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Appendix A: Proof of Theorem 2

It is enough to check that assumptions [A1] and [A2] of Theorem 1 are satisfied. We begin
by defining the parameter transformation. Under a DPM prior law with base measure
proportional to a Gaussian distribution with parameter v = (m, s?), we have pr,(-) =
> j>1Pj%o(- — 0;) almost surely, with independent sequences (0;);>1 and (p;);>1, the
random variables (6;);>1 being independent and identically distributed according to
N(m, s?). Hereafter, we use the notation N, as shorthand for N(m, s?). We consider
a set IC, = [m1, ma] x [s2, s2], with constants —oco < m; < mz < o0, 87 > 0 and a
positive sequence s2 — oo as a power of logn, such that Péz)(’?n € K¢) = o(1). For

a positive sequence u,, — 0 to be suitably chosen, consider a w,-covering of [m1, ms]

with intervals I = [mg, mg + uy,), for mg = my + (k — Duy, k = 1, ..., Lyp, where
Lmn = [1+ (mg —mq)/uy], and a covering of [s, s2] with intervals J; = [s7, s7,,) =
[$2(1 4 u,)' 7Y, s2(1 +up)b), for L =1, ..., Lg,, where Ly, = [2u,*log(s,/s1)].

For s2€ J;, 1 =1, ..., Ley,, let py = (52/3%)1/2. Let me i, k=1, ..., Ly,. For any

v = (mg, s7) and v = (m, s?), if 0 ~ N/, then 0; = [p(65 — mg) +m] ~ N,, j € N.
1
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Therefore, conditionally on o, for F' ~ DP(aRNWI),

Uy y (PPa) () =D pida(- — 05 — [(pr — 1)0; — prmy + m])
j>1

is distributed according to a DPM of Gaussian densities with base measure agN,. With
abuse of notation, we shall also write 1./ ,(6) to intend the parameter transformation
0; = pu(0; — my) +m,

Uy 4 (05) = pu (05 — ) +m. (A.1)

In the sequel, we shall repeatedly use the following inequalities:
1<p<(14 un)l/2 and  — mpu, <m— pmg < Uy. (A.2)

We first deal with the ordinary smooth case. To check that condition [A1] is satisfied,
let o € (0,,/2, 204,), with o, = er/? and let F* = Z;\;"l pjde: be a mixing distribution
such that the Gaussian mixture pp- , satisfies both requirements in (3.4) and the minimal
distance between any pair of contiguous location points #7’s is bounded below by § = oeb,

for some b > max{1, (23)~'}. A partition (U; ) 7, of R can be constructed following the

proof of Theorem 4 in Shen et al. [6] so that (U, )]K: is a partition of [—a,, as], with a, =
ap|log o|*/7, composed of intervals [07—6/2, 05+6/2], for j =1, ..., Ny, and of intervals
with diameter smaller than or equal to o to complete [—a,, a,]. Then, a partition of
(=00, —a,) U (as, 00) can be constructed with intervals Uj, for j = K +1, ..., M, such

that ajo€?’ < agN, (U;) < 1 for some constant a; > 0. Note that, as in Shen et al. [6 ]
M < o~ (logn)'t1/7 and, for every 1 < j < K, we have N (U;) > (§/s)e=* (as/5)*
0,€2 uniformly in v € KC,,. As in Shen et al. [6], define B, as the set of all (F, o) such
that o € (0,/2, 20,) and

) ¥ < 920 : ) > b )
Z'F(UJ) pj|—26n7 1£}1SHMF(UJ)—67L /2

Following Lemma 10 of Ghosal and van der Vaart [2], for some constant ¢ > 0,

inf 7 (By | 7) 2 exp (—co, (logn)*+1/7). (A3)
YE

n

For every (F, o) € By, for v/ = (my, s?) and any v € I, x J;, by the parameter trans-
formation in (A.1) and the inequalities in (A.2),

(A PFU ij¢a %/,7(9}))

7j>1

> Z qu/)o(x_wv’,v(e;‘))
j:1051<ac

> Z pjdo(x — 05)
31051 <an

x exp (=4[l — 0}|(as + 1)u, + (a% 4+ 1)u?]/o?), xz€R.
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Note that (no,)~! = €2. Choose u, < n~'o,(logn)~2/7 = 252(logn)~2/7. On the

event A, = {31 | |X; — mo| < 78nk,}, with k, = O((logn)'/7), using the inequality
logz > (x — 1)/« valid for every x > 0, we have

U (Vy 7 (PFo)) = Ln(p0) > o (PR, ,0) = ln(po) + nlogco
—4no, 2 [(ag + Vun(2ay + 78kn) + (a2 + 1)u?]
> Un(pF, o) — £n(po) +nloge, — C'nex
> L (PF,,0) — ln(Po) — nei - C'nei,

where C’ > 0 is a large enough constant and pg, »(+) := ¢, ! 210" <ay Pi®o (- —05), with
Jjl= o
normalizing constant

Co = Z pj>1—2eib>l—ei
j:|9;\§a0

because b > 1. The proof of Theorem 4 of Shen et al. [6], together with condition (3.4),
implies that condition [A1] is satisfied for k as in part (¢) of the statement of Theorem 2.

We now check that condition [A2] is satisfied. Let F denote the set of all distribution
functions on R and

Fp = {Fe]—‘: F=> pidy, 0| <vVnV1<j<H, Y pj<6n}.

Jj21 J>Hnp

We consider the sieve set

Sn:={(F,0): (F,0) € Fp X |, al}, (A.4)

Yns

with o, = 0, = /P , 0n = exp(tne2) for some constant ¢ > 0 depending on the param-
eters vy, vo > 0 of the inverse-gamma prior distribution on o, and H,, = |ne2/(logn)].
For some constant zg > 0, let a,, := 2z((log n)l/T. For ' = (my, 552) and any vy € I x Jj,
if 16| > a,, and |z| < a,,/2, then |z — 6] > |6]/2 and we can bound above 1. ~(pr,s) as
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follows:

¢7 Y pFa / ¢0' ¢'y’,'y(9))dF(0)
< /_ Po (& — ) exp (upla — 6](|6] +1)/0)dF(6)

< exp (3a2uy,/o?) / bo(x — 0)dF(0)

0)<an

+ / G0 (2 — 0) exp (dun (z — 0)2/0%)dF (6)
[0|>an

< exp (3aZu,/0?) / o (x — 0)dF(0)

0)|<an
4 / 6o (2 — 0)(1 — Suy)/2)dF ()
10|>an

< max { exp (3a2un/0?), (1 — Sun)_l/Q}

" </9|<an Prle =01 ARO)+ /|92an Pole = MF(Q)) TER,

where F' ~ DP(agN.) and &, := o(1 — 8u,)~'/2. Now, define the event

Q, :—{—an/2< min X; < max X; <an/2}

1<i<n 1<

Since by Condition (3.3), Pf;;) (Q¢) < e~ we can replace the support R of the den-
sity ¥+ ~(pro) with Q, and, with abuse of the notation introduced in (2.4), define,
for all (F, o) € Sy, the density q(r,,), supported on [~a,/2, a,/2] obtained from the
re-normalized restriction to [—a, /2, a,/2] of the function in the last line of (A.5). Re-
placing pp o with ppo1i_a, /2,4, /2] We then have that ||q(p0), —Proll1 = o(€,). We can
therefore consider the same tests as in Corollary 1 of Ghosal and van der Vaart [2] and
condition (2.6) is verified, together with (2.7), using Proposition 2 of Shen et al. [6]. This
implies that also condition (2.8) is satisfied. Since (A.3) implies condition (2.5), there
only remains to verify assumption (2.4). The difficulty is to control g(p 4, as o — 0.
For every (F, o) with 0 > g, the previously defined density q(r,),, can be used as an
upper bound on

sup Py 4 (PFo) ()L [=an /2, a0 /2] ()
Y =7 1 <un

with ||y — || := (|m — mg|? + |s — 51|?)*/2. Then, for some finite constant Cy > 0, both
integrals

/ Qi ((an/2 an/2")R(AF | )i (o)
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and

// QR gy e (=00 /2, an/2A")n(dF | ')dr(0)

are o(e=C2"r(B, | ') uniformly in +/ € K,. We now study

swp [ [ Q) (—an/2 /2P | 7 )dn(o).
veka JF Jo

Consider the partition U;‘;O[QHQ*(jJFI), 0,277) of (0, g,,). For every j > 0, let u,, ; =

n~te,(c,277)?%, with e, = o(1). For every v/ € K,, we consider a u,, j-covering of

{v: |l =4I| < un} with centering points v;, i = 1, ..., Nj, where N; < (un/un ;)%

When o € [0,270U*D g, 279), for |z| < a,/2,

Swp yn(pro)(@) < max  sup / b0 (& — 16, (6))AF(9)

Y= I<un ISISNG oy |y =i | <un,
< max c
> 1<i<N, nzgaz( )

where g, ; is the probability density on [—a, /2, ay, /2] proportional to

Joea OO [ - (twratiagms) ar o

with F' ~ DP(arN,,), and the normalizing constant

cni < F((—an, ay))exp (12x(2)n_1en(log n)2/T) +[1 = F((—an, a,))]O(1) =1+ O(1).

This implies that, for e, = O((logn)~2/7),

A / oy Qb (a2, AR | /)dn(0) S Nyl 20, ,27)

u2

5 Tnﬂ—([gn2_(j+l)7 an_j))

n,J

2.2 -2 —j\—4_—-29"1/o
Sunn €n (Qn2 ) € "

whence, for a suitable constant C' > 0,

swp [ / QU (=2, an/2")2(dF | )dn(0) S exp (~Ca;") S exp (~Cne2)
v'e
and (2.4) is verified, which completes the proof for the ordinary smooth case.

We now consider the super-smooth case. The main difference with the ordinary smooth
case lies in the fact that, since the rate €, is nearly parametric, that is, ne2 = O((logn)")
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for some k > 0, in order for condition (2.3) to be satisfied, in view of the constraint in
(2.2), it suffices that, over some set B, for suitable constants C, Cy > 0,

. — 7l62
sup  sup JP’I()Z)( inf £, (Yy 4 (PFe)) — n(po) < —Cln€i> <e Omen (AL6)
¥ €Ky, (F,o)EB, yelly = II<un

It is known from Lemma 2 of Shen and Wasserman [7] that if, for any fixed o € (0, 1],
the pair (F, o) € S, := {(F, 0) : pa(po; Pro) < €2}, then, for every constant D > 0,

]P’I()Z (én(pp,g) —ln(po) < —(1+ D)nei) < e—aDne,

Let 0, = O((log n)fl/T). It is known from Lemma 8 of Scricciolo [5] that, for o €
(on, on + e—dl(l/an)T) with dy a positive constant, there exists a distribution F* =
Z;.sz’l p;0e:, with Ny = O((a, /o)?) support points in [~a,, a,], where a, = O(c~"/ (7)),
such that, for some constant ¢ > 0,

max{P,, 10g(po/pr+.0); Py, 10g2(po/pr-o)} S e /)",

Inspection of the proof of the above mentioned Lemma 8 reveals that all arguments
remain valid to bound above any p,(po; pr+,») divergence for a € (0, 1]. In fact, using
the inequality |a® — b¥| < [a? — bP|*/# valid for all a, b > 0 and 0 < a < 3, if we set
B =1 in our case, then

Pa(po; Pre.o) < a Py, |(po/pre o) — 1"

All bounds used in the proof of Lemma 8 for the various pieces in which the Kullback-
Leibler divergence Py, log(po/pr+ o) is split can be used here to bound above p, (po; pr+.o)-
Thus,

pa(po; pre.5) S e M)
for some constant ¢ > 0 not depending on «. Construct a partition (Uj)év;’o of R, with
Uy = (Uj.\’;1 U;)¢, U; 3 67 and A(U;) = O(e=(M/9)") j =1, ..., N,, where here A
denotes Lebesgue measure. Then, inf.,cx, mini<j<n, N, (U;) 2 e=(/9)" Defined the
set

N,
By =1 (F,0): 0 € (0n, o +e D7) N P(U)) — pj| < e (/o)
j=1

for some constants cg, cg > 0 we have

in’Cf 7(By | 7) 2 exp (—caNy, (1/0,)") = exp (—c3ne?)
YEKR

and, for every (F, o) € By,

Pa(po; pF,a) Sexp(—(1/04)") S Efy
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Reasoning as in the ordinary smooth case, for u, = O(k;'o2e? (logn)~2/(7"2), on the
event A, = {>1 | |X; —mo| < énk,}, with k, < (logn)*/7,

en(w’y',’y(pFﬁ)) - gn(pO) Z en(pFn,U) - En(pO) + n(ca - 1)
—dno, (a2 + D)2 + (ae + Dun(2a0 + 75kn)]
Z én(pFn,o) - gn(pO) - ’I’Lﬁi - Clnei

for some constant C’ > 0, with pp, ,() = ¢ * > 10)1<a, Pjdo (- — 0}), where the nor-

malizing constant

310 <ao

Lemma 2 of Shen and Wasserman [7] then implies that (A.6) is satisfied. The other parts
of the proof of Theorem 2 for the ordinary smooth case go through to this case with
modifications. We need to check that the probabilities ]P’I(,ﬁ) (AS) and ]P’Z(,z) (Q2¢) converge to
zero at appropriate rates. By a standard concentration inequality for sums of independent
random variables, we have that, for a suitable constant ¢y > 0, ]P’z(f(f)(AfL) < eme2nkn | Also,
by assumption (3.3) that py has exponentially small tails, IP’SOL)(Q%) Se @nan. [0

Appendix B: Proof of Proposition 1

The result relies on the following inversion inequalities that relate the Lo-distance be-
tween the true mixing density and the (random) approximating mixing density in the
sieve set S, as defined in (A.4) in the proof of Theorem 2, to the Lo- or the L;-distance
between the corresponding mixed densities:

B1/(B1+n)
| ;

| K * py — K * poy | ordinary smooth case,

py —poyll2 S
| ov { (—log || K * py — K *poy||1)~?/™,  super-smooth case.

To our knowledge, the first inequality, which concerns the ordinary smooth case, is new
and of potential independent interest; the second one, concerning the super-smooth case,
is similar to the one in Theorem 2 of Nguyen [3], which relates the Wasserstein distance
between the mixing distributions to the IL;-distance between the mixed densities. In
what follows, we use “os” and “ss” as short-hands for “ordinary smooth” and “super-
smooth”, respectively. To prove these inequalities, we instrumentally use the sinc kernel
to characterize regular densities in terms of their approximation properties. We recall

that the sinc kernel ( ) () L
. sinz)/(mrx), if x#0,
sine(z) = { 1/m, if z=0,

has Fourier transform sinc identically equal to 1 on [—1, 1] and vanishing outside it.
For § > 0, let sincs(-) = §~1sinc(-/) and define gs as the inverse Fourier transform of
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s/ir;:(;/f{, that is

1 [~ ., sincs(t)
T)=— e "r———=dt, xz€eR.
() 2m /_oo K(t)

Let gs = s/i—riz(;/f( be the Fourier transform of gs. So, sincs = K * g5 and py * sincs =

(py * K) % gs = (K * py) * gs5. Then,

[Py — pov |3 < |lpy * sincs —poy * sines ||3 + |[py — py *sincs |13 + [[poy — poy * sincs [|3
< ||py * sincs —poy * sincs |2 + ||py — py * sincs |3 + 625

because, by assumption (3.9),

o0

Ipoy — poy  sincs |2 = / [Py (£)?/1 — sincs(t)|2dt

—00

<5 /| L) oy (0P 5 827,
t|>1

Now, recall that py = pp, = F * ¢,. For (F, 0) € F,, 0 > o, « Cd(logn)", where
269 > 1, C?/2> (281 +1)/[2(B1 +n) + 1] and 6 = 6, > n~ 1/ RE++I

Ipy — py * sings ||2 < / PRI
[t]>1/8

< (0’2/(5)7167(0/6)2/2
< [5(10gn)2)¢,2]—1e—02(logn)2"2/2 < 5281
In the ordinary smooth case,
lpy * sincs —poy * sincs ||3 = ||(K * py) * gs — (K * poy ) * g5||3
<5 [ Ry (0 - o (0t
t1<1/8
< 67| K py — K * poy ||3.
In the super-smooth case, ||py *sincs —poy *sincs ||3 < || K *py — K * poy ||3 | 9s||3, where
1 o0 |Si/Il\C§ t) 2 1 A _ —r
loslg = o [~ B — L [ (k) Rar g
T J o |K(t)] T Jolt|<1
Combining partial results, for (F, o) € S,

IK #py — K % poy [3 x 5721, os case,

Ipy — poy |3 S 8% + { 20571

| K *py — K *poy |3 x e ss case,

so that the optimal choice for ¢ turns out to be

_ O(|K xpy — K *p0Y||;/(51+77)), 0s case,
O ((=log | K #py — K *poy[1)~1/™),  ss case.
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For any 1 < ¢ < o0,

1K py — K * poy [lg = [(K % F) % ¢o — K xpoy [lg = lprexc.o — K * poy |lg-

Then,

”pF*K,a -K *pOY||§l/(ﬁl+n),

(—log |lprsk,.o — K >x<poy||1)*61/7’17 ss case.

OS case
lpy —pov |2 = lpre — pov 2 S { ’

For suitable constants 71, k1 > 0, let

. { n~Brtm/RBAN+ (Jogn)F1 | os case,
=

n=2(logn)™, ss case.

Let v, be as in the statement of Proposition 1. Then, for all (F, o) € S,,, the following
inclusions hold:

{(F, o) : |lprer,0 — K *povlla S ¥n} C{(F, 0): |lpy —povlle Svn}, os,
{(F, 0): |lprer,o — K xpoy |1 S¢¥n} C{(F, 0): [[py —povl2 S v}, ss.

For ¢ = 2 in the ordinary smooth case and ¢ = 1 in the super-smooth case, by virtue of
Theorem 2, we have 7({(F, 0) € S, : ||prex.oc — K *poylly S ¥n} | An, X™) = 1in
Pézz(—probability, which implies that 7({(F, o) : [|py — poyll2 < vn} | 4n, X™) = 1 in
the same mode of convergence, and the proof is complete. O

Appendix C: Proof of Theorem 3

For any intensity A, we still denote My = [, A(t)dt and A = M ' x X\ € Fi. Without
loss of generality, we can assume that Q = [0, T]. To apply Theorem 1, we must first
define the transformation v, /. Note that the parameter v only influences the prior on
A and has no impact on M. As explained in Section 2, we can consider the following
transformation: for all v, 4" € R¥, we set, for any ¢,

. L(0,6,)(t) . Lo, 62 (c- 0, (1)
M0 =3 =g OO = =g g
i>1 v

with
p; =V H(l -Vi), V;~Beta(l, A), 60; ~G, independently.
1<j

So, if A is distributed according to a DPM of uniform distributions with base measure in-
dexed by 7, then v, /() is distributed according to a DPM of uniform distributions with
base measure indexed by . We prove Theorem 3 for both types of base measure intro-

duced in (4.7). Let G denote the cdf of a Gamma(a, 1) random variable and g its density.
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For the first type of base measure we have G7 (G,(0)) = GHG(HOGH'T)/G(HT)) /v
if  <T and G;}(Gv(ﬁ)) T if > T. For any 6 € [0, T] if v/ >« then

G;,l(GA,(H)) <6 and G;,l(GA,(H)) > ”}’7? (C.1)
The second inequality in (C.1) is straightforward. The first inequality in (C.1) is equiv-
alent to G(v0)G(y'T) < G(v'8)G(7T) and is deduced from the following argument. Let
A(0) = G(OG(Y'T) — G(v'0)G(yT). Then, A(0) = 0 and A(T) = 0. By Rolle’s The-
orem, there exists ¢ € (0, T) such that A’(c) = 0. We have A'(0) = yvg(v0)G(y'T) —

'g(y'6)G(yT) which is proportional to #9~1e=7?[y2e("' =M0G(+/T) — (v')*G(yT)]. The
function inside brackets is increasing so that A’(#) < 0 for < c and A’(#) > 0 for 0 > c.
Therefore, A is first decreasing and then increasing. Since A(0) = A(T) = 0, A is neg-
ative on (0, T'), which achieves the proof of (C.1). For the second type of base measure,
for # < T, we have that, for every v, v’ > 0, G;,I(GW(H)) =T~0/[y'(T — 0 + 6~v/+")] and
(C.1) is straightforward.

We first verify assumption [A1]. At several places, by using (4.1) and (4.4), we use that,
under IP’E\TL)( | T',,), for any interval I, the number of points of N falling in I is controlled
by the number of points of a Poisson process with intensity n(l + a)mg falling in I.
Let u, = (nlogn)~! so that u, = o(¢2) and choose k > 6 so that u,,* = o((né2)*/?) and
(2.2) holds (note that N, (uy,) is the same order as u,,'). Using the proof of Corollary 4.1
of Donnet et al. [1], we construct B,, = B (since in [A1] B, may depend on 7) as the
set of A = M)\ such that | My — M| < &, and 1, 14, (A) € By, with B, = {\p/(z)
fw 6=1dP'(#) : P' € N'}, where N is as defined in the proof of Lemma 8 in Appendix
A of Salomond [4]. Note that from Lemma 8 in Appendix A of Salomond [4], if A € B,,
and |My — My,| < &,

P (a(A) = £a(No) < — (ko + 1)né2 | T) = O((né2)~*2(logn)¥)  (C.2)

for ko a constant. To prove (2.3), it is enough to control inf.epy ~tu,] fn(Mathy 4 (X)).
Using (C.1), we have that for any v € [y, v + u,], on Ty,

G710, (G (0))) < G5 (C4(0)))

and
- Y Un VU
G (G(69)) <~ Gk, (G (8)) < =G0k, (G5 (6)):
Therefore,
v < -
,y _|_ u 17/}77’Y+Un ()\)(t) S 1,[}7;\/’()\)(15)
+un G;+1Ln (Gw(gl)))(t) (Cg)

(Gy(05)), %
< Yy, N (0) + Ot (0
" ]>Z]_ 7 G'y+un (G’Y(oj))
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so that, for n large enough,

inf £y (Maihy (V) = inf { / log(Mahy (W) (1)) AN, — / Mwy,mw)ndt}
1'1Jo 0

Y €[y, yH+un] Y €M, y+un

T
> /0 1og (Mxthy 1, (V) (1)) ANy + N[0, T]log (7 ju")

T
- Myu,n(l+a)m
s [, (0¥ - O
0

v
> U (Mt oy (V) — %"[Mw(l + a)my + 2N[0, TJ),

where the last line uses log(1—x) > —2z for > 0 small enough. By using the Bienaymé-
Chebyshev inequality, if Z is a Poisson variable with parameter n(1+ «)maM),, we have

P(|Z — n(1 + a)maMy,| > n(l — a)maMy,) = o(1).
Then the event {N]0,T] < 2My,mon} has probability going to 1 and, on this event,
inf én M ’ 5\
€y v Hun] Mty (V) (C.4)
> ﬁn(way,wun (;\)) - n7_1m2 [MA(l + a) + 4M>\o]un'

Combining this lower bound with (C.2), for all A = Mxthy 4v,, (A), With ¢, 410, (A) € B,
and |M)\ — M,\0| < €y,

B (it a0 (0) = 00) < (e + 20 | T ) = O{(n2) 7).

v €l vtun]
The left hand side of the previous inequality is then negligible with respect to u,, which
is the same order as N, (u,)~! and assumption [A1] is satisfied if Oy > kg + 2.

We now verify assumption [A2]. First, note that using (C.3), (2.8) is obviously satisfied.
Mimicking the proof of Lemma 8 of Salomond [4], we have that over any compact subset
K’ of (0, 00),

inf m (B, | 7) > e Ckn C.5
(1) 20 ©3

for some Cy > 0, when n is large enough. By definition of B, n(B) | v) = m1 (B, |
v+ wn)mar ([Myg — €, My, + €,]) which, together with (C.5), implies that inf,cx 7(B] |
v) > e~ 2k, when n is large enough, so that (2.5) is satisfied as soon as j is large
enough. We now define the measure Qg\rz, with

dQV) =1r, % sup  exp(bu(Mathr (V)))dp
v ElY, YHun]
and p the measure such that under p the process is an homogeneous Poisson process with
intensity 1. Using (C.1) and similarly to (C.4), we obtain that, for all v € [y, v + u,],

Y+ Un 5

At = S gy R0y < Y g

i>1 bi 7




12 S. Donnet et al.

and we have

Q(X,’i(?f ™) = E{Y [hn sup ]eXp< M / Uy (V) () Yadt

Y Ely, y+un

+ /0 log (Mxtpy.-(A)(1)) dNt)]

[11" exp(nma (1 + a) My~ u,, +log(1 + u, /v)N|O, T])]
) [11" exp(nma(1 4+ ) Myy ™ uy, + upy™ 1N[O T])]
< exp (nm2(1 + @) My, 4 (14 a)nmgM,\(e“"/” — 1))
< exp (3nm2(1 + a)’yflMAun)

when n is large enough since exp(z) — 1 < 2z for & > 0 small enough. Let ¢, ; be the
tests defined in Proposition 6.2 of Donnet et al. [1] over S, ;(€,). Using the previous
computations, we have

011 = 6] < ELI(L = 6y exp(nma(l + @) May ™"y + 1y N0, T)1p, |
< enma(FeM e (B (1 — g, ) 1p, JESY [ N0 T )12

< €4nm2(1+a)'y71M>\un

max{e—cnjzéi/2’ e—cnjén/Q}.
As in Salomond [4], we set S,, = {\: A\(0) < M, }, with M,, = exp(c;né2) and ¢; > 0 is

a constant. From Lemma 9 of Salomond [4], there exists a > 0 such that sup. ¢,/ 71(Sy, |

v) < e_cl(“+1)”€i, so that when n is large enough,

sup [ [ QUI@™)am (X | )mas (M)A
vyeK JRy JSg

S e—cl(a—&-l)néi/ eéMAﬂ'M(MA)dM)\ 5 e—cl(a+1)n€i)
Ry

with ¢ that can be chosen as small as needed since nu, = o(1). This proves (2.4) by
conveniently choosing ¢;. Combining the above upper bound with Proposition 6.2 of
Donnet et al. [1], together with Remark 1, achieves the proof of Theorem 3. O
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