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This paper studies nonparametric estimation of parameters of
multivariate Hawkes processes. We consider the Bayesian setting and
derive posterior concentration rates. First rates are derived for L1-
metrics for stochastic intensities of the Hawkes process. We then de-
duce rates for the L1-norm of interactions functions of the process.
Our results are exemplified by using priors based on piecewise con-
stant functions, with regular or random partitions and priors based on
mixtures of Betas distributions. We also present a simulation study
to illustrate our results and to study empirically the inference on
functional connectivity graphs of neurons

1. Introduction. In this paper we study the properties of Bayesian
nonparametric procedures in the context of multivariate Hawkes processes.
The aim of this paper is to give some general results on posterior concen-
tration rates for such models and to study some families of nonparametric
priors.

1.1. Hawkes processes. Hawkes processes, introduced by Hawkes [27] and
Hawkes and Oakes [28], are specific point processes which are extensively
used to model data whose occurrences depend on previous occurrences of
the same process. First introduced in the univariate setting, they can be
easily extended to model marked or multivariate point processes [18].

To describe multivariate Hawkes processes, we consider a multivariate
point process (Nt)t := (N1

t , . . . , N
K
t )t, each component Nk

t recording the
time of occurrences of events of the kth component of a system or equiva-
lently the number of events of the kth component until time t. Under mild
general assumptions, a multivariate counting process is characterized by its
intensity process (λ1

t , . . . , λ
K
t ), informally given by

λkt dt = P(N t
k has a jump in [t, t+ dt] | Gt−),
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where Gt− denotes the sigma-field generated by N = (N1, . . . , NK) up to
time t (excluding t). In this paper we concentrate on linear Hawkes processes.
The intensities associated with the class of linear mutually exciting Hawkes
processes are of the form

λkt = νk +
K∑
`=1

∫ t−

−∞
h`,k(t− u)dN `

u,

where h`,k, is non-negative, supported by R+ and is called the interaction
function of N ` on Nk and νk > 0 is the spontaneous rate associated with
the process Nk. We recall that the previous integral means∫ t−

−∞
h`,k(t− u)dN `

u =
∑

T `i ∈N`:T `i <t

h`,k(t− T `i ),

where the T `i ’s are the random points of N ` (see [2]).
Hawkes processes have been extensively used in a wide range of applica-

tions. They are used to model earthquakes [45, 33, 48], interactions in social
networks [44, 47, 30, 5, 17, 31, 46], financial data [20, 7, 6, 4, 1], violence
rates [32, 37], genomes [25, 12, 42] or neuronal activities [11, 16, 34, 35, 36,
26, 39, 40], to name but a few.

Parametric inference for Hawkes models based on the likelihood is the
most common in the literature and we refer the reader to [33, 12] for in-
stance. Non-parametric estimation has first been considered by Reynaud-
Bouret and Schbath [42] who proposed a procedure based on minimiza-
tion of an `2-criterion penalized by an `0-penalty for univariate Hawkes
processes. Their results have been extended to the multivariate setting by
Hansen, Reynaud-Bouret and Rivoirard [26] where the `0-penalty is re-
placed with an `1-penalty. The resulting Lasso-type estimate leads to an
easily implementable procedure providing sparse estimation of the structure
of the underlying connectivity graph. To generalize this procedure to the
high-dimensional setting, Chen, Witten and Shojaie [15] proposed a simple
and computationally inexpensive edge screening approach, whereas Bacry,
Gäıffas and Muzy [5] combine `1 and trace norm penalizations to take into
account the low rank property of their self-excitement matrix. Very recently,
to deal with non-positive interaction functions, Chen, Shojaie, Shea-Brown
and Witten [14] combine the thinning process representation and a coupling
construction to bound the dependence coefficient of the Hawkes process.
Other alternatives based on spectral methods [3] or estimation through the
resolution of a Wiener-Hopf system [8] can also been found in the litera-
ture. These are all frequentist methods; Bayesian approaches for Hawkes
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models have received much less attention. To the best of our knowledge, the
only contributions for the Bayesian inference are due to Rasmussen [38] and
Blundell, Beck and Heller [9] who explored parametric approaches and used
MCMC to approximate the posterior distribution of the parameters.

1.2. Our contribution. In this paper, we study nonparametric posterior
concentration rates when T → +∞, for estimating the parameter f =
((νk)k=1,...,K , (h`,k)k,`=1,...,K) by using realizations of the multivariate process
(Nk

t )k=1,...,K for t ∈ [0, T ]. Analyzing asymptotic properties in the setting
where T → +∞ means that the observation time becomes very large hence
providing a large number of observations. Note that along the paper, K,
the number of observed processes, is assumed to be fixed and can be viewed
as a constant. Considering K → +∞ is a very challenging problem beyond
the scope of this paper. Using the general theory of Ghosal and van der
Vaart [22], we express the posterior concentration rates in terms of simple
and usual quantities associated to the prior on f and under mild conditions
on the true parameter. Two types of posterior concentration rates are pro-
vided: the first one is in terms of the L1-distance on the stochastic intensity
functions (λk)k=1,...,K and the second one is in terms of the L1-distance on
the parameter f (see precise notations below). To the best of our knowledge,
these are the first theoretical results on Bayesian nonparametric inference in
Hawkes models. Moreover, these are the first results on L1-convergence rates
for the interaction functions h`,k. In the frequentist literature, theoretical re-
sults are given in terms of either the L2-error of the stochastic intensity, as
in [5] and [8], or in terms of the L2-error on the interaction functions them-
selves, the latter being much more involved, as in [42] and [26]. In [42], the
estimator is constructed using a frequentist model selection procedure with
a specific family of models based on piecewise constant functions. In the
multivariate setting of [26], more generic families of approximation models
are considered (wavelets of Fourier dictionaries) and then combined with a
Lasso procedure, but under a somewhat restrictive assumption on the type
and size of the models that can be used to construct their estimators (see
Section 5.2 of [26]). Our general results do not involve such strong conditions
and therefore allow us to work with approximating families of models that
are quite general. Our conditions are very similar to the conditions proposed
in the context of density estimation in [21] so that most of the priors which
have been studied in the context of density estimation can now be easily
adapted to the context of the interaction functions of multivariate Hawkes
processes. In particular we have applied these conditions to two families
of prior models on the interaction functions h`,k: priors based on piecewise
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constant functions, with regular or random partitions and priors based on
mixtures of Betas distributions. From the posterior concentration rates, we
also deduce a frequentist convergence rate for the posterior mean, seen as a
point estimator. We finally propose an MCMC algorithm to simulate from
the posterior distribution for the priors constructed from piecewise constant
functions and a simulation study is conducted to illustrate our results.

1.3. Formal definitions, notations and assumptions. We first recall the
formal definition of multivariate Hawkes processes and we define our setup.
In the sequel, for any R-valued function h, we denote by ‖h‖p its Lp-norm.
Consider the probability space (X ,G,P). For any k and any set A, we denote
by Nk(A) the number of occurrences of Nk in A. We can define linear
multivariate Hawkes processes as follows.

Definition 1. Let T > 0. We consider f = ((νk)k=1,...,K , (h`,k)k,`=1,...,K)
such that for all k, `, νk > 0 and h`,k is non-negative and integrable. Let
(Nt)t = (N1

t , . . . , N
K
t )t and assume that GT ⊂ G with Gt = G0∨σ(Ns, s ≤ t),

for some G0 ⊂ G. Then the process (Nt)t adapted to (Gt)t is a linear multi-
variate Hawkes process with parameter f if

- almost surely, for all k 6= `, (Nk
t )t and (N `

t )t never jump simultane-
ously

- for all k, the intensity process (λkt (f))t of (Nk
t )t is given by

(1.1) λkt (f) = νk +
K∑
`=1

∫ t−

−∞
h`,k(t− u)dN `

u.

Conditions of Definition 1 on f ensure existence and uniqueness of a
pathwise Hawkes process (Nt)t = (N1

t , . . . , N
K
t )t such that Nk

t <∞ almost
surely for any k and any t. Furthermore, Theorem 7 of [10] shows that if the
K ×K matrix ρ, with

(1.2) ρ`,k =

∫ +∞

0
h`,k(t)dt, `, k = 1, . . . ,K,

has a spectral radius strictly smaller than 1, then there exists a unique
stationary distribution for the multivariate process N = (Nk)k=1,...,K with
intensities given by (1.1) and finite average intensity.

Given a parameter f = ((νk)k=1,...,K , (h`,k)k,`=1,...,K), we denote by ‖ρ‖
the spectral norm of the matrix ρ associated with f and defined in (1.2).
We recall that ‖ρ‖ provides an upper bound of the spectral radius of ρ.
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Let A > 0 be a given known constant, set

H = {(h`,k)k,`=1,...,K ; h`,k is integrable,h`,k ≥ 0, ‖h`,k‖∞ <∞,
support(h`,k) ⊂ [0, A], ∀ k, ` ≤ K}

and

F = {f = ((νk)k=1,...,K , (h`,k)k,`=1,...,K); 0 < νk <∞, ∀ k ≤ K, (h`,k)k,`=1,...,K ∈ H}.

In the sequel, for T > 0, we assume that we observe N , a linear Hawkes
process with true parameter f0 = ((ν0

k)k=1,...,K , (h
0
`,k)k,`=1,...,K) ∈ F until

time T . Denote by ρ0 the matrix such that ρ0
`,k =

∫ A
0 h0

`,k(t)dt and assume

that ‖ρ0‖ < 1. For the sake of simplicity we assume σ(Ns, s < 0) ⊂ G0 so
G0 = G0 ∨ σ(Ns, s < 0) and we denote by P0 the stationary distribution of
N (associated to f0) and by P0(·|G0) the conditional distribution of N given
G0. Finally, E0 is the expectation associated with P0.

Now, let f = ((νk)k=1,...,K , (h`,k)k,`=1,...,K) ∈ F and we define λt(f) =
(λkt (f))k=1,...,K for all t ≥ 0 where

λkt (f) = νk +
K∑
`=1

∫ t−

t−A
h`,k(t− u)dN `

u.

From Chapter II of [2], if

LT (f) :=

K∑
k=1

[∫ T

0
log(λkt (f))dNk

t −
∫ T

0
λkt (f)dt

]
,(1.3)

and
dPf (·|G0) = eLT (f)−LT (f0)dP0(·|G0),

then Pf (·|G0) is a conditional probability distribution on (X ,G) and under
Pf , N is a multivariate Hawkes process with intensity process (λt(f))0≤t≤T .
Note that if the spectral radius of ρ is less than 1, then under Pf , N is
a stationary multivariate Hawkes process. With a slight abuse of notation,
we also denote, at times, LT (λ) in place of LT (f). In the sequel, Ef is the
expectation with respect to Pf .

For f = ((νk)k=1,...,K , (h`,k)k,`=1,...,K) and f ′ = ((ν ′k)k=1,...,K , (h
′
`,k)k,`=1,...,K)

belonging to F , we set

(1.4) ‖f − f ′‖1 =

K∑
k=1

|νk − ν ′k|+
K∑
k=1

K∑
`=1

‖h`,k − h′`,k‖1,
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and

d1,T (f, f ′) =
1

T

K∑
k=1

∫ T

0
|λkt (f)− λkt (f ′)|dt.

Note that d1,T is a data-dependent pseudo-distance on F . We denote by
N (u,H0, d) the covering number of a set H0 by balls with respect to a
metric d with radius u. We set for any `, µ0

` the mean of λ`t(f0) under P0:

µ0
` = E0[λ`t(f0)].

We also write uT . vT if |uT /vT | is bounded when T → +∞ and simi-
larly uT & vT if |vT /uT | is bounded. Finally if Ω is a set Ωc denotes its
complement.

1.4. Overview of the paper. In Section 2, Theorem 1 first states the pos-
terior convergence rates obtained for stochastic intensities. Theorem 2 con-
stitutes a variation of this first result. From these results, we derive L1-rates
for the parameter f (see Theorem 3) and for the posterior mean (see Corol-
lary 1). Examples of prior models satisfying conditions of these theorems are
given in Section 2.3. In Section 3, numerical results are provided. Finally,
Section 4 provides the proof of Theorem 3 (Section 4.3). Before that, to
deal with the posterior distributions, we construct specific tests (Lemma 1
in Section 4.1) and provide a general control of the Kullback-Leibler diver-
gence between two given functions (Section 4.2). Proofs of other results are
given in the supplementary material [19].

2. Main results. This section contains the main results of the paper.
We first provide an expression for the posterior distribution.

2.1. Posterior distribution. Recall that we restrict ourselves to the setup
where for all `, k, h`,k has support included in [0, A] for some fixed known
A > 0. This hypothesis is very common in the context of Hawkes processes,
see [26].

Hence, in the following, we assume that we observe the process (Nk)k=1,...,K

on [−A, T ], but we base our inference on the log-likelihood (1.3), which is as-
sociated to the observation of (Nk)k=1,...,K on [0, T ]. We consider a Bayesian
nonparametric approach and denote by Π the prior distribution on the pa-
rameter f = ((νk)k=1,...,K , (h`,k)k,`=1,...,K). The posterior distribution is then
formally equal to

Π (B|N,G0) =

∫
B exp(LT (f))dΠ(f |G0)∫
F exp(LT (f))dΠ(f |G0)

.
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We approximate it by the following pseudo-posterior distribution, which we
write Π (·|N)

(2.1) Π (B|N) =

∫
B exp(LT (f))dΠ(f)∫
F exp(LT (f))dΠ(f)

,

which thus corresponds to choosing dΠ(f) = dΠ(f |G0).

2.2. Posterior convergence rates for d1,T and L1-metrics. In this section
we give two results of posterior concentration rates, one in terms of the
stochastic distance d1,T and another one in terms of the L1-distance, which
constitutes the main result of this paper. We define

ΩT =

{
max

`∈{1,...,K}
sup
t∈[0,T ]

N `[t−A, t) ≤ Cα log T

}
∩

{
K∑
`=1

∣∣∣∣N `[−A, T ]

T
− µ0

`

∣∣∣∣ ≤ δT
}

with δT = δ0(log T )3/2/
√
T and δ0 > 0 and Cα two positive constants not

depending on T . From Lemmas 2 and 3 in Section 2.5 in the supplementary
material [19], we have that for all α > 0 there exist Cα > 0 and δ0 > 0 only
depending on α and f0 such that

(2.2) P0 (Ωc
T ) ≤ T−α,

when T is large enough. In the sequel, we take α > 1 and Cα accordingly.
Note in particular that, on ΩT ,

∑K
`=1N

`[−A, T ] ≤ N0T, with N0 = 1 +∑K
`=1 µ

0
` , when T is large enough. We then have the following theorem.

Theorem 1. Consider the multivariate Hawkes process (Nk)k=1,...,K

observed on [−A, T ], with likelihood given by (1.3). Let Π be a prior dis-
tribution on F . Let εT be a positive sequence such that εT = o(1) and
log log(T ) log3(T )/(Tε2T ) = o(1). For B > 0, we consider

B(εT , B) :=

{
(νk, (h`,k)`)k; max

k
|νk − ν0

k | ≤ εT ,

max
`,k
‖h`,k − h0

`,k‖2 ≤ εT , max
`,k
‖h`,k‖∞ ≤ B

}
and assume the following conditions are satisfied for T large enough.

(i) There exists c1 > 0 and B > 0 such that

Π (B(εT , B)) ≥ e−c1Tε2T .
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(ii) There exists a subset HT ⊂ H, such that

Π (HcT )

Π (B(εT , B))
≤ e−(2κT+3)Tε2T ,

where κT := κ log(r−1
T ) � log log T , with rT defined in (4.4) and κ

defined in (4.2).
(iii) There exist ζ0 > 0 and x0 > 0 such that

logN (ζ0εT ,HT , ‖.‖1) ≤ x0Tε
2
T .

Then, there exist M > 0 and C > 0 such that

E0

[
Π
(
d1,T (f0, f) > M

√
log log TεT |N

)]
≤ C log log(T ) log3(T )

Tε2T
+P0(ΩcT )+o(1) = o(1).

Assumptions (i), (ii) and (iii) are very common in the literature about
posterior convergence rates. As expressed by Assumption (ii), some condi-
tions are required on the prior on HT but not on the parameters νk. Except
the usual concentration property of ν around ν0 expressed in the definition
of B(εT , B), which is in particular satisfied if ν has a positive continuous
density with respect to Lebesgue measure, we have no further condition on
the tails of the distribution of ν.

Remark 1. As appears in the proof of Theorem 1, the term
√

log log T
appearing in the posterior concentration rate can be dropped if B(εT , B) is
replaced by

B∞(εT , B) =

{
(νk, (h`,k)`)k; max

k
|νk − ν0

k | ≤ εT , max
`,k
‖h`,k − h0

`,k‖∞ ≤ εT
}
,

in Assumption (i). In this case, rT = 1/2 in Assumption (ii) and κT does
not depend on T . This is used for instance in Section 2.3.1 to study random
histograms priors whereas mixtures of Beta priors are controlled using the
L2-norm.

Similarly to other general theorems on posterior concentration rates, we
can consider some variants. Since the metric d1,T is stochastic, we cannot
use slices in the form d1,T (f0, f) ∈ (jεT , (j+1)εT ) as in Theorem 1 of Ghosal
and van der Vaart [22], however we can consider other forms of slices, using
a similar idea as in Theorem 5 of Ghosal and van der Vaart [23]. This is
presented in the following theorem.
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Theorem 2. Consider the setting and assumptions of Theorem 1 except
that assumption (iii) is replaced by the following one. There exists a sequence
of sets (HT,i)i≥1 ⊂ H with ∪iHT,i = HT and ζ0 > 0 such that

(2.3)

∞∑
i=1

N (ζ0εT ,HT,i, ‖.‖1)
√

Π(HT,i)e−x0Tε
2
T = o(1),

for some positive constant x0 > 0. Then, there exists M > 0 such that

E0

[
Π
(
d1,T (f0, f) > M

√
log log TεT |N

)]
= o(1).

The posterior concentration rates of Theorems 1 and 2 are in terms of
the metric d1,T on the intensity functions, which are data-dependent and
therefore not completely satisfying to understand concentration around the
objects of interest namely f0. We now use Theorem 1 to provide a general
result to derive a posterior concentration rate in terms of the L1-norm.

Theorem 3. Assume that the prior Π satisfies the following assump-
tions.

(i) There exists εT = o(1) such that εT ≥ δT (see the definition of ΩT )
and c1 > 0 such that

(2.4) E0

[
Π
(
AcεT |N

)]
= o(1) and P0

(
DT < e−c1Tε

2
T

)
= o(1),

where DT =
∫
F e

LT (f)−LT (f0)dΠ(f) and AεT = {f ; d1,T (f0, f) ≤ εT }.
(ii) The prior on ρ satisfies the following property: for all u0 > 0, when T

is large enough,

(2.5) Π(‖ρ‖ > 1− u0(log T )1/6ε
1/3
T ) ≤ e−2c1Tε2T .

Then, for any wT → +∞,

(2.6) E0 [Π (‖f − f0‖1 > wT εT |N)] = o(1).

Remark 2. Condition (i) of Theorem 3 is in particular verified under
the assumptions of Theorem 1, with εT = MεT

√
log log T for M a constant.

Remark 3. Compared to Theorem 1, we also assume (ii), i.e. that the
prior distribution puts very little mass near the boundary of space {f ; ‖ρ‖ <
1}. In particular, if under Π, ‖ρ‖ has its support included in [0, 1− ε] for a
fixed small ε > 0 then (2.5) is verified.
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Remark 4. A close inspection of the proofs shows that all convergence
results of Theorems 1, 2 and 3 are uniform over the class of parameters
satisfying the following condition: there exist c0 > 0, C0 > 0 and e0 ∈ (0, 1)
such that

(2.7) c0 ≤ min
k
ν0k ≤ max

k
ν0k ≤ C0, max

k,`
‖h0`,k‖∞ ≤ C0, and ‖ρ0‖ ≤ 1− e0.

A consequence of previous theorems is that the posterior mean f̂ =
Eπ[f |N ] is converging to f0 at the rate εT , which is described by the following
corollary.

Corollary 1. Under the assumptions of Theorem 1 or Theorem 2,
together with (2.5) with εT =

√
log log TεT and if

∫
F ‖f‖1dΠ(f) < +∞,

then for any wT → +∞

P0

(
‖f̂ − f0‖1 > wT εT

)
= o(1).

The proof of Corollary 1 is given in Section 2.3 in the supplementary
material [19].

The results of Theorem 3 and Corollary 1 lead to L1 convergence results,
which are weaker than the L2 convergence results of [26]. But our results
allow for a much wider range of possible dictionaries (prior models in the
Bayesian formulation) since, contrarywise to [26], we do not require the
stringent (lower bound) condition on the Gram matrix G made of the scalar
products between λT (ϕj) and λT (ϕj′) with (ϕj)j≤J denoting the dictionary
used to construct the estimator (see Inequality (2.4) of Theorem 1 of [26]). It
is assumed in particular in [26] (see Proposition 5) that this dictionary has to
be an orthonormal basis and some stringent conditions on J are considered.
We see in the following section that no such a condition is required to apply
Theorems 1 to 3, and priors based on overcomplete continuous dictionaries
are easily allowed. Indeed our assumptions resemble the type of assumptions
considered for density estimation for i.i.d. models, for which a large literature
already exists.

2.3. Examples of prior models. The advantage of Theorems 1 and 3 is
that the conditions required on the priors on the functions hk,` are quite
standard, in particular if the functions hk,` are parameterized in the following
way

hk,` = ρk,`h̄k,`,

∫ A

0
h̄k,`(u)du = 1.
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We thus consider priors on θ = (ν`, ρk,`, h̄k,`, k, ` ≤ K) following the scheme

ν`
iid∼ Πν , ρ = (ρk,`)k,`≤K ∼ Πρ, h̄k,`

iid∼ Πh̄,(2.8)

with Πν , Πρ and Πh̄ independent. We consider Πν absolutely continuous with
respect to the Lebesgue measure on R+ with positive and continuous density
πν , Πρ a probability distribution on the set of matrices with positive entries
and spectral norm ‖ρ‖ < 1, with positive density with respect to Lebesgue
measures and satisfying (2.5). We now concentrate on the nonparametric
part, namely the prior distribution Πh̄. Then, from Theorems 1 and 3 it is
enough that Πh̄ satisfies for all 1 ≤ k, ` ≤ K,

Πh̄

(
‖h̄− h̄0

k,`‖2 ≤ εT , ‖h̄‖∞ ≤ B
)
≥ e−cT ε2T ,

for some B > 0 and c > 0 such that there exists HT with

HT ⊂
{
h : [0, A]→ R+,

∫ A

0
h(x)dx = 1

}
satisfying

(2.9) Πh̄

(
HT

c) ≤ e−CTε2T log log T , logN (ζεT ;HT ; ‖.‖1) ≤ x0Tε
2
T ,

for ζ > 0, x0 > 0 and C > 0 large enough. Note that from Remark 1, if we
have that for all `, k

Πh̄

(
‖h̄− h̄0

k,`‖∞ ≤ εT , ‖h̄‖∞ ≤ B
)
≥ e−cT ε2T

then condition (2.9) can be replaced by

(2.10) Πh̄

(
HT

c) ≤ e−CTε2T , logN (ζεT ;HT ; ‖.‖1) ≤ x0Tε
2
T .

These conditions have been checked for a large selection of types of priors
on the set of densities. We discuss here two cases: one based on random
histograms, these priors make sense in particular in the context of modeling
neuronal interactions and the second based on mixtures of Betas, because
it leads to adaptive posterior concentration rates over a large collection of
functional classes. To simplify the presentation we assume that A = 1 but
generalization to any A > 0 is straightforward. Following Remark 4, we also
assume in the sequel that there exist c0 > 0, C0 > 0 and e0 ∈ (0, 1) such
that Condition (2.7) is satisfied.
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2.3.1. Random histogram prior. These priors are motivated by the neu-
ronal application, where one is interested in characterizing time zones when
neurons are or are not interacting (see Section 3). Random histograms have
been studied quite a lot recently for density estimation, both in semi and non
parametric problems. We consider two types of random histograms: regular
partitions and random partitions histograms. Random histogram priors are
defined as follows. For J ≥ 1,

h̄w,t,J = δ

J∑
j=1

wj
tj − tj−1

1Ij , Ij = (tj−1, tj),

J∑
j=1

wj = 1, δ ∼ Bern(p)

(2.11)

and
t0 = 0 < t1 < · · · < tJ = 1.

In both cases, the prior is constructed in the following hierarchical manner.

J ∼ ΠJ , e−c1xL1(x) . ΠJ(J = x), ΠJ(J > x) . e−c2xL1(x),

L1(x) = 1 or L1(x) = log x

(w1, . . . , wJ)|J ∼ Πw,

(2.12)

where c1 and c2 are two positive constants. Denoting SJ the J-dimensional
simplex, we assume that the prior on (w1, · · · , wJ) satisfies the following
property. For all M > 0, for all w0 ∈ SJ with for any j, w0j ≤M/J and all
u > 0 small enough, there exists c > 0 such that
(2.13)
Πw

(
(w01 − u/J2, w01 + u/J2)× · · · × (w0J − u/J2, w0J + u/J2)

)
> e−cJ log J .

Many probability distributions on SJ satisfy (2.13). For instance, if Πw is
the Dirichlet distribution D(α1,J , · · · , αJ,J) with c3J

−a ≤ αi,J ≤ c4, for a, c3

and c4 three positive constants, then (2.13) holds, see for instance Castillo
and Rousseau [13]. Also, consider the following hierarchical prior allowing

some of the wj ’s to be equal to 0. Set Zj
iid∼ Bern(p), j ≤ J, sz =

∑J
j=1 Zj

and (j1, · · · , jsz) the indices corresponding to Zj = 1. Then,

(wj1 , · · ·wjsz ) ∼ D(α1,J , · · · , αsz ,J), c3J
−a ≤ αi,J ≤ c4

wj = 0 if Zj = 0.

Regular partition histograms correspond to tj = j/J for j ≤ J , in which case
we write h̄w,J instead of h̄w,t,J ; while in random partition histograms we put
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a prior on (t1, · · · , tJ). We now consider Hölder balls of smoothness β ∈ (0, 1]
and radius L0 > 0, denoted H(β, L0) := {g; |g(x) − g(y)| ≤ L0|x − y|β},
and prove that the posterior concentration rate associated with both types
of histogram priors is bounded by εT = ε0(log T/T )β/(2β+1) for 0 < β ≤ 1,
where ε0 is a constant large enough. From Remark 1, we use the version of
assumption (i) based on

B∞(εT , B) =

{
(νk, (h`,k)`)k; max

k
|νk − ν0

k | ≤ εT , max
`,k
‖h`,k − h0

`,k‖∞ ≤ εT
}
,

and need to verify (2.10). Then, applying Lemma 4 of the supplementary
material of Castillo and Rousseau [13], we obtain that for each 1 ≤ k, ` ≤ K
such that h̄0

k,` 6= 0 and h̄0
k,` ∈ H(β, L0),

Π
(
‖h̄w,J − h̄0

`,k‖∞ ≤ 2L0J
−β|J

)
& pe−cJ log T

for some c > 0 and ΠJ(J = J0b(T/ log T )c1/(2β+1)) & e−c1J0(T/ log T )1/(2β+1)L1(T )

if J0 is a constant. If h̄0
`,k = 0 then Π

(
‖h̄w,J − h̄0

`,k‖∞ = 0
)

= 1− p, so that

Π (B∞(εT , B)) & εKT × [(1− p)p]K2 × e−K2c1J0(T/ log T )1/(2β+1)L1(T ) & e−c
′Tε2T ,

for some c′ > 0. This result holds both for the regular grid and ran-
dom grid histograms with a prior on the grid points (t1, · · · , tJ) given by
(u1, · · · , uJ) ∼ D(α, · · · , α) with uj = tj − tj−1. Then condition (2.5) is

verified if Π(‖ρ‖ > 1 − u) . e−a
′u−a with a > 3/β and a′ > 0, for u small

enough. This condition holds for any β ∈ (0, 1] if there exist a′, τ > 0 such
that when u is small enough

(2.14) Π (‖ρ‖ > 1− u) . e−a
′e−1/uτ

.

Moreover, set HT = {h̄w,J , J ≤ J1(T/ log T )1/(2β+1)} for J1 a constant, then
for all ζ > 0, logN (ζεT ,HT , ‖.‖1) . J1(T/ log T )1/(2β+1) log T. Therefore,
(2.10) is checked. We finally obtain the following corollary.

Corollary 2 (regular partition). Under the random histogram prior
(2.11) based on a regular partition and verifying (2.12) and (2.13) and if
(2.14) is satisfied, then if for any k, ` = 1, . . . ,K, h0

k,` belongs to H(β, L) for
0 < β ≤ 1, for any wT → +∞,

E0

[
Π
(
‖f − f0‖1 > wT (T/ log T )−β/(2β+1)|N

)]
= o(1).
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To extend this result to the case of random partition histogram priors
we consider the same prior on (J,w1, · · · , wJ) as in (2.12) and the following
condition on the prior on t = (t1, · · · , tK). Writing u1 = t1, uj = tj−tj−1, we
have that u = (u1, · · · , uJ) belongs to the J-dimensional simplex SJ and we
consider a Dirichlet distribution on (u1, · · · , uJ), D(α, · · · , α) with α ≥ 6.
The arguments used to the regular partition apply also to the case of the
random partition apart from the computation of the entropy, which is more
involved here.

Corollary 3. Consider the random histogram prior (2.11) based on
random partition with a prior on w = (w1, . . . , wJ) satisfying (2.12) and
(2.13) and with a Dirichlet prior on u = (tj − tj−1, j ≤ J), with parameter
α ≥ 6. If (2.14) is satisfied, then if for any k, ` = 1, . . . ,K, h0

k,` belongs to
H(β, L) for 0 < β ≤ 1, for any wT → +∞,

E0

[
Π
(
‖f − f0‖1 > wT (T/ log T )−β/(2β+1)|N

)]
= o(1).

The proof of this corollary is given in Section 2.6 in the supplementary
material [19]. In the following section, we consider another family of priors
suited for smooth functions hk,` and based on mixtures of Beta distributions.

2.3.2. Mixtures of Betas. The following family of prior distributions is
inspired by Rousseau [43]. Consider functions

hk,` = ρk,`

(∫ 1

0

gαk,`,εdMk,`(ε)

)
+

, gα,ε(x) =
Γ(α/(ε(1− ε)))

Γ(α/ε)Γ(α/(1− ε))
x

α
1−ε−1(1−x)

α
ε −1

where Mk,` are bounded signed measures on [0, 1] such that |Mk,`| = 1. In
other words the above functions are the positive parts of mixtures of Betas
distributions with parameterization (α/ε, α/(1 − ε)) so that ε is the mean
parameter. The mixing random measures Mk,` are allowed to be negative.
The reason for allowing Mk,` to be negative is that hk,` is then allowed to be
null on sets with positive Lebesgue measure. The prior is then constructed
in the following way. Writing hk,` = ρk,`h̄k,` we define a prior on h̄k,` via

a prior on Mk,` and on αk,`. In particular we assume that Mk,`
iid∼ ΠM

and αk,`
iid∼ πα. As in Rousseau [43] we consider a prior on α absolutely

continuous with respect to Lebesgue measure and with density such that
there exists b1, c1, c2, c3, A,C > 0 such that for all u large enough,

πα(c1u < α < c2u) ≥ Ce−b1u1/2

πα(α < e−Au) + πα(α > c3u) ≤ Ce−b1u1/2 .
(2.15)
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For instance if
√
α follows a Gamma distribution then (2.15) is verified.

There are many ways to construct discrete signed measures on [0, 1], for
instance, writing

(2.16) M =
J∑
j=1

rjpjδεj ,

the prior on M is then defined by J ∼ ΠJ and conditionally on J ,

rj
iid∼ Ra(1/2), εj

iid∼ Gε, (p1, · · · , pJ) ∼ D(a1, · · · , aJ),

where Ra denotes the Rademacher distribution taking values {−1, 1} each
with probability 1/2. Assume that Gε has positive continuous density on
[0, 1] and that there exists A0 > 0 such that

∑J
j=1 aj ≤ A0. Recall that

when β > 1, the Hölder ball H(β, L0) is defined as the set of functions g
such that

‖g‖∞ +

bβc∑
`=1

‖g(`)‖∞ + sup
x 6=y

|g(bβc)(x)− h(bβc)(y)|
|x− y|β−bβc

≤ L0

where the last term disappears if β is an integer. We have the following
corollary.

Corollary 4. Consider a prior as described above. Assume that for all
k, ` ≤ K h0

k,` = (g0
k,`)+ for some functions g0

k,` ∈ H(β, L0) with β > 0. If
condition (2.14) holds and if Gε has density with respect to Lebesgue measure
verifying

xA1(1− x)A1 . gε(x) . x3(1− x)3, for some A1 ≥ 3,

then, for any wT → +∞,

E0

[
Π(‖f − f0‖1 > wTT

−β/(2β+1)(log T )5β/(4β+2)
√

log log T |N)
]

= o(1).

Note that in the context of density estimation, T−β/(2β+1) is the minimax
rate and we expect that it is the same for Hawkes processes. Indeed, since
P0 (Ωc

T ) goes to 0, the number of observations is of order T .

3. Numerical illustration in the neuroscience context. It is now
well-known that neurons receive and transmit signals as electrical impulses
called action potentials. Although action potentials can vary somewhat in
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duration, amplitude and shape, they are typically treated as identical stereo-
typed events in neural coding studies. Therefore, an action potentials se-
quence, or spike train, can be characterized simply by a series of all-or-none
point events in time. Multivariate Hawkes processes have been used in neu-
roscience to model spike trains of several neurons and in particular to model
functional connectivity between them through mutual excitation or inhi-
bition [29]. In this section, we conduct a simulation study mimicking the
neural context, through appropriate choices of parameters. The protocol is
similar to the setting proposed in Section 6 of [26].

3.1. Simulation scenarios. We consider three simulation scenarios in-
volving respectively K = 2 and K = 8 neurons. The scenarios are roughly
similar to the one tested in [26]. Following the notations introduced in the
previous sections, for any (k, `) ∈ {1, . . . ,K}2, hk,` denotes the interaction
function of neuron k over neuron `. We now describe the three scenarios. The
upper bound of each hk,`’s support, denoted [0, A], is set equal to A = 0.04
seconds.

• Scenario 1. We first consider K = 2 neurons and piecewise constant
interactions: h1,1 = 30·1(0,0.02], h2,1 = 30·1(0,0.01], h1,2 = 30·1(0.01,0.02],
h2,2 = 0.
• Scenario 2. In this scenario, we mimic K = 8 neurons belonging to

three independent groups. The non-null interactions are the piecewise
constant functions defined as : h2,1 = h3,1 = h2,2 = h1,3 = h2,3 =
h8,5 = h5,6 = h6,7 = h7,8 = 30 · 1(0,0.02].

We plot the subsequent interac-
tions directed graph between the 8
neurons: the vertices represent the
K neurons and an oriented edge is
plotted from vertex k to vertex `
if the interaction function hk,` is
non-null.

• Scenario 3. Setting K = 2, we consider non-piecewise constant inter-
actions functions defined as

h1,1(t) = 100 · e−100t1(0,0.04](t), h2,1(t) = 30 · 1(0,0.02](t)

h1,2(t) = 1
2×0.004

√
2π
e
− (t−0.02)2

2×0.0042 · 1(0,0.04](t), h2,2(t) = 0.
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For any scenario, we consider ν` = 20, ` = 1, . . . ,K. For each scenario,
we simulate 25 datasets on the time interval [0, 22] seconds. The Bayesian
inference is performed considering recordings on three possible periods of
length T = 5 seconds, T = 10 seconds and T = 20 seconds. For any dataset,
we remove the initial period of 2 seconds corresponding to 50 times the
length of the support of the hk,`-functions, assuming that, after this period,
the Hawkes processes have reached their stationary distribution. Note that
the chosen parameters induce that the mean number of events per neuron
and per period of five seconds is approximatively 321 for Scenario 1, 472 for
Scenario 2 and 317 for Scenario 3. More details on the simulated dataset
are supplied in the supplementary material [19].

3.2. Prior distribution on f = (ν`, hk,`)k,`∈{1,...,K}. We use the prior dis-
tribution described in Section 2.3 setting a log-normal prior distribution on
the ν`’s of parameter µν , s

2
ν . About the interaction functions (hk,`)k,`∈{1,...,K},

the prior distribution is defined on the set of piecewise constant functions,
hk,` being written as follows:

(3.1) hk,`(t) = δ(k,`)
J(k,`)∑
j=1

β
(k,`)
j 1

[t
(k,`)
j−1 ,t

(k,`)
j ]

(t), ρk,` =

∫ ∞
0

hk,`(t)dt

with t
(k,`)
0 = 0 and t

(k,`)

J(k,`) = A. Using the notations in Section 2.3, we have if

δ(k,`) 6= 0, β
(k,`)
j = ρk,`

ω
(k,`)
j

(t
(k,`)
j −t(k,`)j−1 )

. Here, δ(k,`) is a global parameter of nullity

for hk,` and model the graph of interactions: for all (k, `) ∈ {1, . . . ,K}2,

(3.2) δ(k,`) ∼i.i.d Bern(p).

For all (k, `) ∈ {1, . . . ,K}2, the number of steps (J (k,`)) follows a translated
Poisson prior distribution:

(3.3) J (k,`)|{δ(k,`) = 1} ∼i.i.d. 1 + P(η).

To minimize the influence of η on the posterior distribution, we consider a
hyperprior distribution on the hyperparameter η:

(3.4) η ∼ Γ(aη, bη).

Given J (k,`), we consider a spike and slab prior distribution on (β
(k,`)
j )j=1,...,J(k,`) .

Let us introduce Z
(k,`)
j ∈ {0, 1} such that ∀j ∈ {1, . . . , J (k,`)},

(3.5)
P
(
Z

(k,`)
j = z|δ(k,`) = 1

)
= πz, ∀z ∈ {0, 1}

β
(k,`)
j |{δ(k,`) = 1} ∼ Z

(k,`)
j × logN (µβ, s

2
β).
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We consider two prior distributions on (t
(k,`)
j )j=1,...,J(k,`) . The first one (re-

ferred as the regular histogram prior) is a regular partition of [0, A]:

(3.6) t
(k,`)
j =

j

J (k,`)
A ∀j = 0, . . . , J (k,`).

The second prior distribution is referred as the random histogram prior and

(3.7)
(u1, . . . , uJ(k,`)) ∼ D(α′1, . . . , α

′
J(k,`)),

t
(k,`)
j = A

∑j
r=1 ur, ∀j = 1, . . . , J (k,`); t

(k,`)
0 = 0

Equations (3.2)-(3.6) (or (3.7)) define a prior distribution P on (hk,`)k,`,
without any constraint on ‖ρ‖. The prior is defined by truncating this dis-
tribution to the set {‖ρ‖ ≤ 1 − ε} for an arbitrarily small ε. In practice
we have chosen ε = 10−16, which is the precision of the machine. In the
simulation studies, we set the following hyperparameters:

µβ = 3.5, sβ = 1, µν = 3.5, sν = 1

P(Z
(k,`)
j = 1) = 1/2, P(δ(k,`) = 1) = p = 1/2; α′j = 2, ∀j

3.3. Posterior sampling. The posterior distribution is sampled using a
standard reversible-jump Markov chain Monte Carlo (RJ-MCMC). Consid-
ering the current parameter (ν,h), ν(c) is proposed using a Metropolis-

adjusted Langevin proposal. For a fixed J (k,`), the heights β
(k,`)
j are proposed

using a random walk proposing null or non-null candidates. Changes in the
number of steps J (k,`) are generated by standard birth and death moves
[24]. In this simulation study, we generate chains of length 30000 removing
the first 10000 burn-in iterations. The algorithm is implemented in R on an
Intel(R) Xeon(R) CPU E5-1650 v3 @ 3.50GHz.

Remark 5. Note that, in order to get a better mixing Markov Chain,
we first sample the posterior distribution of f on the unconstraint parameter
set, i.e. not taking into account the constraint ‖ρ‖ ≤ 1 − ε, and we discard
all iterations where ‖ρ‖ > 1− ε.

The computation times (mean over the 25 datasets) are given in Table 1.
First note that the computation time increases roughly as a linear function
of T . This is due to the fact that the heavier task in the algorithm is the
integration of the conditional likelihood and the computation time of this
operation is roughly a linear function of the length of the integration (ob-
servation) time interval. Besides, because we implemented a reversible-jump
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MCMC algorithm, the computation time is a stochastic quantity: the algo-
rithm can explore parts of the domain where the number of bins J (k,`) is
large, thus increasing the computation time. Moreover, we remark that the
computation time explodes as K increases (due to the fact that K2 inter-
action functions have to be estimated), reaching computation times greater
than a day.

K=2 K = 8 K = 2 with smooth hk,`
Prior on t Regular Random Regular Random

T = 5 1508.44 1002.45 823.84
T = 10 1383.72 1459.55 37225.19 1284.93
T = 20 2529.19 2602.48 49580.18 1897.17

Table 1
Mean computation time (in seconds) for the reversible-jump MCMC algorithms as a

function of the scenario, the observation time interval and the prior distribution (random
or regular histogram). The mean is computed over the 25 simulated datasets

3.4. Results. We describe here the results for each scenario. We con-
sider the previous scenarios, three observation durations T and two prior
distributions. In Table 2, we supply the estimated L1-distances on the λk’s
and the hk,`’s. More precisely, we evaluate the estimated average posterior
expectation of the L1-distances on the hk,`’s:

(3.8) Dh =
1

25

25∑
sim=1

Ê

 1

K2

K∑
k,`=1

∥∥hk,` − h0
k,`

∥∥
1

∣∣∣∣(N sim
t )t∈[0,T ]

 ,
and the estimated average posterior expectation of the renormalized pseudo-
distance d1,T on the parameters:

(3.9) Dλ =
1

25

25∑
sim=1

Ê
[

1

K
d1,T (f, f0)

∣∣∣∣(N sim
t )t∈[0,T ]

]
.

where Ê refers to the Monte Carlo estimator obtained as a by product of the
RJ-MCMC algorithm. To compute the Monte Carlo posterior expectations
given in Equations (3.8) and (3.9), we consider the outputs of the reversible
jumps MCMC algorithm, then evaluate the functions hk,` and λk on a fine
grid and finally compute the mean. Observe that the distances have been
normalized by the number of estimated functions (K2 for the hk,`’s and K
for the λk’s). As a consequence, we can compare results obtained in the three
scenarios and reported in Table 2.
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As expected, Table 2 illustrates the fact that the error decreases as T
increases. As we will detail later, the random histogram prior gives better
results than the regular prior. Finally, performances are better when the
true interaction function hk,` are step functions (due to the form of the
prior distribution).

K=2 K=8 K=2 with smooth hk,`
Prior Regular Random Regular Random

Dλ

T=5 5.79 4.79 5.87
T=10 3.74 3.16 0.70 4.74
T=20 2.70 2.05 0.39 3.95

Dh

T=5 0.1423 0.0996 0.1431
T=10 0.0844 0.0578 0.1199 0.1131
T=20 0.0564 0.0336 0.0616 0.0945

Table 2
Posterior expectations of the distances Dλ and Dh

3.4.1. Results for scenario 1: K = 2 with step functions. When K = 2,
we estimate the parameters using both regular and random prior distribu-

tions on (t
(k,`)
j ) (equations (3.6) and (3.7)). One typical posterior distribution

of ν` is given in Figure 1a (left), for a randomly chosen dataset and the reg-
ular histogram, clearly showing a smaller variance when the length of the
observation interval increases. We also present the global estimation results,
over the 25 simulated datasets for the regular prior. The regularized dis-
tribution of the posterior mean estimators for (ν1, ν2) computed for the 25

simulated datasets
(
Ê
[
ν`|(N sim

t )t∈[0,T ]

])
sim=1...25

is given in Figure 1a on

the right panel, showing an expected decreasing variance for the estimator
as T increases. We only supply the plots for the regular histogram prior.
The plots corresponding to the random histogram prior are supplied in the
supplementary material [19] and are similar to the one presented her.

Regarding the estimate of the interaction functions, for the same given
dataset, the estimation of the hk,`’s is plotted in Figure 1b (left panel) for
the regular prior, with its credible interval. Its corresponding estimation
with the random prior is given in Figure 1b (right panel). For both prior
distributions, the functions are globally well estimated, showing a clear con-
centration when T increases. The regions where the interaction functions are
null are also well identified. The estimation associated with the random his-
togram prior is in general better than the one supplied by the regular prior.
This may be due to several factors. First, the random histogram prior leads
to a sparser estimation than the regular one. Secondly, it is easier to design
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a proposal move in the reversible-jump MCMC algorithm in the former case
than in the latter context.
Moreover, the interaction graph is perfectly inferred since the posterior
probability for δ(2,2) to be 0 is almost 1. For the 25 datasets, we esti-
mate the posterior probabilities P̂(δ(k,`) = 1|(N sim

t )t∈[0,T ]) for k, ` = 1, 2 and
sim = 1, . . . , 25. In Table 3, we display the mean of these posterior quanti-
ties. Even for the shorter observation time interval (T = 5) these quantities
–defining completely the connexion graph– are well recovered. These results
are improved when T increases. Once again, the random histogram prior
(3.7) gives slightly better results.

Finally, we also have a look at the conditional intensities λkt . On Figure 2,
we plot 50 realizations of the conditional intensity from the posterior dis-
tributions. More precisely, for one given dataset, for 50 parameters θ(i) =(

(h
(i)
k,`)k,`, (ν

(i)
k )k=1...K

)
sampled from the posterior distribution (issued from

the RJ-MCMC chain), we compute the corresponding (λ
k(i)
t ) and plot them.

For the sake of clarity, only the conditional intensity of the first process
(k = 1) is plotted and we restrict the graph to a short time interval [3.2, 3.6].
As noticed before, the conditional intensity is well reconstructed, with a
clear improvement of the precision as the length of the observation time T
increases.

` over k 1 over 1 1 over 2 2 over 1 2 over 2

True value of δ(k,`) 1 1 1 0

Prior

T = 5
Regular 1.0000 0.8970 1.0000 0.0071
Random 1.0000 0.9812 1.0000 0.0196

T = 10
Regular 1.0000 0.9954 1.0000 0.0047
Random 1.0000 1.0000 1.0000 0.0102

T = 20
Regular 1.0000 1.0000 1.0000 0.0099
Random 1.0000 1.0000 1.0000 0.0102

Table 3
Results of Scenario 1. Mean of the posterior estimations:

1
25

∑25
sim=1 P̂(δ(k,`) = 1|(Nsim

t )t∈[0,T ]), for the three observation time intervals and the
two prior distributions.

3.4.2. Results for scenario 2: K = 8. In this scenario, we perform the
Bayesian inference using only the regular prior distribution on (t(k,`))(k,`)∈{1,...,K}2
and two lengths of observation interval (T = 10 and T = 20). Here we set
aη = 3 and bη = 1.
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(a) On the left, posterior distribution of ν1 (top) and ν2 (bottom) with T = 5,
T = 10 and T = 20 for one dataset. On the right, regularized distribution of the

posterior mean of (ν1, ν2)
(
Ê
[
ν`|(Nsim

t )t∈[0,T ]

])
sim=1...25

over the 25 simulated

datasets.

(b) Estimation of the (hk,`)k,`=1,2 using the regular prior (left panel) and the ran-
dom histogram prior (right panel). The gray region indicates the credible region
for hk,`(t) (delimited by the 5% and 95% percentiles of the posterior distribution).
The true hk,` is in plain line, the posterior expectation and posterior median for
hk,`(t) are in dotted and dashed lines respectively.

Fig 1: Results of scenario 1 : estimation of (hk,`)k,`=1,2 and (νk)k=1,2
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Fig 2: Results for scenario 1 . Conditional intensity λ1
t : 50 realizations of λ1

t

from the posterior distribution for one particular dataset and 3 lengths of
observation interval (T = 5 on the first row, T = 10 on the second row, and
T = 20 on the third row). True conditional intensity in black plain line.

The posterior distribution of the νk’s for a randomly chosen dataset is plot-
ted in Figure 3a. The prior distribution is in dotted line and is flat. The
posterior distribution concentrates around the true value (here 20) with a
smaller variance when T increases.
In Figure 3b, we plot the posterior means (with credible regions) of the non-
null interaction functions for the same randomly chosen dataset. The time
intervals where the interaction functions are null are again perfectly recov-
ered. The posterior uncertainty around the non-null functions hk,` decreases
when T increases.
In the context of neurosciences, we are especially interested in recovering
the interaction graph of the K = 8 neurons. In Figure 4a, we consider the
same dataset as the one used in Figures 3a and 3b and plot the posterior
estimation of the interaction graph, for respectively T = 10 on the left and
T = 20 on the right. The width and the gray level of the edges are propor-
tional to the estimated posterior probability P̂(δ(k,`) = 1|(Nt)t∈[0,T ]). The
global structure of the graph is recovered (to be compared to the true graph
plotted before). We observe that the false positive edges appearing when
T = 10 disappear when T = 20. In Figure 4b, we consider the mean of the
estimates of the graph over the 25 datasets. The resulting graph for T = 10
is on the left and for T = 20 on the right.
Note that, in this example, for any (k, `) such that the true δ(k,`) = 1, the
estimated posterior probability P̂(δ(k,`) = 1|(N sim

t )t∈[0,T ]) is equal to 1, for
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(a) Results on (ν`)k=1...K

for a particular dataset.
Prior distribution (dot-
ted line), Posterior dis-
tributions for T = 10
(dashed line) and T = 20
(plain line).

(b) Estimation of the non null interaction functions
(hk,`)k,`=1,...,8 using the regular prior for T = 10 (upper
panel) and T = 20 (bottom). The gray region indicates
the credible region for hk,`(t) (delimited by the 5% and
95% percentiles of the posterior distribution). The true
hk,` is in plain line, the posterior expectation and pos-
terior median for hk,`(t) are in dotted and dashed lines
respectively (often indistinguishable).

Fig 3: Results of Scenario 2 for one given dataset
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(a) For one given dataset. Posterior es-
timation of the interaction graph for
T = 10 on the left and T = 20
on the right, for one randomly cho-
sen dataset. Level of grey and width
of the edges proportional to P̂(δ(k,`) =
1|(Nsim

t )t∈[0,T ]), sim = 1.

(b) For the 25 simulated datasets. Poste-
rior estimation of the interaction graph
for T = 10 on the left and T = 20 on
the right, averaged over all the datasets.
Level of grey and width of the edges
proportional to 1

25

∑25
sim=1 P̂(δ(k,`) =

1|(Nsim
t )t∈[0,T ]).

Fig 4: Results of Scenario 2 : interaction graphs

any dataset and any length of observation interval. In other words, the non-
null interactions are perfectly recovered. In a simulation scenario with other
interaction functions, the results could have been different.

3.4.3. Results for scenario 3: K = 2 with smooth functions. In this con-
text, we perform the inference using the random histogram prior distribution
(3.7). In this case, we set aη = 10 and bη = 1, thus encouraging a larger
number of steps in the interactions functions. The behavior of the posterior
distribution of νk is the same as in the other examples. In Figure 5a, we plot
the distribution of

(
E
[
νk|(N sim

t )t∈[0,T ]

])
sim=1...25

for T = 5, 10, 20 seconds
and clearly observe a decrease of the bias and the variance as the length of
the observation period increases. Some estimation of the interaction func-
tions is given in Figure 5b. Due to the choice of the prior distribution of
these quantities, we get a sparse posterior inference. Note that, like in the
other scenarios, the null interaction is clearly identified, making possible to
recover to true posterior graph of interactions.

4. Proofs of Theorems. In the sequel, specific tests to deal with the
numerator of posterior distributions are first built in Section 4.1. The de-
nominator is controlled by using upper bounds of Section 4.2. We finally
provide the proof of Theorem 3 in Section 4.3. Other technical proofs are
provided in the supplementary material [19], which contains in particular
the proofs of Theorems 1 and 2, the proof of Corollary 1 and the proofs of
results of Section 2.3.



26 S. DONNET ET AL.

(a) On the left, posterior distribution
of ν1 (top) and ν2 (bottom) with T =
5, T = 10 and T = 20 for one
dataset. On the right, regularized distri-
bution of the posterior mean of (ν1, ν2)(
Ê
[
ν`|(Nsim

t )t∈[0,T ]

])
sim=1...25

over the

25 simulated datasets.

(b) Estimation of the interaction func-
tions (hk,`)k,`=1,2 using the random his-
togram prior for T = 5 (upper panel),
T = 10 (middle) and T = 20 (bottom).
The gray region indicates the credible
region for hk,`(t) (delimited by the 5%
and 95% percentiles of the posterior dis-
tribution). The true hk,` is in plain line,
the posterior expectation and posterior
median for hk,`(t) are in dotted and
dashed lines respectively (often undis-
tinguishable).

Fig 5: Results of Scenario 3
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4.1. Construction of tests. As usual, the control of the posterior distri-
butions is based on specific tests. We build them in the following lemma
whose proof is given in the supplementary material [19]. Our tests are based
on ideas similar to L1-tests for density estimation, but adapted to the more
complex framework of Hawkes processes. To build them, we use specific
Bernstein-type concentration inequalities for martingales established in [26],
which leads to the natural use of the L1-loss. Moreover, the subsequent tests
also take into account the fact that the metric is random, which makes their
construction slightly more involved.

Lemma 1. Let j ≥ 1, f1 ∈ Fj and define the test

φf1,j = max
`=1,...,K

(
1{N`(A1,`)−Λ`(A1,`;f0)≥jT εT /8} ∨ 1{N`(Ac1,`)−Λ`(Ac1,`;f0)≥jT εT /8}

)
,

with for all ` ≤ K, A1,` = {t ∈ [0, T ]; λ`t(f1) ≥ λ`t(f0)}, Λ`(A1,`; f0) =∫ T
0 1A1,`

(t)λ`t(f0)dt and Λ`(Ac1,`; f0) =
∫ T

0 1Ac1,`(t)λ
`
t(f0)dt. Then

E0 [1ΩT φf1,j ] + sup
‖f−f1‖1≤jεT /(6N0)

E0

[
Ef
[
1ΩT1f∈Sj (1− φf1,j)|G0

]]
≤ (2K + 1) max

`
e−x1,`TjεT (

√
µ0`∧jεT ),

with N0 is defined in Section 2 and x1,` = min
(

36, 1/(4096µ0
` ), 1/

(
1024K

√
µ0
`

))
.

4.2. Control of the denominator.

Lemma 2. Let

KL(f0, f) = E0[LT (f0)− LT (f)].

On B(εT , B),

(4.1) 0 ≤ KL(f0, f) ≤ κ log(r−1
T )Tε2T ,

for T larger than T0, with T0 some constant depending on f0, with

(4.2) κ = 4

K∑
k=1

(ν0
k)−1

(
3 + 4K

K∑
`=1

(
AE0[(λ`0(f0))2] + E0[λ`0(f0)]

))
and rT is defined in (4.4). Then,

(4.3) P0

(
LT (f0)− LT (f) ≥ (κ log(r−1

T ) + 1)Tε2T
)
≤ C log log(T ) log3(T )

Tε2T
,

for C a constant only depending on f0 and B.
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Proof. We consider the set Ω̃T defined in Lemma 2 in the supplementary
material [19] and we set NT = Cα log T . We have

KL(f0, f) =
K∑
k=1

E0

[∫ T

0
log

(
λkt (f0)

λkt (f)

)
dNk

t −
∫ T

0

(
λkt (f0)− λkt (f)

)
dt

]

=

K∑
k=1

E0

[∫ T

0
log

(
λkt (f0)

λkt (f)

)
λkt (f0)dt−

∫ T

0

(
λkt (f0)− λkt (f)

)
dt

]

=
K∑
k=1

E0

[∫ T

0
Ψ

(
λkt (f)

λkt (f0)

)
λkt (f0)dt

]
,

where for u > 0, Ψ(u) := − log(u) − 1 + u ≥ 0. First, observe that on
Ω̃T ∩B(εT , B),
(4.4)
λkt (f)

λkt (f0)
≥ νk

ν0
k +

∑K
`=1

∫ t−
t−A h

0
`,k(t− u)dN `(u)

≥
mink ν

0
k − εT

maxk ν
0
k + max`,k ‖h0

`,k‖∞KNT
=: rT .

Furthermore, observe that for u ∈ [rT , 1/2), Ψ(u) ≤ log(r−1
T ), since rT =

o(1). And for all u ≥ 1/2, Ψ(u) ≤ (u− 1)2. Finally, for any u ≥ rT ,

Ψ(u) ≤ 4 log(r−1
T )(u− 1)2.

Therefore, on B(εT , B), we have

0 ≤ KL(f0, f) ≤ 4 log(r−1
T )

K∑
k=1

E0

[∫ T

0

(λkt (f0)− λkt (f))2

λkt (f0)
1Ω̃T

dt

]
+RT

≤ 4 log(r−1
T )

K∑
k=1

(ν0
k)−1E0

[∫ T

0
(λkt (f0)− λkt (f))2dt

]
+RT

where

RT =

K∑
k=1

E0

[
1Ω̃cT

∫ T

0

(
− log

(
λkt (f)

λkt (f0)

)
− 1 +

λkt (f)

λkt (f0)

)
λkt (f0)dt

]
.

We first deal with the first term. Using stationarity of the process and Propo-
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sition 2 of [26]

E0

[∫ T

0
(λkt (f0)− λkt (f))2dt

]
≤ 2T (ν0

k − νk)2 + 2

∫ T

0
E0

( K∑
`=1

∫ t−

t−A
(h`,k − h0

`,k)(t− u)dN `(u)

)2
 dt

≤ 2Tε2T + 4K

∫ T

0
E0

 K∑
`=1

(∫ t−

t−A
(h`,k − h0

`,k)(t− u)λ`u(f0)du

)2
 dt

+ 4K

∫ T

0
E0

 K∑
`=1

(∫ t−

t−A
(h`,k − h0

`,k)(t− u)
(
dN `

u − λ`u(f0)du
))2

 dt
≤ 2Tε2T + 4K

K∑
`=1

‖h`,k − h0
`,k‖22

∫ T

0

∫ t−

t−A
E0[(λ`u(f0))2]dudt

+ 4K

∫ T

0

K∑
`=1

∫ t−

t−A
(h`,k − h0

`,k)
2(t− u)E0

[
λ`u(f0)

]
dudt

≤ 2Tε2T + 4KT
K∑
`=1

‖h`,k − h0
`,k‖22

(
AE0[(λ`0(f0))2] + E0[λ`0(f0)]

)
≤ Tε2T

(
2 + 4K

K∑
`=1

(
AE0[(λ`0(f0))2] + E0[λ`0(f0)]

))
.

We now deal with RT . We have, on B(εT , B),

λkt (f)

λkt (f0)
≤ (ν0

k)−1

(
νk +

K∑
`=1

‖h`,k‖∞ sup
t∈[0,T ]

N `([t−A, t))

)

≤ (ν0
k)−1

(
ν0
k + εT +B

K∑
`=1

sup
t∈[0,T ]

N `([t−A, t))

)
.

(4.5)

Conversely,

λkt (f)

λkt (f0)
≥ (ν0

k − εT )

(
ν0
k +

K∑
`=1

‖h0
`,k‖∞ sup

t∈[0,T ]
N `([t−A, t))

)−1

.(4.6)

So, using Lemma 2 in the supplementary material [19], if α is an abso-
lute constant large enough, RT = o(1) and RT = o(Tε2T ). Choosing κ =

4
∑K

k=1(ν0
k)−1

(
3 + 4K

∑K
`=1

(
AE0[(λ`0(f0))2] + E0[λ`0(f0)]

))
terminates the
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proof of (4.1). Note that if B(εT , B) is replaced with B∞(εT , B) (see Re-
mark 1) then

λkt (f)

λkt (f0)
≤ 1 +

|νk − ν0
k |+

∑
` ‖h`,k − h`,k‖∞NT
ν0
k

and
λkt (f)

λkt (f0)
≥ 1−

|νk − ν0
k |+

∑
` ‖h`,k − h`,k‖∞NT
ν0
k

so that we can take rT = 1/2 and RT = o(Tε2T ).
We now study

LT := LT (f0)− LT (f)− E0[LT (f0)− LT (f)].

We have for any integer QT such that x := T/(2QT ) > A,

LT (f0)− LT (f) =
K∑
k=1

(∫ T

0
log

(
λkt (f0)

λkt (f)

)
dNk

t −
∫ T

0

(
λkt (f0)− λkt (f)

)
dt

)

=

QT−1∑
q=0

∫ 2qx+x

2qx

K∑
k=1

(
log

(
λkt (f0)

λkt (f)

)
dNk

t −
(
λkt (f0)− λkt (f)

)
dt

)

+

QT−1∑
q=0

∫ 2qx+2x

2qx+x

K∑
k=1

(
log

(
λkt (f0)

λkt (f)

)
dNk

t −
(
λkt (f0)− λkt (f)

)
dt

)

=:

QT−1∑
q=0

Fq +

QT−1∑
q=0

F̃q.

Note that Fq is a measurable function of the points of N appearing in [2qx−
A; 2qx+x) denoted by F(N|[2qx−A;2qx+x)). Using Proposition 3.1 of [41], we
consider an i.i.d. sequence (Mx

q )q=0,...,QT−1 of Hawkes processes with the
same distribution as N but restricted to [2qx − A; 2qx + x) and such that
for all q, the variation distance between Mx

q and N|[2qx−A;2qx+x) is less than
2P0(Te > x − A), where Te is the extinction time of the process. We then
set for any q, Gq = F(Mx

q ). We have built an i.i.d. sequence (Gq)q=0,...,QT−1

with the same distributions as the Fq’s. Furthermore, for any q,

P0(Fq 6= Gq) ≤ 2P0(Te > x−A).
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We now have, by stationarity

P0(LT ≥ Tε2T ) = P0

(
LT (f0)− LT (f)− E0[LT (f0)− LT (f)] ≥ Tε2T

)
= P0

QT−1∑
q=0

(Fq − E0[Fq]) +

QT−1∑
q=0

(F̃q − E0[F̃q]) ≥ Tε2T


≤ 2P0

QT−1∑
q=0

(Fq − E0[Fq]) ≥ Tε2T /2


≤ 2P0

QT−1∑
q=0

(Gq − E0[Gq]) ≥ Tε2T /2

+ 2P0 (∃q; Fq 6= Gq)

≤ 2P0

QT−1∑
q=0

(Gq − E0[Gq]) ≥ Tε2T /2

+ 4QTP0(Te > x−A).

We first deal with the first term of the previous expression:

P0

QT−1∑
q=0

(Gq − E0[Gq]) ≥ Tε2T /2

 ≤ 4

T 2ε4T
Var0

QT−1∑
q=0

Gq


≤ 4

T 2ε4T

QT−1∑
q=0

Var0 (Gq) ≤
4QT
T 2ε4T

Var0 (G0) =
4QT
T 2ε4T

Var0 (F0) .

Now, by setting dM(k)
t = dNk

t − λkt (f0)dt,

Var0 (F0) ≤ E0

[
F 2

0

]
≤ E0

( K∑
k=1

∫ T
2QT

0
log

(
λkt (f0)

λkt (f)

)
dNk

t −
K∑
k=1

∫ T
2QT

0
(λkt (f0)− λkt (f))dt

)2


.
K∑
k=1

E0

(∫ T
2QT

0
Ψ

(
λkt (f)

λkt (f0)

)
λkt (f0)dt+

∫ T
2QT

0
log

(
λkt (f0)

λkt (f)

)
dM(k)

t

)2


.
K∑
k=1

E0

(∫ T
2QT

0
Ψ

(
λkt (f)

λkt (f0)

)
λkt (f0)dt

)2
+ E0

(∫ T
2QT

0
log

(
λkt (f0)

λkt (f)

)
dM(k)

t

)2


.
K∑
k=1

T

QT
E0

[∫ T
2QT

0
Ψ2

(
λkt (f)

λkt (f0)

)
(λkt (f0))2dt

]
+ E0

[∫ T
2QT

0
log2

(
λkt (f0)

λkt (f)

)
λkt (f0)dt

]
.
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Note that on Ω̃T , for any t ∈ [0;T/(2QT )],

0 ≤ Ψ

(
λkt (f)

λkt (f0)

)
λkt (f0) ≤ C1(B, f0)N 2

T ,

where C1(B, f0) only depends on B and f0. Then,

E0

[
1Ω̃T

∫ T
2QT

0
Ψ2

(
λkt (f)

λkt (f0)

)
(λkt (f0))2dt

]
≤ C1(B, f0)N 2

T×E0

[
1Ω̃T

∫ T
2QT

0
Ψ

(
λkt (f)

λkt (f0)

)
λkt (f0)dt

]

and using same arguments as for the bound of KL(f0, f), the previous
term is bounded by log(r−1

T )N 2
T × (T/QT )ε2T up to a constant. Since for any

u ≥ 1/2, we have | log(u)| ≤ 2|u− 1|, we have for any u ≥ rT ,

| log(u)| ≤ 2 log(r−1
T )|u− 1|

and

E0

[
1Ω̃T

∫ T
2QT

0
log2

(
λkt (f0)

λkt (f)

)
λkt (f0)dt

]
≤ 4 log2(r−1

T )(ν0
k)−1E0

[
1Ω̃T

∫ T
2QT

0
(λkt (f0)− λkt (f))2dt

]
. log2(r−1

T )(T/QT )ε2T .

By taking α ≥ 2 and using Lemma 2 in the supplementary material [19], we
obtain

E0

[
1Ω̃cT

∫ T
2QT

0
Ψ2

(
λkt (f)

λkt (f0)

)
(λkt (f0))2dt

]
+E0

[
1Ω̃cT

∫ T
2QT

0
log2

(
λkt (f0)

λkt (f)

)
λkt (f0)dt

]
= o(TQ−1

T ε2T ).

Finally,
Var0 (F0) ≤ C2(B, f0) log(r−1

T )N 2
T × (T/QT )2ε2T .

for C2(B, f0) a constant only depending on B and f0, and

P0(LT ≥ Tε2T ) ≤ 8C2(B, f0) log(r−1
T )N 2

T×(T/QT )×(1/(Tε2T )+4QTP0(Te > x−A).

It remains to deal with the last term of the previous expression. The proof of
Proposition 3 of [26] shows that there exists a constant D only depending on
f0 such that if we take x = D log T , which is larger thanA for T large enough,
then 4QTP0(Te > x − A) = o(T−1). We now have log(r−1

T )N 2
T × (T/QT ) =

O(log log(T ) log3(T )), which ends the proof of the lemma.
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4.3. Proof of Theorem 3. Define

AL1(wT εT ) = {f ∈ F ; ‖f − f0‖1 ≤ wT εT },

then Π (AL1(wT εT )c|N) ≤ Π(AcεT |N)+Π (AL1(wT εT )c ∩AεT |N) . Using As-
sumption (i), we just need to prove that

(4.7) E0

[
1Ω1,T

Π (AL1(wT εT )c ∩AεT |N)
]

= o(1)

for some well chosen set Ω1,T ⊂ ΩT such that

(4.8) P0(Ωc
1,T ∩ ΩT ) = o(1).

Using (2.2) in the supplementary material [19], there exists C0 such that for
all f ∈ AεT , on ΩT ,

∑
` ν` +

∑
`,k ρ`,k ≤ C0. Therefore, on ΩT ,

AL1(wT εT )c ∩AεT ⊂ {f ∈ F ; ‖f − f0‖1 > wT εT ,
∑
`

(ν` +
∑
k

ρ`,k) ≤ C0}.

We set uT := u0(log T )1/6ε
1/3
T with u0 a large constant to be chosen later.

Let FT = {f ∈ F ; ‖ρ‖ ≤ 1− uT }. From Assumption (ii),

Π(FcT ) ≤ e−2c1Tε2T

for T large enough. Following the same lines as in the proof of Theorem 1,
we then have

E0

[
1Ω1,T

Π (AL1(wT εT )c ∩AεT |N)
]
≤ P0(DT < e−c1Tε

2
T )

+ ec1Tε
2
T

∫
AL1

(wT εT )c∩FT
E0 [Pf (Ω1,T ∩ {d1,T (f, f0) ≤ εT }|G0)] dΠ(f) + e−c1Tε

2
T ,

(4.9)

where Pf denotes the stationary distribution when the true parameter is f .
We will now prove that

sup
f∈AL1

(wT εT )c∩FT
Pf (Ω1,T ∩ {d1,T (f, f0) ≤ εT }|G0) = o(e−c1Tε

2
T ).

Let Zm,` be defined by

Zm,` =

∫ (2m+1)T/(2JT )

2mT/(2JT )

∣∣∣∣∣ν` − ν0
` +

K∑
k=1

∫ t−

t−A
(hk,` − h0

k,`)(t− s)dNk
s

∣∣∣∣∣ dt
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with JT such that JT = bκ0(log T )−1Tu2
T c and κ0 a constant chosen later.

Note that JT → +∞ and T/JT → +∞ when T → +∞. Since Td1,T (f, f0) ≥
max1≤`≤K

∑JT−1
m=1 Zm,` we have that

Pf (Ω1,T ∩ {d1,T (f, f0) ≤ εT }|G0) ≤ min
1≤`≤K

Pf

(
Ω1,T ∩

{
JT−1∑
m=1

Zm,` ≤ εTT

}
|G0

)

≤ min
1≤`≤K

Pf

(
Ω1,T ∩

{
JT−1∑
m=1

(Zm,` − Ef [Zm,`]) ≤ εTT − (JT − 1)Ef [Z1,`]

}∣∣∣∣∣G0
)
.

From Lemma 4 in the supplementary material [19], we have that there exists
` (depending on f and f0) such that Ef [Z1,`] ≥ CT‖f − f0‖1/JT for some
C > 0 so that if f ∈ AL1(wT εT )c then, since wT → +∞,

Pf (Ω1,T ∩ {d1,T (f, f0) ≤ εT }|G0) ≤ max
`

Pf

(
Ω1,T ∩

{
JT−1∑
m=1

[Zm,` − Ef [Zm,`]] ≤ −
CT‖f − f0‖1

2

}∣∣∣∣∣G0
)
.

The problem in dealing with the right hand side of the above inequality is
that the Zm,`’s are not independent. We therefore show that we can con-
struct independent random variables Z̃m,` such that, conditionally on G0,∑JT−1

m=1 (Zm,`−Ef [Zm,`]) is close to
∑JT−1

m=1 (Z̃m,`−Ef [Z̃m,`]) on Ω1,T . For all
1 ≤ m ≤ JT −1, define N0,m the sub-counting measure of N generated from
the ancestors of any type born on [(2m− 1)T/(2JT ), (2m+ 1)T/(2JT )] and
the K-multivariate point process N̄m defined by

N̄m = N −N0,m.

Denote

Z̃m,` =

∫ (2m+1)T/(2JT )

2mT/(2JT )

∣∣∣∣∣ν` − ν0
` +

K∑
k=1

∫ t−

t−A
(hk,` − h0

k,`)(t− s)dN0,m,k
s

∣∣∣∣∣ dt,
whereN0,m,k if the kth coordinate ofN0,m. Observe that if Im = [2mT/(2JT )−
A, (2m+ 1)T/(2JT )], then N̄m(Im) is the number of points of N̄m lying in



NONPARAMETRIC BAYESIAN ESTIMATION FOR HAWKES PROCESSES 35

Im. We have

|Zm,` − Z̃m,`| =

∣∣∣∣∣
∫ (2m+1)T/(2JT )

2mT/(2JT )

(∣∣∣∣∣ν` − ν0
` +

K∑
k=1

∫ t−

t−A
(hk,` − h0

k,`)(t− s)dNk
s

∣∣∣∣∣
−

∣∣∣∣∣ν` − ν0
` +

K∑
k=1

∫ t−

t−A
(hk,` − h0

k,`)(t− s)dN0,m,k
s

∣∣∣∣∣
)
dt

∣∣∣∣∣
≤ 1N̄m(Im)6=0

K∑
k=1

∫ (2m+1)T/(2JT )

2mT/(2JT )

∫ t−

t−A
|(hk,` − h0

k,`)(t− s)|dN̄m,k
s dt

≤ 1N̄m(Im)6=0

K∑
k=1

‖hk,` − h0
k,`‖1N̄m,k(Im) ≤ ‖f − f0‖1N̄m(Im).

(4.10)

Let Ω1,T = ΩT ∩{
∑JT−1

m=1 N̄m(Im) ≤ CT/8}. In Lemma 6 in the supplemen-

tary material [19], we prove that there exists c̃0 such that P0

(
Ωc

1,T ∩ ΩT

)
≤

e−Cc̃0T , and (4.8) is satisfied. Using (4.10), we have on Ω1,T

(4.11) |Zm,` − Z̃m,`| ≤ ‖f − f0‖1CT/8.

Lemma 6 in the supplementary material [19] proves that there exists a con-
stant κ0 > 0 (see the definition of JT ) such that

∑JT−1
m=1 Ef [N̄m(Im)] ≤

CT/8, so that

JT−1∑
m=1

|Ef [Zm,`]−Ef [Z̃m,`]| ≤
JT−1∑
m=1

Ef |Zm,`−Z̃m,`| ≤ ‖f−f0‖1
JT−1∑
m=1

Ef [N̄m(Im)] ≤ C‖f−f0‖1T/8

and

Pf (Ω1,T ∩ {d1,T (f, f0) ≤ εT }|G0) ≤ max
`

Pf

(
Ω1,T ∩

{
JT−1∑
m=1

[Zm,` − Ef [Zm,`]] ≤ −
CT‖f − f0‖1

2

}∣∣∣∣∣G0

)

≤ Pf

(
JT−1∑
m=1

(−Z̃m,` + Ef (Z̃m,`)) ≥ CT‖f − f0‖1/4

∣∣∣∣∣G0

)
.

Since by construction the Z̃m,` are positive, independent, identically dis-
tributed and independent of G0, the Bernstein inequality gives

Pf

(
JT−1∑
m=1

(−Z̃m,` + Ef (Z̃m,`)) ≥ CT‖f − f0‖1/4

∣∣∣∣∣G0

)
≤ e
− C2T2‖f−f0‖

2
1

32(JT−1)Ef (Z̃
2
1,`

)
.
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We have to bound Ef (Z̃2
1,`). Observe that

Z̃m,` ≤
∫ (2m+1)T/(2JT )

2mT/(2JT )

∣∣ν` − ν0
`

∣∣ dt+

∫ (2m+1)T/(2JT )

2mT/(2JT )

K∑
k=1

∫ t−

t−A

∣∣(hk,` − h0
k,`)(t− s)

∣∣ dN0,m,k
s dt

≤ T

2JT

∣∣ν` − ν0
`

∣∣+
K∑
k=1

‖hk,` − h0
k,`‖1N0,m,k(Im)

and

Ef
[
Z̃2

1,`

]
≤ T 2

2J2
T

|ν` − ν0
` |2 + 2K

K∑
k=1

‖hk,` − h0
k,`‖21Ef [N0,1,k(I1)2]

≤ T 2

J2
T

‖f − f0‖21
(

1

2
+

2K maxk Ef [N0,1,k(I1)2]J2
T

T 2

)
.

We then have to bound T−2J2
T maxk Ef [N0,1,k(I1)2]. Using notations of

Lemma 6 in the supplementary material [19], we have

Ef [N0,1,k(I1)2] ≤ Ef

 K∑
`=1

∑
T/(2JT )≤p≤3T/(2JT )

Bp,`∑
k=1

W `
k,p

2
≤ KT

JT

K∑
`=1

∑
T/(2JT )≤p≤3T/(2JT )

Ef

Bp,`∑
k=1

W `
k,p

2
≤ KT

JT

K∑
`=1

∑
T/(2JT )≤p≤3T/(2JT )

Ef

Ef
Bp,`∑

k=1

W `
k,p

2

|Bp,`


≤ KT 2

J2
T

K∑
`=1

(ν2
` + ν`)Ef [(W `)2].

We now bound Ef [(W `)2] by using Lemma 5 in the supplementary material
[19]. Without loss of generality, we can assume that ‖ρ‖ > 1/2. We take

t = 1−‖ρ‖
2
√
K

log
(

1+‖ρ‖
2‖ρ‖

)
and

Ef [(W `)2] ≤ 2t−2Ef [exp(tW `)] . t−2 . (1− ‖ρ‖)−4

and
T−2J2

T max
k

Ef [N0,1,k(I1)2] . (1− ‖ρ‖)−4.
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Therefore, since f ∈ FT , there exists a constant C ′K only depending on K
such that

Pf

(
JT−1∑
m=1

(−Z̃m,` + Ef (Z̃m,`)) ≥ CT‖f − f0‖1/4

∣∣∣∣∣G0

)
≤ e−C′KJT (1−‖ρ‖)4

≤ e−C′KJTu4T . e−C
′
Kκ0(log T )−1Tu6T . e−C

′
Kκ0u

6
0Tε

2
T

where the last inequality follows from the definition of uT and JT . We obtain
the desired bound as soon as u0 is large enough, namely

sup
f∈AL1

(wT εT )c∩FT
Pf (Ω1,T ∩ {d1,T (f, f0) ≤ εT }|G0) = o(e−c1Tε

2
T ).

Using (4.9) and Assumption (i), we then have that (4.7) is true, which proves
the theorem.
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