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High-dimensional statistics

In modern science, we collect more observations but we also record radically larger
numbers of variables on individuals. Such data are said to be high-dimensional.

Therefore, for such data, the dimension of the data vectors, denoted p, can be
comparable to or even much larger than the sample size n. We have p ≥ n We
speak about the ”p larger than n setting“.

Being able to collect a large amount of information on each individual seems to be
good news. Unfortunately:

1. Separating the signal from the noise is a very hard task for high-dimensional
data, in full generality impossible.

2. Extracting the ”good information” is more than challenging, consisting in
finding a needle in a haystack.

3. Using traditional techniques, often based on asymptotic arguments with the
dimension p held fixed as the sample size n increases, is not possible.

This phenomenon is often called the curse of dimensionality, terminology
introduced by Richard Bellman, in 1961.
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Plan

1 Curse of dimensionality

2 Linear regression setting

3 Classical estimation

4 Ridge estimation: `2-penalization

5 Model selection (à la Birgé-Massart): `0-penalization

6 Lasso estimation: `1-penalization

7 9 variations of the Lasso
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Curse of dimensionality

Curse of dimensionality. The Gaussian distribution

The p-dimensional standard Gaussian density is:

f (x) =
1(√
2π
)p exp

(
−‖x‖

2

2

)

The p-dimensional standard Gaussian density is very flat:

sup
x∈Rp

f (x) = (2π)−p/2

For p large, the mass of the Gaussian distribution concentrates in its tails

Proposition

Let X ∼ N (0, Ip). For any K > 0,

P
(
‖X‖ ≤ K

)
≤ E

[
e−‖X‖

2/2]eK2/2 = 2−p/2eK
2/2.

Consequence: P
(
‖X‖ ≤ K

)
non-negligible requires K &

√
p
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Curse of dimensionality

Curse of dimensionality. The Gaussian distribution

The p-dimensional standard Gaussian density is:

f (x) =
1(√
2π
)p exp

(
−‖x‖

2

2

)

The p-dimensional standard Gaussian density is very flat:

sup
x∈Rp

f (x) = (2π)−p/2

For p large, the mass of the Gaussian distribution concentrates in its tails

Proposition

Let X ∼ N (0, Ip). For any K > 0,

P
(
‖X‖ ≤ K

)
≤ E

[
e−‖X‖

2/2]eK2/2 = 2−p/2eK
2/2.

Consequence: P
(
‖X‖ ≤ K

)
non-negligible requires K &

√
p
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Curse of dimensionality

Curse of dimensionality - Neighborhood

Example: Classical regression problem. Estimation of the conditional expectation of a
random variable. Data consist of n i.i.d. observations (Yi ,X

(i))i=1,...,n with the same
distribution as (Y ,X ) ∈ R× Rp. We wish to estimate the function m where

E[Y |X ] = m(X )

We consider the Nadaraya-Watson estimate:

m̂(x) =

∑n
i=1 Kh(x − X (i))Yi∑n
i=1 Kh(x − X (i))

, x ∈ Rp,

Kh(x) =
1∏p

j=1 hj
K

(
x1

h1
, . . . ,

xp
hp

)
, h = (hj)j=1,...,p

and K is a kernel (with at least one vanishing moment), i.e.

K(x) =

p∏
j=1

1[−0.5;0.5](xj), K(x) =
1

(2π)p/2
e−
‖x‖2

2
2

We have to determine the tuning parameter h which allows to select the variables Yi

associated with the ”neighbors” of x among the X (i)’s.
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Curse of dimensionality

Curse of dimensionality - Neighborhood

We have to determine the tuning parameter h which allows to select the variables
Yi associated with the ”neighbors” of x among the X (i)’s.

Two problems:

1. We have no neighbor in high dimensions
2. All the points are at a similar distance one from the others.

Theoretical arguments: Consider X = (X1, . . . ,Xp) a random vector whose
coordinates are i.i.d. and bounded by b a.s.
- Hoeffding’s inequality implies that for any K > 0, with m2 = E[X 2

1 ],

P
(
‖X‖ 6∈

[
m
√
p − b2m−1K ;m

√
p + b2m−1K

])
≤ 2 exp(−K 2/2).

- This can be generalized for any `q-norm on Rp, 1 ≤ q <∞.
- It can also be generalized for the sup-norm: Let K > 0. With pk = P(|X1| > K),

P(‖X‖∞ ≤ K) = exp(p log(1− pk)).
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Curse of dimensionality

Curse of dimensionality - Neighborhood

We have to determine the tuning parameter h which allows to select the variables
Yi associated with the ”neighbors” of x among the X (i)’s.

Two problems:

1. We have no neighbor in high dimensions
2. All the points are at a similar distance one from the others.

Theoretical arguments: Consider X = (X1, . . . ,Xp) a random vector whose
coordinates are i.i.d. and bounded by b a.s.
- Hoeffding’s inequality implies that for any K > 0, with m2 = E[X 2

1 ],

P
(
‖X‖ 6∈

[
m
√
p − b2m−1K ;m

√
p + b2m−1K

])
≤ 2 exp(−K 2/2).

- This can be generalized for any `q-norm on Rp, 1 ≤ q <∞.
- It can also be generalized for the sup-norm: Let K > 0. With pk = P(|X1| > K),

P(‖X‖∞ ≤ K) = exp(p log(1− pk)).
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Curse of dimensionality - Neighborhood
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Curse of dimensionality

Curse of dimensionality

Main problem:

The volume Vp(r) of a p-dimensional ball of radius r for the `2-norm satisfies

Vp(r) =
πp/2

Γ(p/2 + 1)
rp

p→+∞∼
(

2πe

p

)p/2

(pπ)−1/2 × rp.

Other problems:

The diagonal of the hypercube [0, 1]p is almost orthogonal to its edges

Accumulation of small fluctuations in many directions can produce a large global
fluctuation.

Computational complexity.
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Curse of dimensionality

Circumventing the curse of dimensionality

In light of the few previous arguments, the situation seems desperate.

Fortunately, high-dimensional data are not uniformly spread in Rp (for instance,
pixel intensities of an image are not purely random and images have geometrical
structures).

Data are concentrated around low-dimensional structures (many variables have a
negligible or even a null impact)....

... but this low-dimensional structure is much of the time unknown.

The goal of high-dimensional statistics is to identify these structures and to provide

statistical procedures with a low computational complexity.
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Curse of dimensionality
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Linear regression setting

Linear regression setting

Consider the linear regression model

Y = Xβ∗ + ε,

with

- Y = (Yi )i=1,...,n a vector of observations (response variable)

- X = (Xij)i=1,...,n, j=1,...,p a known n × p-matrix.

- β∗ = (β∗j )j=1,...,p an unknown vector

- ε = (εi )i=1,...,n the vector of errors. It is assumed that

E[ε] = 0, Var(ε) = σ2In

Sometimes, we further assume that

- σ2 is known

- ε is Gaussian

Columns of X , denoted Xj , are explanatory variables or predictors.
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Linear regression setting

Linear regression setting

The regression model can be rewritten as

Y =

p∑
j=1

β∗j Xj + ε.

Several problems can be investigated:

The estimation problem: Estimate β∗

The prediction problem: Estimate Xβ∗

The selection problem: Determine non-zero coordinates of β∗

Why linear regression?

It models various concrete situations

It is simple to use from the mathematical point of view

It allows to introduce and to present new methodologies
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Classical estimation

Plan

1 Curse of dimensionality

2 Linear regression setting

3 Classical estimation

4 Ridge estimation: `2-penalization
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Classical estimation

Classical estimation

We consider the linear regression model

Y = Xβ∗ + ε,

with E[ε] = 0, Var(ε) = σ2In.

We naturally estimate β∗ by considering the ordinary least squares estimate β̂ols

defined by
β̂ols ∈ arg min

β∈Rp
‖Y − Xβ‖.

The estimator β̂ols is uniquely defined if and only if XTX is invertible In this case,
we have

β̂ols = (XTX )−1XTY .

If XTX is not invertible, introducing (XTX )+ the Moore-Penrose inverse of XTX ,
we have:

arg min
β∈Rp

‖Y − Xβ‖ =
{

(XTX )+XTY + u : u ∈ ker(XTX )
}
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Classical estimation

We consider the linear regression model

Y = Xβ∗ + ε,

with E[ε] = 0, Var(ε) = σ2In and XTX invertible. The ordinary least squares estimate is

β̂ols = (XTX )−1XTY .

We have
E[β̂ols ] = β∗, Var(β̂ols) = σ2(XTX )−1.

and
E
[
‖β̂ols − β∗‖2

]
= σ2 × Tr((XTX )−1).

If the predictors are orthonormal

E
[
‖β̂ols − β∗‖2

]
= pσ2 /

Remark: XTX invertible (⇐⇒ ker(X ) = {0}) ⇐⇒ rank(X ) = p ⇒ p ≤ n /
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Ridge estimation: `2-penalization
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Ridge estimation: `2-penalization

Ridge estimates

We still consider the linear regression model

Y = Xβ∗ + ε,

with E[ε] = 0, Var(ε) = σ2In. If rank(X ) = p, then

β̂ols = (XTX )−1XTY

which satisfies, with ‖ · ‖ the `2-norm,

E[β̂ols ] = β∗, Var(β̂ols) = σ2(XTX )−1.

E
[
‖β̂ols − β∗‖2

]
= σ2 × Tr((XTX )−1).

In high dimensions, the matrix XTX can be ill-conditioned (i.e. may have small

eigenvalues) leading to coordinates of β̂ols with large variance.

To overcome this problem while preserving linearity, we modify the OLS estimate
and set

β̂ridge
λ := (XTX + λIp)−1XTY , λ > 0

Following Hoerl and Kennard (1970), this estimator is called the Ridge estimate.
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Ridge estimation: `2-penalization

Ridge estimates : β̂ridge
λ := (XTX + λIp)−1XTY

If ε is Gaussian, for any λ ≥ 0

P
(
∀ j β̂ridge

λ,j 6= 0
)

= 1

The tuning parameter λ balances the bias and variance terms.

‖E[β̂ridge
λ ]− β∗‖2 = λ2β∗

T
(XTX + λIp)−2β∗

E
[
‖β̂ridge

λ − E[β̂ridge
λ ]‖2

]
= σ2

p∑
j=1

µj

(µj + λ)2
,

with (µj)j=1,...,p := eigenvalues(XTX ). We deduce the risk:

E
[
‖β̂ridge

λ − β∗‖2
]

= λ2β∗
T

(XTX + λIp)−2β∗ + σ2
p∑

j=1

µj

(µj + λ)2

Pros and cons:

1. We don’t need the assumption ker(X ) = {0} ,
2. We can consider high dimensions: p > n ,
3. Linearity: Easy to compute for most problems ,
4. Automatic selection is not possible /
5. The choice of the regularization parameter λ is intricate /
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Model selection (à la Birgé-Massart): `0-penalization
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Model selection (à la Birgé-Massart): `0-penalization

Sparsity

Loosely speaking, a sparse statistical model is a model in which only a relatively
small number of parameters play an important role.

In the regression model,

Y =

p∑
j=1

β∗j Xj + ε

with E[ε] = 0, Var(ε) = σ2In and known σ2, we assume that m∗ the support of β∗

is small, with
m∗ =

{
j ∈ {1, . . . , p} : β∗j 6= 0

}
.

Note that m∗ is unknown.

In general, β̂ols and ∀ λ > 0, β̂ridge
λ are not sparse.

Model selection is a natural approach to select a good estimator in this setting. We
describe and study this methodology in the oracle approach.

Vincent Rivoirard (Université Paris Dauphine - PSL) Journée de Statistique Mathématique 2023 12 janvier 2023 24 / 82
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Model selection (à la Birgé-Massart): `0-penalization

Oracle approach

We now consider the prediction risk and set f ∗ = Xβ∗ ∈ Rn the unknown vector of
interest. So, we have:

Y = f ∗ + ε. (5.1)

If m∗ were known, a natural estimate of f ∗ would be

f̂m∗ = ΠS∗Y ,

with ΠS∗ : Rn 7→ Rn the projection matrix on S∗ and

S∗ = span{Xj : j ∈ m∗}.

Note that if ε ∼ N (0, σ2In) then f̂m∗ is the maximum likelihood estimate in the
model (5.1) under the constraint that the estimate of f ∗ belongs to S∗.

Of course m∗ is unknown and f̂m∗ cannot be used.
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Model selection (à la Birgé-Massart): `0-penalization

Oracle approach

For any model m ⊂ {1, . . . , p}, we set

f̂m = ΠSmY ,

with ΠSm : Rn 7→ Rn the projection matrix on Sm and

Sm = span{Xj : j ∈ m}.

With a slight abuse, we also call Sm model.

Given M, a collection of models, we wish to select m̂ ∈M such that the risk of f̂m̂
is as small as possible.

We introduce the oracle model m0 as

m0 := arg min
m∈M

E
[
‖f̂m − f ∗‖2

]
.

f̂m0 is called the ”oracle estimate‘.

More precisely, we wish to select m̂ ∈M such that

E
[
‖f̂m̂ − f ∗‖2

]
. E

[
‖f̂m0 − f ∗‖2

]
.
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Model selection (à la Birgé-Massart): `0-penalization

Oracle approach

Oracle model:
m0 := arg min

m∈M
E
[
‖f̂m − f ∗‖2

]
.

Some remarks:

We allow m∗ 6∈ M.

Even if m∗ ∈M, m∗ may be different from m0.

The oracle model m0 is not random but depends on β∗. So, f̂m0 cannot be used in
practice.
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Model selection (à la Birgé-Massart): `0-penalization

Model selection procedure

Our approach is based on the minimization of R(f̂m) on M, with

R(f̂m) := E
[
‖f̂m − f ∗‖2

]
.

The following lemma based on the simple bias-variance decomposition gives an explicit
expression of R(f̂m). We denote

dm := dim(Sm).

Lemma

We have:
R(f̂m) = ‖(In − ΠSm )f ∗‖2 + σ2dm.

The first term is a bias term which decreases when m increases, whereas the second
term (a variance term) increases when m increases

The oracle model m0 satisfies

m0 := arg min
m∈M

R(f̂m)

and is the model which achieves the best trade-off between these two terms.
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Model selection (à la Birgé-Massart): `0-penalization

Mallows’ Cp

Mallows’ Recipe: Since we wish to minimize

m 7−→ R(f̂m) = E
[
‖f̂m − f ∗‖2

]
it’s natural to choose m̂ as the minimizer of an estimate of R(f̂m). The following lemma
gives the main ingredient of the recipe (based on the replacement of f ∗ by Y ).

Lemma

We have:
E
[
‖f̂m − Y ‖2

]
= R(f̂m)− σ2(2dm − n)

Using the lemma, an unbiased estimate of R(f̂m) is given by

‖f̂m − Y ‖2 + σ2(2dm − n).

It leads to the model selection procedure based on minimization of Mallows’ criterion
defined by:

Cp(m) := ‖f̂m − Y ‖2 + 2σ2dm
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Model selection (à la Birgé-Massart): `0-penalization

Mallows’ Cp

Definition (Mallows (1973))

Mallows’ estimate of f ∗ is f̂ := f̂m̂ with

m̂ = arg min
m∈M

Cp(m), Cp(m) := ‖Y − f̂m‖2 + 2σ2dm

Assumptions are mild. In particular the Mallows’ criterion is distribution-free. ,
It achieves good performances in many situations, so is a very popular criterion. ,

Only based on unbiased estimation, this approach does not take into account
fluctuations of Cp(m) around its expectation E[Cp(m)] = R(f̂m) + σ2n.
The larger M, the larger the probability to have minm∈M Cp(m) far from
minm∈M R(f̂m) + σ2n.
In particular, we may have for some m ∈M, Cp(m)� R(f̂m) + σ2n and

Cp(m) < Cp(m0), R(f̂m)� R(f̂m0 ).

The last situation occurs when we have a large number of models for each
dimension: m̂ is much larger than m0 leading to overfitting. It’s the main drawback
of Mallows’ Cp. /
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Vincent Rivoirard (Université Paris Dauphine - PSL) Journée de Statistique Mathématique 2023 12 janvier 2023 30 / 82
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Model selection (à la Birgé-Massart): `0-penalization

Other popular criteria: AIC and BIC

We assume that the distribution of observations is known. /

In this case, we can consider AIC and BIC criteria which are based on the
likelihood. For any model m ∈M, we set L(m) as the maximum of the
log-likelihood on Sm. We still consider

m̂ := arg min
m∈M

C(m),

with

for the Akaike Information Criterion (AIC) (Akaike (1973))

C(m) = −2L(m) + 2dm

for the Bayesian Information Criterion (BIC) (Schwarz (1978))

C(m) = −2L(m) + log(n)× dm

In the Gaussian setting with σ2 known, AIC and Mallows’ Cp are equivalent.

The use of BIC tends to prevent overfitting (larger penalty).
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Model selection (à la Birgé-Massart): `0-penalization

Other popular criteria: AIC and BIC

We assume that the distribution of observations is known. /
In this case, we can consider AIC and BIC criteria which are based on the
likelihood. For any model m ∈M, we set L(m) as the maximum of the
log-likelihood on Sm. We still consider

m̂ := arg min
m∈M

C(m),

with

for the Akaike Information Criterion (AIC) (Akaike (1973))

C(m) = −2L(m) + 2dm

for the Bayesian Information Criterion (BIC) (Schwarz (1978))

C(m) = −2L(m) + log(n)× dm

In the Gaussian setting with σ2 known, AIC and Mallows’ Cp are equivalent.

The use of BIC tends to prevent overfitting (larger penalty).
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Model selection (à la Birgé-Massart): `0-penalization

Theoretical analysis of AIC and BIC

We illustrate drawbacks of AIC and BIC for large collections of models

We take n = p
Y = Xβ∗ + ε,

with XTX = Ip, ε ∼ N (0, σ2In) and σ2 known. We take

β∗ = 0

So that m∗ = m0 = ∅. Let M = P({1, . . . , p}).

- AIC (= Mallows):

m̂AIC = arg min
m∈M

{
‖Y − f̂m‖2 + 2σ2dm

}
E
[
card(m̂AIC)

] p→+∞∼ 0.16p

- BIC:
m̂BIC = arg min

m∈M

{
‖Y − f̂m‖2 + log(n)σ2dm

}
E[card(m̂BIC)]

p→+∞∼

√
2p

π log(p)
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Model selection (à la Birgé-Massart): `0-penalization

Penalization for Gaussian regression

We still consider
Y = f ∗ + ε,

with f ∗ = Xβ∗, ε ∼ N (0, σ2In) and σ2 known.

Given M, previous approaches show that for `2 estimation, estimates

f̂ := f̂m̂ := arg min
m∈M

C(m),

C(m) = ‖Y − f̂m‖2 + σ2pen(m), f̂m = ΠSmY

may be suitable when pen, called the penalty, is proportional to dm, the dimension
of m.

We now investigate good choices of penalties. It has to depend on M.

Recall our benchmark: The oracle risk R(f̂m0 ) with

m0 := arg min
m∈M

R(f̂m), R(f̂m) := E
[
‖f̂m − f ∗‖2

]
.

We wish R(f̂ ) . R(f̂m0 ) (equivalently R(f̂ ) . R(f̂m) for any m ∈M)

We have
R(f̂m) = ‖(In − ΠSm )f ∗‖2 + σ2dm.
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Model selection (à la Birgé-Massart): `0-penalization

Penalty

Let m ∈M be fixed.

Since for any m ∈M, C(m̂) ≤ C(m), we have:

‖f ∗ − f̂m̂‖2 + 2〈ε, f ∗ − f̂m̂〉+ σ2pen(m̂) ≤ ‖f ∗ − f̂m‖2 + 2〈ε, f ∗ − f̂m〉+ σ2pen(m)

Taking expectation, since pen(m) is deterministic,

R(f̂ ) ≤ R(f̂m)︸ ︷︷ ︸
I

+2E
[
〈ε, f ∗ − f̂m〉

]
︸ ︷︷ ︸

II

+σ2pen(m)︸ ︷︷ ︸
III

+E
[
2〈ε, f̂ − f ∗〉 − σ2pen(m̂)

]
︸ ︷︷ ︸

IV

Each term can be analyzed: I is ok.

II := E
[
〈ε, f ∗ − f̂m〉

]
= E

[
〈ε, f ∗ − ΠSmY 〉

]
= −E

[
‖ΠSmε‖

2
]

= −σ2dm ≤ 0.

The function pen(·) has to be large enough so that IV is negligible but small enough to
have

III := σ2pen(m) . R(f̂m).

Then,
R(f̂ )) . inf

m∈M
R(f̂m) + negl. term.
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Model selection (à la Birgé-Massart): `0-penalization

Analysis of the forth term

For any K > 1, with S̄m̂ = span(Sm̂, f
∗),

2〈ε, f̂ − f ∗〉 = 2〈ΠS̄m̂
ε, f̂ − f ∗〉

≤ K‖ΠS̄m̂
ε‖2 + K−1‖f̂ − f ∗‖2.

And, with χ2(m) := ‖ΠS̄m
(σ−1ε)‖2,

IV := E
[
2〈ε, f̂ − f ∗〉 − σ2pen(m̂)

]
≤ Kσ2E

[
χ2(m̂)− K−1pen(m̂)

]
+ K−1R(f̂ )

≤ Kσ2E
[

max
m∈M

{
χ2(m)− K−1pen(m)

}]
+ K−1R(f̂ )

≤ Kσ2
∑
m∈M

E
[{

χ2(m)− K−1pen(m)
}

+

]
+ K−1R(f̂ )
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Model selection (à la Birgé-Massart): `0-penalization

Penalty

Definition

To the collection of models M, we associate (πm)m∈M such that 0 < πm ≤ 1 and∑
m∈M

πm = 1.

Then, for any constant K > 1, we set

pen(m) := K
(√

dm +
√
−2 log(πm)

)2

. (5.2)

If K > 1, concentration inequalities lead to

IV ≤ C(K)σ2 + K−1R(f̂ )

III := σ2pen(m) ≤ 2Kσ2dm + 4Kσ2 log(π−1
m )

≤ 2KR(f̂m) + 4Kσ2 log(π−1
m )
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Model selection (à la Birgé-Massart): `0-penalization

Theoretical result

Theorem (Birgé and Massart (2001))

We consider the linear regression model

Y = f ∗ + ε

and assume that ε ∼ N (0, σ2In), with σ2 known. Given K > 1, we define the penalty
function as in (5.2) and estimate f ∗ with f̂ = f̂m̂ such that

m̂ := arg min
m∈M

{
‖Y − f̂m‖2 + σ2pen(m)

}
.

Then, there exists CK > 0 only depending on K such that

E
[
‖f̂ − f ∗‖2

]
≤ CK min

m∈M

{
E
[
‖f̂m − f ∗‖2

]
+ σ2 log(π−1

m ) + σ2
}
.

If log(π−1
m ) . dm then f̂ achieves the same risk as the oracle. ,

Mallows’ Cp will be suitable if ∃K > 1 s.t.

K
(√

dm +
√
−2 log(πm)

)2

∼ 2dm.

The assumption K > 1 can’t be relaxed.
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Model selection (à la Birgé-Massart): `0-penalization

Pros and cons of model selection

Under a convenient choice of penalty (based on concentration inequalities), the
model selection methodology is able to select the ”best” predictors to explain a
response variable by only using data. ,

The model selection methodology (due to Birgé and Massart) has been presented in
the Gaussian linear regression setting. But it can be extended to other settings: for
density estimation, Markov models, counting processes, segmentation, classification,
etc. ,
It is based on minimization of a penalized `2-criterion over a collection of models.
Note that if M = P({1, . . . , p}), card(M) = 2p. When p is large, this approach is
intractable due to a prohibitive computational complexity (220 > 106). /
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Model selection (à la Birgé-Massart): `0-penalization

The orthogonal case

Assume that the matrix X is orthogonal: XTX = Ip. We have
dm := dim(Sm) = card(m). Consider a penalty proportional to dm:

pen(m) = 2cdm log(p).

Then, since
f̂m = ΠSmY =

∑
j∈m

β̂jXj , β̂j := XT
j Y

we obtain:

m̂ := arg min
m∈M

{
‖Y − f̂m‖2 + σ2pen(m)

}
= arg min

m∈M

{
−
∑
j∈m

β̂2
j + 2cσ2card(m) log(p)

}
= arg min

m∈M

{
−
∑
j∈m

(
β̂2
j − 2cσ2 log(p)

)}
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Model selection (à la Birgé-Massart): `0-penalization

The orthogonal case and M = P({1, . . . , p})

In this case, we have:

m̂ =
{
j ∈ {1, . . . , p} : |β̂j | > σ

√
2c log(p)

}
and

f̂ = f̂HT ,c :=

p∑
j=1

β̂j1{
|β̂j |>σ

√
2c log(p)

}Xj

Model selection corresponds to hard thresholding and implementation is easy.

Assume that f ∗ = 0 and ε ∼ N (0, σ2In). Mallows’ Cp and BIC are overfitting
procedures. When p → +∞, if c > 1,

P(f̂HT ,c 6= 0) = o(1)
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Model selection (à la Birgé-Massart): `0-penalization

Take-home message

This chapter presents in the Gaussian linear setting the model selection
methodology, which consists in minimizing an `0-penalized criterion.

Such procedures are very popular in the moderately large dimensions setting and
can be extended to many statistical models.

Using concentration inequalities, penalties can be designed to obtain adaptive and
optimal procedures in the oracle setting and to overperform classical procedures,
such as AIC, BIC and Mallows’ Cp.

When p is large and the model collection is wealthy, this approach may be
intractable due to a prohibitive computational complexity. Alternatives have to be
developed in very high dimensions.
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Lasso estimation: `1-penalization
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Lasso estimation: `1-penalization

Convexification

We still consider the linear regression model and the estimation problem (i.e.
estimation of β∗)

Y = Xβ∗ + ε,

with E[ε] = 0, Var(ε) = σ2In and σ2 known.

Given M⊂ P({1, . . . , p}), a collection of models and setting for m ∈M, and
setting for any m ∈M,

Sm = span{Xj : j ∈ m}, f̂m = ΠSmY ,

we have studied

m̂ = arg min
m∈M

{
min

β∈Rp :Xβ∈Sm

{
‖Y − Xβ‖2 + λ(σ2)‖β‖`0

}}
under the condition dm = card(m) and setting

‖β‖`0 =

p∑
j=1

1{βj 6=0}, β ∈ Rp.

We obtain the model selection estimate:

β̂ = arg min
β∈Rp

{
‖Y − Xβ‖2 + λ(σ2)‖β‖`0

}
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Convexification

Model selection estimate:

β̂ = arg min
β∈Rp

{
‖Y − Xβ‖2 + λ(σ2)‖β‖`0

}
But, because of the penalty term,

C(β) := ‖Y − Xβ‖2 + λ(σ2)‖β‖`0

is not convex.

We replace the penalty using a convexification of the `0-norm. Typically, we take a
penalty proportional to ‖β‖γ`γ for γ ≥ 1:

β̂ = arg min
β∈Rp

{
‖Y − Xβ‖2 + λ‖β‖γ`γ

}
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Bridge estimates

Franck and Friedman (1993) introduced Bridge estimates:

Definition

For λ ≥ 0 and γ ≥ 0, we set:

Cλ,γ(β) := ‖Y − Xβ‖2 + λ‖β‖γγ

with

‖β‖γγ =

{ ∑p
j=1 |βj |

γ , if γ > 0∑p
j=1 1{βj 6=0}, if γ = 0

and
β̂λ,γ := arg min

β∈Rp
Cλ,γ(β). (6.1)

Three interesting cases (λ > 0):

1. γ = 0: Model Selection

2. γ = 2: Ridge Estimation

3. γ = 1: Lasso Estimation

The case λ = 0 corresponds to the Ordinary Least Squares estimate.
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Bridge estimates

We use for β ∈ Rp

Cλ,γ(β) := ‖Y − Xβ‖2 + λ‖β‖γγ

If 0 ≤ γ < 1, then Cλ,γ is not convex and it may be very hard to minimize it in high
dimensions.

If γ = 1, then Cλ,1 is convex and Cλ,1 has one minimizer if rank(X ) = p.

If γ > 1, then Cλ,γ is strictly convex and Cλ,γ has only one minimizer. If ε is
Gaussian, almost surely, all coordinates of the minimizer of Cλ,γ are non-zero.

For γ ≥ 1, one-to-one correspondence between the Lagragian problem

β̂λ,γ := arg min
β∈Rp

Cλ,γ(β)

and the following constrained problem

arg min
{β∈Rp : ‖β‖γγ≤t}

‖Y − Xβ‖2.
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Bridge estimates
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Graphical illustration for p = 2

We take XTX =

(
4 1.4

1.4 1

)
and t = 1.

Note that

‖Y − Xβ‖2 = (β − β̂ols)TXTX (β − β̂ols) + ‖Y − X β̂ols‖2

and the constrained problem becomes

arg min
{β∈Rp : ‖β‖γγ≤t}

{
(β − β̂ols)TXTX (β − β̂ols)

}
.

We compare the Ridge estimate

β̂ridge
λ := arg min

{β∈Rp : ‖β‖2≤t}

{
(β − β̂ols)TXTX (β − β̂ols)

}
and the Lasso estimate

β̂ lasso
λ := arg min

{β∈Rp : ‖β‖1≤t}

{
(β − β̂ols)TXTX (β − β̂ols)

}
Of course both estimates are close (for same values of t) but, depending on β̂ols ,
Lasso estimate may have null coordinates.
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Graphical illustration for p = 2
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Graphical illustration for p = 2
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Characterization of the Lasso

The Lasso, proposed by Tibshirani (1996), is the minimizer of Cλ,γ with γ = 1:

β̂ lasso
λ ∈ arg min

β∈Rp

{
‖Y − Xβ‖2 + λ‖β‖1︸ ︷︷ ︸

Cλ,1

}
It has two specific properties:

1. It is obtained from the minimization of a convex criterion (so, with low
computational cost) ,

2. It may provide sparse solutions if the tuning parameter λ (resp. t) is large (resp.
small) enough and allows for automatic selection. ,

Theorem (Characterization of the Lasso)

A vector β̂λ ∈ Rp is a global minimizer of Cλ,1 if and only if β̂λ satisfies following
conditions: For any j ∈ {1, . . . , p},

if β̂λ,j 6= 0, 2XT
j (Y − X β̂λ) = λsign(β̂λ,j)

if β̂λ,j = 0, |2XT
j (Y − X β̂λ)| ≤ λ

Furthermore, β̂λ is the unique minimizer if XEλ is one to one with

Eλ :=
{
j : |2XT

j (Y − X β̂λ)| = λ
}
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Uniqueness of the Lasso

Lasso estimate:
β̂ lasso
λ ∈ arg min

β∈Rp

{
‖Y − Xβ‖2 + λ‖β‖1︸ ︷︷ ︸

Cλ,1

}
Let β̂λ a global minimizer of Cλ,1. If β̂′λ is another global minimizer of Cλ,1, then

X β̂λ = X β̂′λ and ‖β̂λ‖1 = ‖β̂′λ‖1.

Conditions for uniqueness (Tibshirani (2013)):

1. β̂λ is the unique minimizer of Cλ,1 if XEλ is one to one with

Eλ :=
{
j : |2XT

j (Y − X β̂λ)| = λ
}

2. Note that Ŝλ, the support of β̂λ, satisfies

Ŝλ :=
{
j : β̂λ,j 6= 0

}
⊂ Eλ.

So, β̂λ is the unique minimizer of Cλ,1 if XŜλ
is one to one and ∀ j /∈ Ŝλ,

|2XT
j (Y − X β̂λ)| < λ.

3. If the entries of X are drawn from a continuous probability distribution on Rnp, then
for any λ > 0, the lasso solution is unique with probability one.
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The orthogonal case

Assume that the matrix X is orthogonal: XTX = Ip.

β̂ lasso
λ := arg min

β∈Rp

{
‖Y − Xβ‖2 + λ‖β‖1

}
= arg min

β∈Rp

{
p∑

j=1

(
β2
j − 2(XT

j Y )βj + λ|βj |
)}

.

Orthogonality allows for a coordinatewise study of the minimization problem.
Straightforward computations lead to

β̂ lasso
λ,j =


XT

j Y − λ
2

if XT
j Y ≥ λ

2

0 if − λ
2
≤ XT

j Y ≤ λ
2

XT
j Y + λ

2
if XT

j Y ≤ −λ
2

= sign(XT
j Y )×

(
|XT

j Y | − λ

2

)
+

The LASSO (Least Absolute Shrinkage and Selection Operator) procedure corresponds

to a soft thresholding algorithm.
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The orthogonal case - Comparison

We assume that the matrix X is
orthogonal: XTX = Ip. We set

aj := XT
j Y

and compare

The OLS estimate: β̂ols
j = aj

The Ridge estimate (γ = 2):

β̂ridge
λ,j = (1 + λ)−1aj

The Lasso estimate or
soft-thresholding rule (γ = 1):

β̂ lasso
λ,j = sign(aj)×

(
|aj | −

λ

2

)
+

The Model Selection estimate or
hard-thresholding rule (γ = 0):

β̂m.s.
λ,j = aj × 1{|aj |>

√
λ}

−3 −2 −1 0 1 2 3

−
3
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−
1

0
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x
y

OLS
Ridge
Lasso
Model election

Comparison of 4 estimates for the
orthogonal case with λ = 1.
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Theoretical guarantees - Support recovery

We study the problem of estimating the support of β∗ with the support of β̂ lasso
λ . Let

S∗ :=
{
j : β∗j 6= 0

}
, Ŝλ :=

{
j : β̂ lasso

λ,j 6= 0
}

Under the Irrepresentable Condition (or the incoherence condition), we have Ŝλ = S∗.

Theorem (Wainwright (2009))

We assume that for some γ > 0, K > 0 and cmin > 0,

max
j=1,...,p

‖Xj‖ ≤ K , eig(XT
S∗XS∗) ≥ cmin,

max
j /∈S∗
‖(XT

S∗XS∗)−1XT
S∗Xj‖1 ≤ 1− γ. (6.2)

Then, if λ ≥ 8Kσ
√

log p
γ

, with probability larger than 1− p−A,

Ŝλ ⊂ S∗, ‖β̂ lasso
λ − β∗‖∞ ≤ λ

(
4σ√
cmin

+ ‖(XT
S∗XS∗)−1‖∞

)
Condition (6.2) is (almost) necessary. See also Zou (2006) and Zhao and Yu (2006).
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Theoretical guarantees - Bounds for prediction

Proposition (Bunea et al. (2007))

Let us consider λ ≥ 4 maxj=1,...,p |(XT ε)j |. Then,

‖X β̂ lasso
λ − Xβ∗‖2 ≤ 2‖β∗‖1λ.

Theorem (Bunea et al. (2007))

Let us consider λ ≥ 3 maxj=1,...,p |(XT ε)j |. For any β ∈ Rp, let

κ(β) := min
ν∈C(β)

‖Xν‖2

‖ν‖2
,

C(β) := {ν ∈ Rp : 20‖ν‖1,Supp(β) > ‖ν‖1,Supp(β)c }.
Then, if κ(β) > 0,

‖X β̂ lasso
λ − Xβ∗‖2 ≤ inf

β∈Rp

{
3‖Xβ − Xβ∗‖2 +

32‖β‖0

κ(β)
λ2

}
.

The Restricted Eigenvalues Condition, κ(β) > 0, expresses the lack of orthogonality of

columns of X . Milder conditions can be used (see Hunt et al. (2019))).
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Theoretical guarantees - Bounds for estimation

From the previous theorem, we can deduce estimation bounds for `2 and `1 norms
for estimating sparse vectors β∗ (see Hunt et al. (2019)) :

‖β̂ lasso
λ − β∗‖2 . λ2‖β∗‖0

‖β̂ lasso
λ − β∗‖1 . λ‖β∗‖0

Deriving λ such that
λ & max

j=1,...,p
|(XT ε)j |

is satisfied with high probability is easy by using concentration inequalities. It
provides a theoretical way to tune the Lasso (often too conservative in practice).
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Tuning the Lasso - V -fold Cross-validation

1. We write the model
Yi = xT

i β
∗ + εi , i = 1, . . . , n

with xi ∈ Rp.

2. Choose V (commonly, V = 5 or V = 10) and a discrete set Λ of values for λ.

3. Split the training set {1, . . . , n} into V subsets, B1, . . . ,BV , of roughly the same
size.

4. For each value of λ ∈ Λ, for k = 1, . . . ,V , compute the estimate β̂
(−k)
λ on the

training set ((xi ,Yi )i∈B`) 6̀=k and record the total error on the validation set Bk :

ek(λ) :=
1

card(Bk)

∑
i∈Bk

(
Yi − xT

i β̂
(−k)
λ

)2
.

5. Compute the average error over all folds,

CV (λ) :=
1

V

V∑
k=1

ek(λ) =
1

V

V∑
k=1

1

card(Bk)

∑
i∈Bk

(
Yi − xT

i β̂
(−k)
λ

)2
.

6. We choose the value of tuning parameter that minimizes this function CV on Λ:

λ̂ := argmin
λ∈Λ

CV (λ).
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Tuning the Lasso - Degrees of freedom

We write the model

Yi = xT
i β
∗ + εi , εi

iid∼ N (0, σ2) i = 1, . . . , n.

Definition (Efron (1986))

The degrees of freedom of a function g : Rn 7→ Rn with coordinates gi is defined by

df(g) =
1

σ2

n∑
i=1

cov(gi (Y ),Yi ).

The degrees of freedom may be viewed as the true number of independent pieces of
informations on which an estimate is based.

Example with rank(X ) = p: We estimate Xβ∗ with

g(Y ) = X (XTX )−1XTY

df(g) = σ−2
n∑

i=1

E[xT
i (XTX )−1XT ε× εi ] = p
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Lasso estimation: `1-penalization

Tuning the Lasso - Degrees of freedom

Efron’s degrees of freedom is the main ingredient to generalize Mallows’ Cp in high
dimensions:

Proposition

Let β̂ an estimate of β∗. If

Cp := ‖Y − X β̂‖2 − nσ2 + 2σ2df(X β̂),

then we have:
E[Cp] = E[‖X β̂ − Xβ∗‖2].

Assume that for any λ > 0, we have d̂f(λ) a good (unbiased) estimate of df(X β̂λ),

where β̂λ is the Lasso estimate associated with λ. Then, we can choose λ by
minimizing

λ 7−→ ‖Y − X β̂λ‖2 + 2σ2d̂f(λ)

Denoting Ŝλ the support of β̂ lasso
λ , we have:

E[card(Ŝλ)] = E[rank(XŜλ
)] = df (X β̂λ).

See Zou, Hastie and Tibshirani (2007) and Tibshirani and Taylor (2012).
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Tuning the Lasso - Alternatives

Tuning the parameter λ of

β̂ lasso
λ ∈ arg min

β∈Rp

{
‖Y − Xβ‖2 + λ‖β‖1

}

1. Theoretical tuning based on concentration inequalitites

2. Cross Validation procedures

3. The Efron’s degree of freedom

Alternatives:

4. Interpret the Lasso procedure as a Bayesian procedure so that β̂ lasso
λ is the posterior

mode. The parameter λ can then be viewed as a hyperparameter of the prior
distribution, which can be tuned by using hierarchical Bayes or Empirical Bayes
approaches. See Park and Casella (2008).

5. We can combine Lasso and Model Selection: Each value λ of the grid Λ provides a
specific model, namely Ŝλ. The choice of the best model can be performed by using
a Model Selection criterion (Mallows’ Cp, AIC, BIC, etc). See Lacroix (2022) for an
extensive study and some extensions.
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Computing the Lasso estimator

Coordinate descent algorithm: We wish to compute

β̂ lasso
λ := arg min

β∈Rp

{
‖Y − Xβ‖2 + λ‖β‖1

}
We assume that ‖Xj‖ = 1 for all j and we denote

C(β) = ‖Y − Xβ‖2 + λ‖β‖1.

Since C is convex, the minimizer of

βj 7→ C(β1, . . . , βj−1, βj , βj+1, . . . , βp)

is

βj = Rj

(
1− λ

2|Rj |

)
+

, Rj := XT
j

Y −
∑
k 6=j

βkXk

 .

Repeatedly computing β1 . . . , βp, β1 . . . , βp, etc. gives the coordinate descent
algorithm summarized below. Thanks to the convexity of C, this algorithm
converges to the Lasso estimator.
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Coordinate descent algorithm

The coordinate descent algorithm is implemented in the package glmnet.

Initialization: β = βinit , with βinit ∈ Rp arbitrary

Repeat, until convergence of β, the loop:
for j = 1, . . . , p

βj = Rj

(
1− λ

2|Rj |

)
+

, Rj := XT
j

Y −
∑
k 6=j

βkXk

 .

Output: β

Other algorithms:

- FISTA based on linearization of β 7−→ ‖Y − Xβ‖2 and gradient descent

- LARS uses that λ 7−→ β̂ lasso
λ is piecewise affine
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Lasso estimation: `1-penalization

Illustration on real data

Analysis of the famous ”prostate data“ for n = 97 patients, which explains the
log(prostate specific antigen) in function of

1. log(cancer volume)

2. log(prostate weight)

3. age

4. log(benign prostatic hyperplasia amount)

5. seminal vesicle invasion

6. log(capsular penetration)

7. Gleason score

8. percentage Gleason scores 4 or 5

Following R commands produce a plot of the values of the coordinates of the Ridge and

Lasso estimates when λ decreases.

install.packages("ElemStatLearn")
install.packages("glmnet")
library(glmnet)
data("prostate", package = "ElemStatLearn")
Y = prostate$lpsa
X = as.matrix(prostate[,names(prostate)!=c("lpsa","train")])
ridge.out = cv.glmnet(x=X,y=Y,,nfolds=10,alpha=0)
plot(ridge.out)
lasso.out = cv.glmnet(x=X,y=Y,,nfolds=10,alpha=1)
plot(lasso.out)
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Lasso estimation: `1-penalization

Illustration on real data

The x-axis corresponds to ‖β̂λ‖1. For each graph, the left-hand side corresponds to

λ = +∞, the right-hand side corresponds to λ = 0. The vertical green line corresponds

to the value of λ determined by cross-validation.
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9 variations of the Lasso

Plan

1 Curse of dimensionality

2 Linear regression setting

3 Classical estimation

4 Ridge estimation: `2-penalization

5 Model selection (à la Birgé-Massart): `0-penalization

6 Lasso estimation: `1-penalization

7 9 variations of the Lasso
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9 variations of the Lasso

Variation of the Lasso - the Dantzig selector

Remember that the Lasso estimate satisfies the constraint

max
j=1,...,p

|2XT
j (Y − X β̂ lasso

λ )| ≤ λ.

We then introduce the convex set

D :=

{
β ∈ Rp : max

j=1,...,p
|2XT

j (Y − Xβ)| ≤ λ
}
,

which contains β∗ with high probability if λ is well tuned.

Remember also that we investigate sparse vectors where sparsity is measured by
using the `1-norm.

Therefore, Candès and Tao (2007) have suggested to use the Dantzig selector

β̂Dantzig
λ := argmin

β∈D
‖β‖1.

Note that ‖β̂Dantzig
λ ‖1 ≤ ‖β̂ lasso

λ ‖1. Numerical and theoretical performances of
Dantzig and Lasso estimates are very close. In some cases, they may even coincide.
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9 variations of the Lasso

Variation of the Lasso - ”Adaptive” Lasso

Due its ”soft-thresholding nature“, the Lasso estimation of large coefficients may
suffer from a large bias. We can overcome this problem by introducing data-driven
weights.

Zou (2006) proposed an adaptive version of the classical Lasso:

β̂Zou
λ := arg min

β∈Rp

{
‖Y − Xβ‖2 + λ

p∑
j=1

wj |βj |

}
,

with

wj =
1

|β̂ols
j |

.

The larger |β̂ols
j |, the smaller wj , which encourages large values for β̂Zou

λ,j .

Instead of β̂ols , other preliminary estimates can be considered.
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9 variations of the Lasso

Variation of the Lasso - Relaxed Lasso

Instead of introducing weights, Meinshausen (2007) suggests a two-step procedure:

1. Compute

β̂ lasso
λ = arg min

β∈Rp

{
‖Y − Xβ‖2 + λ‖β‖1

}
and set

Ŝλ :=
{
j : β̂ lasso

λ,j 6= 0
}
.

2. For δ ∈ [0, 1],

β̂relaxed
λ,δ := arg min

β∈Rp , supp(β)⊂Ŝλ

{
‖Y − Xβ‖2 + δλ‖β‖1

}
If X is orthogonal,

β̂relaxed
λ,δ,j =


XT

j Y − δλ
2

if XT
j Y ≥ λ

2

0 if − λ
2
≤ XT

j Y ≤ λ
2

XT
j Y + δλ

2
if XT

j Y ≤ −λ
2

The value δ = 0 is commonly used.
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9 variations of the Lasso

Variation of the Lasso - The square-root Lasso

The Lasso estimate should be scaled invariant, meaning that for any s > 0

arg min
β∈Rp

{
‖Y − Xβ‖2 + λ‖β‖1

}
a.e.
= arg min

β∈Rp

{
‖sY − sXβ‖2 + λ‖sβ‖1

}
.

If the tuning parameter is chosen independently of σ, the standard deviation of Y ,
then the Lasso estimate is not scaled invariant. The estimate

arg min
β∈Rp

{
‖Y − Xβ‖2 + λσ‖β‖1

}
is scaled invariant but is based on the knowledge of σ.

Alternatively, you can consider the square-root Lasso:

arg min
β∈Rp

{‖Y − Xβ‖+ λ‖β‖1} ,

which also enjoys nice properties.
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9 variations of the Lasso

Variation of the Lasso - Elastic net

The vanilla Lasso has two drawbacks:

1. In the p > n case, the Lasso selects at most n variables

2. In the model Y = Xβ∗ + ε, consider

β̂ lasso
λ = arg min

β∈Rp

{
‖Y − Xβ‖2 + λ‖β‖1

}
If we consider X̃ = [X ,Xp] and if β̂ lasso

λ,p 6= 0, then any vector β̃λ such that

β̃λ,j =


β̂ lasso
λ,j if j ∈ {1, . . . , p − 1}

αβ̂ lasso
λ,p if j = p

(1− α)β̂ lasso
λ,p if j = p + 1

,

with α ∈ [0, 1], is a solution of

arg min
β∈Rp+1

{
‖Y − X̃β‖2 + λ‖β‖1

}
.

We have an infinite number of solutions.
More generally, if there is a group of variables among which the pairwise
correlations are very high, then the Lasso tends to select only one variable from the
group and does not care which one is selected.
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9 variations of the Lasso

Variation of the Lasso - Elastic net

In practice, predictors are different but they may be strongly correlated. In this case,
the Lasso estimate may hide the relevance of one of them, just because it is highly
correlated to another one. Coefficients of two correlated predictors should be close.

The elastic net procedure proposed by Zou and Hastie (2005) makes a compromise
between Ridge and Lasso penalties: given λ1 > 0 and λ2 > 0,

β̂e.n.
λ1,λ2

:= arg min
β∈Rp

{
‖Y − Xβ‖2 + λ1‖β‖1 + λ2‖β‖2

}
.

The criterion is strictly convex, so there is a unique minimizer.

If columns of X are centered and renormalized and if Y is centered, then for j 6= k
such that β̂e.n.

λ1,λ2,j
× β̂e.n.

λ1,λ2,k
> 0,∣∣∣β̂e.n.

λ1,λ2,j − β̂
e.n.
λ1,λ2,k

∣∣∣ ≤ ‖Y ‖1

λ2

√
2(1− XT

j Xk).

We can improve β̂e.n.
λ1,λ2

and consider (1 + λ2)β̂e.n.
λ1,λ2

(see Zou and Hastie (2005)).
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9 variations of the Lasso

Variation of the Lasso - Elastic net

In practice, predictors are different but they may be strongly correlated. In this case,
the Lasso estimate may hide the relevance of one of them, just because it is highly
correlated to another one. Coefficients of two correlated predictors should be close.

The elastic net procedure proposed by Zou and Hastie (2005) makes a compromise
between Ridge and Lasso penalties: given λ1 > 0 and λ2 > 0,

β̂e.n.
λ1,λ2

:= arg min
β∈Rp

{
‖Y − Xβ‖2 + λ1‖β‖1 + λ2‖β‖2

}
.

The criterion is strictly convex, so there is a unique minimizer.

If columns of X are centered and renormalized and if Y is centered, then for j 6= k
such that β̂e.n.

λ1,λ2,j
× β̂e.n.

λ1,λ2,k
> 0,∣∣∣β̂e.n.

λ1,λ2,j − β̂
e.n.
λ1,λ2,k

∣∣∣ ≤ ‖Y ‖1

λ2

√
2(1− XT

j Xk).

We can improve β̂e.n.
λ1,λ2

and consider (1 + λ2)β̂e.n.
λ1,λ2

(see Zou and Hastie (2005)).
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9 variations of the Lasso

Variation of the Lasso - Fused Lasso

For change point detection, for instance, for which coefficients remain constant over
large portions of segments, Tibshirani, Saunders, Rosset, Zhu and Knight (2005)
have introduced the fused Lasso: given λ1 > 0 and λ2 > 0,

β̂fused
λ1,λ2

:= arg min
β∈Rp

{
‖Y − Xβ‖2 + λ1

p∑
j=1

|βj |+ λ2

p∑
j=2

|βj − βj−1|

}
.

The first penalty is the familiar Lasso penalty which regularizes the signal. The
second penalty encourages neighboring coefficients to be identical.

We can generalize the notion of neighbors from a linear ordering to more general
neighborhoods, for examples adjacent pixels in image. This leads to a penalty of
the form

λ2

∑
j∼j′

|βj − βj′ |.

Parameters λ1 and λ2 are hard to tune.
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9 variations of the Lasso

Variation of the Lasso - Group-Lasso

To select simultaneously a group of variables, Yuan and Lin (2006) suggest to use
the group-Lasso procedure. For this purpose, we assume we are given K known
non-overlapping and non-empty groups G1,G2, . . . ,GK and we set for λ > 0,

β̂group := arg min
β∈Rp

{
‖Y − Xβ‖2 + λ

K∑
k=1

‖β(k)‖

}
,

where β(k)j
= βj if j ∈ Gk and 0 otherwise.

If K = p, ‖β(k)‖ = |βk | and the Group-Lasso is the vanilla Lasso.

As for the Lasso, the group-Lasso can be characterized: For any k ∈ {1, . . . ,K}, 2XT
(k)(Y − X β̂group) = λ×

β̂
group
(k)

‖β̂group
(k)
‖2

if β̂group
(k) 6= 0∥∥∥2XT

(k)(Y − X β̂group)
∥∥∥ ≤ λ if β̂group

(k) = 0

The procedure keeps or discards all the coefficients within a block and can increase
estimation accuracy by using information about coefficients of the same block.
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9 variations of the Lasso

Variation of the Lasso - Hierarchical group-Lasso

We consider 2 predictors X1 et X2.
Suppose we want X1 to be included in
the model before X2. This hierarchy can
be induced by defining the overlapping
groups: We take G1 = {1, 2} et
G2 = {2}. This leads to

β̂overlap = arg min
β∈Rp

{
‖Y − Xβ‖2 + λ (‖β1, β2‖+ |β2|)

}

The contour plots of this penalty
function is

u
1

u
2

Theorem (Zhao, Rocha et Yu (2009))

We assume we are given K known groups G1,G2, . . . ,GK . Let I1 and
I2 ⊂ {1, . . . , p} be two subsets of indices. We assume:

1 For all 1 ≤ k ≤ K, I1 ⊂ Gk ⇒ I2 ⊂ Gk .

2 There exists k0 such that I2 ⊂ Gk0 and I1 6⊂ Gk0 .

Then, almost surely, β̂G
I2
6= 0⇒ β̂G

I1
6= 0.
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9 variations of the Lasso

Variation of the Lasso - The Bayesian Lasso

In the Bayesian approach, the parameter is random and we write:

Y |β, σ2 ∼ N (Xβ, σ2In)

if ε ∼ N (0, σ2In).

Park and Casella (2008) suggest to consider a Laplace distribution for β:

β|λ, σ ∼
p∏

j=1

[
λ

2σ
exp

(
− λ

σ
|βj |
)]
.

Then, the posterior density is

∝ exp

(
− 1

2σ2
‖Y − Xβ‖2 − λ

σ
‖β‖1

)
and the posterior mode coincides with the Lasso estimate with smoothing
parameter σλ.

The posterior distribution provides more than point estimates since it provides the
entire posterior distribution.

The procedure is tuned by including priors for σ2 and λ.

Most of Lasso-type procedures have a Bayesian interpretation.
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9 variations of the Lasso

Take-home message

To overcome prohibitive computational complexity of model selection, convex
critera can be considered leading, in particular, to Lasso-type estimates.

By doing so, we introduce some bias but reduce the variance of predicted values.
Moreover, we can identify a small number of predictors that have the strongest
effects and then makes interpretation easier for the practitioner.

By varying the basic Lasso `1-penalty, we can reduce problems encountered by the
standard Lasso or incorporate some prior knowledge about the model.

In the linear regression setting, these estimates, which can be easily computed, are
very popular for high dimensional statistics. They achieve nice theoretical and
numerical properties.

Even if some standard recipes can be used to tune the Lasso, its calibration remains
an important open problem.

Lasso type estimates have been presented in the linear regression setting. But it can
be extended to other settings: for Generalized Linear Models, density estimation,
counting processes, etc.
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Thank you for your attention.

Questions and remarks are welcomed!
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