1,

when J and |x| are large. Rivoirard and Rousseau (2012) prove that this prior leads to
minimax adaptive posterior concentration rates over collections of positive and Sobolev
(or more generally Besov) classes of densities. Their proof easily extends to prove as-
sumptions (i) and (ii) of Theorem 1.

Corollary 3. Consider the above described prior on an intensity function λ on [0, 1].
Assume that λ0 is positive and belongs to a Sobolev class with smoothness α > 1/2.
Under condition (8), if β < 1/2 + α, there exists a constant J1 > so that

E
(n)
λ0

[π(λ : ‖λ− λ0‖1 > J1(n/ log n)
−α/(2α+1)(log n)(1−s)/2 | D)]

= γn +O((n/ log n)−k/(2α+1)(logn)sk).

Note that the constraint β < 1/2 + α is satisfied for all α > 1/2 as soon as β < 1
and, as in Rivoirard and Rousseau (2012), the prior leads to adaptive minimax posterior
contraction rates over collections of Sobolev balls.

5 Numerical illustration

We propose a numerical illustration for nonparametric Bayesian estimation of inten-
sity functions in the right-censoring model. We first describe the prior model together
with an ad-hoc MCMC algorithm designed for the right-censoring context and present
numerical illustrations.

Recall that, for i = 1, . . . , n, we observe Zi = min{Ti, Ci}, where Ti ∼ f(·), Ti and Ci

are independent, Ci ∈ [0, 1]. In the following, we take T = 1, so that we observe the
process on the interval [0, 1]. Using the factorization λ = Mλ × λ̄, we set the following
prior distribution on (Mλ, λ̄):

Mλ ∼ Gamma(aM , bM ),

λ̄(t) =

∫ ∞

0

1

θ
1(1−θ, 1)(t)dP (θ),

with P (·) ∼ DP(AG),

and G(·) ∼
(
1 +

1

Gamma(α, β)

)−1

. (12)
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As a consequence, λ̄ is a monotone nondecreasing density on [0, 1] and satisfies assump-
tion (11) given in Section 4.1.

We propose to sample the posterior distribution of λ = Mλ × λ̄ using an adapted slice
sampler MCMC algorithm based on the stick-breaking version of the Dirichlet process.

5.1 MCMC algorithm

In its stick-breaking version, λ̄ is written as λ̄(t) =
∑∞

k=1 wk
1(1−θk, 1)(t)

θk
, t ∈ [0, 1], where

w1 = v1, wk = vk

k−1∏
j=1

(1− vj), ∀ k ≥ 2,

vk
i.i.d∼ Beta(1, A), ∀ k ≥ 1,

θk
i.i.d∼ G(·), ∀ k ≥ 1.

(13)

As a consequence,

Λt = Mλ × Λ̄(t) = Mλ

∞∑
k=1

wkFU(1−θk, 1)(t), t ∈ [0, 1],

where FU(1−θk, 1) is the cumulative distribution function of a uniform distribution over
(1 − θk, 1). We introduce O = {i ∈ {1, . . . , n} | δi = 1}, n� = #O, θ = (θk)k≥1 and
v = (vk)k≥1. Combining with (3), the likelihood becomes

Ln(Z; v, θ, Mλ) = Mn�

λ

(∏
i∈O

λ̄(Zi)

)
exp

(
−Mλ

n∑
i=1

Λ̄(Zi)

)

= Mn�

λ

(∏
i∈O

∞∑
k=1

wk

1(1−θk, 1)(Zi)

θk

)
exp

(
−Mλ

∞∑
k=1

wkH(θk)

)
, (14)

where

H(θk) =

n∑
i=1

FU(1−θk, 1)(Zi). (15)

We use the slice sampling strategy proposed by Walker (2007) to deal with
∏

i∈O λ̄(Zi),
based on the auxiliary variables u = (ui)i∈O, and we introduce a deterministic trunca-
tion Kt to approximate

∑∞
k=1 wkH(θk). The effect of the truncation is studied in the

numerical illustration. This leads to the following approximation of (14):

L̄n,Kt(u, Z; v, θ, Mλ) = Mn�

λ

(∏
i∈O

∞∑
k=1

wk

1(1−θk,1)(Zi)

θk

1(0, wk)(ui)

wk

)

× exp

(
−Mλ

Kt∑
k=1

wkH(θk)

)
. (16)

Because the sequence (wk)k≥1 is stochastically decreasing, the infinite sum in (16) only
has (a.s.) a finite number of positive terms. We denote by K�

i = min{k ∈ N
∗ | ∀ l ≥



68 Posterior Concentration Rates for Aalen Counting Processes

Figure 1: Simulation study. The hazard rate function λ (left panel) and its corresponding
density function f (right panel).

k, wl ≤ ui}, K� = max{Kt, (K
�
i )i∈O}, ci ∈ N

∗ the allocation variable of individual
i ∈ O and c = (ci)i∈O. The augmented likelihood can then be written as

L̃n,Kt(c, u, Z; v, θ, Mλ) = Mn�

λ

(∏
i∈O

1(1−θci , 1)
(Zi)

θci

1(0, wci
)(ui)

wci

)

× exp

(
−Mλ

Kt∑
k=1

wkH(θk)

)
×
∏
k

wnk

k , (17)

where nk = #{i ∈ O | ci = k}.
Following (17), the MCMC will sequentially sample Mλ, u = (ui)i∈O, c = (ci)i∈O,
θ = (θ1, . . . , θK�) and v = (v1, . . . , vK�). We detail each step of the algorithm in
Section A.2 in Supplementary material.

5.2 Numerical results

We conduct a simulation study to illustrate the performance of the MCMC algorithm
based on the truncation. In a first paragraph, we present the parameters used to simulate
the data and the prior distribution. In a second part, we study the influence of the
truncation parameter Kt on the quality of the estimation. In this part, we also assess the
convergence of the algorithm using Gelmand and Rubin diagnostic tools, implemented
in the coda R-package.

Simulation parameters

We consider the following common hazard function:

λ(t) = 2.5 [arctan (20 t− 10)− arctan (−10)] .

We plot λ, f , where f(t) = λ(t) exp{−
∫ t

0
λ(u)du}, on Figure 1. The censoring times Ci

are distributed as
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Figure 2: Simulated data. On the left, histogram of the Zi = min{Xi, Ci}, i = 1, . . . , n,
with n = 2000 and f (density of the Xi, line with squares). On the right, empirical
cumulative distribution function (line with triangles) of the (Zi)i=1, ..., 2000, and F (line
with squares).

Ci
i.i.d∼ 1

3
U(0, 1) +

2

3
δ{1}.

The chosen λ and censoring time distribution ensure a censoring rate equal to P(δi =

0) = 1− P(Ti ≤ Ci) = 1− 1
3

∫ 1

0
F (t)dt− 2

3F (1) � 0.2146%.

We highlight that the assumptions of Lemma 1 are satisfied: T = 1, MS = 1 and
P(Z1 = MS) > 0. Interestingly, we noticed in various simulations that when P(Z1 =
MS) = 0, the estimates of λ are of very low quality.

With these parameters, we simulate 10 datasets (half of them with n = 2000, the
others with n = 1000). An arbitrarily chosen dataset is plotted on Figure 2.

Hyperparameters

Going back to the prior distribution described in (12), we set the hyperparameters
(A, aM , bM , a) as follows:

A = 15, (aM , bM ) = (4, 1).

The choice of (α, β) can influence a lot the inference. To avoid this problem, we propose
a hierarchical strategy on α, setting α ∼ Gamma(1, 1) and β = 3. In Figure 3, we plot
100 realizations of λ under this prior distribution, illustrating the large support of the
prior distribution on λ.

Remark 2. The parameter A is fixed in this experiment but we could put a prior
distribution on it; see Donnet et al. (2014), for instance.

Effect of the truncation Kt

To study the effect of truncating with Kt, we have simulated one dataset with n = 2000,
and run the MCMC algorithm with Kt = 20, 80, 100, 500, 1000. From the output in
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Figure 3: Prior distribution. 100 realizations of λ under the prior distribution (grey)
and the true λ (line with squares).

Figure 4: Posterior distributions of Mλ for different values of Kt: (a) Kt = 20; (b)
Kt = 80; (c) Kt = 100; (d) Kt = 500 and 1000.

terms of the (approximation) of the posterior distribution of Mλ we observe that for
Kt = 500 and Kt = 1000, the results are equivalent and the posterior distribution con-
centrates around the true value. Not surprisingly, for small values of Kt, the estimation
degenerates and the posterior distributions concentrate around aberrant values. This is
shown in Figure 4.

It appears that, for small values of Kt, K
∗ is much larger than Kt, which explains the

bad behaviour of the approximated posterior distribution. This is illustrated in Figure 5
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Figure 5: Evolution of K� over the iterations of the MCMC algorithm for the runs with
different values of Kt.

which represents the evolution of K� throughout the iterations of the MCMC algorithm.
From several experiments, we noted that when, over the iterations of the MCMC,K� ex-
ceeds Kt, the estimation quality collapses. As a consequence, we propose – as a practical
tool – to tune Kt along the iterations K� ≤ Kt. As noted in our simulation experiments,
when it happens, this phenomenon takes place early in the MCMC iterations. So this
calibration is not exceedingly time consuming. This value will obviously depend on A
(the mass parameter of the Dirichlet process), but our proposed calibration procedure
has proved to be robust over many simulated datasets.

Convergence assessment of the MCMC

To assess the convergence of the MCMC algorithm, we run 5 MCMC chains starting
from 5 different points, simulated with an inflated version of the prior distribution, as
follows:

M
(0)
λ ∼ 2 Gamma(aM , bM ),

K�(0) = Kt,

(vk)
(0)

k=1,...,K�(0)

i.i.d∼ Beta(1, A),

(θk)
(0)

k=1, ..., K�(0)

i.i.d∼ [1 + 1/Gamma(α, β)]
−1

,

(ci)
(0)
i∈O

i.i.d∼ U{1, ...,K�(0)}.

The convergence diagnostic tests are performed using the coda R-package: these tools
are designed for a parametric estimation; we propose to adapt them to the nonpara-
metric paradigm. For one of the datasets, 5 chains are run during 50000 iterations
and a burn-in period of 20000 iterations is removed. The algorithm is implemented
in R.

In Figure 6, we plot the values of Mλ over the iterations of the MCMC and the auto-
correlation function. In these graphs, we do not detect any convergence issue. We adapt
the Potential Scale Reduction Factor (PRSF) (Gelman and Rubin, 1992) diagnostic.
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Figure 6: MCMC convergence assessment. On the left, trajectory of Mλ over 25000
iterations. On the right, autocorrelation function.

Figure 7: Convergence diagnostic. Potential Scale Reduction Factor of λ̄(tj) for tj ∈
[0, 1].

For a fixed grid (t1, . . . , tJ) ∈ [0, 1] (94 points regularly spaced between 0 and 1), we
consider the 5 chains

(
(λ̄(tj))

(�)
)
�≥25000

. The ratios between the within and between

chain variances (Potential Scale Reduction Factor) are computed for each value of the
grid tj and plotted on Figure 7. The PRSF remains near 1.0, proving once again that
no pathologic convergence can be found.

Results

With each simulated dataset, we concatenate the 5 chains to obtain a sample from
the posterior distribution. For 4 of the datasets arbitrarily chosen, we plot 100 real-
izations of the posterior distribution of λ (Figure 8, left). Using the formula S(t) =

exp(−
∫ t

0
λ(t)du), we also plot 100 posterior realizations of F and compare it with the

true cumulative distribution function (Figure 8, right). The estimation of λ is of good
quality over [0, 0.7], the estimation is less accurate at the end of the interval, due to
the increasing proportion of censored data. However, it corresponds to the tail of the
distribution F and so this phenomenon is less noticeable on F .
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Figure 8: Posterior distributions. For 4 datasets, on the left 100 realizations (gray lines)
of λ under the posterior distribution issued from the last iterations of the 5 MCMC
chains: the posterior mean is plotted in plain line, the true λ is the line with squares.
On the right, the corresponding curves for F : posterior simulation in gray, estimated in
plain line, true F in line with squares; the empirical probability function of the Zi is
the line with triangles.
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6 Proofs

In what follows, the symbols “�” and “�” are used to denote inequalities valid up to
constants that are universal or fixed throughout.

6.1 Proof of Theorem 1

Given Propositions 1 and 2, the proof is similar to that of Theorem 1 in Ghosal and
van der Vaart (2007), which generalizes Theorem 2.4 of Ghosal et al. (2000). Write the
posterior probability of the set Un = {λ : ‖λ − λ0‖1 > J1vn}, given the observations,
as

π(Un | D) =

∫
Un

e�n(λ)−�n(λ0)dπ(λ)∫
F e�n(λ)−�n(λ0)dπ(λ)

=:
Nn

Dn
.

We first show that, for the constant κ0 introduced in Proposition 1, the probability of
the event Ac

n = (Dn ≤ e−(κ0+1)nv2
nπ1(B̄n(λ̄0; vn, H))) decays polynomially,

P
(n)
λ0

(Ac
n) � (logn)3k/2(nv2n)

−3k/2 + (log n)k(nv2n)
−k + (nv2n)

−2k+1(logn)2k−1 =: pn.

To the aim, we set

V2k(λ0; λ) = E
(n)
λ0

[|�n(λ0)− �n(λ)− E
(n)
λ0

[�n(λ0)− �n(λ)]|2k], k ≥ 1.

Using Proposition 1, we have

Bn(λ0; vn, H) ⊆ {λ : KL(λ0; λ) ≤ κ0nv
2
n and V2k(λ0; λ) ≤ κpn(nv

2
n)

2k},

with

Bn(λ0; vn, H) = {λ : λ̄ ∈ B̄n(λ̄0; vn, H), |Mλ −Mλ0 | ≤ vn}.

By the assumption on the continuity and positivity of the Lebesgue density of the prior
πM and the requirement that v2n ≥ (n/ log n)−1, we have

π(Bn(λ0; vn, H)) � π1(B̄n(λ̄0; vn, H))vn � π1(B̄n(λ̄0; vn, H))e−nv2
n/2.

Thus, with dπ̄(·) = dπ(·)1Bn(λ0; vn, H)(·)/π(Bn(λ0; vn, H)), we get

P
(n)
λ0

(Ac
n) ≤ P

(n)
λ0

(∫
Bn(λ0; vn, H)

e�n(λ)−�n(λ0)dπ̄(λ) � e−(κ0+1/2)nv2
n

)
� pn, (18)

by an application of Lemma 10 of Ghosal and van der Vaart (2007) to the probability
on the right-hand side of (18).

Since P
(n)
λ0

(Γc
n) = o(1) and P

(n)
λ0

(Ac
n) � pn, to prove the assertion of the theorem,

we can restrict attention to E
(n)
λ0

[1Γn1Anπ (λ : ‖λ− λ0‖1 > J1vn | D)], which can be
decomposed into pieces mimicking the proof of Theorem 1 of Ghosal and van der Vaart
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(2007). Thus, using tests φn,j of Proposition 2 and the fact that inequality (25) implies
that π(Sn,j(vn)) ≤ π1(S̄n,j), we have, for J1 ≥ J0,

E
(n)
λ0

[1Γn1Anπ (λ : ‖λ− λ0‖1 > J1vn | D)]

≤
∑
j≥J1

E
(n)
λ0

[1Γnφn,j ] +
∑
j≥J1

E
(n)
λ0

[1Γn1An(1− φn,j)π (Sn,j(vn) | D)]

+ E
(n)
λ0

[1Anπ1 (Fc
n | D)]

�
∑
j≥J1

E
(n)
λ0

[1Γnφn,j ] +


ρ/vn�∑
j=�J1


e(κ0+1)nv2
n

π1(S̄n,j)e
−cnj2v2

n

π1(B̄n(λ̄0; vn, H))

+
∑

j>ρ/vn

e(κ0+1)nv2
nπ1(S̄n,j)e

−cnjvn

π1(B̄n(λ̄0; vn, H))
+

e(κ0+1)nv2
nπ1(Fc

n)

π1(B̄n(λ̄0; vn, H))
.

The last expression converges to zero as n → ∞ for fixed constants c, J1, ρ. The con-
clusion follows. �

To prove Theorem 1, we have used the following intermediate results, whose proofs
are postponed to Section 7. The first one controls the Kullback–Leibler divergence
defined in (7) and the absolute moments of �n(λ0)− �n(λ).

Proposition 1. Let vn be a positive sequence such that vn → 0 and nv2n → ∞. For any
k ≥ 1 and H > 0, define the set

Bn(λ0; vn, H) = {λ : λ̄ ∈ B̄n(λ̄0; vn, H), |Mλ −Mλ0 | ≤ vn}.

Under assumptions (5) and (8), for all λ ∈ Bk,n(λ0; vn, H), we have

KL(λ0; λ) ≤ κ0nv
2
n and

V2k(λ0; λ) ≤ κ[(nv2n logn)
k + (nv2n(log n)

3)k/2 + nv2n(logn)
2k−1],

where κ0 and κ only depend on k, C1k, H, λ0, m1 and m2. An expression of κ0 is given
in (9).

The second result establishes the existence of tests that are used to control the
numerator of posterior distributions. Recall that

∀ t ∈ Ω, (1− α)μ̃n(t) ≤
Yt

n
≤ (1 + α)μ̃n(t). (19)

Proposition 2. Assume that conditions (i) and (ii) of Theorem 1 are satisfied. For
any j ∈ N, define

Sn,j(vn) = {λ : λ̄ ∈ Fn and jvn < ‖λ− λ0‖1 ≤ (j + 1)vn}.

Then, under assumption (5), there are constants J0, ρ, c > 0 such that, for every integer
j ≥ J0, there exists a test φn,j so that, for a positive constant C,

E
(n)
λ0

[1Γnφn,j ] ≤ Ce−cnj2v2
n , sup

λ∈Sn,j(vn)

Eλ[1Γn(1− φn,j)] ≤ Ce−cnj2v2
n , J0 ≤ j ≤ ρ

vn
,
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and

E
(n)
λ0

[1Γnφn,j ] ≤ Ce−cnjvn , sup
λ∈Sn,j(vn)

Eλ[1Γn(1− φn,j)] ≤ Ce−cnjvn , j >
ρ

vn
.

6.2 Proof of Corollary 1

Without loss of generality, we can assume that Ω = [0, T ]. At several places, using (1)

and (19), we have that, under P
(n)
λ (· | Γn), for any interval I, the number of points of

N falling in I is controlled by the number of points of a Poisson process with intensity
n(1 + α)m2λ falling in I. Recall that ε̄n = (n/ log n)−1/3. For κ0 as in (9), we control

P
(n)
λ0

(�n(λ)− �n(λ0) ≤ −(κ0 +2)nε̄2n). We follow most of the computations of Salomond

(2014). Let en = (nε̄2n)
−k/2,

λ̄0n(t) =
λ0(t)1t≥θn∫ T

θn
λ0(u)du

, with θn = sup

{
θ :

∫ T

θ

λ̄0(t)dt ≥ 1− en
n

}
,

and λ0n = Mλ0 λ̄0n. Define the event An = {X ∈ N : X > θn}. We make use of the
following result. Let Ñ be a Poisson process with intensity n(1 + α)m2λ0. If ÑT = k,
denote by {T1, . . . , Tk} the jump times of Ñ . Conditionally on ÑT = k, the random
variables T1, . . . , Tk are i.i.d. with density λ̄0. So,

P
(n)
λ0

(Ac
n | Γn) ≤

∞∑
k=1

P
(n)
λ0

(∃ Ti ≤ θn | ÑT = k)P
(n)
λ0

(ÑT = k)

≤
∞∑
k=1

ken
n

P
(n)
λ0

(ÑT = k)

= O
(en
n
E
(n)
λ0

[ÑT ]
)
= O(en) = O((nε̄2n)

−k/2).

Now,

P
(n)
λ0

(
�n(λ)− �n(λ0) ≤ −(κ0 + 2)nε̄2n | Γn

)
≤ P

(n)
λ0

(
�n(λ)− �n(λ0) ≤ −(κ0 + 2)nε̄2n | An, Γn

)
+ P

(n)
λ0

(Ac
n | Γn).

We now deal with the first term on the right-hand side. On Γn ∩An,

�n(λ0) = �n(λ0n) +

∫ T

θn

log

(
λ0(t)

λ0n(t)

)
dNt −

∫ T

0

[λ0(t)− λ0n(t)]Ytdt

= �n(λ0n) +NT log

(∫ T

θn

λ̄0(t)dt

)
−Mλ0

∫ T

0

λ̄0(t)Ytdt+Mλ0

∫ T

θn
λ̄0(t)Ytdt∫ T

θn
λ̄0(t)dt

≤ �n(λ0n) +Mλ0

∫ θn
0

λ̄0(t)dt
∫ T

θn
λ̄0(t)Ytdt∫ T

θn
λ̄0(t)dt

−Mλ0

∫ θn

0

λ̄0(t)Ytdt

≤ �n(λ0n) +Mλ0

en(1 + α)m2

1− en/n
.
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So, for every λ and any n large enough,

P
(n)
λ0

(
�n(λ)− �n(λ0) ≤ −(κ0 + 2)nε̄2n | An, Γn

)
≤ P

(n)
λ0

(
�n(λ)− �n(λ0n) ≤ −(κ0 + 1)nε̄2n | An, Γn

)
= P

(n)
λ0n

(
�n(λ)− �n(λ0n) ≤ −(κ0 + 1)nε̄2n | Γn

)
because P

(n)
λ0

(· | An) = P
(n)
λ0n

(·). Let H > 0 be fixed. For all λ ∈ Bn(λ0n; ε̄n, H), using
Proposition 1, we obtain

P
(n)
λ0n

(
�n(λ)− �n(λ0n) ≤ −(κ0 + 1)nε̄2n | Γn

)
= O((nε̄2n)

−k/2(log n)k).

Mimicking the proof of Lemma 8 in Salomond (2014), we have that, for some constant
Ck > 0,

π1

(
B̄n(λ̄0n; ε̄n, H)

)
≥ e−Cknε̄

2
n when n is large enough,

so that the first part of condition (ii) of Theorem 1 is verified. As in Salomond (2014),
we set Fn = {λ̄ : λ̄(0) ≤ Mn}, with Mn = exp(c1nε̄

2
n) and c1 a positive constant.

From Lemma 9 of Salomond (2014), there exists a > 0 such that π1(Fc
n) ≤ e−c1(a+1)nε̄2n

for n large enough, and the first part of condition (i) is satisfied. It is known from
Groeneboom (1985) that the ε-entropy of Fn is of the order (logMn)/ε, that is o(n) for
all ε > 0, and the second part of (i) holds. The second part of (ii) is a consequence of
Salomond (2014). �

7 Proof of Propositions 1 and 2

This section reports the proofs of Propositions 1 and 2 that have been stated in Section 6.
Proofs of intermediate results are deferred to Supplementary material.

We use the fact that for any pair of densities f and g, ‖f − g‖1 ≤ 2h(f, g).

7.1 Proof of Proposition 1

The proof of Proposition 1 relies on standard martingale properties of counting processes
that can be found in Appendix B of Karr (1986). Recall that the log-likelihood evaluated

at λ is given by �n(λ) =
∫ T

0
log(λ(t))dNt −

∫ T

0
λ(t)Ytdt. Since on [0, T ] \Ω, N is empty

and Yt ≡ 0 almost surely, we can assume, without loss of generality, that Ω = [0, T ].
By using the definition of μn and μ̃n given in (4), define

Mn(λ) =

∫ T

0

λ(t)μn(t)dt, Mn(λ0) =

∫ T

0

λ0(t)μn(t)dt,

and the following density functions on [0, T ]

λ̄n(·) =
λ(·)μn(·)
Mn(λ)

=
λ̄(·)μ̃n(·)∫ T

0
λ̄(t)μ̃n(t)dt

, λ̄0,n(·) =
λ0(·)μn(·)
Mn(λ0)

=
λ̄0(·)μ̃n(·)∫ T

0
λ̄0(t)μ̃n(t)dt

.
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Note that (5) gives

nm1Mλ0 ≤ Mn(λ0) ≤ nm2Mλ0 , nm1Mλ ≤ Mn(λ) ≤ nm2Mλ.

By using standard properties of counting processes, see Karr (1986), and straightforward
computations,

KL(λ0; λ) = E
(n)
λ0

[�n(λ0)− �n(λ)]

=

∫ T

0

log

(
λ0(t)

λ(t)

)
λ0(t)μn(t)dt−

∫ T

0

[λ0(t)− λ(t)]μn(t)dt

= Mn(λ0)

[
KL(λ̄0,n; λ̄n) +

Mn(λ)

Mn(λ0)
− 1− log

(
Mn(λ)

Mn(λ0)

)]
= Mn(λ0)

[
KL(λ̄0,n; λ̄n) + φ

(
Mn(λ)

Mn(λ0)

)]
≤ nm2Mλ0

[
KL(λ̄0,n; λ̄n) + φ

(
Mn(λ)

Mn(λ0)

)]
, (20)

where φ(x) = x− 1− log x and

KL(λ̄0,n; λ̄n) =

∫ T

0

log

(
λ̄0,n(t)

λ̄n(t)

)
λ̄0,n(t)dt.

We control KL(λ̄0,n; λ̄n) for λ ∈ Bn(λ0; vn, H). By using Lemma 8.2 of Ghosal et al.
(2000), we have

KL(λ̄0,n; λ̄n) ≤ 2h2(λ̄0,n, λ̄n)

(
1 + log

∥∥∥∥ λ̄0,n

λ̄n

∥∥∥∥
∞

)
≤ 2h2(λ̄0,n, λ̄n)

[
1 + log

(
m2

m1

)
+ log

∥∥∥∥ λ̄0

λ̄

∥∥∥∥
∞

]
≤ 2

[
1 + log

(
m2

m1

)]
h2(λ̄0,n, λ̄n)

(
1 + log

∥∥∥∥ λ̄0

λ̄

∥∥∥∥
∞

)
(21)

since 1 + log(m2/m1) ≥ 1. We now deal with h2(λ̄0,n, λ̄n). By still using (5), we have

h2(λ̄0,n, λ̄n) =

∫ T

0

(√
λ̄0,n(t)−

√
λ̄n(t)

)2

dt

=

∫ T

0

(√
λ̄0(t)μ̃n(t)∫ T

0
λ̄0(u)μ̃n(u)du

−
√

λ̄(t)μ̃n(t)∫ T

0
λ̄(u)μ̃n(u)du

)2

dt

≤ 2m2

∫ T

0

(√
λ̄0(t)∫ T

0
λ̄0(u)μ̃n(u)du

−
√

λ̄0(t)∫ T

0
λ̄(u)μ̃n(u)du

)2

dt

+ 2m2

∫ T

0

(√
λ̄0(t)∫ T

0
λ̄(u)μ̃n(u)du

−
√

λ̄(t)∫ T

0
λ̄(u)μ̃n(u)du

)2

dt

≤ 2m2Un +
2m2

m1
h2(λ̄0, λ̄),
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with

Un =

(√
1∫ T

0
λ̄0(t)μ̃n(t)dt

−
√

1∫ T

0
λ̄(t)μ̃n(t)dt

)2

.

We denote by

ε̃n :=
1∫ T

0
λ̄0(u)μ̃n(u)du

∫ T

0

[λ̄(t)− λ̄0(t)]μ̃n(t)dt,

so that

|ε̃n| ≤
1

m1

∫ T

0

|λ̄(t)− λ̄0(t)|μ̃n(t)dt ≤
2m2

m1
h(λ̄0, λ̄).

Then,

Un =
1∫ T

0
λ̄0(t)μ̃n(t)dt

(
1− 1√

1 + ε̃n

)2

≤ ε̃2n
4m1

≤ m2
2

m3
1

h2(λ̄0, λ̄).

Finally,

h2(λ̄0,n, λ̄n) ≤
2m2

m1

(
m2

2

m2
1

+ 1

)
h2(λ̄0, λ̄). (22)

It remains to bound φ (Mn(λ)/Mn(λ0)). We have

|Mn(λ0)−Mn(λ)| ≤
∫ T

0

|λ(t)− λ0(t)|μn(t)dt

≤ nm2

∫ T

0

|λ(t)− λ0(t)|dt

≤ nm2

[
Mλ0‖λ̄− λ̄0‖1 + |Mλ −Mλ0 |

]
≤ m2

m1Mλ0

Mn(λ0)
[
Mλ0‖λ̄− λ̄0‖1 + |Mλ −Mλ0 |

]
≤ m2

m1Mλ0

Mn(λ0)[2Mλ0h(λ̄, λ̄0) + |Mλ −Mλ0 |]

≤ m2

m1Mλ0

Mn(λ0)(2Mλ0 + 1)vn,

since λ ∈ Bn(λ0; vn, H). Finally, since φ(u+1) ≤ u2 if |u| ≤ 1/2, the previous inequality
gives

φ

(
Mn(λ)

Mn(λ0)

)
≤ m2

2

m2
1M

2
λ0

(2Mλ0 + 1)2v2n for n large enough. (23)

Combining (20), (21), (22) and (23), we have KL(λ0; λ) ≤ κ0nv
2
n for n large enough,

with κ0 as in (9). We now deal with V2k(λ0; λ) for k ≥ 1. In the sequel, we denote by
C a constant that may change from line to line. For any j, let

Ej(λ̄0; λ̄) =

∫ T

0

λ̄0(x)[log λ̄0(x)− log λ̄(x)]2jdx.
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Theorem 5 of Wong and Shen (1995) leads to Ej(λ̄0; λ̄) ≤ C(1+(logn)2j−1)v2n. Straight-

forward computations lead to

V2k(λ0; λ) = E
(n)
λ0

[∣∣∣∣∣−
∫ T

0

[
λ0(t)− λ(t)− λ0(t) log

(
λ0(t)

λ(t)

)]
[Yt − μn(t)]dt

+

∫ T

0

log

(
λ0(t)

λ(t)

)
[dNt − λ0(t)Ytdt]

∣∣∣∣∣
2k
⎤⎦

≤ 22k−1(A2k +B2k),

with

A2k = E
(n)
λ0

⎡⎣∣∣∣∣∣
∫ T

0

[
λ0(t)− λ(t)− λ0(t) log

(
λ0(t)

λ(t)

)]
[Yt − μn(t)]dt

∣∣∣∣∣
2k
⎤⎦

and

B2k = E
(n)
λ0

⎡⎣∣∣∣∣∣
∫ T

0

log

(
λ0(t)

λ(t)

)
[dNt − λ0(t)Ytdt]

∣∣∣∣∣
2k
⎤⎦ .

By (8),

A2k ≤
(∫ T

0

[
λ0(t)− λ(t)− λ0(t) log

(
λ0(t)

λ(t)

)]2
dt

)k

× E
(n)
λ0

⎡⎣(∫ T

0

[Yt − μn(t)]
2dt

)k
⎤⎦

≤ 22k−1C1kn
k (A2k,1 +A2k,2) ,

where

A2k,1 =

[∫ T

0

λ2
0(t) log

2

(
λ0(t)

λ(t)

)
dt

]k
and A2k,2 =

(∫ T

0

[λ0(t)− λ(t)]2dt

)k

.

For λ ∈ Bn(λ0; vn, H),

A2k,1 ≤ M2k
λ0
‖λ̄0‖k∞

[∫ T

0

λ̄0(t) log
2

(
Mλ0 × λ̄0(t)

Mλ × λ̄(t)

)
dt

]k

≤ 22k−1M2k
λ0
‖λ̄0‖k∞

[
Ek

1 (λ̄0; λ̄) +

∣∣∣∣log( Mλ

Mλ0

)∣∣∣∣2k
]

≤ C
[
Ek

1 (λ̄0; λ̄) + |Mλ −Mλ0 |
2k
]
≤ Cv2kn (log n)k
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and

A2k,2 :=

(∫ T

0

[λ0(t)− λ(t)]2dt

)k

=

(∫ T

0

{
(Mλ0 −Mλ)λ̄0(t)−Mλ[λ̄(t)− λ̄0(t)]

}2
dt

)k

≤ 22k−1‖λ̄0‖2k∞(Mλ0 −Mλ)
2k

+ 22k−1M2k
λ

[∫ T

0

(√
λ̄0(t)−

√
λ̄(t)

)2(√
λ̄0(t) +

√
λ̄(t)

)2

dt

]k
≤ 22k−1‖λ̄0‖2k∞(Mλ0 −Mλ)

2k + 23k−1M2k
λ (‖λ̄0‖∞ + ‖λ̄‖∞)kh2k(λ̄0, λ̄) ≤ Cv2kn .

Therefore,

A2k ≤ C(nv2n)
k(logn)k.

To deal with B2k, for any T > 0, we set

MT :=

∫ T

0

log

(
λ0(t)

λ(t)

)
[dNt − λ0(t)Ytdt], B2k = E

(n)
λ0

[
M2k

T

]
,

so (MT )T is a martingale and we use standard properties of continuous time martingales

associated with counting processes, see Appendix B of Karr (1986). Assume that k > 1.

Using Rosenthal’s inequality for point process martingales, see Wood (1999), there exists

a constant C(k) only depending on k such that

B2k = E
(n)
λ0

[|MT |2k]

≤ C(k)

⎡⎣E(n)
λ0

∣∣∣∣∣
∫ T

0

log2
(
λ0(t)

λ(t)

)
λ0(t)Ytdt

∣∣∣∣∣
k

+

∫ T

0

log2k
(
λ0(t)

λ(t)

)
λ0(t)μn(t)dt

⎤⎦
≤ C

(
B

(1)
k,2 +B

(2)
k,2 + nm2Mλ0

(
[log(Mλ0/Mλ)]

2k + Ek(λ̄0; λ̄)
))

,

with

B
(1)
k,2 = E

(n)
λ0

⎡⎣∣∣∣∣∣
∫ T

0

log2
(
λ0(t)

λ(t)

)
[Yt − μn(t)]λ0(t)dt

∣∣∣∣∣
k
⎤⎦ ,

B
(2)
k,2 =

∣∣∣∣∣
∫ T

0

log2
(
λ0(t)

λ(t)

)
λ0(t)μn(t)dt

∣∣∣∣∣
k

.
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Note that

B
(1)
k,2 ≤

[∫ T

0

log4
(
λ0(t)

λ(t)

)
λ2
0(t)dt

]k/2
× E

(n)
λ0

⎡⎣(∫ T

0

[Yt − μn(t)]
2dt

)k/2
⎤⎦

≤ (M2
λ0
‖λ̄0‖∞)k/2

[∫ T

0

log4
(
Mλ0 × λ̄0(t)

Mλ × λ̄(t)

)
λ̄0(t)dt

]k/2
×
√
C1knk

≤ C

[
log4

(
Mλ0

Mλ

)
+ E2(λ̄0; λ̄)

]k/2
× nk/2,

where we have used (8) and the Jensen’s inequality. Similarly,

B
(2)
k,2 ≤ (nm2Mλ0)

k

[∫ T

0

log2
(
Mλ0 × λ̄0(t)

Mλ × λ̄(t)

)
λ̄0(t)dt

]k

≤ C

[
log2

(
Mλ0

Mλ

)
+ E1(λ̄0; λ̄)

]k
× nk.

Therefore,

V2k(λ0; λ) ≤ κ[(nv2n logn)
k + (nv2n(log n)

3)k/2 + nv2n(logn)
2k−1],

where κ depends on C1k, k, H, λ0, m1 and m2. Using previous computations, the case
k = 1 is straightforward. �

7.2 Proof of Proposition 2

We consider the setting of Lemma 2, given in Section A.1 in Supplementary material
and a covering of Sn,j(vn) with L1-balls of radius ξjvn and centres (λl,j)l=1, ..., Dj , where
Dj is the covering number of Sn,j(vn) by such balls. We set φn,j = maxl=1, ..., Dj φλl,j

,
where the φλl,j

’s are defined in Lemma 2. So, there exists a constant ρ > 0 such that

E
(n)
λ0

[1Γnφn,j ]≤ 2Dje
−Knj2v2

n and sup
λ∈Sn,j(vn)

E
(n)
λ [1Γn(1−φn,j)]≤ 2e−Knj2v2

n , if j≤ ρ

vn
,

and

E
(n)
λ0

[1Γnφn,j ]≤ 2Dje
−Knjvn and sup

λ∈Sn,j(vn)

E
(n)
λ [1Γn(1− φn,j)]≤ 2e−Knjvn , if j >

ρ

vn
,

where K is a constant (see Lemma 2). We now bound Dj . First note that for any
λ = Mλ × λ̄ and λ′ = Mλ′ × λ̄′,

‖λ− λ′‖1 ≤ Mλ‖λ̄− λ̄′‖1 + |Mλ −Mλ′ |. (24)
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Assume that Mλ ≥ Mλ0 . Then,

‖λ− λ0‖1 ≥
∫
λ̄>λ̄0

[Mλ × λ̄(t)−Mλ0 × λ̄0(t)]dt

= Mλ

∫
λ̄>λ̄0

[λ̄(t)− λ̄0(t)]dt+ (Mλ −Mλ0)

∫
λ̄>λ̄0

λ̄0(t)dt

≥ Mλ

∫
λ̄>λ̄0

[λ̄(t)− λ̄0(t)]dt =
Mλ

2
‖λ̄− λ̄0‖1.

Conversely, if Mλ < Mλ0 ,

‖λ− λ0‖1 ≥
∫
λ̄0>λ̄

[Mλ0 × λ̄0(t)−Mλ × λ̄(t)]dt

≥ Mλ0

∫
λ̄0>λ̄

[λ̄0(t)− λ̄(t)]dt =
Mλ0

2
‖λ̄− λ̄0‖1.

So, 2‖λ− λ0‖1 ≥ (Mλ ∨Mλ0)‖λ̄− λ̄0‖1, and we finally have

‖λ− λ0‖1 ≥ max
{
(Mλ ∨Mλ0)‖λ̄− λ̄0‖1/2, |Mλ −Mλ0 |

}
. (25)

So, for all λ = Mλ × λ̄ ∈ Sn,j(vn),

‖λ̄− λ̄0‖1 ≤ 2(j + 1)vn
Mλ0

and |Mλ −Mλ0 | ≤ (j + 1)vn. (26)

Therefore, Sn,j(vn) ⊆ (S̄n,j ∩Fn)× {M : |M −Mλ0 | ≤ (j + 1)vn} and any covering of
(S̄n,j∩Fn)×{M : |M−Mλ0 | ≤ (j+1)vn} will give a covering of Sn,j(vn). So, to bound
Dj , we have to build a convenient covering of (S̄n,j∩Fn)×{M : |M−Mλ0 | ≤ (j+1)vn}.
We distinguish two cases.

• We assume that (j+1)vn ≤ 2Mλ0 . Then, (26) implies that Mλ ≤ 3Mλ0 . Moreover,
if

‖λ̄− λ̄′‖1 ≤ ξjvn
3Mλ0 + 1

and |Mλ −Mλ′ | ≤ ξjvn
3Mλ0 + 1

,

then, by (24),

‖λ− λ′‖1 ≤ (Mλ + 1)ξjvn
3Mλ0 + 1

≤ ξjvn.

By assumption (ii) of Theorem 1, this implies that, for any δ > 0, there exists J0
such that for j ≥ J0,

Dj ≤ D((3Mλ0 + 1)−1ξjvn, S̄n,j ∩ Fn, ‖ · ‖1)×
[
2(j + 1)vn × (3Mλ0 + 1)

ξjvn
+

1

2

]
� exp(δn[(j + 1)2v2n ∧ 1]).

• We assume that (j + 1)vn > 2Mλ0 . If

‖λ̄− λ̄′‖1 ≤ ξ

4
and |Mλ −Mλ′ | ≤ ξ(Mλ ∨Mλ0)

4
,
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using again (24) and (26),

‖λ− λ′‖1 ≤ ξMλ

4
+

ξ(Mλ +Mλ0)

4
≤ 3ξMλ0

4
+

ξ(j + 1)vn
2

≤ 7ξ(j + 1)vn
8

≤ ξjvn

for n large enough. By assumption (i) of Theorem 1, this implies that, for any
δ > 0,

Dj � D(ξ/4, Fn, ‖ · ‖1)× log((j + 1)vn) � log(jvn) exp(δn).

It is enough to choose δ small enough to obtain the result of Proposition 2. �

Supplementary Material

Supplementary material of “Posterior Concentration Rates for Counting Processes with
Aalen Multiplicative Intensities” (DOI: 10.1214/15-BA986SUPP; .pdf).
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