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Abstract

Functional Principal Component Analysis is a reference method for dimension
reduction of curve data. Its theoretical properties are now well understood in the
simplified case where the sample curves are fully observed without noise. How-
ever, functional data are noisy and necessarily observed on a finite discretization
grid. Common practice consists in smoothing the data and then to compute the
functional estimates, but the impact of this denoising step on the procedure’s sta-
tistical performance are rarely considered. Here we prove new convergence rates
for functional principal component estimators. We introduce a double asymptotic
framework: one corresponding to the sampling size and a second to the size of the
grid. We prove that estimates based on projection onto histograms show optimal
rates in a minimax sense. Theoretical results are illustrated on simulated data and
the method is applied to the visualization of genomic data.

Keywords— Functional data analysis, Principal Components Analysis, minimax rates.

1 Introduction
Functional Data Analysis (FDA) is a statistical framework dedicated to curve data that are sup-
posed to be the realizations of random functions [Ferraty and Vieu, 2006, Ramsay and Silverman,
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2010, Ferraty and Romain, 2011]. Hence, in this framework, the infinite-dimensional nature of
the process that generated the data is central to develop efficient estimation procedures. Func-
tional Principal Components Analysis (fPCA) is a common method to reduce dimensionality of
curve data and has been considered either as an exploration tool [Ramsay and Silverman, 2010]
or as a pre-processing step for many statistical procedures [Kalogridis and Van Aelst, 2019,
Goode et al., 2020, Perrin et al., 2021, Song et al., 2020, Seo, 2020, Jaimungal and Ng, 2007].
In most theoretical works (see e.g. Cardot and Johannes [2010], Cai and Yuan [2012], Mas and
Ruymgaart [2015]) it is assumed that the functional data Zi(t) is observed for individual i at all
points t in an interval (e.g. [0, 1]). However, in practice, the Zi’s are observed on a finite grid
ti,0, . . . , ti,pi−1 and can be corrupted by noise. Few theoretical works in the literature of FDA
study the effect of the sampling scheme on the performance of the estimation procedures.

Here, we consider the case where data are observed on a fixed and regular design (fixed
grid), and we focus on the estimation of the elements of the functional principal components,
from a non-asymptotic point of view. The case of a fixed regular grid actually corresponds
to a large number of applications in FDA, for instance electricity consumption curves [Devijver
et al., 2020], temperature or precipitation curves [Ramsay and Silverman, 2010], or spectrometric
datasets [Pham et al., 2010]) to name a few. More precisely, we observe

{Yi(th), i = 1, . . . , n, h = 0, . . . , p− 1}, (1)

generated from the following statistical model

Yi(th) = Zi(th) + εi,h, i = 1, . . . , n, (2)

where {εi,h}i=1,...,n;h=0,...,p−1 is an i.i.d. sequence of centered Gaussian errors with variance
σ2, the Zi’s are i.i.d. random elements of the space of continuous functions on the interval [0, 1]
and th = h/(p − 1), h = 0, . . . , p − 1. We also suppose that the εi,h’s are independent from
the Zi’s.

Two statistical frameworks are often considered: longitudinal data analysis (LDA) or FDA
and it seems important to clarify at this stage the links and differences between these two ap-
proaches. In LDA, data are often observed at random, hence the sampling points are random
and depend on each individual. From a theoretical point of view, the number of sampling points
can be supposed bounded, and results concerning convergence rates only involve the number of
individuals n. There have been a lot of methodological and theoretical works in the case where
the observations are observed on a random grid with a small number of observations per subject
(sparse longitudinal data), we refer to Yao et al. [2005], Hall et al. [2006], Dai et al. [2018],
Zhong et al. [2022] and references therein. In this paper, we consider the case where the number
of sampling points is usually considered to be large and shared by all curves, which is frequently
the case in FDA and motivates the characterization of a double asymptotic in n and p.

At first sight, inference for fPCA and classical PCA on the n × p matrix of observations is
comparable. Following this idea, when p ≫ n, functional PCA would be confronted to incon-
sistency problems as in standard multivariate PCA (see Johnstone and Lu 2009 and references
therein). However, this is counter-intuitive in the functional framework: when p increases, more
and more information is recorded on the underlying process, which should improve statistical
performance. Indeed, in the continuous non-noisy case, where Zi(t) is observed at all points t,
corresponding to p = +∞ and σ = 0, it is known from the works of Dauxois et al. [1982] that
the estimation of the principal components is consistent. Moreover, an optimal n−1 parametric
rate (up to a logarithmic factor) can be achieved for the risk associated to the L2-error [Bosq,
2000, Theorem 4.5, p. 106] or to the operator norm of the projector [Mas and Ruymgaart, 2015].
Considering our data as multivariate data would resume to ignore the underlying regularity of
the processes Zi and the fact that, when p is large, Zi(th) is close to Zi(th+1). Then, specific
attention should be paid.
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From a theoretical perspective, the main challenge is to assess the rates of convergence of the
estimators of the elements of the principal components basis, in a very specific framework. FDA
combines two very different convergence settings: a first one associated with the sampling of n
independent processes Z1, . . . , Zn, and a non-parametric setting since data are functions, here
observed at p points. Hall et al. [2006] investigate the estimation of the elements of the fPCA
basis in the case where the number of discretization points by individual is bounded and the grid
is random (i.e. pi ≤ p with p fixed and n → +∞). They obtain non-parametric rates for a
kernel smoothing estimator which are optimal under the assumption that the function to estimate
is exactly two-times differentiable. However, the authors themselves point out that their results
are no longer valid in the case of a fixed regular grid, where consistent estimation is not possible
when p is fixed. In the context of the estimation of the mean function of a functional data sample,
Cai and Yuan [2011] found that the optimal rates of convergence are completely different if we
consider a fixed grid or a random grid. It appears that, in the case of a fixed grid, the minimax
estimation rates of the function principal components basis remain unknown. Hence we propose
to investigate the joint impact of noise and discretization (sampling scheme) on the estimation of
the eigenelements of the covariance operator.

In addition, a common practice is to first smooth the data, usually by projecting it into a
splines basis with a roughness penalty or via kernel smoothing (see e.g. Ramsay and Silverman
2010). However, the statistical implications of the smoothing step are rarely debated, whereas it
raises some concern, mainly related to the level of regularity of the underlying process versus the
choice of the smoothing basis, and the capacity of distinguishing noise from signal through this
method. [Cai and Yuan, 2011, Section 2.2, p. 2336] point out that, in the case of mean estimation,
there is no benefit from smoothing in terms of convergence rates when the observation grid is
fixed. This implies that usual splines or kernel smoothing step can lead to suboptimal estimators
if the smoothing parameter is not well chosen (see Theorem 2.2 of Cai and Yuan [2011]).

To fully understand the statistical complexity of functional principal component analysis, it
is necessary to compute the minimax rates of estimation and to compare it with the parametric
bounds obtained by Mas and Ruymgaart [2015]. Upper bounds in the case of noisy discretized
data have also been proposed [Bunea and Xiao, 2015, Descary and Panaretos, 2019]. Bunea
and Xiao [2015] established results under strong conditions of the eigenvalues of the operator.
Descary and Panaretos [2019] studied a generalization to heterogeneous noise with possible time
dependency at the price of two strong assumptions: analyticity of the eigenfunctions and finite
rank of the covariance operator of the signal; the achieved rate is then n−1 + p−2.

Here we study convergence rates for the estimation of the eigenelements of the covariance
operator Γ under a mild regularity assumption on the process Z. Denoting by α this regularity,
our assumption is equivalent to assuming that the kernel K is a bivariate α-Hölder continuous
function. Under a moment assumption for process Z, we obtain rates of the form

n−1 + p−2α.

These rates, which are new, are, moreover, optimal in the minimax sense for the estimation of the
first eigenfunction (we prove a lower bound). We illustrate these rates in practice on simulations.

These rates tell us a lot about the behavior of the estimated eigenfunctions under the double
asymptotic in p and n. When p is large compared to n1/(2α), we find the optimal parametric rate
n−1 obtained by Dauxois et al. [1982], Mas and Ruymgaart [2015] when the curves Zi are fully
observed and without noise. Moreover, even though the problem is intrinsically non-parametric,
and in the presence of noisy observations, the simple estimator obtained by projection on the
p-bins histogram system reaches the optimal minimax rate. Therefore, we do not need regular-
ization, which may be counter-intuitive. The knowledge of α is also not necessary. These results
are confirmed by the simulation study we have conducted which also suggests that the same con-
clusion applies for the estimation of the eigenvalues for which we do not know so far whether
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the rate obtained is minimax optimal. Lastly, at the end of Section 3.4, we discuss our results
and compare them with the most recent ones. Our results show that the underlying regularity
of the data plays a special role in the theoretical developments, with important implications in
practice. In our setting with equispaced deterministic observations, the sampling scheme cannot
be too sparse to obtain parametric rates and even consistency. This is a main difference with
the random sampling scheme considered by [Hall et al., 2006]. We complete our theoretical
and empirical study by two original applications of functional principal component analysis, on
single-cell expression data analysis to characterize the immune response to viral infection, and
to genomic data for the characterization of replication origins along the human genome with
respect to the spatial distribution of particular sequence motifs called G-quadruplexes [Zheng
et al., 2020].

Notations: We denote ∥ · ∥ the L2-norm associated with the scalar product ⟨·, ·⟩ and ∥ ·
∥ℓ2 the ℓ2-norm for a vector. For any continuous operator T on L2[0, 1], we denote |||T ||| the
operator norm of T associated to ∥ · ∥ and defined by |||T ||| = supf∈L2[0,1],∥f∥=1 ∥Tf∥. For P
a probability measure, we denote E the associated expectation. We denote PZ the distribution
of the process Z and EZ the associated expectation. The set of continuous functions on [0, 1]
is denoted C0. We adopt the following notation: for two sequences a = (an,p)n,p≥1, b =
(bn,p)n,p≥1 of real fixed quantities or random variables, we denote a ≲ b if there exists a
universal constant c such that an,p ≤ cbn,p a.s. for all n, p ≥ 1. We define sign(u) = 1{u≥0}−
1{u<0} for any u ∈ R.

2 Functional PCA for discretely observed random func-
tions

We suppose in the following that Z1, . . . , Zn is a sample of independent centered continuous
functional variables with same distribution as a process Z.

The covariance operator Γ defined by

Γ(f)(·) = E(⟨f, Z⟩Z(·)), f ∈ L2,

is well defined provided E(∥Z∥2) < +∞, which is assumed in the following.
Defining the eigenfunctions η∗ = {η∗d , d ∈ N∗} and the associated eigenvalues, assumed to

be distinct, µ∗ = {µ∗
d, d ∈ N∗ ; µ∗

1 > µ∗
2 > . . .} of the operator Γ, we obtain the Karhunen-

Loève representation of Z [Bosq, 2000]:

Z =
∑
d∈N∗

ζ∗dµ
∗1/2
d η∗d , (3)

where ζ∗ = {ζ∗d , d ∈ N∗} is a sequence of non-correlated centered random variables of vari-
ance 1, usually called the principal components scores and the family (η∗j )j≥1 is an orthonormal
basis of L2. Then, for any integer D, the best D-dimensional approximation of process Z is
spanned by the first D eigenfunctions. Our aim is to provide estimators of these eigenelements
based on noisy discretized data, and to assess their statistical performance.

In [Dauxois et al., 1982, Bosq, 2000, Ramsay and Silverman, 2010, Hall et al., 2006], the
Zi(t)’s are observed for all t ∈ [0, 1] without noise and the estimator of η∗d is the eigenfunction
η̂d associated to the d-th largest eigenvalue of the empirical covariance operator

Γ̂(f)(·) = 1

n

n∑
i=1

⟨f, Zi⟩Zi(·), f ∈ L2.
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However, when process Z is observed on a grid, the empirical covariance operator Γ̂ can not be
calculated and must be approximated.

Then, in the setting of Model (2), we first reconstruct the observed curves on the entire
interval and we define, for i = 1, . . . , n,

Ỹi(t) =
∑
λ∈ΛD

ỹi,λϕλ(t), ỹi,λ =
1

p

p−1∑
h=0

Yi(th)ϕλ(th), t ∈ [0, 1],

where {ϕλ, λ ∈ ΛD} is an orthonormal system of L2([0, 1]) of cardinality D ≥ 1 and ỹi,λ an
approximation of ⟨Yi, ϕλ⟩. Similarly, we define Z̃i(t), z̃i,λ, Ẽi(t), ε̃i,λ by replacing Yi(th) in
the previous expressions by Zi(th), and εi,h.

A natural estimator of the covariance operator is then

Γ̂ϕ(f)(·) =
1

n

n∑
i=1

⟨f, Ỹi⟩Ỹi(·), f ∈ L2.

It is easily seen from the definition above that the operator Γ̂ϕ is self-adjoint. It is also finite-
rank hence compact. Then by the diagonalization theorem for self-adjoint compact operators [see
Brezis, 2011, Theorem 6.11, p. 167], there exists a basis (η̂ϕ,d)d≥1 of L2 made of eigenfunctions
of Γ̂ϕ. In the following, we study the L2-risk of the estimator η̂ϕ,d for d = 1, . . . ,D.

3 Minimax rates of the eigenfunction estimator
3.1 Smoothness class for the functional curve Z

Minimax rates of convergence depend on the underlying smoothness of the process of interest.
In the sequel, for any α ∈ (0, 1] and L > 0 we consider the regularity class

Rα(L) =
{
P, probability measure on C0 such that∫

C0

{z(t)− z(s)}2dP (z) ≤ L|t− s|2α, (s, t) ∈ [0, 1]2
}
.

This regularity set is natural. Indeed, we can for instance remark that PZ , the distribution of Z,
satisfies

PZ ∈ Rα(L) ⇔ EZ [{Z(t)− Z(s)}2] ≤ L|t− s|2α, (s, t) ∈ [0, 1]2.

This condition can be seen as a regularity assumption on the covariance kernel

K(s, t) = E
{
Z(s)Z(t)

}
, (s, t) ∈ [0, 1]2.

Indeed, our regularity condition E(∥Z∥2) < +∞ combined with the condition PZ ∈ Rα(L)
imply that kernel K is bounded

∥K∥∞ = sup
(s,t)∈[0,1]2

|K(s, t)| <∞,

and is an α-Hölder continuous function. More precisely, for any (s, s′, t, t′) ∈ [0, 1]4,

PZ ∈ Rα(L) ⇒ |K(s, t)−K(s′, t′)| ≤ (∥K∥∞L)1/2
(
|s− s′|α + |t− t′|α

)
. (4)
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Conversely, if K is a bivariate α-Hölder continuous function, we know that there exists L′ > 0
such that

|K(s, t)−K(s′, t′)| ≤ L′ (|s− s′|2 + |t− t′|2
)α/2

.

Then
EZ [{Z(t)− Z(s)}2] = K(s, s)− 2K(s, t) +K(t, t) ≤ 2L′|s− t|α,

and PZ ∈ Rα(2L
′).

Classical Gaussian processes belong to Rα(L) for α and L well chosen. For instance, if
Z is a standard Brownian motion or a Brownian bridge then PZ ∈ R1/2(1). More generally,
fractional Brownian motions with Hurst exponent α and Hurst index Cα belong to Rα(Cα). If
Z is an Ornstein-Uhlenbeck process, its covariance function isK(s, t) = exp(−|t−s|/2), then
it verifies

EZ [{Z(t)− Z(s)}2] = 2
(
1− e−|t−s|/2) ≤ |t− s|, (s, t) ∈ R2,

which implies PZ ∈ R1/2(1). We refer to Lifshits [1995] for the precise definitions and proper-
ties of these processes.

Remark 1 We also remark that L depends on the eigenvalues sequence (µ∗
d)d≥1. Indeed, sup-

pose e.g. that, for all d ≥ 1, the eigenfunction η∗d is α-holdérian (i.e. there exists Ld > 0 such
that |η∗d(t) − η∗d(s)| ≤ Ld|t − s|α, for all t, s ∈ [0, 1]), then, if

∑
d≥1 µ

∗
dL

2
d < +∞, from the

Karhunen-Loève decomposition (3),we can write, since the ζ∗d ’s are centered and uncorrelated,

EZ [{Z(t)− Z(s)}2] = EZ

[{∑
d≥1

ζ∗dµ
∗1/2
d (η∗d(t)− η∗d(s))

}2
]

=
∑
d≥1

µ∗
d(η

∗
d(t)− η∗d(s))

2

≤
∑
d≥1

µ∗
dL

2
d|t− s|2α.

Then Z ∈ Rα(L) with L =
∑
d≥1 L

2
dµ

∗
d.

3.2 Lower bound
The lower bound of the risk for estimating eigenfunctions can be viewed as a benchmark to
achieve. We focus on the first eigenfunction, but a similar result, though more technical, could
be obtained for the other eigenfunctions. However, since the estimation of higher order eigen-
functions is a more complex statistical problem, it seems intuitively reasonable to us that the
lower bound on these eigenfunctions is (at worst) of the same order.
Theorem 1 Let α ∈ (0, 1] and L > 0. Assume that the rank of the covariance operator Γ is
larger than 2. Then, for any n ≥ 1 and p ≥ 1, we have:

inf
η̂1

sup
PZ∈Rα(L)

E(∥η̂1 − η∗1∥2) ≥ c
(
p−2α + n−1

)
,

where c is a positive constant depending on L, α and σ and the infimum is taken over all estima-
tors i.e. all measurable functions of the observations {Yi(th), h = 0, . . . , p− 1, i = 1, . . . , n}.
Theorem 1 is obtained by combining Propositions 2 and 3 stated in Appendix B.

Proposition 2 provides the parametric rate n−1, which is expected in our setting where we
observe n curves. This rate has been proven to be optimal, up to logarthmic terms, in the case
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where the curves is supposed to be observed at all points (see e.g. Mas and Ruymgaart 2015).
More precisely, Proposition 2 gives

inf
η̂1

sup
PZ∈Rα(L)

E[∥η̂1 − η∗1∥2] ≥ c1n
−1, inf

η̂2
sup

PZ∈Rα(L)

E[∥η̂2 − η∗2∥2] ≥ c1n
−1,

where c1 depends on L, α and σ. The key point to establish the lower bound is the explicit form
of the Kullback-Leibler divergence between two Gaussian distributions. The first two eigenval-
ues introduced in the building of models of the proof of Proposition 2 provide a constant spectral
gap (i.e. µ∗

2 − µ∗
1 is a constant independent of both n and p).

The lower bound of the minimax risk by p−2α relies on the construction of two processes
Z0, Z1 ∈ Rα(L) with first eigenfunctions distant of p−α from each other and such thatZ0(th) =
Z1(th) almost surely for all h = 0, . . . , p−1 (see Appendix B.2 and in particular Equation (8)).

Observe that if p, the number of observations per individual, is bounded, then rates cannot
go to 0. In particular, consistency cannot be achieved by any estimate in our statistical model
if p is a constant. Our results corroborate arguments of the discussion section 3.2 of Hall et al.
[2006]. Parametric rates can be achieved only if p is large enough, namely larger than n1/(2α).

We can remark that the constant L appearing in the regularity class is strongly linked with
the eigenvalues sequence (µ∗

d)d≥1. This can be seen via Remark 1 but also via the proofs of
Propositions 2 and 3 where the first eigenvalues of the processes we construct are upper-bounded,
up to multiplicative constants, by L.

3.3 General upper bounds
We now derive upper bounds for estimates η̂ϕ,d. For this purpose, we set

b1 = 8(µ∗
1 − µ∗

2)
−2

and for d = 2, . . . ,D,
bd = 8/min(µ∗

d − µ∗
d+1, µ

∗
d−1 − µ∗

d)
2.

Since we supposed that all the true eigenvalues µ∗
d’s are distinct, the quantities bd’s are well

defined and finite.
The eigenfunction η∗d being defined up to a sign change (−η∗d is also an eigenfunction

associated to the eigenvalue µ∗
d), we cannot assess our procedure by using the classical risk

E(∥η̂ϕ,d − η∗d∥2). Following Bosq [2000], we evaluate the risk of

η∗±,d = sign(⟨η̂ϕ,d, η∗d⟩)× η∗d .

We consider the following mild assumption on the 4th moment of the vector

Z = {Z(t0), . . . , Z(tp−1)}T .

Assumption 1 We assume that there exists C1 > 0 such that

E{(vTZ)4} ≤ C1[E{(vTZ)2}]2, v ∈ Rp. (5)

Assumption 1 ensures a control of the fourth moment of z̃1,λ. It is satisfied with C1 = 3 if
Z is Gaussian. Then we obtain the following result:
Theorem 2 Let d be fixed. Under Assumption 1, we have

E(∥η̂ϕ,d − η∗±,d∥2) ≤ 5bd

|||ΠDΓΠD − Γ|||2 + max(C1 + 3; 6)

n

 ∑
λ∈ΛD

(
σ2
λ + s2λ

)
2

+A(K)
p (ϕ,D) +A(σ)

p (ϕ,D) +
σ4

p2

]
,

7



where ΠD is the orthogonal projection onto SD = span(ϕλ, λ ∈ ΛD),

σ2
λ = Var(ε̃1,λ) =

σ2

p2

p−1∑
h=0

ϕ2
λ(th), s2λ = Var(z̃1,λ) =

1

p2

p−1∑
h,h′=0

K(th, th′)ϕλ(th)ϕλ(th′)

and

A(K)
p (ϕ,D) =

∑
λ,λ′∈ΛD

 1

p2

p−1∑
h,h′=0

K(th, th′)ϕλ(th)ϕλ′(th′)−
∫ 1

0

∫ 1

0

K(s, t)ϕλ(s)ϕλ′(t)dsdt


2

,

A(σ)
p (ϕ,D) =

σ4

p2

∑
λ,λ′∈ΛD

{
1

p

p−1∑
h=0

ϕλ(th)ϕλ′(th)− 1{λ=λ′}

}2

.

The first term of the upper bound is a bias term corresponding to the projection step, that
decreases withD, the dimension of the approximation space. The second term is a variance term
that increases with D but contrary to what happens generally in non-parametric statistics, it is
bounded by n−1 up to a constant under mild assumptions on the orthonormal system (details in
Section 3.4). Indeed, heuristically, when p grows, the term σ2

λ is of order σ2/p (the variance
due to the noise is tempered by the repetition of the observations) and the term s2λ is of order∫∫

K(s, t)ϕλ(s)ϕλ(t)dsdt = E(⟨Z, ϕλ⟩2) so
∑
λ∈ΛD

s2λ is bounded by a constant (indepen-
dent of D) of order E(∥Z∥2) < +∞. By taking D = card(ΛD) ≤ p, the second term is of
order n−1. The third and fourth terms are linked to the discretization and are usually negligi-
ble with respect to both the bias and variance terms (see Section 3.4). The term σ4/p2 is also
negligible.
Remark 2 We assume that {εi,h}i=1,...,n;h=0,...,p−1 is a sequence of Gaussian errors. But the
result of Theorem 2 still holds if the vectors {εi,h}h=0,...,p−1 only satisfy Assumption 1 with C1

a constant not depending on i (see the proof of Lemma 4).
We can refine the previous result and obtain similar upper bounds in probability. To state

them, we first recall the definition of sub-Gaussian variables. We refer to Section 2.5 of Ver-
shynin [2018] for more details.
Definition 1 We say that a random variable W is sub-Gaussian if

∥W∥ψ2 := sup
q≥1

{
q−1/2

{
E(|W |q)

}1/q
}
<∞.

In this case, ∥W∥ψ2 is called the sub-Gaussian norm of W .

Assumption 1 is extended to p-dimensional vectors as follows.
Assumption 2 We assume that there exists C2 > 0 such that

∥vTZ∥2ψ2
≤ C2E(vTZ)2, v ∈ Rp.

Assumption 2 of Theorem 3 is stronger than Assumption 1 of Theorem 2 but it allows us to
obtain an inequality in probability, which is stronger than in expectation; the price to pay is the
logarithmic factor in the variance term as show in the following. Using quantities introduced in
Theorem 2, we then obtain the following result.
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Theorem 3 Let d be fixed. Then, under Assumption 2, for all γ > 0, with probability larger
than 1− 2 exp(−1/64min(γ2, 16γ

√
n)),

∥η̂ϕ,d − η∗±,d∥2 ≤ 5bd

|||ΠDΓΠD − Γ|||2 + (e1/2 + γ)2C̄2(C2 + 1)2

n

 ∑
λ∈ΛD

(
σ2
λ + s2λ

)
2

+A(K)
p (ϕ,D) +A(σ)

p (ϕ,D) +
σ4

p2

]
,

where C̄ is an absolute constant.
Observe that if we take γ = 8(β logn)1/2, then for n large enough, the upper bound holds

with probability larger than 1− 2n−β . In this case, the order of the variance term is the same as
for Theorem 2 up to the logn-factor.

Theorem 3 is based on Assumption 2, namely a control of the sub-Gaussian norm of vTZ
for all vectors v. Such controls are standard to obtain concentration inequalities which are at
the core of the proof of Theorem 3; see for instance Vershynin [2018], Koltchinskii and Lounici
[2017] or Section 2.3 of Boucheron et al. [2013]. This assumption enables us to apply large
deviation bounds for martingale differences established by Juditsky and Nemirovski [2008] to
specific covariance matrices. See Proposition 5 in the Appendix for more details. Observe
that Assumption 2 is satisfied if Z is Gaussian and in this case C2 is an absolute constant (see
Example 2.5.8 of Vershynin [2018]). In a more general setting, we have the following lemma
proved in Appendix C.5.
Lemma 1 We consider the Karhunen-Loève representation of Z given by (3) and assume that
the scores ζ∗d ’ are independent and that there exists M <∞ such that

sup
d∈N∗

∥ζ∗d∥ψ2 ≤M. (6)

Then Assumption 2 is satisfied with C2 = κM2, where κ is an absolute constant.
Under the assumptions of Lemma 1 (and others), Mas and Ruymgaart [2015] obtain rates of
convergence for the eigenvectors and eigenprojectors in expectation in the case where the curves
are observed at all points. In the context of functional Principal Components Regression, these
assumptions are classical, we refer e.g. to Hall and Hosseini-Nasab [2009], Crambes and Mas
[2013].

We have the analog of Remark 2.
Remark 3 We assume that {εi,h}i=1,...,n;h=0,...,p−1 is a sequence of Gaussian errors. But the
result of Theorem 3 still holds if the vectors {εi,h}h=0,...,p−1 only satisfy Assumption 2 with C2

a constant not depending on i (see the proofs of Lemmas 5 and 6).
Remark 4 The first step of the proof of our results consists in applying Bosq inequalities to
bound ∥η̂ϕ,d−η∗±,d∥. Similar bounds also hold for |µ̂d−µ∗

d|. See Section C of the Appendix for
more details. Therefore, bounds of the previous theorems also hold for |µ̂d − µ∗

d|2. Obtaining
lower bounds for the estimation of the eigenvalues remains an open interesting question.

3.4 Upper bound for histograms
In this paragraph, we specify our results for the case of histograms. The histogram system is
defined as follows (see Section 7.3 of Massart [2007] for instance).
Definition 2 Let ΛD = {0, . . . , D − 1}. For any λ ∈ ΛD ,

ϕλ(t) = D1/2 × 1Iλ(t), t ∈ [0, 1],

with Iλ = (λ/D, (λ+ 1)/D]. For any (λ, λ′) ∈ Λ2, ⟨ϕλ, ϕλ′⟩ = 1{λ=λ′}.
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In the sequel, we consider the following assumption.
Assumption 3 The integer D is such that D divides p.

In this framework, all terms appearing in upper bounds of Theorems 2 and 3 can be easily
controlled.
Proposition 1 Under Assumption 3, if PZ ∈ Rα(L), we have

|||ΠDΓΠD − Γ|||2 ≤ 16L∥K∥∞
(α+ 1)2

D−2α,

A(K)
p (ϕ,D) ≤ 16∥K∥∞L

(α+ 1)2
p−2α, A(σ)

p (ϕ,D) = 0

and ∑
λ∈ΛD

(
σ2
λ + s2λ

)
≤ ∥K∥∞ +

σ2D

p
.

Combining Proposition 1 with Theorems 2 and 3, we finally deduce the following corollary.
Corollary 1 Let d be fixed. Assume that PZ ∈ Rα(L) and D = p. Under Assumption 1,

E
(
∥η̂ϕ,d − η∗±,d∥2

)
≤ bd

{
B(L,K, α)

p2α
+

5σ4

p2
+
V1(K,σ,C1)

n

}
and under Assumption 2, for any β > 0, for n large enough, with probability larger than 1 −
2n−β ,

∥η̂ϕ,d − η∗±,d∥2 ≤ bd

{
B(L,K, α)

p2α
+

5σ4

p2
+
V2(K,σ,C2, β) logn

n

}
,

where B(L,K,α) depends on L, ∥K∥∞ and α and V1(K,σ,C1) (resp. V2(K,σ,C2, β)) de-
pends on ∥K∥∞, σ andC1 (resp. ∥K∥∞, σ,C2 and β) (the constantsB(L,K, α), V1(K,σ,C1)
and V2(K,σ,C2, β) are deterministic).
Since α ≤ 1, the term 5σ4/p2 is not larger than the first termB(L,K, α)/p2α (up to a constant),
and the noise of the observations has no influence on the rates (as soon as the noise level is a
constant). In particular, under Assumption 1,

sup
PZ∈Rα(L)

E
(
∥η̂ϕ,d − η∗±,d∥2

)
≤ C

(
p−2α + n−1

)
,

for C a constant. This upper bound and the lower bound of Theorem 1 match, meaning that
our estimation procedure is optimal in our setting. Observe that Assumption 1 is very mild. If
we replace it with the stronger Assumption 2, we obtain a control in probability, coming from
exponential bounds on probabilities of large deviations (for the Frobenius norm) for specific
matrices. The price to pay is a logarithmic term in the variance term.

As expected, parameters p and n have a strong influence on rates. In our framework with
two asymptotics very different in nature, we note that if p is large enough (depending on n
and α), then our procedure achieves the parametric rate n−1 already obtained by Dauxois et al.
[1982] and Mas and Ruymgaart [2015] when the curves (Z1, . . . , Zn) are fully observed and
without noise. It means that discretization has no influence on theoretical performances. Con-
versely, if p is not very large with respect to n, discretization has a deep impact and rates depend
strongly on the underlying smoothness of the curves observed in a noisy setting. The obtained
rate p−2α + n−1 describes very precisely the competition between the number of discretization
points and the number of observations in functional principal component analysis. To the best of
our knowledge, these rates are new.
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Finally, let us emphasize the simplicity of our optimal estimation procedure. It is based on
the most classical ideas: projection by using piecewise constant bases and empirical mean esti-
mation. In particular, regularization is not necessary and the knowledge of α is not required. The
use of such standard tools may be surprising in view of results obtained by Johnstone [2001] and
Baik and Silverstein [2006]. But, as already mentioned, functional principal component analy-
sis is a very specific setting. The rates we obtain have the same shape to those of Descary and
Panaretos [2019] for which strong assumptions on the covariance operator (finite rank and ana-
lyticity of the eigenvalues η∗d) are required and the noise may exhibit local correlations. Bunea
and Xiao [2015] obtained a rate of convergence that is difficult to compare with ours, because
their assumptions, concerning the rate of decay of the eigenvalues, differ significantly from
our regularity assumption on the process. In the case of Brownian motion the rate of conver-
gence of the L2- risk of reconstruction of the estimator of Bunea and Xiao [2015] is of order
log2(n)n−1 + p−1/3 which is suboptimal compared to the minimax rate of n−1 + p−1 that we
have proven. In a different statistical model where observational times are random, Hall et al.
[2006] obtained an L2 convergence rate n−2r/(2r+1) for kernel estimators when η∗d has a r-th or-
der derivative even if the number of observations per curve is bounded by a constant. This clearly
shows the impact of the nature of the observations. The randomness of observational times may
allow to circumvent the sparse sampling scheme for individuals and consistency may be achiev-
able, which is not the case for our statistical model with deterministic equispaced observational
times.

4 Simulation results
We assess the statistical performance of functional principal components estimators with simula-
tions. We consider two eigenfunctions such that η∗1(·) =

√
2 sin(2π·) and η∗2(·) =

√
2 cos(2π·),

with eigenvalues µ∗
1 = 1.1 and µ∗

2 = 0.1. Simulated functional data are sampled on regularly
spaced discretization points th = h/(p − 1) with h = 0, . . . , p − 1, and we compute the
covariance matrix Σ such that:

Σh,h′ =

2∑
d=1

µ∗
dη

∗
d(th)η

∗
d(th′) + σ21h=h′

from which we sample n random functions Y1, . . . , Yn ∼ N (0,Σ), following Model (2). Then
we consider different values for the number of observations n ∈ {256, 512, 1024, 2048, 4096}
to study the asymptotic performance of our estimators, and we will also consider different values
of p ∈ {16, 32, 64, 128, 256} to study the impact of discretization. The noise level σ is chosen
to match a given signal to noise ratio defined by σ−2∑2

d=1 µ
∗
d (the variance of the signal di-

vided by the variance of the noise), that takes value in {0.25, 1, 4}. We consider two smoothing
systems, histograms and the Haar wavelets, as detailed in the Appendix. We report average the
performance on nbtest = 100 independent simulations. Even if our theoretical results do not
include regularized estimators, we also consider a hard thresholded version of these estimators
to improve reconstruction (as detailed in the Appendix).

4.1 Reconstruction Errors
To assess the empirical performance of our approach, we study the behavior of the mean recon-
struction error

E
(
∥η∗±,d − η̂ϕ,d∥2

)
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Figure 1: Mean square error for the first eigenfunction η∗1 according to the number of
discretization points p (left), and the number of samples n (right). Left: the number
of samples is n ∈ {256, 1024, 4096} (light gray, gray, black respectively). Right: the
number of discretization points is p ∈ {16, 32, 256} (light gray, gray, black respec-
tively). The signal to noise ratio is 0.25.

according to the number of observations n, the size of the discretization grid p, and the signal to
noise ratio. More precisely, we introduce a second finer grid sh = h/p′, with h = 0, . . . , p′−1,
such that p′ ≫ p (p′ = 8192 in practice) and use the approximation

E
(
∥η∗±,d − η̂ϕ,d∥2

)
≈ 1

nbtest

nbtest∑
j=1

1

p′

p′∑
h=1

{
η∗±,d(sh)− η̂jϕ,d(sh)

}2

.

To deduce the values of our estimator outside of the original grid, we use the piecewise constant
property of the Haar and the histogram systems. In the following we also compute the estimation
error on eigenvalues and assess E{(µ∗

d − µ̂ϕ,d)
2}.

4.2 Results
The empirical error rates on eigenfunctions match the theoretical ones (Fig. 1), with orders
(µ∗

1 − µ∗
2)

−2(n−1 + p−2α) (α = 1 in our case) for the first eigenfunction estimator and (µ∗
2 −

µ∗
3)

−2(n−1 + p−2α) for the second (Fig. 5 and 6, µ∗
3 = 0 in our setting). Computed errors

exhibit a double asymptotic behavior in n and p. The rates in n are slower than those in p, and
exactly match n−1 and p−2. Also, the difference in terms of mean square errors between the first
and the second eigenfunctions is due to the gap, since µ∗

1−µ∗
2 = 10(µ∗

2−µ∗
3), which means that

the estimation of the second eigenfunction is 10 times harder in terms of speed of convergence.
The estimation error on eigenvalues also matches the theoretical upper bound (Fig 2).

We also show that regularization does not necessarily improve the rate of convergence of
eigen-elements (Fig. 7 and 8). We showed that projection-based functional principal component
should attain minimax rates without any regularization. Consequently, at best, regularization
should induce a better variance but comparable rates. Since one could operate only on the ob-
served part of the function, at best, one could improve results on the grid without going beyond
n−1, which is already attained by the non-smoothed estimator.
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Figure 2: Mean square error for the first eigenvalue µ∗
1 according to the number of

discretization points p (left), and the number of samples n (right). Left: the number
of samples is n ∈ {256, 1024, 4096} (light gray, gray, black respectively). Right: the
number of discretization points is p ∈ {16, 32, 256} (light gray, gray, black respec-
tively). The signal to noise ratio is 0.25.

5 Applications
Single-cell genomics has been made possible thanks to technological breakthroughs that have
allowed the measurement of gene expression Macosko et al. [2015] at the single-cell resolution.
These advances have revolutionized our view of the complexity of living tissues, in their normal
or pathological states, and have produced complex high dimensional data. Immunology, and in
particular studies of lymphocytes differentiation have focused much attention. Indeed, upon an
acute infection, pathogen-specific CD8 T cells are activated, proliferate drastically and differen-
tiate short-term (ou short-lived) effector cells displaying the ability to eliminate infected cells.
the response also generates a small population of cells being part of the long-term immune re-
sponse, the so-called memory cells conferring protection to the host. In Kurd et al. [2020], the
authors collected single antigen-specific CD8 T cells in the spleen of mice after LCMV (lym-
phocytic choriomeningitis virus) acute infection and measured the expression of genes at time
points 0, 3, 4, 5, 6, 7, 10, 14, 21, 32 and 90 days post-infection (dpi). Hence, these data offer the
unique opportunity to study the evolution of gene expression throughout an immune response.
Many methodological questions can be addressed with these data, and we consider here a short
analysis to illustre functional PCA on original data. Average expressions were considered over
cells such that the data correspond to the expression of genes over time. Expression data were
normalized thanks to the SCTransform procedure of the Seurat package [Satija et al., 2015]
that corrects counts for overdispersion, and provides corrected counts for which the Gaussian ap-
proximation is reasonable. Then genes were selected by using the FindVariableFeatures
function [Satija et al., 2015], resulting in 4851 genes with averaged temporal expression that
constitute the input of our model (Yi(t), n = 4851, p = 11). When performing functional PCA
on those data using the histogram basis, the rule of thumbs suggests to select 3 functional princi-
pal components, and k-means clustering exhibits 3 clusters with very distinct average expression
profiles (Fig. 3). Interestingly, cluster 1 consists of only two genes Ccl5 and Malat1 that are
known to be involved in immune cells activation and recruitement [Araujo et al., 2018] and CD8+
differentiation [Kanbar et al., 2022], respectively. Their kinetics of expression appears then as
a major feature of the gene-expression response to viral infection: they are down-regulated be-
tween days 0-8, then up-regulated between 9-90 days, whereas the 31 genes of cluster 2 are up
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Figure 3: Average gene expression over time for lymphocytes CD8+ cells following a
viral infection, as inferred by functional PCA followed by k-means clustering. Curves
correspond to the averages of gene expression for the 3 clusters (1-light grey, 2-dark
grey, 3-black).

and then down-regulated (Gzmb, Ncl, Tuba1b, Hsp90aa1, Npm1, Hspe1, Ptma, Ran, Hsp90ab1,
Actg1, Mif, Tubb5, Eif5a, Ldha, Plac8 and ribosome proteins), the other genes showing a stable
average expression stable over time (cluster 3). This first analysis allows us to illustrate the in-
terest of functional PCA on gene expression data, and the underlying gene regulatory networks
that structure these gene expression dynamics will deserve a deeper study.

Genomics offers another original application of functional principal component analysis, to
reduce the dimensionality of data that are structured in one dimension along the genome. As an
illustration, we consider the fine mapping of replication origins in the human genome, that consti-
tutes the starting points of chromosomes duplication. Replication origins are under a very strong
spatio-temporal control, and are part of the integrity maintenance of genomes. The investigation
of their spatial organization has become central to better understand genomes architecture and
regulation, which remains challenging due to a complex interplay between genetic and epige-
netic regulations. Part of the genetic component of their regulation involve particular sequence
motifs, called G-quadruplexes, that have the property to form complex four-stranded structures
whose role in replication remains unsolved. A crucial aspect to better understand their implica-
tion is to determine if these sequence motifs have a preferential positioning upstream replication
origins. To investigate this matter, we considered the ∼130,000 replication origins of the human
genome [Picard et al., 2014], and we defined by Yi(t) the process that equals 1 if there is a
G-quadruplex at position t in replication origin i, taking motifs coordinates from Zheng et al.
[2020]. Hence this application goes beyond the Gaussian setting of our model, and shows that
extension to count data is also effective with histogram-based functional-PCA. By convention,
t = 0 corresponds to the peak of replication, and we consider positions 500 bases upstream this
peak (in negative coordinates). The continuous aspect of the model is not mandatory since po-
sitions along the genome are discrete. However, the functional setting allows us to consider the
spatial dependencies between the occurrences of these motifs, which is very informative. Given
the discrete nature of the data, we smoothed the data using the histogram system, with bin size
of 25 bases (corresponding to the average size of G-quadruplexes). Then we performed func-
tional principal component analysis, and we used functional principal components to perform a
downstream clustering. We projected every observed curve on principal components to obtain
a new representation of the functional data based on general terms ⟨Ỹi, η̂ϕ,d⟩, and performed
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Figure 4: Density of G-quadruplexes accumulation in human replication origins clus-
ters, determined by functional principal component analysis combined with k-means
clustering. Each color correspond to a particular cluster.

a k-means clustering to regroup replication origins that share the same spatial distribution of
these G-quadruplex motifs. We considered 6 principal components along with 6 clusters, and
we considered the spatial distribution of G-quadruplexes within clusters as a result (Figure 4).
Functional principal component analysis appears to catch the spatial structure that makes the
clusters, as different clusters of replication origins are characterized by specific patterns of G-
quadruplexes accumulation upstream the replication peak. Interestingly, the observed periodicity
can be related to a biophysical property of chromatin fibers. Indeed, the DNA molecule is in the
form of chromatin fibers in the nucleus, wrapped around the so-called nucleosomes with a peri-
odicity of 144 base pairs. The formation of stable G-quadruplexes has been shown to take place
in nucleosome-free regions [Prorok et al., 2019], hence, the periodicity of their accumulation
upstream replication origins indicates that their positioning is directly linked to the epigenetic
context of replication initiation. These new biological results are currently under further inves-
tigation, and developing a framework for functional-PCA dedicated to count data could be an
interesting research direction [Backenroth et al., 2020].

6 Conclusion and perspectives
In this paper, we have established optimal rates of convergence for estimating the eigenfunc-

tions of the covariance operator of a corrupted process observed on a fixed and regular grid. It is
shown that the minimax rate is of order p−2α+n−1, revealing the behavior of rates with respect
to the parameters n, p and α ∈ (0, 1] that design the number of repetitions, the size of the regular
grid and the smoothness of the process respectively. In this framework with a double asymptotic
in n and p, the phase transition occurs when p is of order n1/(2α):

• For p larger than n1/(2α), the obtained rate is n−1 and the problem has intrinsically the
same difficulty if the n curves would be available entirely.

• For p smaller n1/(2α), the rate is p−2α regardless the number of observed curves.

In particular, p → +∞ is required to achieve consistency. These rates are new and are funda-
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mentally different from classical nonparametric rates of the form (np)−2α/(2α+1) in a setting
with n × p observations, revealing main differences with the framework where the sampling
scheme is random [Hall et al., 2006] and typical of longitudinal data analysis. In our setting,
optimality is achieved by diagonalizing the empirical operator after simple projections by using
histograms with p bins. Surprisingly, it means that smoothing and the knowledge of α are not
required. These results have important theoretical and practical implications in many aspects re-
garding the sampling scheme, the used methodology or the grid size if it is left to the practitioner
(the choice of the grid itself is a research field on its own and out of the scope of the paper, we
refer to Müller-Gronbach [1996], Seleznjev [2000] for articles on optimal grid selection). These
conclusions bear some similarities with those drawn by Cai and Yuan [2011] for mean function
estimation.

Following this work, several perspectives can be envisaged. The first one concerns the range
of α and it should be interesting to extend our theoretical results to any smoothness α ∈ R∗

+,
even if it means changing the definition of the class Rα(L). This extended framework with
higher smoothness raises several open questions: Are rates different? If yes, do we need to
introduce smoothing? Can we still consider histograms or do we have to project on smoother
bases such as wavelets, splines or Fourier bases?

Our minimax rates depend on the sequence of eigenvalues (µ∗
d)d through the terms (bd)d’s

that are viewed as (unknown) constants in our paper. It would be very interesting to investigate
how such parameters influence rates when they become very small. Concerning the problem
of estimating eigenvalues, Remark 4 provides some upper bounds but optimality of these upper
bounds remain a very challenging problem, out of the scope of this paper.

Besides, as pointed out by Hörmann and Jammoul [2022], assuming that the noise is i.i.d.
may be unrealistic in some applications. Hörmann and Jammoul [2022] assume for instance that
the vector of errors (εi,h)h=0,...,p is a stationary process, while Descary and Panaretos [2019]
model the errors as realizations of a stochastic process with short term dependency. Both articles
obtain convergence rates for the eigenfunctions in the case where the covariance operator Γ is of
finite-rank. Based on these works, it could be of interest, in a future work, to extend the minimax
approach developed in this paper to models allowing non i.i.d. errors.
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A Simulation study
We consider two smoothing systems, the histogram system, and the Haar wavelet system. In the
case of histograms, we denote by D the number of bins (such that D divides p in practice), then
ΛD = {0, . . . , D − 1} and

ϕλ(t) = D1/2 × 1(λ/D,(λ+1)/D](t), t ∈ [0, 1], λ ∈ ΛD.

Then in the case of the Haar system, we consider (φ0,0, ψj,k, j = 0, . . . , J, k = 0, . . . , 2j − 1),
with J + 1 = log2(p), φ0,0 the scaling function of a multi-resolution analysis (father wavelet)
and ψj,k the associated mother wavelets, such that

φ0,0(t) = 1[0,1](t),

ψj,k(x) = 2j/21[ 2k−2

2j+1 ; 2k−1

2j+1

](t)− 2j/21( 2k−1

2j+1 ; 2k
2j+1

](t), t ∈ [0, 1].

We introduce a cross-validation procedure to regularize the eigenfunctions estimators. For each
fold r ∈ {1, . . . , nfolds} we split the observations Y = (Y1, . . . , Yn) into two training and test
sets Y trainr , Y testr such that | trainr ∪ testr |= n. Then we introduce ζ, a thresholding parameter,
and we set

Ŷi,ζ(t) = ỹi,0,0φ0,0(t) +

J∑
j=0

2j−1∑
k=0

ỹi,j,k1|ỹi,j,k|>ζψj,k(t), i = 1, . . . , n, t ∈ [0, 1],

with

ỹi,0,0 =
1

p

p−1∑
h=0

Yi(th)φ0,0(th),

ỹi,j,k =
1

p

p−1∑
h=0

Yi(th)ψj,k(th).

Then we compute the η̂rd,ζ’s on Y trainr for each fold such that

(η̂rd,ζ)d ∈ arg min
⟨fd,fd′ ⟩=1d=d′

∑
i∈trainr

∥Ŷi,ζ −
2∑
d=1

⟨Ŷi,ζ , fd⟩fd∥2.

We select ζ̂, the minimizer of the cross validated errors :

1

nfolds

nfolds∑
r=1

∑
i∈testr

∥Yi −
2∑
d=1

⟨Yi, η̂rd,ζ⟩η̂rd,ζ∥2.

Once ζ̂ is chosen we compute the final estimator η̂d,ζ̂ as :

(η̂d,ζ̂)d ∈ arg min
⟨fd,fd′ ⟩=1d=d′

n∑
i=1

∥Ŷi,ζ̂ −
2∑
d=1

⟨Ŷi,ζ̂ , fd⟩fd∥
2.

We use the same score function to select the number of bins for histograms.
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Figure 5: Mean square error for the second eigenfunction η∗2 according to the number
of discretization points p (left), and the number of samples n (right). Left: the number
of samples is n ∈ {256, 1024, 4096} (light gray, gray, black respectively). Right: the
number of discretization points is p ∈ {16, 32, 256} (light gray, gray, black respec-
tively). The signal to noise ratio is 0.25.
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Figure 6: Mean square error for the second eigenvalue µ∗
2 according to the number of

discretization points p (left), and the number of samples n (right). Left: the number
of samples is n ∈ {256, 1024, 4096} (light gray, gray, black respectively). Right: the
number of discretization points is p ∈ {16, 32, 256} (light gray, gray, black respec-
tively). The signal to noise ratio is 0.25.

21



Haar basis Histogram basis

50 100 150 200 250 50 100 150 200 250

0.00

0.02

0.04

0.06

p

M
e
a

n
 S

q
u

a
re

 E
rr

o
r

Figure 7: Mean square error for the first eigenfunction η∗1 according to the number of
discretization points p and the smoothing system (Haar, left panel, histograms, right
panel). The number of samples is n ∈ {256, 1024, 4096} (light gray, gray, black
respectively). Dashed line: regularized estimator based on cross validation, plain line:
non regularized estimator. The signal to noise ratio is 0.25. Regularization is performed
by cross-validation to choose the number of wavelet coefficients or bins for histograms,
as detailed in Appendix A.
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Figure 8: Mean square error for the first eigenfunction η∗1 according to the number
samples n and the smoothing system (Haar, left panel, histograms, right panel). The
number of discretization points is p ∈ {16, 32, 256} (light gray, gray, black respec-
tively). Dashed line: regularized estimator based on cross validation, plain line: non
regularized estimator. The signal to noise ratio is 0.25. Regularization is performed by
cross-validation to choose the number of wavelet coefficients or bins for histograms, as
detailed in Appendix A. .
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B Proof of Theorem 1
To establish Theorem 1, we prove following Propositions 2 and 3.
Proposition 2 Assume that the rank of the operator Γ is larger than 2 and p ≥ 4. Then,

inf
η̂1

sup
PZ∈Rα(L)

E[∥η̂1 − η∗1∥2] ≥ c1n
−1, inf

η̂2
sup

PZ∈Rα(L)

E[∥η̂2 − η∗2∥2] ≥ c1n
−1,

where c1 > 0 is a constant depending on L, α and σ.
Proposition 3 There exists a universal constant c2 > 0 such that

inf
η̂1

sup
PZ∈Rα(L)

E[∥η̂1 − η∗1∥2] ≥ c2p
−2α.

The result of Theorem 1 is deduced from Propositions 2 and 3, by taking

c =
1

2
min(c1; c2) > 0.

Studying the case p ∈ {1, 2, 3} separately, which is easy, provides the result of Theorem 1 for
any n ≥ 1 and any p ≥ 1.

B.1 Proof of Proposition 2
Proof: Denoting by

RN
α (L) = {PZ ∈ Rα(L) and Z is a Gaussian process} ,

we remark that RN
α (L) ⊂ Rα(L), then, for d = 1, 2,

inf
η̂d

sup
PZ∈Rα(L)

E[∥η̂d − η∗d∥2] ≥ inf
η̂d

sup
PZ∈RN

α (L)

E[∥η̂d − η∗d∥2].

Hence, we can restrict the proof of our lower bound to the case of Gaussian processes.
For t ∈ [0, 1], let

a(t) =
√
2 cos(2πt), b(t) =

√
2 sin(2πt).

We observe that
∥a∥ = ∥b∥ = 1, ⟨a, b⟩ = 0.

We then define, for t ∈ [0, 1],

ηA,0(t) = a(t), ηB,0(t) = b(t),

ηA,1(t) = cn

(
a(t) +

b(t)√
n

)
, ηB,1(t) = cn

(
b(t)− a(t)√

n

)
and cn such that

∥ηA,1∥ = ∥ηB,1∥ = 1

and we obtain
c2n =

(
1 +

1

n

)−1

< 1.

We then have for j = 0, 1,

∥ηA,j∥ = ∥ηB,j∥ = 1, ⟨ηA,j , ηB,j⟩ = 0.
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Functions ηA,j and ηA,j are also C∞. Now, we introduce for j = 0, 1,

Zj(t) =
√
µAξAηA,j(t) +

√
µBξBηB,j(t), t ∈ [0, 1],

where µA and µB are two positive constants such that L/(64π2) ≥ µA > µB and ξA ∼ ξB ∼
N (0, 1) with ξA and ξB independent.
Remark 5 Observe that for any t ∈ [0, 1],

Z0(t) ∼ N
(
0, µAa

2(t) + µBb
2(t)

)
,

Z1(t) ∼ N

(
0, µAc

2
n

(
a2(t) +

b2(t)

n
+ 2

a(t)b(t)√
n

)
+ µBc

2
n

(
b2(t) +

a2(t)

n
− 2

a(t)b(t)√
n

))
.

We consider Model (2) with σ = 0 such that Z0
1 , . . . , Z

0
n (resp. Z1

1 , . . . , Z
1
n) are i.i.d copies

of Z0 (resp. Z1). It is straightforward to observe that the lower bound established for σ = 0
provides a lower bound for any σ ≥ 0. We then observe n i.i.d. copies of{

Z0(th) =
√
µAξAηA,0(th) +

√
µBξBηB,0(th)

Z1(th) =
√
µAξAηA,1(th) +

√
µBξBηB,1(th)

for h = 0, . . . , p − 1. Let, for j = 0, 1, PZj the distribution of Zj . We have for any (t, u) ∈
[0, 1]2,∫

C0

(z(t)− z(u))2dPZj (z) = E[(Zj(t)− Zj(u))2]

= µA (ηA,j(t)− ηA,j(u))
2 + µB (ηB,j(t)− ηB,j(u))

2

≤ CµA|t− u|2α,

for C = 64π2, since

|a(t)− a(u)|2 ≤ 8π2|t− u|2, |b(t)− b(u)|2 ≤ 8π2|t− u|2

implies ∫
C0

(z(t)− z(u))2dPZ0 (z) ≤ 16π2µA|t− u|2α∫
C0

(z(t)− z(u))2dPZ1 (z) ≤ 64π2µA|t− u|2α

(we have used that µA > µB and n ≥ 1 and |t − u|1−2α ≤ 1, since α ≤ 1 and the mean
value theorem). We easily deduce that PZj ∈ RN

α (L) since 64π2µA ≤ L. This allows to deduce
that

inf
η̂1

sup
PZ∈Rα(L)

E[∥η̂1 − η∗1∥2] ≥ inf
η̂1

sup
j=0,1

E[∥η̂1 − ηA,j∥2].

We obtain similarly

inf
η̂2

sup
PZ∈Rα(L)

E[∥η̂2 − η∗2∥2] ≥ inf
η̂2

sup
j=0,1

E[∥η̂2 − ηB,j∥2].

We now prove a lower bound for E[∥η̂1 − ηA,j∥2]. Let η̂1 an estimator and ψ̂ the minimum
distance test defined by

ψ̂ = argminj=0,1∥η̂1 − ηA,j∥2,
we have for j = 0, 1,

∥η̂1 − ηA,j∥ ≥ 1

2
∥ηA,ψ̂ − ηA,j∥.
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Now, we have, with c2n = n/(n+ 1),

∥ηA,ψ̂ − ηA,j∥2 = 1{ψ̂ ̸=j}∥ηA,0 − ηA,1∥2 = 1{ψ̂ ̸=j}

∥∥∥∥a− cn
(
a+

b√
n

)∥∥∥∥2
≥ 1{ψ̂ ̸=j}

(
(1− cn)

2 + c2n/n
)
≥ 1{ψ̂ ̸=j}

c2n
n

= 1{ψ̂ ̸=j}
1

n+ 1
,

for any n. Then,

inf
η̂1

sup
PZ∈Rα(L)

E[∥η̂1 − η∗1∥2] ≥ 1

4(n+ 1)
× inf

ψ̂
max
j=0,1

P(ψ̂ ̸= j). (7)

We now prove that the quantity infψ̂maxj=0,1 P(ψ̂ ̸= j) can be bounded from below by an
absolute positive constant. For this purpose, we control the Kullback divergence between the
two models. We have the following lemma proved in Section B.1.1.
Lemma 2 DenotingP obsj the distribution of the random vector Zj,obs := (Zj(t0), . . . , Z

j(tp−1)),
KL(P obs1 , P obs0 ), the Kullback divergence between P obs1 and P obs0 satisfies, if p ≥ 4,

KL(P obs1 , P obs0 ) =
1

2(n+ 1)

(µA
µB

+
µB
µA

− 2
)
.

The result of the lemma entails that KL((P obs1 )⊗n, (P obs0 )⊗n), the Kullback divergence be-
tween (P obs1 )⊗n and (P obs0 )⊗n satisfies

KL((P obs1 )⊗n, (P obs0 )⊗n) = n×KL(P obs1 , P obs0 ) =
n

2(n+ 1)

(µA
µB

+
µB
µA

− 2
)
.

and then is bounded by a constant κ only depending on µA and µB . Therefore, Theorem 2.2 of
Tsybakov [2009] shows that

inf
ψ̂

max
j=0,1

P(ψ̂ ̸= j) ≥ max

{
1

4
exp(−κ),

1−
√
κ/2

2

}
> 0.

and Inequality (7) provides the desired lower bound. In the same way, we obtain a lower bound
for inf η̂2 supPZ∈Rα(L)E[∥η̂2 − η∗2∥2].

B.1.1 Proof of Lemma 2

We first remark that
Zj,obs ∼ N (0, Gj),

where Gj = ([Gj ]k,ℓ)0≤k,ℓ≤p−1 and

[Gj ]k,ℓ = E[Zj(tk)Zj(tℓ)] = µAηA,j(tk)ηA,j(tℓ) + µBηB,j(tk)ηB,j(tℓ).

Let us explicit G0 and G1. We have

[G0]k,ℓ = µAηA,0(tk)ηA,0(tℓ) + µBηB,0(tk)ηB,0(tℓ)

= µAa(tk)a(tℓ) + µBb(tk)b(tℓ)

= 2µA cos(2πtk) cos(2πtℓ) + 2µB sin(2πtk) sin(2πtℓ)
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and

[G1]k,ℓ = µAηA,1(tk)ηA,1(tℓ) + µBηB,1(tk)ηB,1(tℓ)

= µAc
2
n

(
a(tk) +

b(tk)√
n

)(
a(tℓ) +

b(tℓ)√
n

)
+ µBc

2
n

(
b(tk)−

a(tk)√
n

)(
b(tℓ)−

a(tℓ)√
n

)
= 2µAc

2
n

(
cos(2πtk) +

sin(2πtk)√
n

)(
cos(2πtℓ) +

sin(2πtℓ)√
n

)
+ 2µBc

2
n

(
sin(2πtk)−

cos(2πtk)√
n

)(
sin(2πtℓ)−

cos(2πtℓ)√
n

)
.

We now determine eigenelements of G0 and G1. For this purpose, we use the following lemma
proved in Section B.1.2.
Lemma 3 Let p ≥ 3. With tk = k/(p− 1), for k = 0, . . . , p− 1, we kave

p−1∑
k=0

cos(2πtk) = 1,

p−1∑
k=0

sin(2πtk) = 0,

p−1∑
k=0

sin(4πtk) = 0.

Furthermore, for p ≥ 4,

p−1∑
k=0

cos2(2πtk) =
p+ 1

2
,

p−1∑
k=0

sin2(2πtk) =
p− 1

2
.

We set e = (ek)0≤k≤p−1 and f = (fk)0≤k≤p−1 with

ek =

√
2

p+ 1
cos(2πtk) =

a(tk)√
p+ 1

, fk =

√
2

p− 1
sin(2πtk) =

b(tk)√
p− 1

.

Lemma 3 shows that
∥e∥ℓ2 = ∥f∥ℓ2 = 1, ⟨e, f⟩ℓ2 = 0.

We then complete (e, f) so that we have an orthonormal basis of Rp, denoted B. We observe
that

[G0]k,ℓ = µA(p+ 1)ekel + µB(p− 1)fkfℓ,

which entails
G0e = µA(p+ 1)e, G0f = µB(p− 1)f.

Similarly,

[G1]k,ℓ = µAc
2
n

(√
p+ 1ek +

√
p− 1

n
fk

)(√
p+ 1eℓ +

√
p− 1

n
fℓ

)

+ µBc
2
n

(√
p− 1fk −

√
p+ 1

n
ek

)(√
p− 1fℓ −

√
p+ 1

n
eℓ

)
,

which entails

G1e =

(
µAc

2
n(p+ 1) + µBc

2
n
p+ 1

n

)
e+

(
µAc

2
n

√
p2 − 1

n
− µBc

2
n

√
p2 − 1

n

)
f

and

G1f =

(
µAc

2
n

√
p2 − 1

n
− µBc

2
n

√
p2 − 1

n

)
e+

(
µAc

2
n
p− 1

n
+ µBc

2
n(p− 1)

)
f.
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We have shown that Z0,obs and Z1,obs are supported by the hyperplane spanned by e and f and
the variance-covariance matrices for Z0,obs and Z1,obs expressed on (e, f) are respectively

Gred,0 =

(
µA(p+ 1) 0

0 µB(p− 1)

)
and

Gred,1 = c2n

 (p+ 1)
(
µA + µB

n

) √
p2−1
n

(µA − µB)√
p2−1
n

(µA − µB) (p− 1)
(
µA
n

+ µB
)
 .

We recall

KL(P obs1 , P obs0 ) =
1

2

(
log

(
det(Gred,0)

det(Gred,1)

)
− 2 + Trace(G−1

red,0Gred,1)

)
.

see for instance Equation (A23) of Rasmussen and Williams [2006]. We have:

det(Gred,0) = µAµB(p
2 − 1)

and

det(Gred,1) = c4n(p
2 − 1)

((
µA +

µB
n

)(µA
n

+ µB
)
− (µA − µB)

2

n

)

= µAµB(p
2 − 1)c4n

(
1 +

1

n

)2
= µAµB(p

2 − 1).

Finally,

G−1
red,0 =

(
µ−1
A (p+ 1)−1 0

0 µ−1
B (p− 1)−1

)
and

G−1
red,0Gred,1 = c2n

 (
1 + µB

µAn

) √
p−1

n(p+1)

(
1− µB

µA

)
−
√

p+1
n(p−1)

(
1− µA

µB

) (
1 + µA

µBn

)
 ,

which yields, with c2n = n/(n+ 1),

KL(P obs1 , P obs0 ) =
1

2

(
−2 + 2c2n +

c2n
n

(µA
µB

+
µB
µA

))
=

1

2(n+ 1)

(µA
µB

+
µB
µA

− 2
)
.

Lemma 2 is proved.

B.1.2 Proof of Lemma 3

Let x ∈ (0, 2π). We have:

p−1∑
k=0

eixk =
1− eixp

1− eix
=
eixp/2

(
e−ixp/2 − eixp/2

)
eix/2

(
e−ix/2 − eix/2

) = eix(p−1)/2 sin(xp/2)

sin(x/2)
.

Let p ≥ 3. We take x = 2π/(p − 1) which lies in (0, 2π). Considering the real and imaginary
parts, we obtain:

p−1∑
k=0

cos(2πtk) = cos(π)
sin(πp/(p− 1))

sin(π/(p− 1))
= 1
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and
p−1∑
k=0

sin(2πtk) = sin(π)
sin(πp/(p− 1))

sin(π/(p− 1))
= 0.

Similarly, if p ≥ 4, with x = 4π/(p− 1) which lies in (0, 2π), we have

p−1∑
k=0

sin(2πtk) = 0.

This result remains true for p = 3. Now, we have, for p ≥ 4,

p−1∑
k=0

cos2(2πtk) =

p−1∑
k=0

cos(4πtk) + 1

2
=

sin(2πp/(p−1))
sin(2π/(p−1))

+ p

2
=
p+ 1

2

and
p−1∑
k=0

sin2(2πtk) =

p−1∑
k=0

(
1− cos2(2πtk)

)
=
p− 1

2
.

Lemma 3 is proved.

B.2 Proof of Proposition 3
The proof is based on Assouad’s Lemma and follows the general scheme described in Tsybakov
[2009, Sections 2.6 and 2.7]. Let

ϕ(t) = e
− 1

1−t2 1(−1,1)(t).

We then define

φ(t) =


ϕ(4t− 1) if t ∈ [0, 1/2),
−ϕ(4t+ 1) if t ∈ (−1/2, 0],

0 if t /∈ (−1/2, 1).

Both functions ϕ andφ areC∞ on R with bounded support, then areα-Hölder continuous, for all
α > 0. The function φ has its support included in (−1/2, 1/2) and verifies

∫ 1/2

−1/2
φ(t)dt = 0.

We note Lα such that, for all t, u ∈ R,

|φ(t)− φ(u)| ≤ Lα|t− u|α.

Let us now define test eigenfunctions. For ω = (w0, . . . , wp−1) ∈ {0, 1}p, we set

η∗1,ω(t) = Cω

(
γ +

p−1∑
k=0

ωk
(
p−αφ (p(t− tk)− 1/2)

))
,

with Cω and γ > 0 two positive constants to be specified later. To be an eigenfunction, η∗1,ω has
to be of norm 1, which writes

∥η∗1,ω∥2 = C2
ω

∫ 1

0

(
γ +

p−1∑
k=0

ωk
(
p−αφ(p(t− tk)− 1/2)

))2

dt

= C2
ω

(
γ2 + 2γ

p−1∑
k=0

ωk

(
p−α

∫ 1

0

φ(p(t− tk)− 1/2)dt

)

+

∫ 1

0

(
p−1∑
k=0

ωk
(
p−αφ(p(t− tk)− 1/2)

))2

dt

 .
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Using successively that the support of φ is in (−1/2, 1/2) and that
∫ 1/2

−1/2
φ(t)dt = 0, we have∫ 1

0

φ(p(t− tk)− 1/2)dt =

∫ tk+1

tk

φ(p(t− tk)− 1/2)dt = p−1

∫ 1/2

−1/2

φ(t)dt = 0,

and∫ 1

0

(
p−1∑
k=0

ωkφ(p(t− tk)− 1/2)

)2

dt =

p−1∑
k=0

ωk

∫ 1

0

φ2(p(t−tk)−1/2)dt = p−1
p−1∑
k=0

ωk∥φ∥2.

This implies that

∥η∗1,ω∥2 = C2
ω

(
γ2 + p−2α−1∥φ∥2

p−1∑
k=0

ωk

)
.

We then fix the quantity

Cω =

(
γ2 + p−2α−1∥φ∥2

p−1∑
k=0

ωk

)−1/2

,

so that ∥η∗1,ω∥ = 1 and observe that Cω verifies(
γ2 + ∥φ∥2

)−1/2 ≤
(
γ2 + p−2α∥φ∥2

)−1/2 ≤ Cω ≤ γ−1.

We now define the associated distribution of our observations: for ξ a centered random variable
with variance 1 and µ∗

1,ω = L
2L2

αC
2
ω

, we set

Zω(t) =
√
µ∗
1,ωξη

∗
1,ω(t). (8)

Let PZω be the distribution of Zω . We have that PZω ∈ Rα(L) since∫
C([0,1])

(z(t)− z(s))2dPZω (z) = E[(Zω(t)− Zω(s))
2] = µ∗

1,ω(η1,ω(t)− η1,ω(s))
2E[ξ2]

= µ∗
1,ω(η1,ω(t)− η1,ω(s))

2

= µ∗
1,ωC

2
ω

(
p−1∑
k=0

ωkp
−α(φ(p(t− tk)− 1/2)− φ(p(s− tk)− 1/2))

)2

.

Then, using the properties of φ, we have two cases:

• If s, t ∈ [tℓ, tℓ+1[ for some ℓ ∈ {0, . . . , p− 1},(
p∑
k=0

ωkp
−α(φ(p(t− tℓ)− 1/2)− φ(p(s− tℓ)− 1/2))

)2

= ω2
ℓp

−2α(φ(p(t− tℓ)− 1/2)− φ(p(s− tℓ)− 1/2))2

≤ p−2αL2
α|p(t− tℓ)− p(s− tℓ)|2α = L2

α|t− s|2α.
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• If s ∈ [tℓ, tℓ+1[ and t ∈ [tℓ′ , tℓ′+1[ with ℓ ̸= ℓ′,(
p∑
k=0

ωkp
−α(φ(p(t− tk)− 1/2)− φ(p(s− tk)− 1/2))

)2

= ω2
ℓp

−2α|φ(p(t− tℓ)− 1/2)− φ(p(s− tℓ)− 1/2)|2.
+ω2

ℓ′p
−2α|φ(p(t− tℓ′)− 1/2)− φ(p(s− tℓ′)− 1/2)|2

≤ 2L2
α|t− s|2α.

Finally ∫
C([0,1])

(z(t)− z(s))2dPω(z) ≤ 2µ∗
1,ωC

2
ωL

2
α|t− s|2α = L|t− s|2α.

This allows to deduce that

inf
η̂1

sup
PZ∈Rα(L)

E[∥η̂1 − η∗1∥2] ≥ inf
η̂1

sup
ω∈{0,1}p

E[∥η̂1 − η∗1,ω∥2],

and the aim of what follows is to prove a lower bound for E[∥η̂1 − η∗1,ω∥2].
Let η̂1 an estimator and

ω̂ ∈ argminω∈{0,1}p∥η̂1 − η∗1,ω∥2,

we have
∥η̂1 − η∗1,ω̂∥ ≥ 1

2
∥η∗1,ω̂ − η∗1,ω∥.

Now, still from the support properties of φ,

∥η∗1,ω̂ − η∗1,ω∥2

=

p−1∑
k=0

∫ tk+1

tk

(
Cω̂(γ + ω̂kp

−αφ(p(t− tk)− 1/2))− Cω(γ + ωkp
−αφ(p(t− tk)− 1/2))

)2
dt

= p−1
p−1∑
k=0

∫ 1/2

−1/2

(
Cω̂(γ + ω̂kp

−αφ(u))− Cω(γ + ωkp
−αφ(u))

)2
du

= (Cω̂ − Cω)
2γ2 + ∥φ∥2p−2α−1

p−1∑
k=0

(Cω̂ω̂k − Cωωk)
2 ≥ ∥φ∥2p−2α−1

p−1∑
k=0

(Cω̂ω̂k − Cωωk)
2

≥ ∥φ∥2p−2α−1 min{C2
ω̂, C

2
ω}

p−1∑
k=0

1{ω̂k ̸=ωk}

≥ (γ2 + ∥φ∥2)−1∥φ∥2p−2α−1ρ(ω̂,ω),

where ρ(ω,ω′) =
∑p−1
k=0 1ωk ̸=ω′

k
is the Hamming distance on {0, 1}p.

Combining all the inequalities above, we have the existence of a constant c̃ = ∥φ∥2/(4(γ2+
∥φ∥2)) such that

inf
η̂1

sup
PZ∈Rα(L)

E[∥η̂1 − η∗1,ω∥2] ≥ c̃p−2α−1 inf
ω̂

max
ω∈{0,1}p

E[ρ(ω̂,ω)].

By Assouad’s lemma (see e.g. Tsybakov, 2009, Theorem 2.12), there exists a constant c > 0
such that

inf
ω̂

max
ω∈{0,1}p

E[ρ(ω̂,ω)] ≥ cp, (9)
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provided we are able to prove that for some constant Kmax ≥ 0,

KL((P obsω )⊗n, (P obs0 )⊗n) ≤ Kmax, for all ω ∈ {0, 1}p,

where P obsω is the law of the random vector

Yobs
ω := (Yω(t0), . . . , Yω(tp−1))

such that
Yω(tj) = Zω(tj) + εj

with ε0, . . . , εp−1 ∼i.i.d. N (0, σ2) and KL(P,Q) is the Kullback-Leibler divergence between
two measures P and Q. In (9), the constant c only depends on Kmax. We observe that, for all
ω ∈ {0, 1}p, for all j = 0, . . . , p− 1,

Yω(tj) = Zω(tj) + εj =
√
µ∗
1,ωξη

∗
1,ω(tj) + εj .

Now

η∗1,ω(tj) = Cω

(
γ +

p−1∑
k=0

ωk(p
−αφ(p(tj − tk)− 1/2))

)
= Cωγ,

since φ((p(tj − tk)− 1/2) = φ(−1/2) = 0 if j = k and φ((p(tj − tk)− 1/2) = 0 if j ̸= k
by the support properties of φ and the fact that

p(tj − tk)− 1/2 =
p

p− 1
(j − k)− 1/2 ≥ p

p− 1
− 1/2 ≥ 1/2

if j > k and p(tj − tk)− 1/2 ≤ 1/2 if j < k. Hence

Yω(tj) =
√
µ∗
1,ωξCωγ + εj =

γ
√
L

Lα
√
2
ξ + εj

and the distribution of Yobs
ω does not depend on ω. Therefore,

KL((P obsω )⊗n, (P obs0 )⊗n) = nKL(P obsω , P obs0 ) = 0.

C Proof of Theorems 2 and 3
C.1 Preliminary result
The proof of Theorems 2 and 3 is based on Bosq inequalities stated in the following theorem.
Theorem 4 (Bosq 2000) Let Γ and Γ̂ be two linear compact operators on L2([0, 1]). We denote
by

Γ =

∞∑
d=1

µ∗
dη

∗
d ⊗ η∗d and Γ̂ =

∞∑
d=1

µ̂dη̂d ⊗ η̂d

their spectral decomposition with the eigenvalues (µ∗
d)d≥1 and (µ̂d)d≥1 sorted in decreasing

order. Then
|µ̂d − µ∗

d| ≤|||Γ̂− Γ|||. (10)

Suppose moreover that, for d ≥ 1, the eigenspace associated to the eigenfunction η∗d is one-
dimensional and denote, to avoid sign confusion, η∗±,d = sign(⟨η̂ϕ,d, η∗d⟩)× η∗d . Then, we have

∥η̂d − η∗±,d∥ ≤ b
1/2
d |||Γ̂− Γ|||, (11)
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where
b1 = 8(µ∗

1 − µ∗
2)

−2

and for any d ∈ {2, . . . ,D}

bd = 8/min(µ∗
d − µ∗

d+1, µ
∗
d−1 − µ∗

d)
2.

The proof of Theorem 4 comes directly from Bosq [2000, Lemma 4.2, p. 103] for the upper
bound (10) on the eigenvalues and Bosq [2000, Lemma 4.3, p.104] for the upper bound (11) on
the eigenfunctions.

We remark that Γ, Γ̂ and Γ̂ϕ are integral operators with kernel respectively K

K̂(s, t) =
1

n

n∑
i=1

Zi(t)Zi(s), (s, t) ∈ [0, 1]2.

and

K̂ϕ(s, t) =
1

n

n∑
i=1

Ỹi(t)Ỹi(s), (s, t) ∈ [0, 1]2.

We use the previous result to establish the following proposition.
Proposition 4 Setting Kϕ = E[K̂ϕ], we have

∥η̂ϕ,d−η∗±,d∥2 ≤ 5bd

[
|||Γ̂ϕ − Γϕ|||2+|||ΠDΓΠD − Γ|||2 + σ4

p2
+A(K)

p (ϕ,D) +A(σ)
p (ϕ,D)

]
.

(12)
Proof (of Proposition 4) In the sequel, we denote Γϕ = E[Γ̂ϕ] and remark that Γϕ is an inte-
gral operator with kernel Kϕ.

Kϕ(s, t) =
∑

λ,λ′∈ΛD

1

p2

p−1∑
h,h′=0

K(th, th′)ϕλ(th)ϕλ′(th′)ϕλ(s)ϕλ′(t)

+
σ2

p2

∑
λ,λ′∈ΛD

p−1∑
h=0

ϕλ(th)ϕλ′(th)ϕλ(s)ϕλ′(t)

= ΠS2
D
K(s, t) +

σ2

p

∑
λ∈ΛD

ϕλ(s)ϕλ(t) +R(K)(s, t) +R(σ)(s, t), (13)

where ΠS2
D

is the orthogonal projection onto S2
D = span{(s, t) 7→ ϕλ(s)ϕλ′(t), λ, λ′ ∈ ΛD},

R(K)(s, t) =
∑

λ,λ′∈ΛD

1

p2

p−1∑
h,h′=0

K(th, th′)ϕλ(th)ϕλ′(th′)ϕλ(s)ϕλ′(t)−ΠS2
D
K(s, t)

=
∑

λ,λ′∈ΛD

 1

p2

p−1∑
h,h′=0

K(th, th′)ϕλ(th)ϕλ′(th′)−
∫ 1

0

∫ 1

0

K(s, t)ϕλ(s)ϕλ′(t)dsdt

ϕλ(s)ϕλ′(t)

and

R(σ)(s, t) =
σ2

p2

∑
λ,λ′∈ΛD

p−1∑
h=0

ϕλ(th)ϕλ′(th)ϕλ(s)ϕλ′(t)− σ2

p

∑
λ∈ΛD

ϕλ(s)ϕλ(t)

=
σ2

p

∑
λ,λ′∈ΛD

(
1

p

p−1∑
h=0

ϕλ(th)ϕλ′(th)− 1{λ=λ′}

)
ϕλ(s)ϕλ′(t).
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Then, from the decomposition of the kernel Kϕ given in Equation (13), we have for any fonction
f and any t ∈ [0, 1],

Γϕ(f)(t) =

∫ 1

0

Kϕ(s, t)f(s)ds

=

∫ 1

0

ΠS2
D
K(s, t)f(s)ds+

σ2

p

∑
λ∈ΛD

∫ 1

0

ϕλ(s)f(s)ds ϕλ(t) + T (K)(f)(t) + T (σ)(f)(t)

=

∫ 1

0

ΠS2
D
K(s, t)f(s)ds+

σ2

p
ΠD(f)(t) + T (K)(f)(t) + T (σ)(f)(t),

where ΠD is the orthogonal projection onto SD = span{ϕλ, λ ∈ ΛD} and T (K) (resp. T (σ))
is the integral operator associated to the kernel R(K) (resp. R(σ)):

T (K)(t) :=

∫ 1

0

R(K)(s, t)f(s)ds, T (σ)(f)(t) :=

∫ 1

0

R(σ)(s, t)f(s)ds.

Now,∫ 1

0

ΠS2
D
K(s, t)f(s)ds =

∑
λ,λ′∈ΛD

∫ 1

0

∫ 1

0

∫ 1

0

K(u, v)ϕλ(u)ϕλ′(v)dudv ϕλ(s)ϕλ′(t)f(s)ds

=
∑

λ,λ′∈ΛD

⟨ϕλ, f⟩
∫ 1

0

∫ 1

0

K(u, v)ϕλ(u)ϕλ′(v)dudv ϕλ′(t)

=
∑

λ,λ′∈ΛD

⟨ϕλ, f⟩⟨Γ(ϕλ), ϕλ′⟩ϕλ′(t)

=
∑

λ′∈ΛD

⟨Γ(
∑
λ∈ΛD

⟨ϕλ, f⟩ϕλ), ϕλ′⟩ϕλ′(t)

= ΠD(Γ(ΠD(f)))(t). (14)

Hence, we obtain:

Γϕ = ΠDΓΠD +
σ2

p
ΠD + T (K) + T (σ).

Now, since the eigenvalues (µ∗
d)d≥1 are all distincts, the eigenspace associated to the eigenvalue

µ∗
d is one-dimensional and we can apply Theorem 4 to the operators Γ and Γ̂ϕ, which yields

∥η̂ϕ,d − η∗±,d∥ ≤ b
1/2
d |||Γ̂ϕ − Γ|||

≤ b
1/2
d

(
|||Γ̂ϕ − Γϕ|||+|||ΠDΓΠD − Γ||| (15)

+
σ2

p
+|||T (K)|||+|||T (σ)|||

)
.

In the previous inequality, we have used that |||ΠD||| = 1. We now control each term of the
previous inequality. For this purpose, introducing ∥ · ∥HS , the Hilbert-Schmidt norm of an
operator defined by ∥T∥2HS =

∑
λ∈Λ ∥Teλ∥2 where (eλ)λ∈Λ is an orthonormal basis of L2

(recall that the Hilbert-Schmidt norm is independent of the choice of the basis), we have, for all
operator T : L2 7→ L2, |||T ||| ≤ ∥T∥HS since

|||T |||2 = sup
f∈L2,f ̸=0

∥Tf∥2

∥f∥2
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and, by Cauchy-Schwarz’s Inequality,

∥Tf∥2 =
∑
λ∈Λ

⟨Tf, eλ⟩2 =
∑
λ∈Λ

(∑
λ′∈Λ

⟨f, eλ′⟩⟨Teλ′ , eλ⟩

)2

≤
∑
λ∈Λ

(∑
λ′∈Λ

⟨f, eλ′⟩2
∑
λ′∈Λ

⟨Teλ′ , eλ⟩2
)

= ∥f∥2
∑
λ′∈Λ

∥Teλ′∥2 = ∥f∥2∥T∥2HS .

Moreover, we also remark that if T is a kernel operator associated to a kernel R,

∥T∥2HS =
∑
λ∈Λ

∥Teλ∥2 =
∑
λ∈Λ

∥∥∥∥∫ 1

0

R(s, ·)eλ(s)ds
∥∥∥∥2

=
∑
λ∈Λ

∫ 1

0

(∫ 1

0

R(s, t)eλ(s)ds

)2

dt =

∫ 1

0

∫ 1

0

R2(s, t)dsdt = ∥R∥2.

In addition, if the kernel R ∈ S2
D , i.e. if there exists a matrix G = (Gλ,λ′)λ,λ′∈ΛD

such that

R(s, t) =
∑

λ,λ′∈ΛD

Gλ,λ′ϕλ(s)ϕλ′(t),

we have ∥R∥L2 = ∥G∥F , where, for a matrix G,

∥G∥F =
√
Tr(GTG) =

( ∑
λ,λ′∈ΛD

G2
λ,λ′

)1/2
is the Frobenius norm of the matrix G. The fourth and fifth terms of Equation (15) are then
bounded by the squared Frobenius norm of the associated matrices and we obtain

∥η̂ϕ,d−η∗±,d∥2 ≤ 5bd

[
|||Γ̂ϕ − Γϕ|||2+|||ΠDΓΠD − Γ|||2 + σ4

p2
+A(K)

p (ϕ,D) +A(σ)
p (ϕ,D)

]
.

Proposition 4 is proved.
To end the proof of Theorems 2 and 3, it remains to deal with the stochastic term |||Γ̂ϕ −

Γϕ|||2, still bounded by using the Frobenius norm:

|||Γ̂ϕ − Γϕ|||2 ≤ ∥Ĝϕ −Gϕ∥2F ,

where

Ĝϕ :=

(
1

n

n∑
i=1

Ỹi,λỸi,λ′

)
λ,λ′∈ΛD

and Gϕ = E[Ĝϕ]. The upper bound of E[∥Ĝϕ −Gϕ∥2F ] gives Theorem 2, whereas Theorem 3
is deduced from the control in probability of ∥Ĝϕ −Gϕ∥F provided by Proposition 5 below.

C.2 End of the proof of Theorem 2
Lemma 4 Under Assumption 1, we have:

E[∥Ĝϕ −Gϕ∥2F ] ≤
max(C1 + 3; 6)

n

 ∑
λ∈ΛD

[
σ2
λ + s2λ

]2

.
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Proof (of Lemma 4) We have

E[∥Ĝϕ −Gϕ∥2F ] =
∑

λ,λ′∈ΛD

E

[(
1

n

n∑
i=1

[
Ỹi,λỸi,λ′ − E[Ỹi,λỸi,λ′ ]

])2]

=
∑

λ,λ′∈ΛD

Var

(
1

n

n∑
i=1

Ỹi,λỸi,λ′

)

≤ 1

n

∑
λ,λ′∈ΛD

E[Ỹ 2
1,λỸ

2
1,λ′ ]

≤ 1

n

 ∑
λ∈ΛD

(E[Ỹ 4
1,λ])

1/2

2

.

Now, since ε̃1λ ∼ N (0, σ2
λ), and z̃1λ = 1

p

∑p−1
h=0 Z1(th)ϕλ(th), we have

E[Ỹ 4
1,λ] = E[(z̃1,λ + ε̃1,λ)

4]

= E[z̃41,λ] + 6E[z̃21,λ]E[ε̃21,λ] + E[ε̃41,λ]

≤ C1(E[z̃21,λ])
2 + 6E[z̃21,λ]E[ε̃21,λ] + 3σ4

λ

≤ (C1 + 3)s4λ + 6σ4
λ

and

E[∥Ĝϕ −Gϕ∥2F ] ≤
1

n

 ∑
λ∈ΛD

(
(C1 + 3)s4λ + 6σ4

λ

)1/22

≤ max(C1 + 3; 6)

n

 ∑
λ∈ΛD

[
σ2
λ + s2λ

]2

.

This ends the proof of Lemma 4.
Combining the upper bound of the previous lemma with (12) provides the stated result in Theo-
rem 2 .

C.3 End of the proof of Theorem 3
To complete the proof of Theorem 3, we need some technical lemmas. Before stating them, we
recall that for all i = 1, . . . , n, we have set

Ỹi,λ =
1

p

p−1∑
h=0

Yi(th)ϕλ(th), z̃i,λ =
1

p

p−1∑
h=0

Zi(th)ϕλ(th), ε̃i,λ =
1

p

p−1∑
h=0

εi,hϕλ(th)

and
s2λ = Var(z̃i,λ), σ2

λ = Var(ε̃i,λ).

In the sequel, we consider Ỹi = (Ỹi,λ)λ∈ΛD , z̃i = (z̃i,λ)λ∈ΛD and ε̃i = (ε̃i,λ)λ∈ΛD .
Lemma 5 Under Assumption 2 , for any u ∈ R|ΛD|,

∥uT z̃1∥2ψ2
≤ C2E[(uT z̃1)

2]. (16)
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If we consider ε̃1 instead of z̃1, Inequality (16) holds with an absolute constant instead of C2.
Furthermore,

Tr
(
E
[
z̃1z̃

T
1

])
=
∑
λ∈ΛD

s2λ, T r
(
E
[
ε̃1ε̃

T
1

])
=
∑
λ∈ΛD

σ2
λ. (17)

Proof (of Lemma 5) Since Z1 := {Z1(t0), . . . , Z1(tp−1)}T is a zero-mean sub-Gaussian vec-
tor, the vector z̃1 is also a zero-mean sub-Gaussian vector. We have, for any u ∈ R|ΛD|,

∥uT z̃1∥2ψ2
=

∥∥∥∥∥∥
∑
λ∈ΛD

uλz̃1,λ

∥∥∥∥∥∥
2

ψ2

=

∥∥∥∥∥∥
∑
λ∈ΛD

uλ × 1

p

p−1∑
h=0

Z1(th)ϕλ(th)

∥∥∥∥∥∥
2

ψ2

=
∥∥∥vTZ1

∥∥∥2
ψ2

,

with v = (vh)h=0,...,p−1 and vh := 1
p

∑
λ∈ΛD

uλϕλ(th). Therefore,

∥uT z̃1∥2ψ2
≤ C2E[(vTZ1)

2]

≤ C2E
[ p−1∑
h,h′=0

vhZ1(th)Z1(th′)vh′

]

≤ C2

∑
λ,λ′∈ΛD

uλuλ′
1

p2
E
[ p−1∑
h,h′=0

ϕλ(th)ϕλ′(th′)Z1(th)Z1(th′)
]

≤ C2E[(uT z̃1)
2].

Now, if we consider ε̃1 instead of z̃1, setting ε1 := (ε1,0, . . . , ε1,p−1)
T , and using Section 5.2.3

and Lemma 5.24 of Vershynin (2012),∥∥∥vT ε1∥∥∥2
ψ2

≤ Cσ2∥v∥2ℓ2 = CE[(uT ε̃1)
2],

with C an absolute constant, and

∥uT ε̃1∥2ψ2
≤ CE[(uT ε̃1)

2].

The equalities (17) are obvious.
Results of the previous lemma are useful for the following result.
Lemma 6 We denote X = (Xλλ′)λ,λ′∈ΛD

the matrix whose entries are

Xλλ′ = Ỹ1,λỸ1,λ′ − E[Ỹ1,λỸ1,λ′ ].

Setting

MD :=
∑
λ∈ΛD

s2λ+
∑
λ∈ΛD

σ2
λ =

∑
λ∈ΛD

 1

p2

p−1∑
h,h′=0

K(th, th′)ϕλ(th)ϕλ(th′) +
σ2

p2

p−1∑
h=0

ϕ2
λ(th)

 ,

under Assumption 2, there existe an absolute constant C̄ such that for any t ≥ C̄(C2 + 1)MD ,

E
[
exp(t−1∥X∥F )

]
≤ exp(1).

36



Proof (of Lemma 6) We have

∥X∥F = ∥Ỹ1Ỹ
T
1 − E[Ỹ1Ỹ

T
1 ]∥F

≤ ∥(z̃1 + ε̃1)(z̃1 + ε̃1)
T ∥F + ∥E

[
(z̃1 + ε̃1)(z̃1 + ε̃1)

T ]∥F
≤ ∥z̃1z̃T1 ∥F + ∥ε̃1ε̃T1 ∥F + 2∥z̃1ε̃T1 ∥F + ∥E

[
z̃1z̃

T
1

]
∥F + ∥E

[
ε̃1ε̃

T
1

]
∥F

≤ ∥z̃1∥2ℓ2 + ∥ε̃1∥2ℓ2 + 2∥z̃1∥ℓ2∥ε̃1∥ℓ2 + ∥E
[
z̃1z̃

T
1

]
∥F + ∥E

[
ε̃1ε̃

T
1

]
∥F .

We also have

∥E
[
z̃1z̃

T
1

]
∥2F =

∑
λ,λ′∈ΛD

(
E[z̃1,λz̃1,λ′ ]

)2
≤
∑
λ∈ΛD

∑
λ′∈ΛD

E[z̃21,λ]E[z̃21,λ′ ]

≤
( ∑
λ∈ΛD

s2λ

)2
.

Therefore
∥E
[
z̃1z̃

T
1

]
∥F ≤

∑
λ∈ΛD

s2λ

and similarly,
∥E
[
ε̃1ε̃

T
1

]
∥F ≤

∑
λ∈ΛD

σ2
λ.

We finally obtain

∥X∥F ≤ 2∥z̃1∥2ℓ2 + 2∥ε̃1∥2ℓ2 +MD

and we have

E
[
exp(t−1∥X∥F )

]
≤ E

[
exp(2t−1∥z̃1∥2ℓ2)

]
× E

[
exp(2t−1∥ε̃1∥2ℓ2)

]
× exp(t−1MD).

Then, using Lemma 5 and Proposition A.1. of Bunea and Xiao (2015), we obtain for C∗ and c∗
two absolute positive constants, if t > c∗(4C2 + 1)

∑
λ∈ΛD

s2λ,

E
[
exp(2t−1∥z̃1∥2ℓ2)

]
≤ E

exp
2t−1

(
∥z̃1∥2ℓ2 −

∑
λ∈ΛD

s2λ

)× exp

2t−1
∑
λ∈ΛD

s2λ


≤ exp

C∗

(
(4C2 + 1)

∑
λ∈ΛD

s2λ

t

)2

+ 2t−1
∑
λ∈ΛD

s2λ

 .

Similarly, for t larger than
∑
λ∈ΛD

σ2
λ up to a multiplicative absolute constant,

E
[
exp(2t−1∥ε̃1∥2ℓ2)

]
≤ exp

C∗∗

(∑
λ∈ΛD

σ2
λ

t

)2

+ 2t−1
∑
λ∈ΛD

σ2
λ

 ,

where C∗∗ is an absolute constant. This ends the proof of the lemma.
The following proposition controls the term ∥Ĝϕ − Gϕ∥F as required to complete the proof of
Theorem 3 .
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Proposition 5 We assume that Assumption 2 is satisfied. For γ > 0, with probability larger
than 1− 2 exp(−1/64min(γ2, 16γ

√
n)),

∥Ĝϕ −Gϕ∥F ≤ C̄(e1/2 + γ)(C2 + 1)√
n

∑
λ∈ΛD

[
σ2
λ + s2λ

]
,

where C̄ is an absolute constant.
Proof (of Proposition 5) We apply Theorem 4.1 of Juditsky and Nemiroski (2008) with α = 1,
since (R|ΛD|2 , ∥ · ∥F ) is 1-smooth (see Definition 2.1 of Juditsky and Nemiroski (2008)). Since

Lemma 6 gives for t ≥ C̄(C2 + 1)
∑
λ∈ΛD

[
σ2
λ + s2λ

]
,

E
[
exp(t−1∥X∥F )

]
≤ exp(1),

for γ > 0, with probability larger than 1− 2 exp(−1/64min(γ2, 16γ
√
n)),

∥Ĝϕ −Gϕ∥F ≤ C̄(e1/2 + γ)(C2 + 1)√
n

∑
λ∈ΛD

[
σ2
λ + s2λ

]
.

Proposition 5 is proved.
Plugging the upper bound of Proposition 5 in (12) provides the stated result of Theorem 3 .

C.4 Proof of Proposition 1
We control each deterministic term of the bound obtained in Theorems 2 and 3. Using (14), we
first have for any f ∈ L2,

∥ΠDΓΠD(f)− Γ(f)∥2 =

∫ 1

0

(
ΠDΓΠD(f)(t)− Γ(f)(t)

)2
dt

=

∫ 1

0

(∫ 1

0

ΠS2
D
K(s, t)f(s)ds−

∫ 1

0

K(s, t)f(s)ds
)2
dt

=

∫ 1

0

(∫ 1

0

(ΠS2
D
K(s, t)−K(s, t))f(s)ds

)2
dt

≤
∫ 1

0

[∫ 1

0

(ΠS2
D
K(s, t)−K(s, t))2ds

∫ 1

0

f2(s)ds

]
dt

≤ ∥ΠS2
D
K −K∥2∥f∥2

and then
|||ΠDΓΠD − Γ|||2 ≤ ∥ΠS2

D
K −K∥2.

Now, we take (s, t) ∈ [0, 1]2. Then there exists a unique couple (λ, λ′) ∈ Λ2
D such that s ∈ Iλ

and t ∈ Iλ′ . Therefore, ϕλ′′(s) = 0 for λ′′ ̸= λ and ϕλ′′′(t) = 0 for λ′′′ ̸= λ′ and then,

ΠS2
D
K(s, t)−K(s, t) =

∑
λ′′,λ′′′∈ΛD

∫ 1

0

∫ 1

0

K(s′, t′)ϕλ′′(s′)ϕλ′′′(t′)ds′dt′ϕλ′′(s)ϕλ′′′(t)−K(s, t)

=

∫ 1

0

∫ 1

0

K(s′, t′)ϕλ(s
′)ϕλ′(t′)ds′dt′ϕλ(s)ϕλ′(t)−K(s, t)

= D2

∫
Iλ

∫
Iλ′

(K(s′, t′)−K(s, t))ds′dt′.
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Then, Eq. (4) gives∣∣∣ΠS2
D
K(s, t)−K(s, t)

∣∣∣ ≤ D2
√
L∥K∥∞

∫
Iλ

∫
Iλ′

[
|s′ − s|α + |t− t′|α

]
ds′dt′

≤
4
√
L∥K∥∞
α+ 1

D−α,

meaning that

|||ΠDΓΠD − Γ|||2 ≤ 16L∥K∥∞
(α+ 1)2

D−2α.

For studying the termsA(K)
p (ϕ,D) andA(σ)

p (ϕ,D), we set for any h = 0, . . . , p−1, bh = h/p.
Observe that th = h/(p− 1) ∈ [bh, bh+1]. We also set for any λ = 0, . . . , D − 1,

Jλ = {h = 0, . . . , p− 1 : Leb([bh, bh+1] ∩ Iλ) ̸= 0}.

Remember that m := p/D is an integer, so that, Jλ = {mλ, . . . ,mλ+m− 1} and

Iλ =
[mλ
p
,
mλ+m

p

]
=
⋃
h∈Jλ

[bh, bh+1].

Then, since ϕλ(x) =
√
D1Iλ(x) and card(Jλ) = m = p/D, for any λ, λ′ = 0, . . . , D − 1,

G
(K)

λ,λ′ :=
1

p2

p−1∑
h,h′=0

K(th, th′)ϕλ(th)ϕλ′(th′)−
∫ 1

0

∫ 1

0

K(s, t)ϕλ(s)ϕλ′(t)dsdt

=

p−1∑
h,h′=0

∫ bh+1

bh

∫ bh′+1

bh′

[
K(th, th′)−K(s, t)

]
ϕλ(s)ϕλ′(t)dsdt

+

p−1∑
h,h′=0

∫ bh+1

bh

∫ bh′+1

bh′

K(th, th′)
[
ϕλ(th)ϕλ′(th′)− ϕλ(s)ϕλ′(t)

]
dsdt

= D
∑
h∈Jλ

∑
h′∈Jλ′

∫ bh+1

bh

∫ bh′+1

bh′

[
K(th, th′)−K(s, t)

]
dsdt.

Therefore,

|G(K)

λ,λ′ | ≤ D
∑
h∈Jλ

∑
h′∈Jλ′

∫ bh+1

bh

∫ bh′+1

bh′

√
∥K∥∞L

(
|s− th|α + |t− th′ |α

)
dsdt

≤ 2
√

∥K∥∞L×Dp−1card(Jλ′)
∑
h∈Jλ

∫ bh+1

bh

|s− th|αds

≤ 2
√

∥K∥∞L×Dp−1card(Jλ′)card(Jλ)×
2

α+ 1
p−α−1

≤
4
√

∥K∥∞L
α+ 1

D−1p−α.

Finally,

A(K)
p (ϕ,D) = ∥G(K)∥2F =

∑
λ,λ′∈ΛD

(
G

(K)

λ,λ′

)2
≤ 16∥K∥∞L

(α+ 1)2
p−2α.
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Similarly, for any λ, λ′ = 0, . . . , D − 1, observing that for λ ̸= λ′, Jλ ∩ Jλ′ = ∅,

G
(σ)

λ,λ′ :=
σ2

p

(
1

p

p−1∑
h=0

ϕλ(th)ϕλ′(th)− ⟨ϕλ, ϕλ′⟩

)

=
σ2

p

1

p

∑
h∈Jλ∩Jλ′

D − 1{λ=λ′}

 = 0

and
A(σ)
p (ϕ,D) = ∥G(σ)∥2F =

∑
λ,λ′∈ΛD

(
G

(σ)

λ,λ′

)2
= 0.

Finally, for any λ = 0, . . . , D − 1,

σ2
λ + s2λ =

σ2

p2

p−1∑
h=0

ϕ2
λ(th) +

1

p2

p−1∑
h,h′=0

K(th, th′)ϕλ(th)ϕλ(th′)

≤ Dσ2

p2
card(Jλ) +

∥K∥∞D
p2

(card(Jλ))2

≤ σ2

p
+

∥K∥∞
D

and ∑
λ∈ΛD

[
σ2
λ + s2λ

]
≤ ∥K∥∞ +

σ2D

p
.

This ends the proof of Proposition 1.

C.5 Proof of Lemma 1
To prove Lemma 1, we just need to prove that for all v = (vh)h=0,...,p ∈ Rp,

E[exp(tvTZ)] ≤ exp
(
ct2M2E[(vTZ)2]

)
, ∀ t ∈ R, (18)

with c an absolute constant (see Proposition 2.5.2 of Vershynin [2018]). For this purpose, we
denote

uv,d :=

p−1∑
h=0

vhη
∗
d(th) ∈ R.

Then, using (3), we have

E[(vTZ)2] =
∑
d∈N∗

µ∗
du

2
v,d

and, still by using Proposition 2.5.2 of Vershynin [2018], ∀ t ∈ R,

E[exp(tvTZ)] =
∏
d∈N∗

E
[
exp

(
tζ∗dµ

∗1/2
d uv,d

)]
≤
∏
d∈N∗

E
[
exp

(
ct2µ∗

du
2
v,d∥ζ∗d∥2ψ2

)]
,

40



where c is an absolute constant. By using (6), we obtain

E[exp(tvTZ)] ≤
∏
d∈N∗

E
[
exp

(
ct2µ∗

du
2
v,dM

2)]
≤ exp

(
ct2M2E[(vTZ)2]

)
and (18) is satisfied.
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