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Paris Cedex 16, France. E-mail: rivoirard@ceremade.dauphine.fr
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We provide conditions on the statistical model and the prior probability law to derive con-
traction rates of posterior distributions corresponding to data-dependent priors in an empirical
Bayes approach for selecting prior hyper-parameter values. We aim at giving conditions in the
same spirit as those in the seminal article of Ghosal and van der Vaart [23]. We then apply
the result to specific statistical settings: density estimation using Dirichlet process mixtures of
Gaussian densities with base measure depending on data-driven chosen hyper-parameter values
and intensity function estimation of counting processes obeying the Aalen model. In the former
setting, we also derive recovery rates for the related inverse problem of density deconvolution.
In the latter, a simulation study for inhomogeneous Poisson processes illustrates the results.
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1. Introduction

In a Bayesian approach to statistical inference, the prior distribution should, in principle,
be chosen independently of the data; however, it is not always an easy task to elicit the
prior hyper-parameter values and a common practice is to replace them by summaries
of the data. The prior is then data-dependent and the approach falls under the umbrella
of empirical Bayes methods, as opposed to fully Bayes methods. Consider a statistical
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model (P(n)
θ : θ ∈ Θ) on a sample space X (n), together with a family of prior distributions

(π(· | γ) : γ ∈ Γ) on a parameter space Θ. A Bayesian statistician would either set
the hyper-parameter γ to a specific value γ0 or integrate it out using a probability
distribution for it in a hierarchical specification of the prior for θ. Both approaches
would lead to prior distributions for θ that do not depend on the data. However, it is
often the case that knowledge is not a priori available to either fix a value for γ or elicit
a prior distribution for it, so that a value for γ can be more easily chosen using the
data. Throughout the paper, we will denote by γ̂n a data-driven choice for γ. There are
many instances in the literature where an empirical Bayes choice for the prior hyper-
parameters is performed, sometimes without explicitly mentioning it. Some examples
concerning the parametric case can be found in Ahmed and Reid [2], Berger [6] and
Casella [8]. Regarding the nonparametric case, Richardson and Green [36] propose a
default empirical Bayes approach to deal with parametric and nonparametric mixtures
of Gaussian densities; McAuliffe et al. [33] propose another empirical Bayes approach for
Dirichlet process mixtures of Gaussian densities, while in Szabó et al. [50] an empirical
Bayes procedure is proposed in the context of the Gaussian white noise model to obtain
rate adaptive posterior distributions. There are many other instances of empirical Bayes
methods in the literature, especially in applied problems.

Our aim is not to claim that empirical Bayes methods are somehow better than fully
Bayes methods, rather to provide tools to study frequentist asymptotic properties of
empirical Bayes posterior distributions, given their wide use in practice. Very little is
known about the asymptotic behavior of such empirical Bayes posterior distributions
in a general framework. It is a common belief that if γ̂n asymptotically converges to
some value γ∗, then the empirical Bayes posterior distribution associated with γ̂n is
eventually “close” to the fully Bayes posterior associated with γ∗. Results have been
obtained in specific statistical settings by Clyde and George [10], Cui and George [11] for
wavelets or variable selection, by Szabó et al. [48, 49, 50] for the Gaussian white noise
model, by Scricciolo [43] for conditional density estimation, by Sniekers and van der Vaart
[47], Serra and Krivobokova [44] for Gaussian regression with Gaussian priors. Recently,
Petrone et al. [34] have investigated asymptotic properties of empirical Bayes posterior
distributions obtaining general conditions for consistency and, in the parametric case, for
strong merging between fully Bayes and maximum marginal likelihood empirical Bayes
posterior distributions.

In this article, we are interested in studying the frequentist asymptotic behaviour of
empirical Bayes posterior distributions in terms of contraction rates. Let d(·, ·) be a loss
function on Θ, say a pseudo-metric. For θ0 ∈ Θ and ε > 0, let Uε := {θ : d(θ, θ0) ≤ ε} be
a neighborhood of θ0. The empirical Bayes posterior distribution is said to concentrate
at θ0 with rate εn relative to d, where εn is a positive sequence converging to zero, if the

empirical Bayes posterior probability of the set Uεn tends to one in P(n)
θ0

-probability. In
the case of fully Bayes procedures, there has been so far a vast literature on posterior
consistency and contraction rates since the seminal articles of Barron et al. [4] and Ghosal
et al. [22]. Following ideas of Schwartz [41], Ghosal et al. [22] in the case of independent
and identically distributed (iid) observations and Ghosal and van der Vaart [23] in the
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case of non-iid observations have developed an elegant and powerful methodology to
assess posterior contraction rates which boils down to lower bounding the prior mass of

Kullback-Leibler type neighborhoods of P(n)
θ0

and to constructing exponentially powerful
tests for testing H0 : θ = θ0 against H1 : θ ∈ {θ′ : d(θ′, θ0) > εn}. However, this
approach cannot be immediately taken to deal with posterior distributions corresponding
to data-dependent priors. In this article, we develop a similar methodology for assessing
posterior contraction rates in the case where the prior distribution depends on the data
through a data-driven choice γ̂n for γ.

In Theorem 1, we provide sufficient conditions for deriving contraction rates of em-
pirical Bayes posterior distributions, in the same spirit as those presented in Theorem 1
of Ghosal and van der Vaart [23]. To our knowledge, this is the first result on posterior
contraction rates for data-dependent priors which is neither model nor prior specific. The
theorem is then applied to nonparametric mixture models. Two relevant applications are
considered: Dirichlet process mixtures of Gaussian densities for the problems of density
estimation and density deconvolution in Section 3; Dirichlet process mixtures of uniform
densities for estimating intensity functions of counting processes obeying the Aalen model
in Section 4. Theorem 1 has also been applied to Gaussian process priors and sieve priors
in Rousseau and Szabó [38].

Dirichlet process mixtures (DPM) have been introduced by Ferguson [20] and have
proved to be a major tool in Bayesian nonparametrics, see for instance Hjort et al. [28].
Rates of convergence for fully Bayes posterior distributions corresponding to DPM of
Gaussian densities have been widely studied: they lead to minimax-optimal, possibly up
to a logarithmic factor, estimation procedures over a wide collection of density function
classes, see Ghosal and van der Vaart [24, 25], Kruijer et al. [31], Scricciolo [42] and
Shen et al. [45]. In Section 3.1, we extend existing results to the case of a Gaussian base
measure for the Dirichlet process prior with data-driven chosen mean and variance, as
advocated for instance in Richardson and Green [36]. Furthermore, in Section 3.2, due
to some new inversion inequalities, we get, as a by-product, empirical Bayes posterior
recovery rates for the problem of density deconvolution when the error distribution is
either ordinary or super-smooth and the mixing density is modeled as a DPM of normal
densities with a Gaussian base measure having data-driven selected mean and variance.
The problem of Bayesian density deconvolution when the mixing density is modeled as a
DPM of Gaussian densities and the error distribution is super-smooth has been recently
studied by Sarkar et al. [40].

In Section 4, we focus on Aalen multiplicative intensity models which constitute a
major class of counting processes extensively used in the analysis of data arising from
various fields like medicine, biology, finance, insurance and social sciences. General statis-
tical and probabilistic literature on such processes is very huge and we refer the reader to
Andersen et al. [3], Daley and Vere-Jones [12, 13] and Karr [29] for a good introduction.
In the Bayesian nonparametric setting, practical and methodological contributions have
been obtained by Lo [32], Adams et al. [1], Cheng and Yuan [9]. Belitser et al. [5] have
been the first ones to investigate the frequentist asymptotic behaviour of posterior dis-
tributions for intensity functions of inhomogeneous Poisson processes. In Theorem 3, we
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derive rates of convergence for empirical Bayes estimation of monotone non-increasing in-
tensity functions of counting processes satisfying the Aalen multiplicative intensity model
using DPM of uniform distributions with a truncated gamma base measure whose scale
parameter is data-driven chosen. Numerical illustrations are presented in this context in
Section 4.3. Final remarks are exposed in Section 5. Proofs of the results in Sections 3
and 4 are deferred to the Supplementary Material.

Notation and context Let (X (n), An, (P(n)
θ : θ ∈ Θ)) be a sequence of statistical

experiments, where X (n) and Θ are Polish spaces endowed with their Borel σ-fields An
and B, respectively. Let X(n) ∈ X (n) be the observations. We assume that there exists

a σ-finite measure µ(n) on X (n) dominating all probability measures P(n)
θ for θ ∈ Θ. For

any θ ∈ Θ, let p
(n)
θ := dP(n)

θ /dµ(n) and `n(θ) := log p
(n)
θ be the log-likelihood. We denote

by E(n)
θ [·] expected values with respect to P(n)

θ . We consider a family of prior distributions
(π(· | γ) : γ ∈ Γ) on Θ, where Γ ⊆ Rd, d ≥ 1. We denote by π(· | γ, X(n)) the posterior
distribution corresponding to the prior law π(· | γ),

π(B | γ, X(n)) =

∫
B
e`n(θ)π(dθ | γ)∫

Θ
e`n(θ)π(dθ | γ)

, B ∈ B.

Given θ1, θ2 ∈ Θ, let

KL(θ1; θ2) := E(n)
θ1

[`n(θ1)− `n(θ2)]

be the Kullback-Leibler divergence of P(n)
θ2

from P(n)
θ1

. Let Vk(θ1; θ2) be the re-centered
k-th absolute moment of the log-likelihood difference associated with θ1 and θ2,

Vk(θ1; θ2) := E(n)
θ1

[|`n(θ1)− `n(θ2)− E(n)
θ1

[`n(θ1)− `n(θ2)]|k], k ≥ 2.

Let θ0 denote the true parameter value. For any sequence of positive real numbers εn → 0
such that nε2n →∞ and any real k ≥ 2, let

B̄k,n := {θ : KL(θ0; θ) ≤ nε2n, Vk(θ0; θ) ≤ (nε2n)k/2} (1.1)

be the εn-Kullback-Leibler type neighborhood of θ0. The role played by these sets will be
clarified in Remark 2. Throughout the text, for any set B, constant ζ > 0 and pseudo-
metric d, we denote by D(ζ, B, d) the ζ-packing number of B by d-balls of radius ζ,
namely, the maximal number of points in B such that the distance between every pair
is at least ζ. The symbols “.” and “&” are used to indicate inequalities valid up to
constants that are fixed throughout.

2. Empirical Bayes posterior contraction rates

The main result of the article is presented in Section 2.1 as Theorem 1: the key ideas
are the identification of a set Kn, whose role is discussed in Section 2.2, such that γ̂n
takes values in it with probability tending to one, and the construction of a parameter
transformation which allows to transfer data-dependence from the prior distribution to
the likelihood. Examples of such transformation are given in Section 2.3.
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2.1. Main theorem

Let γ̂n : X (n) → Γ be a measurable function of the observations and let

π(· | γ̂n, X(n)) := π(· | γ, X(n))|γ=γ̂n

be the associated empirical Bayes posterior distribution. In this section, we present a
theorem providing sufficient conditions to obtain posterior contraction rates for empirical
Bayes posteriors. Our aim is to give conditions resembling those usually considered in a
fully Bayes approach. We first define usual mathematical objects. We assume that, with
probability tending to one, γ̂n takes values in a subset Kn of Γ,

P(n)
θ0

(γ̂n ∈ Kcn) = o(1). (2.1)

For any sequence of positive reals un → 0, let Nn(un) stand for the un-covering number
of Kn relative to the Euclidean distance denoted by ‖ · ‖, that is, the minimal number of
balls of radius un needed to cover Kn. For instance, if Kn is included in a ball of Rd of
radius Rn, then Nn(un) = O((Rn/un)d).

We consider posterior contraction rates relative to a loss function d(·, ·) on Θ using
the following neighborhoods

UJ1εn := {θ ∈ Θ : d(θ, θ0) ≤ J1εn},

with J1 a positive constant. We assume that d(·, ·) is a pseudo-metric, although this
assumption can be relaxed, see Remark 3. For every integer j ∈ N, we define

Sn,j := {θ ∈ Θ : d(θ, θ0) ∈ (jεn, (j + 1)εn]}.

In order to obtain posterior contraction rates with data-dependent priors, we express
the impact of γ̂n on the prior distribution as follows: for all γ, γ′ ∈ Γ, we construct a
measurable transformation

ψγ,γ′ : Θ→ Θ

such that, if θ ∼ π(· | γ), then ψγ,γ′(θ) ∼ π(· | γ′). Let en(·, ·) be another pseudo-metric
on Θ.

We consider the following assumptions.

[A1] There exists a sequence of positive reals un → 0 such that

logNn(un) = o(nε2n). (2.2)

There exists a sequence of sets B̃n ⊆ Θ such that, for some constant C1 > 0,

sup
γ∈Kn

sup
θ∈B̃n

P(n)
θ0

(
inf

γ′: ‖γ′−γ‖≤un
`n(ψγ,γ′(θ))− `n(θ0) < −C1nε

2
n

)
= o(Nn(un)−1). (2.3)



6 S. Donnet et al.

[A2] For every γ ∈ Kn, there exists a sequence of sets Θn(γ) ⊆ Θ so that

sup
γ∈Kn

∫
Θ\Θn(γ)

Q
(n)
θ,γ(X (n))

π(dθ | γ)

π(B̃n | γ)
= o(Nn(un)−1e−C2nε

2
n) (2.4)

for some constant C2 > C1, where Q
(n)
θ,γ is the measure having density q

(n)
θ,γ with respect

to µ(n):

q
(n)
θ,γ :=

dQ
(n)
θ,γ

dµ(n)
:= sup

γ′: ‖γ′−γ‖≤un
e`n(ψγ,γ′ (θ)).

Also, there exist constants ζ, K > 0 such that

• for all j large enough,

sup
γ∈Kn

π(Sn,j ∩Θn(γ) | γ)

π(B̃n | γ)
≤ eKnj

2ε2n/2, (2.5)

• for all ε > 0, γ ∈ Kn and θ ∈ Θn(γ) with d(θ, θ0) > ε, there exist tests φn(θ)
satisfying

E(n)
θ0

[φn(θ)] ≤ e−Knε
2

and sup
θ′: en(θ′, θ)≤ζε

∫
X (n)

[1−φn(θ)]dQ
(n)
θ′,γ ≤ e

−Knε2 , (2.6)

• for all j large enough,

logD(ζjεn, Sn,j ∩Θn(γ), en) ≤ K(j + 1)2nε2n/2, (2.7)

• there exists a constant M > 0 such that for all γ ∈ Kn,

sup
γ′: ‖γ′−γ‖≤un

sup
θ∈Θn(γ)

d(ψγ,γ′(θ), θ) ≤Mεn. (2.8)

We can now state the main theorem.

Theorem 1. Let θ0 ∈ Θ. Assume that γ̂n satisfies condition (2.1) and that conditions
[A1] and [A2] are verified for a sequence of positive reals εn → 0 such that nε2n → ∞.
Then, for a constant J1 > 0 large enough,

E(n)
θ0

[π(U cJ1εn | γ̂n, X
(n))] = o(1),

where U cJ1εn is the complement of UJ1εn in Θ.

Remark 1. We can replace (2.6) and (2.7) with a condition involving the existence of
a global test φn over Sn,j satisfying requirements similar to those of equation (2.7) in
Ghosal and van der Vaart [23] without modifying the conclusion:

E(n)
θ0

[φn] = o(Nn(un)−1) and sup
γ∈Kn

sup
θ∈Sn,j

∫
X (n)

(1− φn)dQ
(n)
θ,γ ≤ e

−Knj2ε2n .
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Note also that, when the loss function d(·, ·) is not bounded, it is often the case that

getting exponential control on the error rates in the form e−Knε
2
n or e−Knj

2ε2n is not
possible for large values of j. It is then enough to consider a modification d̃(·, ·) of the
loss function which affects only the values of θ for which d(θ, θ0) is large and to verify
(2.6) and (2.7) for d̃(θ, θ0) by defining Sn,j and the covering number D(·) with respect

to d̃(·, ·). See the proof of Theorem 3 as an illustration of this remark.

Remark 2. The requirements of assumption [A2] are similar to those proposed by
Ghosal and van der Vaart [23] for deriving contraction rates for fully Bayes posterior
distributions, see, for instance, their Theorem 1 and its proof. We need to strengthen
some conditions to take into account that we only know that γ̂n lies in a compact set

Kn with high probability by replacing the likelihood p
(n)
θ with q

(n)
θ,γ . Note that in the

definition of q
(n)
θ,γ we can replace the centering point γ of a ball with radius un with any

fixed point in the ball. This is used, for instance, in the context of DPM of uniform
distributions in Section 4. In the applications of Theorem 1, condition [A1] is typically
verified by resorting to Lemma 10 in Ghosal and van der Vaart [23] and by considering
a set B̃n ⊆ B̄k,n, with B̄k,n as defined in (1.1). The only difference with the general the-
orems of Ghosal and van der Vaart [23] lies in the control of the log-likelihood difference
`n(ψγ,γ′(θ)) − `n(θ0) when ‖γ′ − γ‖ ≤ un. We thus need that Nn(un) = o((nε2n)k/2).
In nonparametric cases where nε2n is a power of n, the sequence un can be chosen very
small, as long as k can be chosen large enough, so that controlling the above difference
uniformly is not such a drastic condition. In parametric models where at best nε2n is a
power of log n, this becomes more involved and un needs to be large or Kn needs to be
small enough so that Nn(un) can be chosen of the order O(1). In parametric models, it
is typically easier to use a more direct control of the ratio π(θ | γ)/π(θ | γ′) of the prior
densities with respect to a common dominating measure. In nonparametric models, this
is usually not possible since in most cases no such dominating measure exists.

Remark 3. In Theorem 1, d(·, ·) can be replaced by any positive loss function. In this
case, condition (2.8) needs to be rephrased: for every J2 > 0, there exists J1 > 0 such
that, for all γ, γ′ ∈ Kn with ‖γ − γ′‖ ≤ un, for every θ ∈ Θn(γ),

d(ψγ,γ′(θ), θ0) > J1εn implies d(θ, θ0) > J2εn. (2.9)

2.2. On the role of the set Kn

To prove Theorem 1, it is enough to show that the posterior contraction rate of the
empirical Bayes posterior associated with γ̂n ∈ Kn is bounded from above by the worst
contraction rate over the class of posterior distributions corresponding to the family of
priors (π(· | γ) : γ ∈ Kn):

π(U cJ1εn | γ̂n, X
(n)) ≤ sup

γ∈Kn
π(U cJ1εn | γ, X

(n)).
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In other terms, the impact of γ̂n is summarized through Kn. Hence, it is important to
preliminarily figure out which set Kn could be. In the examples developed in Sections 3
and 4, the hyper-parameter γ has no impact on the posterior contraction rate, at least on
a large subset of Γ, so that, as long as γ̂n stays in this range, the posterior contraction rate
of the empirical Bayes posterior is the same as that of any prior associated with a fixed
γ. In those cases where γ has an influence on posterior contraction rates, determining Kn
is crucial. For instance, Rousseau and Szabó [38] study the asymptotic behaviour of the
maximum marginal likelihood estimator and characterize the set Kn; they then apply
Theorem 1 to derive contraction rates for certain empirical Bayes posterior distributions.
Suppose that the posterior π(· | γ, X(n)) converges at rate εn(γ) = (n/ log n)−α(γ),
where the mapping γ 7→ α(γ) is Lipschitzian, and that γ̂n concentrates on an oracle set
Kn = {γ : εn(γ) ≤ Mnε

∗
n}, where ε∗n = infγ εn(γ) and Mn is some sequence such that

Mn → ∞, then, under the conditions of Theorem 1, we can deduce that the empirical
Bayes posterior contraction rate is bounded above by Mnε

∗
n. Proving that the empirical

Bayes posterior distribution has optimal posterior contraction rate then boils down to
proving that γ̂n converges to the oracle set Kn. This is what happens in the context
considered by Szabó et al. [50], as explained in Rousseau and Szabó [38].

2.3. On the parameter transformation ψγ,γ′

A key idea of the proof of Theorem 1 is the construction of a parameter transformation
ψγ,γ′ which allows to transfer data-dependence from the prior to the likelihood as in
Petrone et al. [34]. The transformation ψγ,γ′ can be easily identified in a number of
cases. Note that this transformation only depends on the family of prior distributions
and not on the sampling model.

For Gaussian process priors in the form

θi
ind∼ N (0, τ2(1 + i)−(2α+1)), i ∈ N,

the following ones

ψτ,τ ′(θi) =
τ ′

τ
θi, i ∈ N,

ψα,α′(θi) = (1 + i)−(α′−α)θi, α′ ≥ α, i ∈ N,

are possible transformations, see Rousseau and Szabó [38]. Similar ideas can be used for
priors based on splines with independent coefficients.

The transformation ψγ,γ′ can be constructed also for Polya tree priors based on a
specific family of partitions (Tk)k≥1 with parameters αε = ck2 when ε ∈ {0, 1}k. When
γ = c,

ψc,c′(θε) = G−1
c′k2,c′k2(Gck2,ck2(θε)), ∀ ε ∈ {0, 1}k, ∀ k ≥ 1,

where Ga,b denotes the cumulative distribution function (cdf) of a Beta random variable
with parameters (a, b).
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In Sections 3 and 4, we apply Theorem 1 to two types of Dirichlet process mixture
models: DPM of Gaussian distributions used to model smooth densities and DPM of
uniform distributions used to model monotone non-increasing intensity functions in the
context of Aalen point processes. In the case of nonparametric mixture models, there
exists a general construction of the transformation ψγ,γ′ . Consider a mixture model in
the form

f(·) =

K∑
j=1

pjhθj (·), K ∼ πK , (2.10)

where, conditionally on K, p = (pj)
K
j=1 ∼ πp and θ1, . . . , θK are iid with cumulative

distribution function Gγ . Dirichlet process mixtures correspond to πK = δ(+∞) and to
πp equal to the Griffiths-Engen-McCloskey (GEM) distribution obtained from the stick-
breaking construction of the mixing weights, cf. Ghosh and Ramamoorthi [26]. Models in
the form (2.10) also cover priors on curves if the (pj)

K
j=1 are not restricted to the simplex.

Denote by π(· | γ) the prior probability on f induced by (2.10). For all γ, γ′ ∈ Γ, if f is
represented as in (2.10) and is distributed according to π(· | γ), then

f
′
(·) =

K∑
j=1

pjhθ′j
(·), with θ

′

j = G−1
γ′

(Gγ(θj)),

is distributed according to π(· | γ′), where G−1
γ′

denotes the generalized inverse of the

cdf Gγ′ . If γ = M is the mass hyper-parameter of a Dirichlet process (DP), a possible

transformation from a DP with mass M to a DP with mass M
′

is through the stick-
breaking representation of the weights:

ψM,M ′(Vj) = G−1
1,M ′(G1,M (Vj)), where pj = Vj

∏
i<j

(1− Vi), j ≥ 1.

We now give the proof of Theorem 1.

2.4. Proof of Theorem 1

Because P(n)
θ0

(γ̂n ∈ Kcn) = o(1) by assumption, we have

E(n)
θ0

[π(U cJ1εn | γ̂n, X
(n))] ≤ E(n)

θ0

[
sup
γ∈Kn

π(U cJ1εn | γ, X
(n))

]
+ o(1).

The proof then essentially boils down to controlling E(n)
θ0

[supγ∈Kn π(U cJ1εn | γ, X
(n))].

We split Kn into Nn(un) balls of radius un and denote their centers by (γi)i=1, ..., Nn(un).
We thus have

E(n)
θ0

[π(U cJ1εn | γ̂n, X
(n))1Kn(γ̂n)] ≤ Nn(un) max

i
E(n)
θ0

[ρn(γi)] ,
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where the index i ranges from 1 to Nn(un) and

ρn(γi) := sup
γ: ‖γ−γi‖≤un

π(U cJ1εn | γ, X
(n))

= sup
γ: ‖γ−γi‖≤un

∫
UcJ1εn

e`n(θ)−`n(θ0)π(dθ | γ)∫
Θ
e`n(θ)−`n(θ0)π(dθ | γ)

= sup
γ: ‖γ−γi‖≤un

∫
ψ−1
γi,γ

(UcJ1εn
)
e`n(ψγi,γ(θ))−`n(θ0)π(dθ | γi)∫

Θ
e`n(ψγi,γ(θ))−`n(θ0)π(dθ | γi)

.

So, it is enough to prove that maxi E(n)
θ0

[ρn(γi)] = o(Nn(un)−1). We mimic the proof of
Lemma 9 of Ghosal and van der Vaart [23]. Let i be fixed. For every j large enough, by
condition (2.7), there exist Lj,n ≤ exp(K(j + 1)2nε2n/2) balls of centers θj,1, . . . , θj,Lj,n ,
with radius ζjεn relative to the en-distance, that cover Sn,j ∩Θn(γi). We consider tests
φn(θj,`), ` = 1, . . . , Lj,n, satisfying (2.6) with ε = jεn. By setting

φn := max
j≥J1

max
`∈{1, ..., Lj,n}

φn(θj,`),

by virtue of conditions (2.6), applied with γ = γi, and (2.2), we obtain that, for any
K ′ < K,

E(n)
θ0

[φn] ≤
∑
j≥J1

Lj,ne
−Kj2nε2n = O(e−K

′J2
1nε

2
n/2) = o(Nn(un)−1).

Moreover, for any j ≥ J1, any θ ∈ Sn,j ∩Θn(γi) and any i = 1, . . . , Nn(un),∫
X (n)

(1− φn)dQ
(n)
θ,γi
≤ e−Kj

2nε2n . (2.11)

Since for all i we have ρn(γi) ≤ 1, it follows that

E(n)
θ0

[ρn(γi)] < E(n)
θ0

[φn] + P(n)
θ0

(Acn,i) +
eC2nε

2
n

π(B̃n | γi)
Cn,i, (2.12)

with

An,i =

{
inf

γ: ‖γ−γi‖≤un

∫
Θ

e`n(ψγi,γ(θ))−`n(θ0)π(dθ | γi) > e−C2nε
2
nπ(B̃n | γi)

}
(2.13)

and

Cn,i = E(n)
θ0

[
(1− φn) sup

γ: ‖γ−γi‖≤un

∫
ψ−1
γi,γ

(UcJ1εn
)

e`n(ψγi,γ(θ))−`n(θ0)π(dθ | γi)

]
.

We now study the last two terms in (2.12). Since

eC1nε
2
n inf
γ: ‖γ−γi‖≤un

e`n(ψγi,γ(θ))−`n(θ0)

≥ 1{infγ: ‖γ−γi‖≤un exp (`n(ψγi,γ(θ))−`n(θ0))≥e−C1nε
2
n},
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we have

P(n)
θ0

(Acn,i) ≤ P(n)
θ0

(∫
B̃n

inf
γ: ‖γ−γi‖≤un

e`n(ψγi,γ(θ))−`n(θ0) π(dθ | γi)
π(B̃n | γi)

≤ e−C2nε
2
n

)
< (1− e−(C2−C1)nε2n)−1

×
∫
B̃n

P(n)
θ0

(
inf

γ: ‖γ−γi‖≤un
`n(ψγi,γ(θ))− `n(θ0) < −C1nε

2
n

)
π(dθ | γi)
π(B̃n | γi)

.

Then, by condition (2.3), P(n)
θ0

(Acn,i) = o(Nn(un)−1). For γ such that ‖γ − γi‖ ≤ un,
under condition (2.8), for any θ ∈ Θn(γi),

d(ψγi,γ(θ), θ0) ≤ d(ψγi,γ(θ), θ) + d(θ, θ0) ≤Mεn + d(θ, θ0),

then, for every J2 > 0, choosing J1 > J2 +M we have

ψ−1
γi,γ(U cJ1εn) ⊂

(
U cJ2εn ∪Θc

n(γi)
)
.

Note that this corresponds to (2.9). This leads to

Cn,i ≤ E(n)
θ0

[
(1− φn)

∫
ψ−1
γi,γ

(UcJ1εn
)

sup
γ: ‖γ−γi‖≤un

e`n(ψγi,γ(θ))−`n(θ0)π(dθ | γi)

]

≤
∫
UcJ2εn

∪Θcn(γi)

∫
X (n)

(1− φn)dQ
(n)
θ,γi

π(dθ | γi)

≤
∫

Θcn(γi)

Q
(n)
θ,γi

(X (n))π(dθ | γi) +
∑
j≥J2

∫
Sn,j∩Θn(γi)

∫
X (n)

(1− φn)dQ
(n)
θ,γi

π(dθ | γi).

Using (2.4), (2.5) and (2.11),

Cn,i ≤
∑
j≥J2

e−Kj
2nε2nπ(Sn,j ∩Θn(γi) | γi) + o(Nn(un)−1e−C2nε

2
nπ(B̃n | γi))

≤
∑
j≥J2

e−Kj
2nε2n/2π(B̃n | γi) + o(Nn(un)−1e−C2nε

2
nπ(B̃n | γi)),

whence Cn,i = o(Nn(un)−1e−C2nε
2
nπ(B̃n | γi)). Consequently,

max
i=1, ..., Nn(un)

eC2nε
2
nCn,i/π(B̃n | γi) = o(Nn(un)−1),

which concludes the proof of Theorem 1. �

We now consider two applications of Theorem 1 to DPM models. They present differ-
ent features: the first one deals with density estimation and considers DPM with smooth
(Gaussian) kernels, the second one deals with intensity estimation in Aalen point pro-
cesses and considers DPM with irregular (uniform) kernels. Estimating Aalen intensity
functions has strong connections with density estimation, but it is not identical: as far
as the control of data-dependence of the prior is concerned, the main difference lies in
the different regularity of the kernels.



12 S. Donnet et al.

3. Adaptive rates for empirical Bayes DPM of
Gaussian densities

LetX(n) = (X1, . . . , Xn) be n iid observations from a Lebesgue density p0 on R. Consider
the following prior distribution on the class of Lebesgue densities p on the real line:

p(·) = pF,σ(·) :=

∫ ∞
−∞

φσ(· − θ)dF (θ),

F ∼ DP(αRN (m, s2)) independent of σ ∼ IG(ν1, ν2), ν1, ν2 > 0,

(3.1)

where αR is a finite positive constant, φσ(·) := σ−1φ(·/σ), with φ(·) the density of
a standard Gaussian distribution, and N (m, s2) denotes a Gaussian distribution with
mean m and variance s2. Set γ = (m, s2) ∈ Γ ⊆ R × R∗+, where R∗+ denotes the set
of strictly positive real numbers, let γ̂n : Rn → Γ be a measurable function of the
observations. Typical choices are γ̂n = (X̄n, S

2
n), with the sample mean X̄n =

∑n
i=1Xi/n

and the sample variance S2
n =

∑n
i=1(Xi − X̄n)2/n, or γ̂n = (X̄n, Rn), with the range

Rn = max1≤i≤nXi −min1≤i≤nXi, as in Richardson and Green [36]. Let Kn ⊂ R × R∗+
be a compact set, independent of the data X(n), such that

P(n)
p0 (γ̂n ∈ Kn) = 1 + o(1), (3.2)

where p0 denotes the true sampling density. Throughout this section, we assume that p0

satisfies the following tail condition:

p0(x) . e−c0|x|
τ

for |x| large enough, (3.3)

with finite constants c0, τ > 0. Let Ep0 [X1] = m0 ∈ R and Varp0 [X1] = τ2
0 ∈ R∗+.

If γ̂n = (X̄n, S
2
n), then condition (3.2) is satisfied for Kn = [m0 − (log n)/

√
n, m0 +

(log n)/
√
n] × [τ2

0 − (log n)/
√
n, τ2

0 + (log n)/
√
n], while, if γ̂n = (X̄n, Rn), then Kn =

[m0 − (log n)/
√
n, m0 + (log n)/

√
n]× [rn, 2(2c−1

0 log n)1/τ ], with a sequence rn ↓ 0.

3.1. Empirical Bayes density estimation

Mixtures of Gaussian densities have been extensively studied and used in the Bayesian
nonparametric literature. Posterior contraction rates have been first investigated by
Ghosal and van der Vaart [24, 25]. Subsequently, following an idea of Rousseau [37],
Kruijer et al. [31] have shown that nonparametric location mixtures of Gaussian den-
sities lead to adaptive posterior contraction rates over the full scale of locally Hölder
log-densities on R. This result has been extended to super-smooth densities by Scricci-
olo [42] and to the multivariate case by Shen et al. [45]. The key idea is that, for an
ordinary smooth density p0 with regularity level β > 0, given σ > 0 small enough, there
exists a finite mixing distribution F ∗, with at most Nσ = O(σ−1| log σ|ρ2) support points
in [−aσ, aσ], where aσ = O(| log σ|1/τ ), such that the corresponding Gaussian mixture
density pF∗,σ satisfies

Pp0 log(p0/pF∗,σ) . σ2β



Empirical Bayes posterior concentration rates 13

and (3.4)

Pp0 | log(p0/pF∗,σ)− Pp0 log(p0/pF∗,σ)|k . σkβ , k ≥ 2,

where we have used the notation Pp0f to abbreviate
∫
fdPp0 ; see, for instance, Lemma

4 in Kruijer et al. [31]. In all of the above-mentioned articles, only the case where k = 2
has been considered for the second inequality in (3.4), but the extension to any k > 2 is
straightforward. The regularity assumptions considered in Kruijer et al. [31], Scricciolo
[42] and Shen et al. [45] to meet (3.4) are slightly different. For instance, Kruijer et al.
[31] assume that log p0 satisfies some locally Hölder conditions, while Shen et al. [45]
consider Hölder-type conditions on p0 and Scricciolo [42] Sobolev-type assumptions. To
avoid taking into account all these special cases, in the ordinary smooth case, we state
(3.4) as an assumption. Regarding the super-smooth case, defined for any α ∈ (0, 1] and
any pair of densities p and p0, the ρα-divergence of p from p0 as

ρα(p0; p) := α−1Pp0 [(p0/p)
α − 1],

a counter-part of requirement (3.4) is the following one:

for some fixed α ∈ (0, 1], ρα(p0; pF∗,σ) . e−cα(1/σ)r , (3.5)

where cα is a positive constant possibly depending on α and F ∗ is a distribution on
[−aσ, aσ], with aσ = O(σ−r/(τ∧2)), having at most Nσ = O((aσ/σ)2) support points.
Because for any pair of densities p and p0,

Pp0 log(p0/p) = lim
β→0+

ρβ(p0; p) ≤ ρα(p0; p) for every α ∈ (0, 1],

inequality (3.5) is stronger than the one on the first line of (3.4) and allows to derive an
almost sure lower bound on the denominator of the ratio defining the empirical Bayes
posterior probability of the set U cJ1εn , see Lemma 2 of Shen and Wasserman [46]. Following
the trail of Lemma 8 in Scricciolo [42], it can be proved that inequality (3.5) holds for
any density p0 satisfying the monotonicity and tail conditions (b) and (c), respectively,
of Section 4.2 in Scricciolo [42], together with the following integrability condition∫ ∞

−∞
|p̂0(t)|2e2(ρ|t|)rdt ≤ 2πL2 for some r ∈ [1, 2] and ρ, L > 0, (3.6)

where p̂0(t) =
∫∞
−∞ eitxp0(x)dx, t ∈ R, is the characteristic function of p0. Densities

satisfying requirement (3.6) form a large class including relevant statistical examples,
like the Gaussian distribution which corresponds to r = 2, the Cauchy distribution which
corresponds to r = 1; symmetric stable laws with 1 ≤ r ≤ 2, the Student’s-t distribution,
distributions with characteristic functions vanishing outside a compact set as well as
their mixtures and convolutions. We then have the following theorem, where the pseudo-
metric d defining the ball UJ1εn centered at p0, with radius J1εn, can equivalently be the
Hellinger or the L1-distance.
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Theorem 2. Consider a prior distribution of the form (3.1), with a data-driven choice
γ̂n for γ satisfying condition (3.2), where Kn ⊆ [m1, m2] × [a1, a2(log n)b1 ] for some
constants m1, m2 ∈ R, a1, a2 > 0 and b1 ≥ 0. Suppose that p0 satisfies the tail condition
(3.3). Consider either one of the following cases.

(i) Ordinary smooth case. Suppose that the exponent τ appearing in (3.3) is such
that τ ≥ 1. Assume that, for β > 0, requirement (3.4) holds with k > 8(β + 1). Let

εn = n−β/(2β+1)(log n)a3 , for some constant a3 ≥ 1 + [τ(2 + 1/β)]−1.

(ii) Super-smooth case. Assume that (3.6) holds. Suppose that the exponent τ ap-
pearing in (3.3) is such that τ > 1 and (τ − 1)r ≤ τ . Assume further that the
monotonicity condition (b) in Section 4.2 of Scricciolo [42] is satisfied. Let

εn = n−1/2(log n)a4 , for some constant a4 ≥ [1/2 + 1/r + 1/(τ ∧ 2)].

Then, under either case (i) or case (ii), for a sufficiently large constant J1 > 0,

E(n)
p0 [π(U cJ1εn | γ̂n, X

(n))] = o(1).

In Theorem 2, the constant a3 is the same as that appearing in the convergence rate
of the posterior distribution corresponding to a non data-dependent prior with a fixed γ.

3.2. Empirical Bayes density deconvolution

We now present some results on adaptive recovery rates, relative to the L2-distance,
for empirical Bayes density deconvolution when the error density is either ordinary or
super-smooth and the mixing density is modeled as a DPM of Gaussian kernels with data-
driven chosen hyper-parameter values for the base measure. The problem of deconvolving
a density when the mixing density is modeled as a DPM of Gaussian kernels and the
error density is super-smooth has been recently investigated by Sarkar et al. [40]. In a
frequentist approach, rates for density deconvolution have been studied by Carroll and
Hall [7] and Fan [17, 18, 19]. Consider the model

X = Y + ε,

where Y and ε are independent random variables. Let pY denote the Lebesgue density on
R of Y and K the Lebesgue density on R of the error measurement ε. The density of X is
then the convolution ofK and pY , denoted by pX(·) = (K∗pY )(·) =

∫∞
−∞K(·−y)pY (y)dy.

The error density K is assumed to be completely known and its characteristic function
K̂ to satisfy either

|K̂(t)| & (1 + t2)−η/2, t ∈ R, (ordinary smooth case) (3.7)

for some η > 0, or

|K̂(t)| & e−%|t|
r1
, t ∈ R, (super-smooth case) (3.8)
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for some constant % > 0 and exponent r1 > 0. The density pY is modeled as a DPM
of Gaussian kernels as in (3.1), with a data-driven choice γ̂n for γ. Assuming data
X(n) = (X1, . . . , Xn) are iid observations from a density p0X = K ∗ p0Y such that
the characteristic function p̂0Y of the true mixing distribution satisfies∫ ∞

−∞
(1 + t2)β1 |p̂0Y (t)|2dt <∞ for some β1 > 1/2, (3.9)

we derive adaptive rates for recovering p0Y using empirically selected prior distributions.

Proposition 1. Suppose that K̂ satisfies either condition (3.7) (ordinary smooth case)
or condition (3.8) (super-smooth case) and that p̂0Y satisfies the integrability condition
(3.9). Consider a prior for pY of the form (3.1), with a data-driven choice γ̂n for γ as
in Theorem 2. Suppose that p0X = K ∗ p0Y satisfies the conditions of Theorem 2 stated
for p0. Then, there exists a sufficiently large constant J1 > 0 so that

E(n)
p0X [π(‖pY − p0Y ‖2 > J1vn | γ̂n, X(n))] = o(1),

where, for some constant κ1 > 0,

vn =

{
n−β1/[2(β1+η)+1](log n)κ1 , if K̂ satisfies (3.7),

(log n)−β1/r1 , if K̂ satisfies (3.8).

The obtained rates are minimax-optimal, up to a logarithmic factor, in the ordinary
smooth case and minimax-optimal in the super-smooth case. Inspection of the proof of
Proposition 1 shows that, since the result is based on inversion inequalities relating the
L2-distance between the true mixing density and the (random) approximating mixing
density in an efficient sieve set Sn to the L2- or the L1-distance between the corre-
sponding mixed densities, once adaptive rates are known for the direct problem of fully
or empirical Bayes estimation of the true sampling density p0X , the same proof yields
adaptive recovery rates for both the fully and the empirical Bayes density deconvolution
problems. If compared to the approach followed in Sarkar et al. [40], the present strategy
simplifies the derivation of adaptive recovery rates for Bayesian density deconvolution.
To our knowledge, the ordinary smooth case is treated here for the first time also for the
fully Bayes approach.

4. Application to counting processes with Aalen
multiplicative monotone non-increasing intensities

In this section, we illustrate our results for counting processes with Aalen multiplicative
intensities. Bayesian nonparametric methods have been so far mainly adopted to explore
possible prior distributions on intensity functions with the aim of showing that Bayesian
nonparametric inference for inhomogeneous Poisson processes can give satisfactory re-
sults in applications, see, e.g., Kottas and Sansó [30]. Results on frequentist asymptotic
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properties of posterior distributions, like consistency or rates of convergence, have been
first obtained by Belitser et al. [5] for inhomogeneous Poisson processes. In Donnet et al.
[15] a general theorem on posterior concentration rates for Aalen processes is proposed
and some families of priors are studied. Section 4.2 extends these results to the empirical
Bayes setting and to the case of monotone non-increasing intensity functions. Section 4.3
illustrates our procedure on artificial data.

4.1. Notation and setup

LetN be a counting process adapted to a filtration (Gt)t with compensator Λ so that (Nt−
Λt)t is a zero-mean (Gt)t-martingale. A counting process satisfies the Aalen multiplicative
intensity model if dΛt = λ(t)Ytdt, where λ is a non-negative deterministic function called
in the sequel, with slight abuse, the intensity function, and (Yt)t is an observable non-
negative predictable process. Informally,

E[N [t, t+ dt] | Gt− ] = λ(t)Ytdt, (4.1)

see Andersen et al. [3], Chapter III. We assume that Λt < ∞ almost surely for every t.
We also assume that the processes N and Y both depend on an integer n and we consider
estimation of λ (not depending on n) in the asymptotic perspective n → ∞, while T is
kept fixed. This model encompasses several particular examples: inhomogeneous Poisson
processes, censored data and Markov processes. See Andersen et al. [3] for a general
exposition, Donnet et al. [15], Gäıffas and Guilloux [21], Hansen et al. [27] and Reynaud-
Bouret [35] for specific studies in various settings.

We denote by λ0 the true intensity function which we assume to be bounded on R+.

We define µn(t) := E(n)
λ0

[Yt] and µ̃n(t) := n−1µn(t). We assume the existence of a non-
random set Ω ⊆ [0, T ] such that there are constants m1, m2 satisfying

m1 ≤ inf
t∈Ω

µ̃n(t) ≤ sup
t∈Ω

µ̃n(t) ≤ m2 for every n large enough, (4.2)

and there exists α ∈ (0, 1) such that, defined Γn := {supt∈Ω |n−1Yt − µ̃n(t)| ≤ αm1} ∩
{supt∈Ωc Yt = 0}, where Ωc is the complement of Ω in [0, T ], then

lim
n→∞

P(n)
λ0

(Γn) = 1. (4.3)

Assumption (4.2) implies that, on Γn,

∀ t ∈ Ω, (1− α)µ̃n(t) ≤ Yt
n
≤ (1 + α)µ̃n(t). (4.4)

Under mild conditions, assumptions (4.2) and (4.3) are easily satisfied for the three
examples mentioned above: inhomogeneous Poisson processes, censored data and Markov
processes, see Donnet et al. [15] for a detailed discussion. Recall that the log-likelihood
for Aalen processes is

`n(λ) =

∫ T

0

log(λ(t))dNt −
∫ T

0

λ(t)Ytdt.
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Since N is empty on Ωc almost surely, we only consider estimation over Ω. So, we set
F =

{
λ : Ω→ R+ |

∫
Ω
λ(t)dt <∞

}
endowed with the L1-norm: for all λ, λ′ ∈ F , let

‖λ− λ′‖1 =
∫

Ω
|λ(t)− λ′(t)|dt. We assume that λ0 ∈ F and, for every λ ∈ F , we write

λ = Mλ × λ̄, with Mλ =

∫
Ω

λ(t)dt and λ̄ ∈ F1, (4.5)

where F1 = {λ ∈ F :
∫

Ω
λ(t)dt = 1}. Note that a prior probability measure π on F

can be written as πM ⊗ π1, where πM is a probability distribution on R+ and π1 is a
probability distribution on F1. This representation will be used in the next section.

4.2. Empirical Bayes concentration rates for monotone
non-increasing intensities

In this section, we focus on estimation of monotone non-increasing intensities, which is
equivalent to considering λ̄ monotone non-increasing in the parameterization (4.5). To
construct a prior on the set of monotone non-increasing densities on [0, T ], we use their
representation as mixtures of uniform densities as provided by Williamson [51] and we
consider a Dirichlet process prior on the mixing distribution:

λ̄(·) =

∫ ∞
0

1(0, θ)(·)
θ

dP (θ), P | A, Gγ ∼ DP(AGγ), (4.6)

where Gγ is a distribution on [0, T ]. This prior has been studied by Salomond [39] for
estimating monotone non-increasing densities. Here, we extend his results to the case
of a monotone non-increasing intensity function of an Aalen process with a data-driven
choice γ̂n for γ.

We study the family of distributions Gγ with Lebesgue density gγ belonging to one of
the following families: for γ > 0 and a > 1,

gγ(θ) =
γaθa−1

G(Tγ)
e−γθ1{0≤θ≤T} or

(
1

θ
− 1

T

)−1

∼ Gamma(a, γ), (4.7)

where G is the cdf of a Gamma(a, 1) random variable. We then have the following result,
which is an application of Theorem 1. We denote by π(· | γ, N) the posterior distribution
given the observations of the process N .

Theorem 3. Let ε̄n = (n/ log n)−1/3. Assume that the prior πM for the mass M is
absolutely continuous with respect to Lebesgue measure, with positive and continuous
density on R+, and has finite Laplace transform in a neighbourhood of 0. Assume that
the prior π1(· | γ) on λ̄ is a DPM of uniform distributions defined in (4.6), with A > 0 and
base measure Gγ defined as in (4.7). Let γ̂n be a measurable function of the observations

satisfying P(n)
λ0

(γ̂n ∈ K) = 1 + o(1) for some fixed compact subset K ⊂ (0, ∞). Assume
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also that (4.2) and (4.3) are satisfied and that, for any k ≥ 2, there exists C1k > 0 such
that

E(n)
λ0

[(∫
Ω

[Yt − µn(t)]2dt

)k]
≤ C1kn

k. (4.8)

Then, there exists a sufficiently large constant J1 > 0 such that

E(n)
λ0

[π(λ : ‖λ− λ0‖1 > J1ε̄n | γ̂n, N)] = o(1)

and
sup
γ∈K

E(n)
λ0

[π(λ : ‖λ− λ0‖1 > J1ε̄n | γ, N)] = o(1).

The proof of Theorem 3 consists in verifying conditions [A1] and [A2] of Theorem 1 and
is based on Theorem 3.1 of Donnet et al. [15]. As observed in Donnet et al. [15], condition
(4.8) is quite mild and is satisfied for inhomogeneous Poisson processes, censored data and
Markov processes. Notice that the concentration rate ε̄n of the empirical Bayes posterior
distribution is the same as that obtained by Salomond [39] for the fully Bayes posterior.
Up to a (log n)-factor, this is the minimax-optimal convergence rate over the class of
bounded monotone non-increasing intensities.

Note that in Theorem 3, Kn is chosen to be fixed and equal to K, which covers a large
range of possible choices for γ̂n. For instance, in the simulation study of Section 4.3, a
moment type estimator has been considered which converges almost surely to a fixed
value, so that K is a fixed interval around such value.

4.3. Numerical illustration

We present an experiment to highlight the impact of an empirical Bayes prior distri-
bution for finite sample sizes in the case of an inhomogeneous Poisson process. Let
(Wi)i=1, ..., N(T ) be the observed points of the process N over [0, T ], where N(T ) is
the observed number of jumps. We assume that Yt ≡ n (n being known). In this case,
the compensator Λ of N is non-random and the larger n, the larger N(T ).

Estimation of Mλ0 and λ̄0 can be done separately, given the factorization in (4.5).
Considered a gamma prior distribution on Mλ, that is, Mλ ∼ Gamma (aM , bM ), we have
Mλ | N ∼ Gamma (aM+N(T ), bM+n). Nonparametric Bayesian estimation of λ̄0 is more
involved. However, in the case of DPM of uniform densities as a prior on λ̄, we can use the
same algorithms considered for density estimation. In this section, we restrict ourselves
to the case where the base measure of the Dirichlet process is the second alternative in

(4.7), i.e., under Gγ , it is θ ∼
[
T−1 + 1/Gamma (a, γ)

]−1
. It satisfies the assumptions

of Theorem 3 and presents computational advantages due to conjugacy. Three hyper-
parameters are involved in this prior, namely, the mass A of the Dirichlet process, a
and γ. The hyper-parameter A strongly influences the number of classes in the posterior
distribution of λ̄. In order to mitigate its influence on the posterior distribution, we
propose to consider a hierarchical approach by putting a gamma prior distribution on A,
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thus A ∼ Gamma (aA, bA). In absence of additional information, we set aA = bA = 1/10,
which corresponds to a weakly informative prior. Theorem 3 applies to any a > 1. We
arbitrarily set a = 2; the influence of a is not studied in this article. We compare three
strategies for determining γ in our simulation study.

Strategy 1: Empirical Bayes - We propose the following estimator:

γ̂n = Ψ−1
[
WN(T )

]
, WN(T ) =

1

N(T )

N(T )∑
i=1

Wi, (4.9)

where

Ψ(γ) := E
[
WN(T )

]
=

γa

2Γ(a)

∫ ∞
1/T

e−γ/(ν−
1
T )

(ν − 1
T )(a+1)

1

ν
dν,

E[·] denoting expectation under the marginal distribution of N . Hence, γ̂n converges
to Ψ−1(E[WN(T )]) as n goes to infinity and Kn can be chosen as any small, but fixed,

compact neighbourhood of Ψ−1(E[WN(T )]) > 0.

Strategy 2: Fixed γ - In order to avoid an empirical Bayes prior, one can fix γ = γ0. To
study the impact of a bad choice of γ0 on the behaviour of the posterior distribution, we

choose γ0 different from the calibrated value γ∗ = Ψ−1(Etheo), with Etheo =
∫ T

0
tλ̄0(t)dt.

We thus consider
γ0 = ρ ·Ψ−1(Etheo), ρ ∈ {0.01, 30, 100}.

Strategy 3: Hierarchical Bayes - We consider a prior on γ, that is, γ ∼ Gamma (aγ , bγ).
In order to make a fair comparison with the empirical Bayes posterior distribution, we
center the prior distribution at γ̂n. Besides, in the simulation study, we consider two
different hierarchical hyper-parameters (aγ , bγ) corresponding to two prior variances.
More precisely, (aγ , bγ) are such that the prior expectation is equal to γ̂n and the prior
variance is equal to σ2

γ , the values of σγ being specified in Table 1.
Samples of size 30000 (with a warm-up period of 15000 iterations) are generated from

the posterior distribution of (λ̄, A, γ) | N using a Gibbs algorithm, decomposed into two
or three steps depending on whether or not a fully Bayes strategy is adopted:

[1] λ̄ | A, γ, N [2] A | λ̄, γ, N [3]† γ | A, λ̄, N.

Step [3]† only exists if a fully Bayes strategy (strategy 3) is adopted. We use the algorithm
developed by Fall and Barat [16]; details can be found in Donnet et al. [14]. The various
strategies for calibrating γ are tested on 3 different intensity functions (non null over
[0, T ], with T = 8):

λ0,1(t) = [4 1[0, 3)(t) + 2 1[3, 8](t)],

λ0,2(t) = e−0.4t,

λ0,3(t) =

[
cos−1 Φ(t)1[0, 3)(t)−

(
1

6
cos−1 Φ(3)t− 3

2
cos−1 Φ(3)

)
1[3, 8](t)

]
,
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where Φ(·) is the cdf of the standard normal distribution. For each intensity λ0,1, λ0,2

and λ0,3, we simulate 3 datasets corresponding to n = 500, 1000 and 2000, respectively.
In what follows, we denote by Di

n the dataset associated with n and intensity λ0,i.
To compare the three different strategies used to calibrate γ, several criteria are taken

into account: tuning of the hyper-parameters, quality of the estimation, convergence
of the MCMC and computational time. In terms of tuning effort on γ, the empirical
Bayes and the fixed γ approaches are comparable and significantly simpler than the
hierarchical one, which increases the space to be explored by the MCMC algorithm and
consequently slows down its convergence. Moreover, setting an hyper-prior distribution
on γ requires to choose the parameters of this additional distribution, that is, aγ and
bγ , and to postpone the problem, even though these second-order hyper-parameters are
presumably less influential. In our simulation study, the computational time, for a fixed
number of iterations, here equal to Niter = 30000, turned out to be also a key point.
Indeed, the simulation of λ̄, conditionally on the other variables, involves an accept-reject
(AR) step (see equation (B3) in Donnet et al. [14]). For small values of γ, we observe that
the acceptance rate of the AR step drops down dramatically, thus inflating the execution
time of the algorithm. The computational times (CpT) are summarized in Table 1, which
also provides the number of points for each of the 9 datasets N(T ), γ̂n being computed
using (4.9), γ∗ = Ψ−1(Etheo), the perturbation factor ρ used in the fixed γ strategy
and the standard deviation σγ of the prior distribution of γ (the prior mean being γ̂n)
used in the two hierarchical approaches. The second hierarchical prior distribution (last
column of Table 1) corresponds to a prior distribution more concentrated around γ̂n.
We use the algorithm developed by Fall and Barat [16]; details can be found in Donnet
et al. [14]. Note that, as described in Donnet et al. [14] (formula B.5 at the end of
the paper), the distribution of γ | A, λ̄, N is a gamma whose parameters are easily
calculated. As a consequence, this supplementary step in the MCMC algorithm has a
negligible computational cost and does not decrease the acceptance rate of the chain.
On Figures 1, 2 and 3, for each strategy and each dataset we plot the posterior median
of λ̄1, λ̄2 and λ̄3, respectively, together with a pointwise credible interval using the 10%
and 90% empirical quantiles obtained from the posterior simulation. Table 2 gives the

distances between the normalized intensity estimates ˆ̄λi and the true λ̄i for each dataset
and each prior specification. The estimates and the credible intervals for the second hier-
archical distribution were very similar to the ones obtained with the empirical strategy
and so were not plotted.

For the function λ0,1, the 4 strategies lead to the same quality of estimation in terms
of loss/distance between the functions of interest. In this case, it is thus interesting to
have a look at the computational time in Table 1. We notice that for a small γ0 or for a
diffuse prior distribution on γ, possibly generating small values of γ, the computational
time explodes. This phenomenon can be so critical that the user may have to stop the
execution and re-launch the algorithm. Moreover, the posterior mean of the number of
non-empty components in the mixture computed over the last 10000 iterations is equal
to 4.21 for n = 500 in the empirical strategy, to 11.42 when γ is arbitrarily fixed, to 6.98
under the hierarchical diffuse prior and to 3.77 with the hierarchical concentrated prior.
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Empirical γ fixed Hierarchical Hierarchical 2
N(T ) γ̂n CpT ρΨ−1(Etheo) CpT σγ CpT σγ CpT

λ0,1

D1
500 499 0.0386 523.57

0.01 × 0.0323
2085.03

0.005
12051.22

0.001
447.75

D1
1000 1036 0.0372 783.53 1009.58 791.28 773.33

D1
2000 2007 0.0372 1457.40 1561.64 1477.50 1456.03

λ0,2

D2
500 505 0.6605 1021.73

100 × 0.6667
1022.59

0.1
663.54

0.01
1047.42

D2
1000 978 0.6857 1873.05 1416.40 1207.07 2018.89

D2
2000 2034 0.6827 4849.80 2236.02 2533.62 4644.55

λ0,3

D3
500 483 0.4094 782.19

30 × 0.4302
822.12

0.1
788.14

0.01
788.00

D3
1000 1058 0.4398 1610.47 2012.96 1559.17 1494.75

D3
2000 2055 0.4677 3546.57 9256.71 3179.96 2770.83

Table 1. Computational Time (CpT in seconds), hyper-parameters for the different strategies and
datasets

λ0,1 λ0,2 λ0,3
D1

500 D1
1000 D1

2000 D2
500 D2

1000 D2
2000 D3

500 D3
1000 D3

2000

dL1

Empir 0.0246 0.0238 0.0207 0.0921 0.0817 0.0549 0.1382 0.0596 0.0606
Fixed 0.0161 0.0219 0.0211 0.5381 0.7221 0.6356 0.3114 0.2852 0.2885
Hierar 0.0132 0.0233 0.0317 0.1082 0.1280 0.0969 0.2154 0.1378 0.1405
Hiera 2 0.0191 0.0240 0.0208 0.0925 0.0815 0.0552 0.1383 0.0607 0.0724

Table 2. L1-distances between the estimates and the true densities for all datasets and strategies

In this case, choosing a small value of γ leads to a posterior distribution on mixtures
with too many non-empty components. These phenomena tend to disappear when n
increases. For λ0,2 and λ0,3, a bad choice of γ - here γ too large in strategy 2 - or a not
enough informative prior on γ, namely, a hierarchical prior with large variance, has a
significant negative impact on the behaviour of the posterior distribution. Contrariwise,
the medians of the empirical and informative hierarchical posterior distributions of λ
have similar losses, as seen in Table 2.

5. Final remarks

In this article, we stated sufficient conditions for assessing contraction rates of posterior
distributions corresponding to data-dependent priors. The proof of Theorem 1 relies on
two main ideas:

a) replacing the empirical Bayes posterior probability of the set U cJ1εn by the supre-
mum (with respect to γ) of the posterior probability of U cJ1εn over a set Kn;

b) shifting data-dependence from the prior to the likelihood using a suitable parameter
transformation ψγ,γ′ .

We do not claim that all nonparametric data-dependent priors can be handled using The-
orem 1, yet, we believe it can be applied to many relevant situations. In Section 2, we have
described possible parameter transformations for some families of prior distributions. To



22 S. Donnet et al.

D1
500 D1

1000 D1
2000

0 2 4 6 8

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

0 2 4 6 8

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

0 2 4 6 8

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

0 2 4 6 8

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

0 2 4 6 8

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

0 2 4 6 8

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

0 2 4 6 8

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

0 2 4 6 8

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

0 2 4 6 8

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

Figure 1. Estimation of λ̄1 from D1
500 (first column), D1

1000 (second column) and D1
2000 (third column)

using different strategies: empirical prior (row 1), fixed γ (row 2), hierarchical empirical prior (row 3).
True density (plain line), estimate (dashed line) and confidence band (dotted lines)
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Figure 2. Estimation of λ̄2 from D2
500 (first column), D2

1000 (second column) and D2
2000 (third column)

using different strategies: empirical prior (row 1), fixed γ (row 2), hierarchical empirical prior (row 3).
True density (plain line), estimate (dashed line) and confidence band (dotted lines)
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Figure 3. Estimation of λ̄3 from D3
500 (first column), D3

1000 (second column) and D3
2000 (third column)

using different strategies: empirical prior (row 1), fixed γ (row 2), hierarchical empirical prior (row 3).
True density (plain line), estimate (dashed line) and confidence band (dotted lines)

apply Theorem 1 in these cases, it is then necessary to control

inf
γ′: ‖γ′−γ‖≤un

`n(ψγ,γ′(θ))− `n(θ0) and sup
γ′: ‖γ′−γ‖≤un

`n(ψγ,γ′(θ))− `n(θ0).

This is typically achieved by bounding above the supremum on the right-hand side of
the last display by a well-behaved function of the data, say mθ,γ :

sup
γ′: ‖γ′−γ‖≤un

`n(ψγ,γ′(θ))− `n(θ0) ≤ unmθ,γ(X(n)).

Similarly for the infimum. This has been illustrated in the examples of Sections 3 and 4.
An important feature of the proposed approach is the identification of a set Kn satis-

fying condition (2.1). When γ̂n corresponds to a moment estimator, the set Kn is easily
identified; this is the case in the examples herein considered. When γ̂n is implicitly de-
fined, as it is the case for the maximum marginal likelihood estimator, it is more difficult
to characterize Kn and a preliminary study is needed to be able to apply Theorem 1.
This is the approach taken in Rousseau and Szabó [38], where posterior contraction rates
are provided for the maximum marginal likelihood estimator following this scheme. The
authors provide some examples where minimax-optimal posterior contraction rates are
attained and some others where sub-optimal rates are found. This mainly depends on
the family of prior distributions. In particular, sub-optimal posterior contraction rates
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are obtained for Gaussian priors in the form

θi
ind∼ N (0, γi−(2α+1)), i ∈ N,

when the true parameter belongs to a Sobolev ball with smoothness β > α+ 1/2.
Although data-dependent prior distributions are commonly used in practice, theoreti-

cal properties have been so far considered only for maximum marginal likelihood empirical
Bayes procedures when an explicit expression of the marginal likelihood is available. The
present contribution is an attempt at filling this gap.
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[49] Szabó, B., van der Vaart, A. W., and van Zanten, J. H. (2015b). Frequentist coverage

of adaptive nonparametric Bayesian credible sets. Ann. Statist., 43(4):1391–1428.
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