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Appendix A: Proof of Theorem 2

It is enough to check that assumptions [A1] and [A2] of Theorem 1 are satisfied. We begin
by defining the parameter transformation. Under a DPM prior law with base measure
proportional to a Gaussian distribution with parameter γ = (m, s2), we have pF,σ(·) =∑
j≥1 pjφσ(· − θj) almost surely, with independent sequences (θj)j≥1 and (pj)j≥1, the

random variables (θj)j≥1 being independent and identically distributed according to
N(m, s2). Hereafter, we use the notation Nγ as shorthand for N(m, s2). We consider
a set Kn = [m1, m2] × [s2

1, s
2
n], with constants −∞ < m1 ≤ m2 < ∞, s2

1 > 0 and a

positive sequence s2
n → ∞ as a power of log n, such that P(n)

p0 (γ̂n ∈ Kcn) = o(1). For
a positive sequence un → 0 to be suitably chosen, consider a un-covering of [m1, m2]
with intervals Ik = [mk, mk + un), for mk = m1 + (k − 1)un, k = 1, . . . , Lmn, where
Lmn = d1 + (m2 −m1)/une, and a covering of [s2

1, s
2
n] with intervals Jl = [s2

l , s
2
l+1) =

[s2
1(1 + un)l−1, s2

1(1 + un)l), for l = 1, . . . , Lsn, where Lsn = d2u−1
n log(sn/s1)e.

For s2 ∈ Jl, l = 1, . . . , Lsn, let ρl = (s2/s2
l )

1/2. Let m ∈ Ik, k = 1, . . . , Lmn. For any
γ′ = (mk, s

2
l ) and γ = (m, s2), if θ′j ∼ Nγ′ , then θj = [ρl(θ

′
j −mk) + m] ∼ Nγ , j ∈ N.
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Therefore, conditionally on σ, for F ∼ DP(αRNγ′),

ψγ′,γ(pF,σ)(·) =
∑
j≥1

pjφσ(· − θ′j − [(ρl − 1)θ′j − ρlmk +m])

is distributed according to a DPM of Gaussian densities with base measure αRNγ . With
abuse of notation, we shall also write ψγ′,γ(θ′j) to intend the parameter transformation
θ′j 7→ ρl(θ

′
j −mk) +m,

ψγ′,γ(θ′j) = ρl(θ
′
j −mk) +m. (A.1)

In the sequel, we shall repeatedly use the following inequalities:

1 ≤ ρl < (1 + un)1/2 and −mkun < m− ρlmk ≤ un. (A.2)

We first deal with the ordinary smooth case. To check that condition [A1] is satisfied,

let σ ∈ (σn/2, 2σn), with σn = ε
1/β
n , and let F ∗ =

∑Nσ
j=1 p

∗
jδθ∗j be a mixing distribution

such that the Gaussian mixture pF∗,σ satisfies both requirements in (3.4) and the minimal
distance between any pair of contiguous location points θ∗j ’s is bounded below by δ = σε2bn ,

for some b > max{1, (2β)−1}. A partition (Uj)
M
j=1 of R can be constructed following the

proof of Theorem 4 in Shen et al. [6] so that (Uj)
K
j=1 is a partition of [−aσ, aσ], with aσ =

a0| log σ|1/τ , composed of intervals [θ∗j −δ/2, θ∗j +δ/2], for j = 1, . . . , Nσ, and of intervals
with diameter smaller than or equal to σ to complete [−aσ, aσ]. Then, a partition of
(−∞, −aσ)∪ (aσ, ∞) can be constructed with intervals Uj , for j = K + 1, . . . , M , such
that a1σε

2b
n ≤ αRNγ(Uj) ≤ 1 for some constant a1 > 0. Note that, as in Shen et al. [6],

M . σ−1(log n)1+1/τ and, for every 1 ≤ j ≤ K, we have Nγ(Uj) & (δ/s)e−2(aσ/s)
2

&
σnε

2b
n uniformly in γ ∈ Kn. As in Shen et al. [6], define Bn as the set of all (F, σ) such

that σ ∈ (σn/2, 2σn) and

M∑
j=1

|F (Uj)− p∗j | ≤ 2ε2bn , min
1≤j≤M

F (Uj) ≥ ε4bn /2.

Following Lemma 10 of Ghosal and van der Vaart [2], for some constant c > 0,

inf
γ∈Kn

π (Bn | γ) & exp (−cσ−1
n (log n)2+1/τ ). (A.3)

For every (F, σ) ∈ Bn, for γ′ = (mk, s
2
l ) and any γ ∈ Ik × Jl, by the parameter trans-

formation in (A.1) and the inequalities in (A.2),

ψγ′,γ(pF,σ)(x) =
∑
j≥1

pjφσ(x− ψγ′,γ(θ′j))

≥
∑

j: |θ′j |≤aσ

pjφσ(x− ψγ′,γ(θ′j))

>
∑

j: |θ′j |≤aσ

pjφσ(x− θ′j)

× exp (−4[|x− θ′j |(aσ + 1)un + (a2
σ + 1)u2

n]/σ2
n), x ∈ R.
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Note that (nσn)−1 = ε2n. Choose un . n−1σn(log n)−2/τ = ε2nσ
2
n(log n)−2/τ . On the

event An = {
∑n
i=1 |Xi −m0| ≤ τ2

0nkn}, with kn = O((log n)1/τ ), using the inequality
log x ≥ (x− 1)/x valid for every x > 0, we have

`n(ψγ′,γ(pF,σ))− `n(p0) > `n(pFn,σ)− `n(p0) + n log cσ

− 4nσ−2
n [(aσ + 1)un(2aσ + τ2

0 kn) + (a2
σ + 1)u2

n]

≥ `n(pFn,σ)− `n(p0) + n log cσ − C ′nε2n
> `n(pFn,σ)− `n(p0)− nε2n − C ′nε2n,

where C ′ > 0 is a large enough constant and pFn,σ(·) := c−1
σ

∑
j: |θ′j |≤aσ

pjφσ(·−θ′j), with

normalizing constant

cσ :=
∑

j: |θ′j |≤aσ

pj > 1− 2ε2bn > 1− ε2n

because b > 1. The proof of Theorem 4 of Shen et al. [6], together with condition (3.4),
implies that condition [A1] is satisfied for k as in part (i) of the statement of Theorem 2.

We now check that condition [A2] is satisfied. Let F denote the set of all distribution
functions on R and

Fn :=

{
F ∈ F : F =

∑
j≥1

pjδθj , |θj | ≤
√
n ∀ 1 ≤ j ≤ Hn,

∑
j>Hn

pj ≤ εn

}
.

We consider the sieve set

Sn := {(F, σ) : (F, σ) ∈ Fn × [σn, σ̄n]}, (A.4)

with σn = σn = ε
1/β
n , σ̄n = exp(tnε2n) for some constant t > 0 depending on the param-

eters ν1, ν2 > 0 of the inverse-gamma prior distribution on σ, and Hn = bnε2n/(log n)c.
For some constant x0 > 0, let an := 2x0(log n)1/τ . For γ′ = (mk, s

2
l ) and any γ ∈ Ik×Jl,

if |θ| ≥ an and |x| ≤ an/2, then |x − θ| ≥ |θ|/2 and we can bound above ψγ′,γ(pF,σ) as
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follows:

ψγ′,γ(pF,σ)(x) =

∫ ∞
−∞

φσ(x− ψγ′,γ(θ))dF (θ)

≤
∫ ∞
−∞

φσ(x− θ) exp (un|x− θ|(|θ|+ 1)/σ2)dF (θ)

< exp (3a2
nun/σ

2)

∫
|θ|<an

φσ(x− θ)dF (θ)

+

∫
|θ|≥an

φσ(x− θ) exp (4un(x− θ)2/σ2)dF (θ)

< exp (3a2
nun/σ

2)

∫
|θ|<an

φσ(x− θ)dF (θ)

+

∫
|θ|≥an

φσ((x− θ)(1− 8un)1/2)dF (θ)

≤ max
{

exp (3a2
nun/σ

2), (1− 8un)−1/2
}

×

(∫
|θ|<an

φσ(x− θ) dF (θ) +

∫
|θ|≥an

φσ̃n(x− θ)dF (θ)

)
, x ∈ R,

(A.5)

where F ∼ DP(αRNγ′) and σ̃n := σ(1− 8un)−1/2. Now, define the event

Ωn :=

{
− an/2 ≤ min

1≤i≤n
Xi ≤ max

1≤i≤n
Xi ≤ an/2

}
.

Since by Condition (3.3), P(n)
p0 (Ωcn) . e−cna

τ
n , we can replace the support R of the den-

sity ψγ′,γ(pF,σ) with Ωn and, with abuse of the notation introduced in (2.4), define,
for all (F, σ) ∈ Sn, the density q(F,σ),γ′ supported on [−an/2, an/2] obtained from the
re-normalized restriction to [−an/2, an/2] of the function in the last line of (A.5). Re-
placing pF,σ with pF,σ1[−an/2, an/2] we then have that ‖q(F,σ),γ′ −pF,σ‖1 = o(εn). We can
therefore consider the same tests as in Corollary 1 of Ghosal and van der Vaart [2] and
condition (2.6) is verified, together with (2.7), using Proposition 2 of Shen et al. [6]. This
implies that also condition (2.8) is satisfied. Since (A.3) implies condition (2.5), there
only remains to verify assumption (2.4). The difficulty is to control q(F,σ),γ′ as σ → 0.
For every (F, σ) with σ > σn, the previously defined density q(F,σ),γ′ can be used as an
upper bound on

sup
γ: ‖γ−γ′‖≤un

ψγ′,γ(pF,σ)(·)1[−an/2, an/2](·),

with ‖γ − γ′‖ := (|m−mk|2 + |s− sl|2)1/2. Then, for some finite constant C2 > 0, both
integrals ∫

F

∫
σ>σ̄n

Q
(n)
(F,σ),γ′([−an/2, an/2]n)π(dF | γ′)dπ(σ)
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and ∫
Fcn

∫ σ̄n

σn

Q
(n)
(F,σ),γ′([−an/2, an/2]n)π(dF | γ′)dπ(σ)

are o(e−C2nε
2
nπ(Bn | γ′)) uniformly in γ′ ∈ Kn. We now study

sup
γ′∈Kn

∫
F

∫ σn

0

Q
(n)
(F,σ),γ′([−an/2, an/2]n)π(dF | γ′)dπ(σ).

Consider the partition
⊔∞
j=0[σn2−(j+1), σn2−j) of (0, σn). For every j ≥ 0, let un,j :=

n−1en(σn2−j)2, with en = o(1). For every γ′ ∈ Kn, we consider a un,j-covering of
{γ : ‖γ − γ′‖ ≤ un} with centering points γi, i = 1, . . . , Nj , where Nj . (un/un,j)

2.
When σ ∈ [σn2−(j+1), σn2−j), for |x| ≤ an/2,

sup
γ: ‖γ−γ′‖≤un

ψγ′,γ(pF,σ)(x) ≤ max
1≤i≤Nj

sup
γ: ‖γ−γi‖≤un,j

∫ ∞
−∞

φσ(x− ψγi,γ(θ))dF (θ)

≤ max
1≤i≤Nj

cn,igσ,i(x),

where gσ,i is the probability density on [−an/2, an/2] proportional to∫
|θ|<an

φσ(x− θ)dF (θ) +

∫
|θ|≥an

φσ

(
x− θ

(1 + o(1/n))−1/2

)
dF (θ),

with F ∼ DP(αRNγi), and the normalizing constant

cn,i ≤ F ((−an, an)) exp (12x2
0n
−1en(log n)2/τ ) + [1− F ((−an, an))]O(1) = 1 +O(1).

This implies that, for en = O((log n)−2/τ ),∫
F

∫ σn2−j

σn2−(j+1)

Q
(n)
(F,σ),γ′([−an/2, an/2]n)π(dF | γ′)dπ(σ) . Njπ([σn2−(j+1), σn2−j))

.
u2
n

u2
n,j

π([σn2−(j+1), σn2−j))

. u2
nn

2e−2
n (σn2−j)−4e−2j−1/σn ,

whence, for a suitable constant C > 0,

sup
γ′∈Kn

∫
F

∫ σn

0

Q
(n)
(F,σ),γ′([−an/2, an/2]n)π(dF | γ′)dπ(σ) . exp (−Cσ−1

n ) . exp (−Cnε2n)

and (2.4) is verified, which completes the proof for the ordinary smooth case.

We now consider the super-smooth case. The main difference with the ordinary smooth
case lies in the fact that, since the rate εn is nearly parametric, that is, nε2n = O((log n)κ)
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for some κ > 0, in order for condition (2.3) to be satisfied, in view of the constraint in
(2.2), it suffices that, over some set Bn, for suitable constants C, C1 > 0,

sup
γ′∈Kn

sup
(F,σ)∈Bn

P(n)
p0

(
inf

γ: ‖γ−γ′‖≤un
`n(ψγ′,γ(pF,σ))− `n(p0) < −C1nε

2
n

)
. e−Cnε

2
n . (A.6)

It is known from Lemma 2 of Shen and Wasserman [7] that if, for any fixed α ∈ (0, 1],
the pair (F, σ) ∈ Sn := {(F, σ) : ρα(p0; pF,σ) ≤ ε2n}, then, for every constant D > 0,

P(n)
p0

(
`n(pF,σ)− `n(p0) < −(1 +D)nε2n

)
. e−αDnε

2
n .

Let σn = O((log n)−1/r). It is known from Lemma 8 of Scricciolo [5] that, for σ ∈
(σn, σn + e−d1(1/σn)r ) with d1 a positive constant, there exists a distribution F ∗ =∑Nσ
j=1 p

∗
jδθ∗j , withNσ = O((aσ/σ)2) support points in [−aσ, aσ], where aσ = O(σ−r/(τ∧2)),

such that, for some constant c > 0,

max{Pp0 log(p0/pF∗,σ), Pp0 log2(p0/pF∗,σ)} . e−c(1/σ)r .

Inspection of the proof of the above mentioned Lemma 8 reveals that all arguments
remain valid to bound above any ρα(p0; pF∗,σ) divergence for α ∈ (0, 1]. In fact, using
the inequality |aα − bα| ≤ |aβ − bβ |α/β valid for all a, b > 0 and 0 ≤ α ≤ β, if we set
β = 1 in our case, then

ρα(p0; pF∗,σ) ≤ α−1Pp0 |(p0/pF∗,σ)− 1|α.

All bounds used in the proof of Lemma 8 for the various pieces in which the Kullback-
Leibler divergence Pp0 log(p0/pF∗,σ) is split can be used here to bound above ρα(p0; pF∗,σ).
Thus,

ρα(p0; pF∗,σ) . e−c(1/σ)r

for some constant c > 0 not depending on α. Construct a partition (Uj)
Nσ
j=0 of R, with

U0 := (
⋃Nσ
j=1 Uj)

c, Uj 3 θ∗j and λ(Uj) = O(e−c1(1/σ)r ), j = 1, . . . , Nσ, where here λ

denotes Lebesgue measure. Then, infγ∈Kn min1≤j≤Nσ Nγ(Uj) & e−c1(1/σ)r . Defined the
set

Bn :=

(F, σ) : σ ∈ (σn, σn + e−d1(1/σn)r ),

Nσ∑
j=1

|F (Uj)− p∗j | ≤ e−c1(1/σ)r

 ,

for some constants c2, c3 > 0 we have

inf
γ∈Kn

π(Bn | γ) & exp (−c2Nσn(1/σn)r) = exp (−c3nε2n)

and, for every (F, σ) ∈ Bn,

ρα(p0; pF,σ) . exp (−(1/σn)r) . ε2n.
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Reasoning as in the ordinary smooth case, for un = O(k−1
n σ2

nε
2
n(log n)−2/(τ∧2)), on the

event An := {
∑n
i=1 |Xi −m0| ≤ τ2

0nkn}, with kn . (log n)1/τ ,

`n(ψγ′,γ(pF,σ))− `n(p0) ≥ `n(pFn,σ)− `n(p0) + n(cσ − 1)

− 4nσ−2
n [(a2

σ + 1)u2
n + (aσ + 1)un(2aσ + τ2

0 kn)]

≥ `n(pFn,σ)− `n(p0)− nε2n − C ′nε2n

for some constant C ′ > 0, with pFn,σ(·) := c−1
σ

∑
j: |θ′j |≤aσ

pjφσ(· − θ′j), where the nor-

malizing constant

cσ :=
∑

j: |θ′j |≤aσ

pj ≥ 1− e−c1(1/σn)r ≥ 1− ε2n.

Lemma 2 of Shen and Wasserman [7] then implies that (A.6) is satisfied. The other parts
of the proof of Theorem 2 for the ordinary smooth case go through to this case with

modifications. We need to check that the probabilities P(n)
p0 (Acn) and P(n)

p0 (Ωcn) converge to
zero at appropriate rates. By a standard concentration inequality for sums of independent

random variables, we have that, for a suitable constant c2 > 0, P(n)
p0 (Acn) . e−c2nk

2
n . Also,

by assumption (3.3) that p0 has exponentially small tails, P(n)
p0 (Ωcn) . e−c3na

τ
n . �

Appendix B: Proof of Proposition 1

The result relies on the following inversion inequalities that relate the L2-distance be-
tween the true mixing density and the (random) approximating mixing density in the
sieve set Sn, as defined in (A.4) in the proof of Theorem 2, to the L2- or the L1-distance
between the corresponding mixed densities:

‖pY − p0Y ‖2 .

{
‖K ∗ pY −K ∗ p0Y ‖β1/(β1+η)

2 , ordinary smooth case,

(− log ‖K ∗ pY −K ∗ p0Y ‖1)−β1/r1 , super-smooth case.

To our knowledge, the first inequality, which concerns the ordinary smooth case, is new
and of potential independent interest; the second one, concerning the super-smooth case,
is similar to the one in Theorem 2 of Nguyen [3], which relates the Wasserstein distance
between the mixing distributions to the L1-distance between the mixed densities. In
what follows, we use “os” and “ss” as short-hands for “ordinary smooth” and “super-
smooth”, respectively. To prove these inequalities, we instrumentally use the sinc kernel
to characterize regular densities in terms of their approximation properties. We recall
that the sinc kernel

sinc(x) =

{
(sinx)/(πx), if x 6= 0,

1/π, if x = 0,

has Fourier transform ŝinc identically equal to 1 on [−1, 1] and vanishing outside it.
For δ > 0, let sincδ(·) = δ−1 sinc(·/δ) and define gδ as the inverse Fourier transform of
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ŝincδ/K̂, that is

gδ(x) =
1

2π

∫ ∞
−∞

e−itx
ŝincδ(t)

K̂(t)
dt, x ∈ R.

Let ĝδ = ŝincδ/K̂ be the Fourier transform of gδ. So, sincδ = K ∗ gδ and pY ∗ sincδ =
(pY ∗K) ∗ gδ = (K ∗ pY ) ∗ gδ. Then,

‖pY − p0Y ‖22 ≤ ‖pY ∗ sincδ −p0Y ∗ sincδ ‖22 + ‖pY − pY ∗ sincδ ‖22 + ‖p0Y − p0Y ∗ sincδ ‖22
. ‖pY ∗ sincδ −p0Y ∗ sincδ ‖22 + ‖pY − pY ∗ sincδ ‖22 + δ2β1

because, by assumption (3.9),

‖p0Y − p0Y ∗ sincδ ‖22 =

∫ ∞
−∞
|p̂0Y (t)|2|1− ŝincδ(t)|2dt

< δ2β1

∫
|t|>1/δ

(1 + t2)β1 |p̂0Y (t)|2dt . δ2β1 .

Now, recall that pY = pF,σ = F ∗ φσ. For (F, σ) ∈ Fn, σ ≥ σn ∝ Cδ(log n)κ2 , where
2κ2 ≥ 1, C2/2 ≥ (2β1 + 1)/[2(β1 + η) + 1] and δ ≡ δn & n−1/[2(β!+η)+1],

‖pY − pY ∗ sincδ ‖22 ≤
∫
|t|>1/δ

|φ̂σ(t)|2dt

. (σ2/δ)−1e−(σ/δ)2/2

. [δ(log n)2κ2 ]−1e−C
2(logn)2κ2/2 . δ2β1 .

In the ordinary smooth case,

‖pY ∗ sincδ −p0Y ∗ sincδ ‖22 = ‖(K ∗ pY ) ∗ gδ − (K ∗ p0Y ) ∗ gδ‖22

≤ δ−2η

∫
|t|≤1/δ

|K̂(t)|2|p̂Y (t)− p̂0Y (t)|2dt

≤ δ−2η‖K ∗ pY −K ∗ p0Y ‖22.

In the super-smooth case, ‖pY ∗ sincδ −p0Y ∗ sincδ ‖22 ≤ ‖K ∗ pY −K ∗ p0Y ‖21‖gδ‖22, where

‖gδ‖22 =
1

2π

∫ ∞
−∞

|ŝincδ(t)|2

|K̂(t)|2
dt =

1

2π

∫
δ|t|≤1

|K̂(t)|−2dt . e2%δ−r1 .

Combining partial results, for (F, σ) ∈ Sn,

‖pY − p0Y ‖22 . δ2β1 +

{
‖K ∗ pY −K ∗ p0Y ‖22 × δ−2η, os case,

‖K ∗ pY −K ∗ p0Y ‖21 × e2%δ−r1 , ss case,

so that the optimal choice for δ turns out to be

δ =

{
O(‖K ∗ pY −K ∗ p0Y ‖1/(β1+η)

2 ), os case,

O
(
(− log ‖K ∗ pY −K ∗ p0Y ‖1)−1/r1

)
, ss case.
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For any 1 ≤ q ≤ ∞,

‖K ∗ pY −K ∗ p0Y ‖q = ‖(K ∗ F ) ∗ φσ −K ∗ p0Y ‖q = ‖pF∗K,σ −K ∗ p0Y ‖q.

Then,

‖pY − p0Y ‖2 = ‖pF,σ − p0Y ‖2 .

{
‖pF∗K,σ −K ∗ p0Y ‖β1/(β1+η)

2 , os case,

(− log ‖pF∗K,σ −K ∗ p0Y ‖1)−β1/r1 , ss case.

For suitable constants τ1, κ1 > 0, let

ψn =

{
n−(β1+η)/[2(β1+η)+1](log n)κ1 , os case,

n−1/2(log n)τ1 , ss case.

Let vn be as in the statement of Proposition 1. Then, for all (F, σ) ∈ Sn, the following
inclusions hold:{

{(F, σ) : ‖pF∗K,σ −K ∗ p0Y ‖2 . ψn} ⊆ {(F, σ) : ‖pY − p0Y ‖2 . vn}, os,

{(F, σ) : ‖pF∗K,σ −K ∗ p0Y ‖1 . ψn} ⊆ {(F, σ) : ‖pY − p0Y ‖2 . vn}, ss.

For q = 2 in the ordinary smooth case and q = 1 in the super-smooth case, by virtue of
Theorem 2, we have π({(F, σ) ∈ Sn : ‖pF∗K,σ − K ∗ p0Y ‖q . ψn} | γ̂n, X(n)) → 1 in

P(n)
p0X -probability, which implies that π({(F, σ) : ‖pY − p0Y ‖2 . vn} | γ̂n, X(n)) → 1 in

the same mode of convergence, and the proof is complete. �

Appendix C: Proof of Theorem 3

For any intensity λ, we still denote Mλ =
∫

Ω
λ(t)dt and λ̄ = M−1

λ × λ ∈ F1. Without
loss of generality, we can assume that Ω = [0, T ]. To apply Theorem 1, we must first
define the transformation ψγ,γ′ . Note that the parameter γ only influences the prior on
λ̄ and has no impact on Mλ. As explained in Section 2, we can consider the following
transformation: for all γ, γ′ ∈ R∗+, we set, for any t,

λ̄(t) =
∑
j≥1

pj
1(0, θj)(t)

θj
, ψγ,γ′(λ̄)(t) =

∑
j≥1

pj

1(0, G−1

γ′ (Gγ(θj)))
(t)

G−1
γ′ (Gγ(θj))

,

with
pj = Vj

∏
l<j

(1− Vl), Vj ∼ Beta(1, A), θj ∼ Gγ independently.

So, if λ̄ is distributed according to a DPM of uniform distributions with base measure in-
dexed by γ, then ψγ,γ′(λ̄) is distributed according to a DPM of uniform distributions with
base measure indexed by γ′. We prove Theorem 3 for both types of base measure intro-
duced in (4.7). Let G denote the cdf of a Gamma(a, 1) random variable and g its density.
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For the first type of base measure we have G−1
γ′ (Gγ(θ)) = G−1 (G(γθ)G(γ′T )/G(γT )) /γ′

if θ ≤ T and G−1
γ′ (Gγ(θ)) = T if θ ≥ T . For any θ ∈ [0, T ], if γ′ ≥ γ then

G−1
γ′ (Gγ(θ)) ≤ θ and G−1

γ′ (Gγ(θ)) ≥ γθ

γ′
. (C.1)

The second inequality in (C.1) is straightforward. The first inequality in (C.1) is equiv-
alent to G(γθ)G(γ′T ) ≤ G(γ′θ)G(γT ) and is deduced from the following argument. Let
∆(θ) = G(γθ)G(γ′T ) − G(γ′θ)G(γT ). Then, ∆(0) = 0 and ∆(T ) = 0. By Rolle’s The-
orem, there exists c ∈ (0, T ) such that ∆′(c) = 0. We have ∆′(θ) = γg(γθ)G(γ′T ) −
γ′g(γ′θ)G(γT ) which is proportional to θa−1e−γ

′θ[γae(γ′−γ)θG(γ′T )− (γ′)aG(γT )]. The
function inside brackets is increasing so that ∆′(θ) ≤ 0 for θ ≤ c and ∆′(θ) ≥ 0 for θ ≥ c.
Therefore, ∆ is first decreasing and then increasing. Since ∆(0) = ∆(T ) = 0, ∆ is neg-
ative on (0, T ), which achieves the proof of (C.1). For the second type of base measure,
for θ ≤ T , we have that, for every γ, γ′ > 0, G−1

γ′ (Gγ(θ)) = Tγθ/[γ′(T − θ+ θγ/γ′)] and
(C.1) is straightforward.

We first verify assumption [A1]. At several places, by using (4.1) and (4.4), we use that,

under P(n)
λ (· | Γn), for any interval I, the number of points of N falling in I is controlled

by the number of points of a Poisson process with intensity n(1 + α)m2λ falling in I.
Let un = (n log n)−1 so that un = o(ε̄2n) and choose k ≥ 6 so that u−1

n = o((nε̄2n)k/2) and
(2.2) holds (note that Nn(un) is the same order as u−1

n ). Using the proof of Corollary 4.1
of Donnet et al. [1], we construct B̃n = B̃γn (since in [A1] B̃n may depend on γ) as the
set of λ = Mλλ̄ such that |Mλ −Mλ0

| ≤ ε̄n and ψγ,γ+un(λ̄) ∈ B̄n, with B̄n = {λ̄P ′(x) =∫∞
x
θ−1dP ′(θ) : P ′ ∈ N}, where N is as defined in the proof of Lemma 8 in Appendix

A of Salomond [4]. Note that from Lemma 8 in Appendix A of Salomond [4], if λ̄ ∈ B̄n
and |Mλ −Mλ0

| ≤ ε̄n,

P(n)
λ0

(
`n(λ)− `n(λ0) ≤ −(κ0 + 1)nε̄2n | Γn

)
= O((nε̄2n)−k/2(log n)k) (C.2)

for κ0 a constant. To prove (2.3), it is enough to control infγ′∈[γ, γ+un] `n(Mλψγ,γ′(λ̄)).
Using (C.1), we have that for any γ′ ∈ [γ, γ + un], on Γn,

G−1
γ+un(Gγ(θj)) ≤ G−1

γ′ (Gγ(θj))

and

G−1
γ′ (Gγ(θj)) ≤

γ + un
γ′

G−1
γ+un(Gγ(θj)) ≤

γ + un
γ

G−1
γ+un(Gγ(θj)).

Therefore,

γ

γ + un
ψγ,γ+un(λ̄)(t) ≤ ψγ,γ′(λ̄)(t)

≤ ψγ,γ+un(λ̄)(t) +
∑
j≥1

pj
1(G−1

γ+un
(Gγ(θj)),

γ+un
γ G−1

γ+un
(Gγ(θj)))(t)

G−1
γ+un(Gγ(θj))

(C.3)
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so that, for n large enough,

inf
γ′∈[γ, γ+un]

`n(Mλψγ,γ′(λ̄)) = inf
γ′∈[γ, γ+un]

{∫ T

0

log(Mλψγ,γ′(λ̄)(t))dNt −
∫ T

0

Mλψγ,γ′(λ̄)(t)Ytdt

}

≥
∫ T

0

log
(
Mλψγ,γ+un(λ̄)(t)

)
dNt +N [0, T ] log

(
γ

γ + un

)
−Mλ

∫ T

0

ψγ,γ+un(λ̄)(t)Ytdt−
Mλunn(1 + α)m2

γ

≥ `n(Mλψγ,γ+un(λ̄))− un
γ

[Mλn(1 + α)m2 + 2N [0, T ]],

where the last line uses log(1−x) ≥ −2x for x > 0 small enough. By using the Bienaymé-
Chebyshev inequality, if Z is a Poisson variable with parameter n(1+α)m2Mλ0

, we have

P(|Z − n(1 + α)m2Mλ0 | > n(1− α)m2Mλ0) = o(1).

Then the event {N [0, T ] ≤ 2Mλ0m2n} has probability going to 1 and, on this event,

inf
γ′∈[γ, γ+un]

`n(Mλψγ,γ′(λ̄))

≥ `n(Mλψγ,γ+un(λ̄))− nγ−1m2[Mλ(1 + α) + 4Mλ0
]un.

(C.4)

Combining this lower bound with (C.2), for all λ = Mλψγ,γ+un(λ̄), with ψγ,γ+un(λ̄) ∈ B̄n
and |Mλ −Mλ0

| ≤ ε̄n,

P(n)
λ0

(
inf

γ′∈[γ, γ+un]
`n(Mλψγ,γ′(λ̄))− `n(λ0) ≤ −(κ0 + 2)nε̄2n | Γn

)
= O((nε̄2n)−k/2).

The left hand side of the previous inequality is then negligible with respect to un which
is the same order as Nn(un)−1 and assumption [A1] is satisfied if C1 ≥ κ0 + 2.

We now verify assumption [A2]. First, note that using (C.3), (2.8) is obviously satisfied.
Mimicking the proof of Lemma 8 of Salomond [4], we have that over any compact subset
K′ of (0, ∞),

inf
γ∈K′

π1

(
B̄n | γ

)
≥ e−Cknε̄

2
n (C.5)

for some Ck > 0, when n is large enough. By definition of B̃γn, π(B̃γn | γ) = π1(B̄n |
γ+un)πM ([Mλ0 − ε̄n, Mλ0 + ε̄n]) which, together with (C.5), implies that infγ∈K π(Bγn |
γ) ≥ e−2Cknε̄

2
n when n is large enough, so that (2.5) is satisfied as soon as j is large

enough. We now define the measure Q
(n)
λ,γ , with

dQ
(n)
λ,γ = 1Γn × sup

γ′∈[γ, γ+un]

exp(`n(Mλψγ,γ′(λ̄)))dµ

and µ the measure such that under µ the process is an homogeneous Poisson process with
intensity 1. Using (C.1) and similarly to (C.4), we obtain that, for all γ′ ∈ [γ, γ + un],

λ̄(t)−
∑
j≥1

pj
1(γθj/γ′, θj)(t)

θj
≤ ψγ,γ′(λ̄)(t) ≤ γ + un

γ
λ̄(t)
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and we have

Q
(n)
λ,γ(X (n)) = E(n)

λ

[
1Γn sup

γ′∈[γ, γ+un]

exp

(
−Mλ

∫ T

0

ψγ,γ′(λ̄)(t)Ytdt

+

∫ T

0

log
(
Mλψγ,γ′(λ̄)(t)

)
dNt

)]
≤ E(n)

λ

[
1Γn exp(nm2(1 + α)Mλγ

−1un + log(1 + un/γ)N [0, T ])
]

≤ E(n)
λ

[
1Γn exp(nm2(1 + α)Mλγ

−1un + unγ
−1N [0, T ])

]
≤ exp

(
nm2(1 + α)Mλγ

−1un + (1 + α)nm2Mλ(eun/γ − 1)
)

≤ exp
(
3nm2(1 + α)γ−1Mλun

)
when n is large enough since exp(x) − 1 ≤ 2x for x > 0 small enough. Let φn,j be the
tests defined in Proposition 6.2 of Donnet et al. [1] over Sn,j(ε̄n). Using the previous
computations, we have

Q
(n)
λ,γ [1− φn,j ] ≤ E(n)

λ [(1− φn,j) exp(nm2(1 + α)Mλγ
−1un + unγ

−1N [0, T ])1Γn ]

≤ enm2(1+α)Mλγ
−1un(E(n)

λ [(1− φn,j)1Γn ]E(n)
λ [e2γ−1unN [0, T ]1Γn ])1/2

≤ e4nm2(1+α)γ−1Mλun max{e−cnj
2ε̄2n/2, e−cnjε̄n/2}.

As in Salomond [4], we set Sn = {λ̄ : λ̄(0) ≤Mn}, with Mn = exp(c1nε̄
2
n) and c1 > 0 is

a constant. From Lemma 9 of Salomond [4], there exists a > 0 such that supγ∈K′ π1(Scn |
γ) ≤ e−c1(a+1)nε̄2n , so that when n is large enough,

sup
γ∈K′

∫
R+

∫
Scn
Q

(n)
λ,γ(X (n))dπ1(λ̄ | γ)πM (Mλ)dMλ

. e−c1(a+1)nε̄2n

∫
R+

eδMλπM (Mλ)dMλ . e
−c1(a+1)nε̄2n ,

with δ that can be chosen as small as needed since nun = o(1). This proves (2.4) by
conveniently choosing c1. Combining the above upper bound with Proposition 6.2 of
Donnet et al. [1], together with Remark 1, achieves the proof of Theorem 3. �
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