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Introduction

Ce mémoire présente les travaux que j’ai effectués tout d’abord au sein du Laboratoire de
Probabilités et Modèles Aléatoires des Universités Paris 6 et Paris 7 pendant ma thèse, puis
dans l’Equipe Probabilités, Statistique et Modélisation du Département de Mathématiques de
l’Université d’Orsay depuis 2003, et enfin également au Département de Mathématiques et Appli-
cations de l’Ecole Normale Supérieure à partir de 2007.

Ce manuscrit revient tout d’abord sur l’adage popularisé dans les années 90 :

”Bien estimer, c’est bien approcher.”

Pour l’estimation de quantités complexes, la démarche qui consiste à considérer au préalable des
objets ’simples’ ayant de ’bonnes propriétés d’approximation’ est à présent courante en statistique.
On peut chercher à aller plus loin et se demander dans quelle mesure la question de l’estimation
revient à la question de l’approximation. L’approche maxiset introduite en statistique par Kerky-
acharian et Picard, dont le but est de déterminer exactement l’ensemble des fonctions pouvant
être estimées par une procédure donnée et avec une précision fixée, constitue un cadre idéal pour
fournir des réponses à cette problématique. Plus précisément, elle formalise mathématiquement
plusieurs éléments que je décris ci-dessous et dans le premier chapitre de ce manuscrit dans lequel
je présente le calcul des maxisets pour trois familles de procédures parmi les plus utilisées :

- les estimateurs à noyau,
- les procédures par seuillage de coefficients d’ondelettes (pour le problème de l’estimation

de fonctionnelles quadratiques),
- les procédures par sélection de modèles.

Pour chacune de ces procédures, je décris le cadre, toujours très général, qui permet de déterminer
leurs maxisets. Cela revient à dire que, dans ces cas là, la qualité de l’estimation est alors
donnée par la qualité de l’approximation. Il faut noter au passage que cela implique l’utilisation
d’outils probabilistes puissants qui permettent d’éliminer l’aléa. Ainsi, nous proposons un cadre
mathématique qui formalise l’équivalence sous-jacente de l’adage précédent. Mais l’approche
maxiset va plus loin puisqu’elle fournit les caractéristiques fonctionnelles qui permettent d’obtenir
de bonnes performances d’estimation. En effet, pour résumer sommairement les résultats du
premier chapitre, je montre que, de manière générale, lorsqu’une procédure linéaire est con-
sidérée, un signal ne peut être bien estimé que s’il est régulier. Ce fait est bien connu et a popu-
larisé l’utilisation des classes fonctionnelles de type Sobolev ou Hölder dans l’approche minimax.
Lorsque nous considérons une procédure non-linéaire, plus que la régularité, c’est la parcimonie
du signal sous-jacent qui joue le rôle prépondérant, comme je le montre dans le paragraphe 5 du
premier chapitre. Enfin, je mentionne que l’approche maxiset permet de donner des définitions très
précises de ces notions de ’régularité’ et de ’parcimonie’ confortant l’intuition que l’on pourrait en
avoir.

De l’étude que nous menons dans le premier chapitre, nous déduisons que les procédures
d’estimation qui s’appuient sur des dictionnaires de fonctions offrant des décompositions parci-
monieuses des signaux à estimer constituent de bons outils. C’est le cas, par exemple, des procédu-
res par seuillage de coefficients d’ondelettes qui présentent en outre l’avantage de s’implémenter
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4 Introduction

aisément. Mais il faut insister sur le fait que la théorie maxiset, de nature asymptotique, ne per-
met en aucun cas de calibrer ces procédures ; il faut alors envisager une toute autre approche.
Par calibration, j’entends la détermination précise des paramètres (en anglais ’the tuning parame-
ters’) de l’estimateur utilisé à des fins pratiques, souvent dans un cadre non-asymptotique. Pour
cette problématique, la première approche que j’ai envisagée est de nature bayésienne, ce qui peut
sembler paradoxal dans l’optique de calibrer des estimateurs fréquentistes. Le cadre bayésien est
pourtant naturel puisqu’il permet :

- d’incorporer l’information disponible concernant le paramètre d’intérêt via l’introduction
d’une distribution a priori,

- d’obtenir une construction automatique d’estimateurs grâce au calcul des estimateurs
bayésiens associés à la loi a posteriori.

Au vu des conclusions du Chapitre 1, le premier travail consiste donc à construire des lois a priori
adaptées à la modélisation de la parcimonie. C’est l’objet de la première partie du Chapitre 2
où nous verrons notamment l’intérêt d’utiliser des distributions fondées sur des densités à queues
lourdes. Quand la modélisation est adéquate, l’estimateur bayésien de la médiane a posteriori
est de type seuillage où le seuil dépend des hyperparamètres de la distribution a priori. L’étude
théorique et pratique des estimateurs bayésiens les plus classiques est menée dans la seconde partie
du Chapitre 2.

L’étude de la calibration d’estimateurs est également menée à travers le prisme uniquement
fréquentiste dans la dernière partie de ce mémoire. Plus exactement, les seuils calibrés des estima-
teurs par ondelettes sont fondés sur des inégalités de concentration fines. Pour résumer le propos
du Chapitre 4, l’objectif est de combler le fossé qui existe entre un choix théorique du seuil et un
choix pratique. Nous verrons dans quelle mesure cet objectif est atteint. Je mentionne simplement
le fait que nous parvenons à démontrer, sous certaines conditions, l’existence d’une valeur mini-
male de la ’constante de seuil’, résultat analogue à celui établi par Birgé et Massart en sélection
de modèles. L’étude théorique de la calibration est prolongée par une étude par simulations. Ces
résultats sont partiellement généralisés dans le cadre du fléau de la dimension où nous ne con-
sidérons pas une unique base orthonormée, mais un dictionnaire de fonctions muni de propriétés
classiques d’incohérence. Nous considérons pour cela un estimateur construit sous des contraintes
de type ’Dantzig’.

Mais avant cela, dans le Chapitre 3, nous revenons sur le problème de l’estimation de densité
ou de l’intensité d’un processus de Poisson que nous souhaitons traiter en formulant un minimum
d’hypothèses sur le signal à estimer. Nous menons une étude théorique des estimateurs par on-
delettes et de type ’Dantzig’. Elle est prolongée par une étude numérique sur des jeux de données
simulées et réelles. En particulier, nous axons notre problématique sur la question du support :
dans quelle mesure les performances d’une procédure par ondelettes dépendent du support du sig-
nal sous-jacent ? Est-il préjudiciable de considérer a priori que le support du signal à estimer est
infini (parce qu’inconnu et que l’on ne souhaite pas l’estimer) ? En bref, nous nous demandons
dans ce chapitre s’il existe un ’fléau du support’ comme il existe un ’fléau de la dimension’. Les
réponses à toutes ces questions sont liées une nouvelle fois à la parcimonie. En particulier dans
le cadre minimax, les vitesses ne sont pas altérées à la condition d’estimer un signal suffisamment
parcimonieux. Nous montrons l’adaptivité de l’estimateur par ondelettes que nous proposons,
puisqu’il atteint la vitesse minimax (à un terme logarithmique près) quelle que soit la régularité
du signal sous-jacent (ce qui est classique) mais également quelle que soit la taille du support.
Du point de vue numérique, la robustesse de notre estimateur à ce fléau du support est également
établie.

J’achève cette introduction en mentionnant que les résultats du Chapitre 3 se prolongent na-
turellement pour des problèmes plus généraux qui cherchent à étudier l’estimation adaptative
d’interactions poissonniennes. Ce thème constitue un sujet de thèse décrit en conclusion de ce
mémoire. Il sera traité par Laure Sansonnet et co-encadré avec Patricia Reynaud-Bouret.



CHAPTER 1

Maxiset results

1. The maxiset point of view and arising issues

The maxiset point of view has been introduced by Kerkyacharian and Picard (1993, 2000,
2002) and Cohen, DeVore, Kerkyacharian and Picard (2001). This approach consists in determin-
ing the set of all the functions which can be estimated at a specified rate of convergence for a given
procedure. More precisely, let us assume we are given a statistical model {Pn

θ , θ ∈ Θ}, where the
Pn

θ ’s are probability distributions and Θ is the set of parameters. We consider a sequence of esti-
mates q̂n of a quantity q(θ), a loss function ρ and a rate of convergence αn tending to 0. Then, the
maxiset associated with the procedure (q̂n)n, the loss function ρ and the rate αn is the following
set:

MS(q̂n, ρ, αn) =
{
θ ∈ Θ : sup

n

{
α−1

n En
θρ(q̂n, q(θ))

}
<∞

}
.

Obviously, the larger the maxiset, the better the procedure.
Let us briefly mention the differences with the minimax point of view. To study minimax

properties of a procedure, we have to arbitrarily choose a set of functions and look at the worst
performances of estimators on this set. The maxiset theory is less pessimistic and instead of a
priori fixing a (functional) set such as a Hölder, Sobolev or Besov ball, the problem is handled
in a wider context since the parameter set Θ can be very large (Θ can be, for instance, the set
of measurable square-integrable functions). The outcome is a set authentically connected to the
procedure and the model.

However, still there is a deep parallel between maxiset and minimax theories. For instance,
facing a particular situation, the standard procedure to prove that a set F is the maxiset usually
consists (exactly as in minimax theory) in two steps. First, we show that F ⊂MS(q̂n, ρ, αn), but
this is generally obtained using similar arguments as for proving upper bound inequalities in the
minimax setting: we establish that if θ ∈ F then for all n,

En
θρ(q̂n, q(θ)) ≤ Cαn,

whereC is a constant. Proofs of results stated in this chapter emphasize the gain of the maxiset set-
ting: the second inclusion MS(q̂n, ρ, αn) ⊂ F is often much simpler than proving lower bounds
for minimax rates over complicated spaces. Furthermore, this second step deeply involves the
procedure at hand.

Kerkyacharian and Picard and their co-authors have derived following maxiset results giving
rise to nice interpretations. It has been established in Kerkyacharian and Picard (1993) that, in
a specific context, the maxisets of linear kernel methods are in fact Besov spaces under fairly
reasonable conditions on the kernel, whereas the maxisets of thresholding estimates (see Kerky-
acharian and Picard (2000) and Cohen, DeVore, Kerkyacharian and Picard (2001)) are specific
Lorentz spaces (see below). It has also been observed (see Kerkyacharian and Picard (2002)) that
there is a deep connection between oracle inequalities and maxisets, in the sense that verifying an
oracle inequality is equivalent to proving that the maxiset of the procedure automatically contains
a minimal set associated to the oracle.

However, the maxiset approach raises many issues, some of them were highlighted in the
discussion of Kerkyacharian and Picard (2000) by experts of non-parametric statistics.
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6 Maxiset results

(1) Can maxiset results be established for the most popular procedures and classical statisti-
cal models? In particular, given a statistical model (density estimation, Gaussian white
noise model,..) various procedures have now been built and proved to be optimal in
the minimax setting. So, the minimax approach cannot decide between them. Can the
maxiset theory be a help for this problem?

(2) The outcome of the maxiset approach consists in a functional space, which constitutes a
more wealthy answer than a minimax rate. Of course, if F1 and F2 denote the maxisets
associated with two procedures f̂1 and f̂2 with F1 ⊂ F2, then f̂1 is naturally said to be
outperformed by f̂2 in the maxiset setting. But, is such a comparison always possible
and what can we conclude when F1 and F2 are not nested?

(3) In previous papers, rates were in fact chosen as a simple function of the tuning parameter
(a power of the kernel bandwidth or of the wavelet threshold). Is it really possible to
disconnect the rates of convergence and the tuning parameters? In this case, do the
maxiset comparisons remain unchanged whatever the rates?

(4) In the minimax approach, an estimator is said to be optimal when it achieves the minimax
rate over a large scale of functional spaces. In the oracle approach, optimality is mea-
sured within a class of estimators and we aim at mimicking performances of the “oracle
estimator” viewed as an ideal. Can the notion of optimality be defined in the maxiset
setting?

(5) It was claimed previously that lower bounds for maxiset results are simple to obtain. To
what extent, is this statement true in a general way? Is there a general methodology to
compute maxisets?

(6) Cohen, Devore, Keryacharian and Picard (2001) shed lights on the role of approximation
theory in statistics. Can we go further? Can maxisets help us to mathematically formulate
the properties a signal must satisfy to be well estimated?

(7) As said previously, the maxiset theory can be viewed as an alternative to the minimax
approach. But, of course, minimax optimality of an estimate can directly be obtained
by using maxiset embeddings calculated with minimax rates. Could we apply such a
trick to derive new minimax results? More important, minimax optimality of procedures
are systematically investigated on functional spaces such as Hölder, Sobolev or Besov
spaces designed to capture the regularity of signals. Should the maxiset theory call into
question such classical but subjective choices? In this case, what kind of spaces should
be considered?

It was a challenging task to provide answers to these questions by investigating further maxiset
results. Our purpose in the next sections is to briefly describe the most relevant ones. In Section
2, we first extend results of Kerkyacharian and Picard (1993) by investigating maxisets for kernel
rules where the loss function is the sup-norm. In this process, we present a general methodology to
compute maxisets. We point out arising difficulties, in particular to characterize maxisets, and the
way to overcome them. A very different setting is considered in Section 3 where we investigate
the estimation of θ(f) =

∫
f2 in the maxiset approach and the wavelet setting. Finally, in Section

4, we consider model selection rules where models are spanned by a dictionary of functions that is
not necessarily an orthonormal basis. We emphasize that, in this chapter, the goal is not to present
new methodologies to build estimates, but to study existing ones in the maxiset approach. From
this study, we shall draw interesting conclusions in terms of sparsity (see Section 5).

2. Maxisets for kernel rules: the methodology to compute maxisets

2.1. General results for kernel rules. This section presents the maxiset results obtained for
kernel rules studied in the Gaussian white noise model where the loss function is the sup-norm.
Here, we aim at illustrating the general methodology to compute maxisets and the difficulties that
arise. The subsequent results can be found in [R8] and constitute extensions of maxiset results
for linear estimates established for the Lq-norm (1 < q < ∞) and with polynomial rates of
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convergence by Kerkyacharian and Picard (1993) in the density estimation setting. We consider
the Gaussian white noise model

(1.1) dYt = f(t)dt+
σ√
n
dWt, t ∈ [0, 1]d,

where f : Rd → R is an unknown function, W is the Brownian sheet in [0, 1]d, σ > 0 is known
and n ∈ N∗, where N∗ is the set of positive integers. We study the estimation of f on [0, 1]d from
the observations {Yt, t ∈ [0, 1]d}. For this purpose, we assume that f belongs to L per∞ (Rd) the set
of 1-periodic functions that belong to L∞(Rd). The quality of an estimator f̂n is characterized by
its risk in sup-norm

Rn(f̂n) = E
(
‖f̂n − f‖p

∞
)
,

where ‖g‖∞ = ess supt∈[0,1]d |g(t)| and p ≥ 1. In this framework, we set the following definition.

DEFINITION 1.1. Let 1 ≤ p <∞, ψ = (ψn)n a decreasing sequence of positive real numbers
and let f̂ = (f̂n)n be an estimation procedure. The maxiset of f̂ associated with the rate ψ and
the ‖.‖p∞-loss is:

MS(f̂ , ψ, p) =
{
f ∈ Lper

∞ (Rd) : sup
n

[
ψ−p

n E
(
‖f̂n − f‖p

∞
)]

<∞
}
.

We focus on kernel rules, denoted f̃K,h =
(
f̃K,hn

)
n

in the sequel, where

(1.2) f̃K,hn(t) =
1
hd

n

∫

Rd

K

(
t− u

hn

)
dYu, t ∈ [0, 1]d,

K : Rd → R is a compactly supported function satisfying ‖K‖2
2 =

∫
Rd K

2(u)du < ∞ and h =
(hn)n is a sequence of bandwidth parameters that tends to 0. Note that some boundary problems
arise to define f̃K,hn(t) for t close to 0 or 1 but they can easily be overcome by periodizing
observations (see Section 2.1 of [R8] for more details). In particular, we have:

E
[
f̃K,hn(t)

]
= Khn ∗ f(t),

where for any t ∈ Rd, Khn(t) = 1
hd

n
K

(
t

hn

)
. We first state that if MS

(
f̃K,h, ψ, p

)
is not empty,

then h = (hn)n cannot go to 0 too quickly and an approximation property of functions belonging
to the maxiset can be derived.

THEOREM 1.1. Let ψ = (ψn)n be a positive sequence such that limn→∞ nψ2
n = +∞. Let us

assume that there exists a function f satisfying for all n ∈ N
E‖f̃K,hn − f‖p

∞ ≤ ψp
n.

Then, for all 0 < ε < 1, there exists n0 ∈ N such that, for all n ≥ n0,

(1.3) hn ≥ (1− ε)
(

log(nc0ψ2
n)

dnc0ψ2
n

)1/d

,

where

(1.4) c0 =
2

dσ2‖K‖2
2

.

Furthermore,

(1.5) sup
n

[
ψ−1

n ‖Khn ∗ f − f‖∞
] ≤ 1.
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Observe that the result is true for any arbitrary rate (ψn)n as soon as this rate is slower than the
parametric rate. Theorem 1.1 is proved in [R8] but, to shed lights on the maxiset methodology, let
us mention the main tools that allow to prove this result. In the minimax setting for any estimator
f∗n and p ≥ 1, we use the classic decomposition of the risk in bias and variance terms:

E‖f∗n − f‖p
∞ ≤ 2p−1 (‖Ef∗n − f‖p

∞ + E‖f∗n − Ef∗n‖p
∞) .

In the maxiset setting, and in particular to prove Theorem 1.1, we use the following converse result
that shows that controlling the risk allows to control the bias and the variance terms.

LEMMA 1.1. For any estimator f∗n, we have:

‖Ef∗n − f‖p
∞ ≤ E‖f∗n − f‖p

∞,

E‖f∗n − Ef∗n‖p
∞ ≤ 2pE‖f∗n − f‖p

∞.

The proof of Theorem 1.1 also relies on the following proposition concerning the variance
term that actually provides the lower bound for the bandwidth parameter.

PROPOSITION 1.1. For any δ > 0, there exists n0 ∈ N such that for any n ≥ n0,

E‖f̃K,hn − Ef̃K,hn‖p
∞ ≥ (1− δ)

(
2dσ2‖K‖2

2| log(hn)|
nhd

n

)p/2

.

By using Theorem 1.1, we can now deduce an optimal choice for the bandwidth parameter hn.
Indeed, the smaller hn, the smaller the bias term ‖Khn ∗ f − f‖∞. Therefore, considering both
(1.3) and (1.5) leads to the optimal choice:

(1.6) hn =
(

log(nc0ψ2
n)

dnc0ψ2
n

)1/d

with c0 =
2

dσ2‖K‖2
2

.

Now, we can state the maxiset result associated with the kernel estimate with this choice of band-
width parameter. As explained in Section 1, it is established in two steps. The first one uses similar
arguments as for proving upper bound inequalities in the minimax setting. The second one is sim-
ply based on Theorem 1.1. In the sequel, we consider the following additional condition on the
kernel K. For all t ∈ Rd such that ‖t‖ ≤ 1,

∫
Rd(K(t+ u)−K(u))2du ≤ C‖t‖2v, where ‖ · ‖ is

a norm of Rd, C is a positive constant and v ∈ (0, 1].

THEOREM 1.2. Let ψ = (ψn)n be a positive sequence such that limn→∞ nψ2
n = +∞. If hn

satisfies (1.6),

(1.7) MS
(
f̃K,h, ψ, p

)
=

{
f ∈ Lper

∞ (Rd) : sup
n

[
ψ−1

n ‖Khn ∗ f − f‖∞
]
<∞

}
.

Note that MS
(
f̃K,h, ψ, p

)
does not depend on the parameter p. But this maxiset depends on

the kernel K and on the rate ψn. The next step consists in characterizing this space in terms of
classical functional spaces. Unfortunately, this cannot be done without further assumptions on the
rate. This issue can be addressed if we consider the classic rate ψ = ψ(β, d) = (ψn(β, d))n with

(1.8) ψn(β, d) := C

(
logn
n

) β
2β+d

,

where β > 0 and C is a positive constant. In the sequel, we restrain our attention on the following
class of kernel functions.

DEFINITION 1.2. For N ∈ N∗, K(N) is the set of the functions K : Rd → R that satisfies
conditions stated before and

-
∫
Rd K(u)du = 1,
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- for any (α1, . . . , αd) ∈ Nd, such that
∑d

i=1 αi ≤ N , we have
∫

Rd

∣∣∣∣
∂α1

∂tα1
1

· · · ∂
αd

∂tαd
d

K(t)
∣∣∣∣ dt <∞,

- for all polynomial P of degree less than N such that P (0) = 0,∫

Rd

P (u)K(u)du = 0.

The sets K(N) contain kernels commonly used in estimation (see Section 2.3.2 of [R8]). We
are now ready to state the main maxiset result of this section. We respectively denote Bβ∞,∞
and Σ(β) the Besov and Hölder spaces of parameter β. Remember that the Besov spaces can be
introduced through different points of view. Due to the setting of the maxiset approach considered
here, Section 2.3.1 of [R8] introduce them by using the point of view of the approximation theory.
We also recall that when β /∈ N∗ the Hölder space Σ(β) and the Besov space Bβ∞,∞ are identical
(see for instance (Meyer (1990) p. 52–53). This is not true when β is an integer and Σ(β) is
strictly included in Bβ∞,∞. For β > 0, we denote

dβe = min {l ∈ N : l > β} .
THEOREM 1.3. Consider the procedure f̃K,h with K ∈ K(dβe) and h given by (1.6).
(1) If β is not an integer

MS(f̃K,h, ψ(β, d), p) = Bβ
∞,∞,

(2) if β is an integer

Σ(β) ⊂MS(f̃K,h, ψ(β, d), p) ⊂ Bβ
∞,∞.

This result establishes that the set of functions that can be estimated at the classic rate ψ(β, d)
is exactly the functions that belong to Bβ∞,∞ when β is not an integer. When β is an integer, there
is a slight ambiguity resulting from the strict inclusion of Σ(β) in Bβ∞,∞. It was already known
that β-Hölder functions can be estimated at the rate ψ(β, d), but our maxiset results prove that
these functions are the only ones. We mention that simulations are performed to study practical
performances of the kernel estimate associated with the bandwidth parameter proposed previously.
We refer the reader to Section 3 of [R8] for more details.

2.2. Maxisets for the Lepski procedure. In the last years, in the minimax approach, the
question of adaptation (that consists in building optimal procedures that do not require the knowl-
edge of the regularity of the underlying signal) has been extensively considered. Many answers
have been proposed to handle this issue, as, for instance the method proposed by Lepski (see Lep-
ski 1992)). The last result of this section concerns the maxisets associated with the Lepski method
applied to kernel rules. Let B = {β1, . . . , βL} a finite subset such that βi < βj if i < j and the
βi’s are non-integer. For each β ∈ B, we denote f̂β = f̃K,h with K ∈ K(dβLe), hn given by (1.6)
and ψ defined in (1.8). We set

β̂ = max
{
u ∈ B : ‖f̂n,u − f̂n,γ‖∞ ≤ ηn(γ), ∀ γ ≤ u

}
,

with
ηn(γ) = C1ψn(γ, d),

and C1 is a constant assumed to be large enough. Denote this procedure f̂ = (f̂n,β̂)n. The Lepski

procedure is based on the fact that while γ ≤ β ≤ δ and f is of regularity δ, the bias of f̂n,β− f̂n,γ

is bounded from above by a term of order ψn(γ, d). We have the following theorem.

THEOREM 1.4. Let β ∈ B. We have

MS(f̂ , ψ(β, d), p) = Bβ
∞,∞.
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This result proves that the adaptive kernel procedure f̂ achieves the same performance as f̂β

from the maxiset point of view. To prove Theorem 1.4, we first use arguments of Bertin (2005)
to derive the inclusion Bβ∞,∞ ⊂MS(f̂ , ψ(β, d), p). The inclusion MS(f̂ , ψ(β, d), p) ⊂ Bβ∞,∞ is
expected since we guess that the maxiset performances of f̂ cannot be stronger than those of f̂β .
Technical details of this proof are given in Section 4 of [R8].

3. The maxiset point of view for estimating integrated quadratic functionals

3.1. Presentation of the problem. Our aim, in this section, is to investigate the estimation of
θ(f) =

∫
f2, where f is the functional parameter of the unidimensional white noise model:

dYt = f(t)dt+ εdWt, t ∈ [0, 1].(1.9)

We illustrate three original and significant facts related to the maxiset approach:
(1) Maxisets can be established for very general convergence rates.
(2) Two procedures are not always ordered in this approach and maxiset comparisons can

differ when convergence rates vary.
(3) Maxisets allow to derive minimax properties of estimates and can help the statistician to

choose between optimal minimax procedures.
We consider a L2-orthonormal wavelet basis (ψjk)j≥−1,k∈Z (the indice j = −1 corresponds

to the father wavelets and the indices j ≥ 0 to the mother wavelets. Wavelets are assumed to be
compactly supported). We translate the original functional model (1.9) into the sequence space
model:

yjk = βjk + ε zjk, j ∈ {−1} ∪ N, k ∈ Z,
where (zjk) is a sequence of i.i.d. standard Gaussian variables, (yjk) is the sequence of observed
variables, and (βjk) are the wavelet coefficients of f : f =

∑+∞
j=−1

∑
k βjkψjk. Since the wavelet

basis is orthonormal, the parameter to be estimated is θ = θ(f) =
∑∞

j=−1

∑
k β

2
jk.

This problem has been intensively studied in the minimax theory and is now completely solved
(see in particular Ibragimov and Khas’minskii (1980), Bickel and Ritov (1988), Donoho and Nuss-
baum (1990), Fan (1991), Efromovich and Low (1996), Tribouley (2000), Laurent and Massart
(2000) and Cai and Low (2005)). Generally, f is assumed to belong to the Besov space Bα

p,∞
for α > 0, p ≥ 1. One gets different rates according to the regularity α of the function f . If f
is regular enough, it is possible to estimate θ(f) with the parametric rate. Otherwise, the (non-
parametric) rates depend on α and on p when p < 2. Moreover, as in the problem of estimating
the entire function f , two forms of rates have been pointed out when f is dense (p ≥ 2) or f is
sparse (p < 2). Procedures have been proposed to achieve the minimax rate in each case. Under
some conditions, in the case where p ≥ 2, quadratic methods or global thresholding methods are
shown to be minimax or adaptive minimax (see Tribouley (2000)); in the case p < 2, Cai and Low
(2005) have proved that a local thresholding method is minimax. For further details, see Section 4
of [R6].

We consider the maxiset setting:

DEFINITION 1.3. Let R > 0 and let ρε > 0 be the target rate. If θ̂ denotes an estimator of θ,
the maxiset of θ̂ of radius R for the rate ρε is denoted MS(θ̂, ρε)(R), and is defined by

MS(θ̂, ρε)(R) =
{
f ∈ L2([0, 1]) : sup

ε
ρ−1

ε E
[
(θ̂ − θ)2

]
≤ R2

}
.

We use the following convention:

CONVENTION 1.1. We write
MS(θ̂, ρε) :=: A

to mean that
∀R, ∃R′, MS(θ̂, ρε)(R) ⊂ A(R′)
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and

∀R′, ∃R, A(R′) ⊂MS(θ̂, ρε)(R),

where R,R′ > 0 are the radii of balls of MS(θ̂, ρε) and A respectively.

We consider the procedures briefly mentioned previously. For local thresholding, we refer to
Cai and Low (2005), and for global thresholding to Tribouley (2000). Let j0, j1 be levels (chosen
later) such that j0 ≤ j1. We consider estimates

θ̂ =
j1−1∑

j=−1

∑

k

θ̂jk,

where for j = −1, . . . , j0 − 1, and all k, θ̂jk = y2
jk − ε2.

(1) If j0 = j1, θ̂ is the classical quadratic estimator. In this case, we note θ̂ = θ̂Q.
(2) If j0 < j1, we consider

- either the soft local thresholding procedure: for all j ∈ {j0, . . . , j1 − 1} and all k,

θ̂jk = θ̂L
jk =

(
y2

jk − µε2
)
1|yjk|>ε

√
τ − ε2E

(
z2
jk − µ

)
1|zjk|>

√
τ ,

with µ = τ = κj for a constant κ large enough (we note θ̂ = θ̂L);
- or the soft global thresholding procedure: for all j ∈ {j0, . . . , j1 − 1} and all k,

θ̂jk = θ̂G
jk = 2−j

∑

k

(
y2

jk − λε2
)
1P

k(y2
jk−ε2)>ε2

√
2jτ
,

with τ = κj for a constant κ large enough and λ = 1+2−j/2√τ (we note θ̂ = θ̂G).

3.2. Maxiset results for general rates. This section shows that maxiset results can be estab-
lished for very general rates. To define them, we consider a continuous function u : [0, 1] −→ R+

such that

(1.10) ∃ δ > 0,∃M > 0,∀ x ∈ [0, 1],∀ y ∈ [x, 1], u(y)yδ−2 ≤Mu(x)xδ−2.

We consider quadratic, local and global procedures.

THEOREM 1.5. Let γ and γ′ two constants such that 0 < γ < γ′. We assume that (1.10) is
satisfied for δ ≥ max(γ, 1).

- If 2j0 = 2j1 = ε−2γ , then

MS(θ̂Q, u2(ε)) :=: B2,γ,∞(u),

where

B2,γ,∞(u)(R) :=



f : sup

λ>0
u(λ)−1

∑

j≥−2γ log2(λ)

∑

k

β2
jk ≤ R2



 .

- If 2j0 = ε−2γ and 2j1 = ε−2γ′ , then

MS(θ̂L, u2(ε)) :=: WL
γ (u) ∩ B2,γ′,∞(u),

where

WL
γ (u)(R) :=



f : sup

λ>0
u(λ)−1

∑

j≥−2γ log2(λ)

∑

k

β2
jk1|βjk|≤λ

√
j ≤ R2



 .
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- If 2j0 = ε−2γ and 2j1 = ε−2γ′ , then

MS(θ̂G, u2(ε)) :=: WG
γ (u) ∩ B2,γ′,∞(u),

where

WG
γ (u)(R) :=



f : sup

λ>0
u(λ)−1

∑

j≥−2γ log2(λ)

∑

k

β2
jk1Pk β2

jk≤λ22j/2
√

j ≤ R2



 .

Note that the larger γ, the larger the maxiset. When polynomial rates are studied, i.e. u(ε) is
of the form u(ε) = εr for r > 0, then

B2,γ,∞(u)(R) =



f : sup

λ>0
λ−r

∑

j≥−2γ log2(λ)

∑

k

β2
jk ≤ R2



 .

If the multiresolution analysis associated with the wavelet basis is regular enough, B2,γ,∞(u)(R)
corresponds to the classic Besov ball Br/(4γ)

2,∞ (R).
For the balls WL

γ (u)(R), we focus on the number of the wavelet coefficients that are smaller
than a prescribed threshold. For the ballsWG

γ (u)(R), we do the same job, but level by level and for
a function of the wavelet coefficients. These spaces are close to the weak Besov spaces that have
already been introduced in the maxiset context in statistics (see Cohen, DeVore, Kerkyacharian,
and Picard (2001), Kerkyacharian, and Picard (2000, 2002), [R1], or [R5]) and in approximation
theory (see Cohen, DeVore, and Hochmuth (2000) for instance). The main difference lies in the
level j’s we consider: we do not care about wavelet coefficients when j < −2γ log2(λ), and this
difference is crucial for the following maxiset comparisons.

Maxisets corresponding to the polynomial rates u2(ε) = ε2r for r > 0 are studied in details
in Sections 5.1 and 5.2 of [R6]. But Theorem 1.5 is especially interesting when the target rate is

u2(ε) = ε2r| log(ε)|2r′

for r′ ≥ 0 because they appear in the minimax adaptive framework (note that (1.10) is satisfied
with δ ≥ max(γ, 1) if M = 1, δ = 2 − r for 0 < r ≤ 1 and γ ≤ 2 − r). It is of particular
interest to compare thresholding and quadratic procedures when the rate is of this form. These
comparisons are based on fine studies of the spaces B2,γ,∞(u), WL

γ (u) and WG
γ (u) established in

Section 5.4 of [R6]. They lead to the following result showing the large variety of maxiset results.
In particular, we note that the power of the logarithmic term plays a key role. For the sake of
brevity and clarity, thresholding procedures are applied with j1 = ∞ but following results remain
true provided γ′ is large enough (see Section 5.2 and Remark 3 of Section 7 in [R6]).

THEOREM 1.6. When γ < 2 − r, the thresholding procedures outperform the quadratic one
and local and global thresholding are not comparable since

MS(θ̂Q, u2(ε)) (MS(θ̂L, u2(ε)) and MS(θ̂Q, u2(ε)) (MS(θ̂G, u2(ε)),

and

MS(θ̂L, u2(ε)) 6⊂MS(θ̂G, u2(ε)) and MS(θ̂G, u2(ε)) 6⊂MS(θ̂L, u2(ε)).

Then, let us assume that γ = 2− r.

- If r′ > 1/2, the previous conclusions remain valid.
- If r′ < 1/2, the quadratic procedure and the global thresholding one achieve the same

performance and the local thresholding procedure outperforms the other ones since

MS(θ̂Q, u2(ε)) :=: MS(θ̂G, u2(ε)) (MS(θ̂L, u2(ε)).
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The maxiset comparison for the case γ = 2− r and r′ = 1/2 remains an open question.
For polynomial rates u2(ε) = ε2r, and with an optimal choice of parameters (i.e. γ = 2− r),

we establish that the local thresholding procedure is always the best in the sense that it achieves
the given target rate on the largest set of functions. This conclusion remains true if u2(ε) has the
classical form

u2(ε) = (| log ε|1/4ε)16α/(1+4α)

for α > 0. Non-comparability of local and global thresholding when γ < 2− r could appear as an
illustration of a drawback of the maxiset setting where the order is not total. However, we can draw
interesting conclusions from these maxiset results in the lights of counter-examples of Section 7
of [R6]. Indeed, we point out what are the functions that belong to the maxiset of one procedure
and not to the maxiset of the other one, according to their sparsity. And as a conclusion, roughly
speaking, local thresholding is convenient when estimating sparse functions, global thresholding
for dense ones. Further conclusions are drawn from Theorem 1.6 in Section 6.2 of [R6].

3.3. Maxiset for minimax. In this section, we use previous maxiset results to simply and
automatically establish minimax properties of θ̂Q, θ̂L and θ̂G. Indeed, to prove that a procedure
is minimax on F , we can point out the minimax rate ρε associated with F . Then we compute the
maxiset of the procedure for the rate ρε by using theorems of the previous section and prove thatF
is included in the maxiset. Of course, some of the minimax results established below were already
known (see Section 4 of [R6]), but Theorems 1.7 and 1.8 generalize these known minimax results.
We recall that the minimax rate on Bα

p,∞ is ε2 if p ≥ 2, α ≥ 1/4, or p < 2, α > 1/(2p). It is
also the adaptive minimax rate. When p ≥ 2, α < 1/4, the minimax rate is ε16α/(1+4α), but the
adaptive minimax rate is (| log ε|1/4ε)16α/(1+4α). We have the following result.

THEOREM 1.7. The quadratic procedure built with γ = 1 is minimax on Bα
p,∞ if p ≥ 2, α ≥

1/4 or p < 2, α ≥ 1/p− 1/4. The quadratic procedure built with γ = 2/(1 + 4α) is minimax on
Bα

p,∞ if p ≥ 2, α ≤ 1/4. The same conclusions are true for the global soft thresholding procedure
built respectively with γ = 1 and γ = 2/(1 + 4α).

The local soft thresholding procedure built with γ = 1 is minimax on Bα
p,∞ if p ≥ 2, α ≥ 1/4

or p < 2, α > 1/(2p). The local soft thresholding procedure built with γ = 2/(1 + 4α) is
minimax on Bα

p,∞ if p ≥ 2, α ≤ 1/4.

Finally, the last result concerns adaptation results of thresholding procedures applied with
j1 = ∞ and γ = 1.

THEOREM 1.8. The adaptive soft local procedure is not adaptive minimax on Bα
p,∞ for p ≥ 2,

α < 1/4. The adaptive soft global procedure is adaptive minimax on Bα
p,∞ for p ≥ 2, α > 0.

4. Maxisets for model selection

We have now a general idea of maxiset results for non-linear rules. More precisely, at this
stage, maxisets have essentially been identified for thresholding rules and signals decomposed on
a wavelet basis (or on a unconditional well localized basis, see Kerkyacharian and Picard (2000)).
Our goal now is to determine maxisets for model selection rules, which constitutes a first general-
ization of previous results (since thresholding can be viewed as penalized rules for specific model
collections as recalled in Section 4.3). The second direction for extending results obtained so far
is to consider models spanned by a dictionary of functions that is not necessarily an orthonormal
basis. The results for penalized estimators published in [R9] are described in the sequel. They
enhance, in particular, the role of approximation theory in statistics.

4.1. General results. We still consider the classical Gaussian white noise model

dYn,t = s(t)dt+
1√
n
dWt, t ∈ D,
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where D ⊂ R, s is the unknown function, W is the Brownian motion in R. The model selection
methodology consists in constructing an estimator by minimizing an empirical contrast γn over
a given set, called a model. In non-parametric estimation, performances of estimators are usu-
ally measured by using the quadratic norm, which gives rise to the following empirical quadratic
contrast

γn(u) = −2Yn(u) + ‖u‖2 = −2
∫

D
u(t)dYn,t + ‖u‖2

for any function u, where ‖ · ‖ denotes the norm associated to L2(D). We assume that we are
given a dictionary of functions of L2(D), denoted by Φ = (ϕi)i∈I where I is a countable set and
we consider Mn, a collection of models spanned by some functions of Φ. For any m ∈ Mn, we
denote by Im the subset of I such that

m = span{ϕi : i ∈ Im}
andDm ≤ |Im| the dimension ofm. Let ŝm be the function that minimizes the empirical quadratic
criterion γn(u) with respect to u ∈ m. Now, the issue is the selection of the best model m̂ from
the data which gives rise to the model selection estimator ŝm̂. For this purpose, a penalization rule
is considered, which aims at selecting an estimator, close enough to the data, but still lying in a
small space to avoid overfitting issues. Following the classical model selection literature, we only
use penalties proportional to the dimension Dm of m:

(1.11) penn(m) =
λn

n
Dm,

with λn to be specified. The model m̂ is selected using the penalized criterion

(1.12) m̂ = arg min
m∈Mn

{γn(ŝm) + penn(m)} .
The asymptotic behavior of model selection estimators has been studied by many authors. We
refer to Massart (2007) for general references. Then, our goal is to determine:

MS(ŝm̂, ρα)(R) =
{
s ∈ L2(D) : sup

n

{
ρ−2

n,αE
[‖ŝm̂ − s‖2

]} ≤ R2

}
,

where

(1.13) ρn,α =
(
λn

n

) α
1+2α

for any α > 0. To describe maxisets, we introduce the key deterministic quantity

(1.14) Q(s, n) = inf
m∈Mn

{
‖sm − s‖2 +

λn

n
Dm

}
,

where sm stands for the best approximation (in the L2 sense) of the function s by a function of m.
In other words sm is the orthogonal projection of s onto m. Let us state the following result.

THEOREM 1.9. Let 0 < α0 < ∞ be fixed. Let us assume that the sequence of model collec-
tions satisfies for any n

(1.15) Mn ⊂Mn+1,

and that the sequence of positive numbers (λn)n is non-decreasing and satisfies

(1.16) lim
n→+∞n

−1λn = 0,

and there exist n0 ∈ N∗ and two constants 0 < δ ≤ 1
2 and 0 < p < 1 such that for n ≥ n0,

(1.17) λ2n ≤ 2(1− δ)λn,

∑

m∈Mn

e−
(
√

λn−1)2Dm
2 ≤ p(1.18)
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and

(1.19) λn0 ≥ Υ(δ, p, α0),

where Υ(δ, p, α0) is a positive constant only depending on α0, p and δ. Then, the penalized rule
ŝm̂ is such that for any α ∈ (0, α0], for any R > 0, there exists R′ > 0 such that for s ∈ L2(D),

sup
n

{
ρ−2

n,αE
[‖ŝm̂ − s‖2

]} ≤ R2 ⇒ sup
n

{
ρ−2

n,αQ(s, n)
} ≤ (R′)2.

Assumptions are very mild. In particular, we make no assumption on Φ. Note that (1.15) does
not imply a strong structure on the model collection for a given n. In particular, this does not
imply that the models are nested. Assumption (1.16) is necessary to deal with rates converging to
0. The classical cases λn = λ0 or λn = λ0 log(n) satisfy (1.16), (1.17) and (1.19) with λ0 large
enough. It is worth noticing that Assumption (1.18) is very close to Assumption (4.5) of Theorem
4.2 of Massart (2007) and allows to control the number of models with the same dimension. The
assumption α ∈ (0, α0] can be relaxed for particular model collections, which is highlighted in
Proposition 2 of [R9]. Finally, Assumption (1.15) can be removed for some special choice of
model collection Mn at the price of a slight overpenalization as it is shown in Proposition 1 of
[R9].

Combining Theorem 1.9 and the oracle type inequality given by Theorem 4.2 of Massart
(2007), we obtain a first characterization of the maxiset of the model selection procedure ŝm̂ (we
use the Convention 1.1). In particular, since the maxiset only depends on Q(s, n) that is the main
term of Massart’s oracle inequality, the next result emphasizes the connections between oracle and
maxiset approaches.

COROLLARY 1.1. Let α0 <∞ be fixed. Assume that Assumptions (1.15), (1.16), (1.17) (1.19)
are satisfied. If there exist two constants κ > 1 and 0 < p < 1 such that for any n,

∑

m∈Mn

e−
(
√

κ−1λn−1)2Dm
2 ≤ p(1.20)

then for any α ∈ (0, α0],

MS(ŝm̂, ρα) :=:
{
s ∈ L2(D) : sup

n

{
ρ−2

n,αQ(s, n)
}
<∞

}
.

The maxiset of ŝm̂ is characterized by a deterministic approximation property of s with respect
to the models Mn. It can be related to some classical approximation properties of s in terms of
approximation rates if the functions of Φ are orthonormal.

4.2. The case of orthonormal bases. From now on, Φ = {ϕi}i∈I is assumed to be an or-
thonormal basis (for the L2 scalar product). We also assume that the model collections Mn are
constructed through restrictions of a single model collection M. Namely, given a collection of
models M we introduce a sequence Jn of increasing subsets of the indices set I and we define
the intermediate collection M′

n as

(1.21) M′
n = {m′ = span{ϕi : i ∈ Im ∩ Jn} : m ∈M}.

The model collections M′
n do not necessarily satisfy the embedding condition (1.15). Thus, we

define
Mn =

⋃

k≤n

M′
k

so Mn ⊂ Mn+1. The assumptions on Φ and on the model collections allow to give an explicit
characterization of the maxisets. We denote M̃ = ∪nMn = ∪nM′

n. Remark that without any
further assumption M̃ can be a larger model collection thanM. Now, let us denote by V = (Vn)n

the sequence of approximation spaces defined by

Vn = span{ϕi : i ∈ Jn}
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and consider the corresponding approximation space

Lα
V =

{
s ∈ L2(D) : sup

n

{
ρ−1

n,α‖PVns− s‖} <∞
}
,

where PVns is the projection of s onto Vn. Define also another kind of approximation sets:

Aα
fM

=

{
s ∈ L2(D) : sup

M>0

{
Mα inf

{m∈fM: Dm≤M}
‖sm − s‖

}
<∞

}
.

The corresponding balls of radiusR > 0 are defined, as usual, by replacing∞ byR in the previous
definitions. We have the following result.

THEOREM 1.10. Let α0 < ∞ be fixed. Assume that (1.16), (1.17), (1.19) and (1.20) are
satisfied. Then, the penalized rule ŝm̂ satisfies the following result: for any α ∈ (0, α0],

MS(ŝm̂, ρα) :=: Aα
fM
∩ Lα

V .

The result pointed out in Theorem 1.10 links the performance of the estimator to an approx-
imation property for the estimated function. This approximation property is decomposed into a
linear approximation measured by Lα

V and a non-linear approximation measured byAα
fM

. The lin-
ear condition is due to the use of the reduced model collection Mn instead of M, which is often
necessary to ensure either the calculability of the estimator or Condition (1.20). It plays the role
of a minimum regularity property that is easily satisfied.

Observe that if we have one model collection, that is for any k and k′, Mk = Mk′ = M,
Jn = I for any n and thus M̃ = M. Then

Lα
V = span {ϕi : i ∈ I}

and Theorem 1.10 gives
MS(ŝm̂, ρα) :=: Aα

M .

The spacesAα
fM

and Lα
V highly depend on the models and the approximation space. At first glance,

the best choice seems to be Vn = L2(D) and

M = {m : Im ⊂ I}
since the infimum in the definition ofAα

fM
becomes smaller when the collection is enriched. There

is however a price to pay when enlarging the model collection: the penalty has to be larger to
satisfy (1.20), which deteriorates the convergence rate. A second issue comes from the tractability
of the minimization (1.12) itself which will further limit the size of the model collection. Note that
Mn, Lα

V andAα
fM

can be defined in a similar fashion for any arbitrary dictionary Φ. However, one
can only obtain the inclusion MS(ŝm̂, ρα) ⊂ Aα

fM
∩ Lα

V in the general case.

4.3. A brief illustration. In Section 3 of [R9], we exemplify previous maxiset results for
different model selection estimators built with wavelet methods by identifying precisely the spaces
Aα
fM

and Lα
V . Let us give a brief meaningful illustration that shed lights on maxisets for popular

non-linear procedures. For this purpose, we denote (ψjk)j≥−1,k a wavelet basis onD = [0, 1] (see
Paragraph 3.1) and we consider the model collections

Mn = M′
n = {m = span{ψjk : (j, k) ∈ Im} : Im ∈ Pj0(n)}

where Pj0(n) is the set of all subsets of indices (j, k) such that −1 ≤ j ≤ j0(n), where

2j0(n) ≤ nλ−1
n < 2j0(n)+1.

The classical logarithmic penalty

penn(m) =
λ0 log(n)Dm

n
,
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which corresponds to λn = λ0 log(n), is sufficient to ensure Condition (1.20) as soon as λ0 is a
constant large enough. If the multiresolution analysis associated with the basis is regular enough,
Lα

V is a Besov space:

Lα
V = B

α
1+2α

2,∞ .

The identification of the non-linear approximation space gives: Aα
fM = W 2

1+2α
with for any p ∈

]0, 2[,

(1.22) Wp :=



s =

∑

j≥−1

∑

k

βjkψjk ∈ L2 : sup
u>0

up
+∞∑

j=−1

∑

k

1|βjk|>u <∞


 .

This result is not new, since for this model collection the corresponding estimate is a thresholding
rule:

ŝm̂ =
j0(n)∑

j=−1

∑

k

β̂jk1
|β̂jk|>

√
λn
n

ψjk, with β̂jk =
∫ 1

0
ψjk(t)dYn,t.

In this setting, Theorem 1.10 corresponds thus to the maxiset result established by Kerkyachar-
ian and Picard (2000). We only focus on this procedure that can be easily presented and give a
good overview of maxisets for model selection based on orthonormal bases. But I mention that
more intricate model selection procedures based on wavelets are studied in Section 3 of [R9].
Comparisons between the performances of these estimators are provided and discussed.

5. The role of approximation theory in statistics

Previous maxiset results allow to clarify the links between statistics and approximation theory.
We noticed that two types of spaces emerge according to the nature of the procedure. Indeed, as
shown by Sections 2 and 3 and Kerkyacharian and Picard (1993), maxisets for linear procedures
are characterized by the approximation properties of orthogonal projections on linear subspaces
specified by the setting (the statistical model, the loss function,...). In addition, under mild condi-
tions, these maxisets are characterized in terms of Besov balls. For non-linear rules, maxisets are
no longer Besov spaces, but appear as weak versions of Besov spaces (see Embedding (2.2) in the
next section) so are denoted weak Besov spaces in the sequel. They belong to the class of Lorentz
spaces (see Lorentz (1950, 1966) or DeVore and Lorentz (1993)).

DEFINITION 1.4. Let Ω a space equipped with a measure µ. For any 0 < p <∞, the Lorentz
space Lp,∞(µ) is the set of µ-measurable functions f : Ω −→ R such that

‖f‖p
Lp,∞(µ) := sup

λ>0
λpµ(|f | > λ) <∞.

If Ω = N∗ (or can be identified with N∗), we shall note w`p(µ) = Lp,∞(µ) and w`p = w`p(µ) if
µ is the counting measure:

w`p =

{
θ = (θn)n : sup

λ>0
λp

∑
n

1 |θn|>λ <∞
}
.

Thus, we can write

Wp =



s =

∑

j≥−1

∑

k

βjkψjk ∈ L2 : (βjk)jk ∈ w`p



 .

We notice that Wp seems to strongly depend on the wavelet basis. But, under some conditions (in
particular, the multiresolution analysis associated with the wavelet basis has to be regular enough),
Wp can be viewed as an interpolation space between L2 and a suitable Besov space, which proves
that the dependency on the wavelet basis can be relaxed. For more details, we refer the reader
to Cohen, DeVore and Hochmuth (2000). See also DeVore (1989), DeVore and Lorentz (1993),
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DeVore, Konyagin and Temlyakov (1998), Temlyakov (1999) or Cohen (2000) for more results
about Lorentz space in approximation theory.

The sequence spaces w`p are naturally connected to sparsity. Indeed, let us give a sequence
θ = (θn)n and its non-increasing rearrangement:

|θ|(1) ≥ |θ|(2) ≥ · · · ≥ |θ|(n) ≥ · · · .
Then,

(1.23) θ ∈ w`p ⇐⇒ sup
n∈N∗

n
1
p |θ|(n) <∞.

We deduce
`p ⊂ w`p ⊂ `p+δ, δ > 0.

Thus, the w`p-space can be viewed as a weak version of the classical `p-space. Furthermore,
Condition (1.23) gives a polynomial control of the decreasing rate of the sequence (|θ|(n))n and
the smaller p, the sparser the signal. So, the spaces Wp constitute an ideal class to measure
the sparsity of a wavelet decomposed signal. Furthermore, replacing w`p with w`p(µ) with a
suitable choice for µ, regularity can also be measured. Such interpretations allow to give a clear
mathematical formulation of the statement that claims that performances of non-linear statistical
procedures depend on regularity and sparsity properties of the estimated signal. We mention that
pioneering works about the role of Lorentz spaces in statistics are due to Donoho (1993), Johnstone
(1994) and Donoho and Johnstone (1996).

We end this section by giving embeddings between Besov and weak Besov spaces. We have:

Bα
2,∞ (W 2

1+2α
∩ B

α
1+2α

2,∞ .

This result establishes a maxiset comparison between linear and non-linear procedures, and as ex-
pected, non-linear procedures outperform linear ones. See [R1] for more details and for extensions
of this result in a very general setting.

6. Conclusions

Previous sections provide answers to most of the maxiset issues raised in Section 1, although,
of course, we could pursue our investigations to obtain some more results. However, the problem
of optimality in the maxiset setting seems to be unresolved. Nevertheless, I mention some partial
results obtained about this question. Indeed, as in the oracle approach, the notion of optimality
can be defined within a class of procedures. For this purpose, in Autin (2006, 2008), three large
classes of shrinkage procedures were introduced, respectively denoted the class of limited, elitist
and hereditary procedures. For each class, an ideal maxiset is derived and is used as a bench-
mark. In this setting, optimal procedures are proposed by Autin and suggestions are given to build
estimation procedures with large maxisets.

The maxiset theory has shown that weak Besov spaces, that naturally classify signals in func-
tion of their sparsity, play a capital role in statistics. In the minimax perspective, it is then natural
to investigate optimal estimators on the class of weak Besov spaces. This will be the goal of the
next chapter: we first derive minimax rates for this class and then we build optimal estimation
procedures. This problem is handled by using the Bayesian approach and by keeping in mind the
notion of sparsity that has been proved to play a capital role.



CHAPTER 2

Sparsity in the Bayesian setting

1. Introduction

The previous chapter has shown, via the maxiset theory, the key role of sparsity in statistics.
In this chapter, we consider the Bayes setting that constitutes a natural framework to express spar-
sity as well. Indeed, most of the time, any a priori information about the signal can be easily
incorporated by using a convenient prior model and hierarchical modelling (see Robert (2006)).
Furthermore, once elicitation of hyperparameters is performed, natural estimates of the signal are
obtained by using standard Bayes rules such as the mean or the median of the posterior distri-
bution. In particular, for specific prior models (see below), we obtain shrinkage and sometimes
thresholding rules, which is, in the wavelet setting for instance, of particular interest. As illustrated
in Section 4.3, the Bayesian approach gives in general estimates with quite satisfying numerical
performances. Finally, we note that when the prior distribution is selected in the natural conjugate
family of the noise distribution, computations can be easily performed.

So, in our framework, the major issue is to investigate a convenient prior model to capture the
sparsity of the underlying signal, which has already been widely investigated (see the references
given in Section 3). For this purpose, we establish a link between deterministic and Bayes ap-
proaches of sparsity. Since Chapter 1 reveals the key role of Lorentz spaces to model sparsity of
non-random signals, we aim at building typical realizations of such spaces. Section 3 considers a
prior model on the coefficients θk’s of a given signal of the form

θk ∼ (1− wk)δ0(θk) + wkγk(θk),

where wk ∈ [0, 1] and γk is a density. Then, we investigate a necessary and sufficient condition on
these parameters to obtain a signal belonging, almost surely, to a prescribed Lorentz space.

Before this, as explained in Section 6 of Chapter 1, we study weak Besov spaces from the
statistical point of view. This study is strongly connected to the Bayesian modelling of sparsity
since it points out Bayes models naturally associated with weak Besov spaces. More precisely,
the starting point is the following. We wish to get a representation of the ’typical enemies’ for
classical non-linear procedures. Since maxisets for these procedures are characterized by weak
Besov spaces, it is natural to look for these signals in weak Besov balls. Given a weak Besov ball,
denotedWBα

p,p(C) in the sequel, we consider least favorable priors associated withWBα
p,p(C). As

explained in Section 2, such priors have a Bayes risk that is asymptotically equal to the minimax
risk and their support belongs asymptotically to WBα

p,p(C). Realizations of these distributions
provide good representations of the worst functions of WBα

p,p(C) to be estimated. So, in the next
section, for each weak Besov ball, we lead the study of the minimax risk and least favorable priors.

Next sections show the importance of heavy-tailed prior models in our framework. More
precisely, the study of least favorable priors in Section 2 and Theorem 2.2 in Section 3 reveal that
Pareto distributions play a key role in our context.

Finally, we study various Bayesian thresholding procedures. In the process, we revisit the
problem of choosing the threshold. This calibration issue has been widely investigated. See for
instance Donoho and Johnstone (1994, 1995), Nason (1996), Abramovich and Benjamini (1995)
or Abramovich, Benjamini, Donoho and Johnstone (2006). In the Bayesian wavelet setting, we
can mention Abramovich, Sapatinas and Silverman (1998), Vidakovic (1998) and Johnstone and
Silverman (2004, 2005).

19
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In the sequel, we still use notations of Section 3 of Chapter 1 and denote (ψjk)j≥−1,k a wavelet
basis with standard properties of smoothness and moment vanishing allowing the sequential char-
acterization of Besov spaces based on wavelet coefficients.

2. Minimax study of weak Besov spaces and least favorable priors

Our first issue is to point out minimax rates of convergence for weak Besov balls in the frame-
work of the classical white noise model:

(2.1) dYt = f(t)dt+ εdWt, t ∈ [0, 1].

By using the wavelet basis (ψjk)j≥−1,k, the model (2.1) is reduced to a sequence space model. We
obtain the following sequence of independent variables:

yjk = βjk + εzjk, zjk ∼ N (0, 1), j ≥ −1, k ∈ Z
where the βjk’s denote the unknown wavelet coefficients of f . We extend the definition of weak
Besov spaces introduced in Chapter 1 as follows.

DEFINITION 2.1. Let 0 < α, p <∞. We say that

f =
+∞∑

j=−1

∑

k

βjkψjk

belongs to the weak Besov space of parameters α and p, denoted WBα
p,p, if

sup
λ>0

λp
+∞∑

j=−1

2jp(α+ 1
2
− 1

p
)

∑

k

1|βjk|>λ <∞.

With each weak Besov space WBα
p,p, we associate the balls:

WBα
p,p(C) =



f : sup

λ>0
λp

+∞∑

j=−1

2jp(α+ 1
2
− 1

p
)

∑

k

1|βjk|>λ ≤ Cp



 .

If p < 2, we obviously have: WBα
p,p = Wp with α = 1

p − 1
2 . More generally, if we consider

the measure µ such that
µ(j, k) = 2jp(α+ 1

2
− 1

p
)
,

we have f ∈ WBα
p,p ⇐⇒ (βjk)jk ∈ w`p(µ). The Markov inequality shows that for any α and

any p,

(2.2) Bα
p,p(C) ⊂ WBα

p,p(C),

which justifies a posteriori the terminology “weak Besov space” used in Chapter 1. Straightfor-
ward computations show that actually this embedding is strict. We mention that the definition of
weak Besov spaces can be further extended, so that each Besov ball Bα

p,q(C) is associated with a
weak Besov ball by using a similar trick. For the sake of clarity, I do not present this technical
extension here, but I refer the reader to [R4] where subsequent results are established in a more
general setting. In the sequel, we make a slight abuse of notation by using sometimes the coeffi-
cients of a function f instead of f itself. In particular, we sometimes write β ∈ WBα

p,p(C) where
β = (βjk)jk.

We now consider the minimax risk associated withWBα
p,p(C). The loss function is the Bα′

p′,p′-
loss for 1 ≤ p′ < ∞ and α′ ≥ 0 fixed until the end of this section. In particular, the value
α′ = 0 provides a conjecture of the minimax rates for the Lp′-loss. More precisely, we consider
the following setting. We introduce two distinct zones respectively denoted R and C and named
in the sequel the regular and the critical zones. For 1 ≤ p <∞ and 0 < α <∞, we say that

(α, p) ∈ R ⇐⇒
{
p′ > p and p

(
α+

1
2

)
> p′

(
α′ +

1
2

)}
or p′ ≤ p
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(α, p) ∈ C ⇐⇒ p′ > p and p

(
α+

1
2

)
= p′

(
α′ +

1
2

)
.

The logarithmic zone that corresponds to p′ > p and p
(
α+ 1

2

)
< p′

(
α′ + 1

2

)
is very different

from the other ones and is not considered in this section. In the critical case, to evaluate the
minimax risk, we need a minimal assumption on the regularity of f to control the size of the βjk’s
at high levels. That is the reason why we suppose that in addition, in the critical case, f lies in
Bη

p′,∞(C) (with η > α′ but η − α′ eventually very small). So, we set

Θ =
{ WBα

p,p(C) on R,
WBα

p,p(C) ∩ Bη
p′,∞(C) on C,

and the minimax risk we consider is from now on

(2.3) Rε = inf
β̂

sup
β∈Θ

Eβ‖β̂ − β‖p′

Bα′
p′,p′

,

where the infimum is taken over all estimators. In [R4], we establish the following theorem:

THEOREM 2.1. We set r = α−α′
α+ 1

2

, and

Ψ(C, ε) =

{
Cp′(1−r)εp

′r on R,
Cp′(1−r)εp

′r (
log

(
C
ε

)) p′r
2 on C.

We have
C1 ≤ lim inf

ε→0
RεΨ(C, ε)−1 ≤ lim sup

ε→0
RεΨ(C, ε)−1 ≤ C2,

where C1 and C2 are positive constants depending on α, p, α′ and p′. On C, C2 also depends on η.

Theorem 2.1 generalizes the result established by Johnstone (1994) who considered the Gauss-
ian sequence model

xk = θk + εnξk, ξk
iid∼ N (0, 1), k = 1, . . . , n, εn

n→+∞−→ 0,

and evaluated the minimax risk for the weak `p balls (defined by the condition (1.23)) and the `2
loss. We naturally compare the rates of convergence of the minimax risk associated respectively
with WBα

p,p(C) and Bα
p,p(C). Theorem 2.1 and Theorem 1 of Donoho, Johnstone, Kerkyacharian

and Picard (1997) show that the rates for Bα
p,p(C) and WBα

p,p(C) are the same up to constants.
Even if we observed that strong Besov spaces and weak Besov spaces are close, this result may
seem surprising since Bα

p,p(C) is strictly included into WBα
p,p(C).

In the framework of Poisson intensity estimation, minimax rates on weak Besov balls are also
established in the critical case for the L2-loss. Under stronger assumptions, we obtain the same
rates as in Theorem 2.1. See Theorem 6 of [R10] for further details.

Then, the next goal is to have an overview over typical enemies for classical non-linear
procedures. For this purpose, we consider the Bayesian setting and prior distributions πε on
β = (βjk)jk. More precisely, as explained in introduction, we naturally use least favorable priors
(see Johnstone (1994)) of a given weak Besov ballWBα

p,p(C) that provide a good idea of the worst
functions ofWBα

p,p(C) to be estimated. My results about least favorable priors are quite technical
and I just give a short insight here. In the context of this chapter, I recall that, in particular, such a
distribution πε has to satisfy following properties (see [R4] for more details):

- The Bayes risk of πε, denoted B(πε) is such that

(2.4) C1B(πε) ≤ Rε ≤ C2B(πε),

where C1 and C2 are positive constants depending only on α, p, α′, p′ and

B(πε) = inf
β̂
Eπε Eβ‖β̂ − β‖p′

Bα′
p′,p′

.
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FIGURE 1. Realizations with various values of α and p; β−10 = 0; n = 4096
plotting points; (a): p = 0.5, α = 0.5. (b): p = 2, α = 0.5. (c): p = 1, α = 1.5.
(d): p = 0.5, α = 1.5. (e): p = 1, α = 0.5. (f): p = 2, α = 0.

- The distribution πε is asymptotically concentrated on WBα
p,p(C):

(2.5) Pπε(β /∈ WBα
p,p(C)) ε→0−→ 0.

Theorem 1 of [R4] shows that if πε is a least favorable prior, then under πε, the distribution of the
wavelet coefficients βjk takes the following form: the βjk’s are independent, their distribution is
symmetric with respect to 0 and |βjk| can be written:

|βjk| =
{

εαj if j < j∗
εmin(αjXjk, µj) otherwise,

whereXjk is a Pareto variable of parameter p, j∗ ∈ N, αj and µj are non-negative real numbers. In
addition, the convergence (2.5) occurs with an exponential rate. See Section 4 of [R4] for technical
aspects. Properties (2.4) and (2.5) ensure that the typical enemies of weak Besov balls WBα

p,p(C)
are well represented by simulations of least favorable priors πε. To shed lights on the role of the
parameters p and α, some realizations of these enemies are displayed in Figure 1. As expected,
the realizations are smoother when p(α+1/2) is large. When the product p(α+1/2) is fixed, the
realizations have very high peaks when p is small with a regular behavior between them; whereas
when p is great, the peaks are less high and realizations are less homogeneous between the peaks.
To summary these results, we can say that when p decreases, the number of negligible coefficients
increases, but the few non-negligible ones may be very large.

Since minimax risks for Bα
p,p(C) and WBα

p,p(C) are the same, a natural question arises: are
least favorable priors for Besov and weak Besov balls the same as well? The answer is no since
we have the following result:

Pπε(β ∈ Bα
p,p(C)) ε→0−→ 0.

Actually, Johnstone (1994) pointed out least favorable priors for Besov spaces Bα
p,p based on

Gaussian distributions (when p = 2) or on two or three points distributions (when p < 2). Roughly
speaking, we can claim that we have built a first Bayes model, based on Pareto distributions, typ-
ical of weak Besov spaces. By using an alternative approach, we further investigate this problem
in the next section and strengthen these conclusions.
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3. Bayesian modelling of sparsity

The goal of this section is to model sparsity by using a Bayesian approach. Remember that
Definition 1.4 has introduced Lorentz spaces to measure the sparsity of signals. Here, we assume
we are given an orthonormal basis ψ = (ψk)k∈N∗ of L2(Rd) and we consider signals f decom-
posed on ψ:

f =
∑

k∈N∗
θkψk.

In this context, sparsity means that there is a relative small proportion of relative large entries of the
coefficients θk’s. So, in this section, we assume we are given some positive weights σ = (σk)k∈N∗
and we set for p and q two real numbers such that 0 < p < q,

(2.6) w`p,q(σ) =

{
θ = (θk)k∈N∗ : sup

λ>0
λp

∑

k

1 |θk|>λσk
σq

k <∞
}
.

Such sequence spaces naturally appear when maxisets in heteroscedastic white noise models are
investigated (see Kerkyacharian and Picard (2000), [R3], [R5] or [R7]). According to Chapter 1,
they naturally measure sparsity of the sequence θ = (θk)k∈N∗ : if µ denotes the measure satisfying
µ(k) = σq

k, then

θ ∈ w`p,q(σ) ⇐⇒ (σ−1
k θk)k ∈ w`p(µ).

Sparsity is also naturally expressed by a Bayesian model. Most of the authors consider
Bayesian models based upon Gaussian distributions. In the wavelet setting, Chipman, Kolaczyk
and McCulloch (1997) impose a mixture of two Gaussian distributions with different variances for
negligible and non-negligible wavelet coefficients. Huang and Cressie (2000) assumed the under-
lying signal to be composed of a piecewise-smooth deterministic part plus a zero-mean Gaussian
part. Clyde, Parmigiani and Vidakovic (1995), Johnstone and Silverman (1998) and Abramovich,
Sapatinas and Silverman (1998) have considered a mixture of a normal component and a point
mass at zero for the wavelet coefficients. In the minimax approach, Johnstone and Silverman
(2004, 2005) have shown the advantages in using heavy-tailed priors instead of Gaussian priors.
In the wake of these works, we consider the following Bayes model: the distribution of θ is such
that the θk’s are independent and for any k ≥ 1, there exist a fixed parameter wk ∈ (0, 1) depend-
ing on k and a fixed symmetric density γ, such that, with probability 1− wk, θk is equal to 0 and
with probability wk, the density of θk is γk, where for any θ ∈ R,

γk(θ) = skγ(skθ),

with sk > 0. If δ0 denotes the Dirac mass at 0, this model can be rewritten as follows:

(2.7) θk ∼ (1− wk)δ0(θk) + wkγk(θk), k ≥ 1.

So, roughly speaking, the first term models the negligible components and the second one non-
negligible ones.

Now, the question is: can we connect the Bayesian and deterministic ways of capturing spar-
sity? More precisely, can we establish connections between the sequence spaces (2.6) and the
model (2.7)? Actually, we would like to prove a result similar to the result proved by Abramovich,
Sapatinas and Silverman (1998) and used by Abramovich, Amato and Angelini (2004). In the
wavelet framework, Abramovich, Sapatinas and Silverman considered the previous Bayes model
where γ is the density of a Gaussian variable with mean zero and unit variance. Then, they estab-
lished a necessary and sufficient condition on the other hyperparameters of (2.7) to ensure that the
signal built from the wavelet coefficients coming from (2.7) belongs, almost surely, to a prescribed
Besov space (see Theorem 1 of Abramovich, Sapatinas and Silverman (1998)). Our goal is to do
the same job with w`p,q(σ) spaces, but without fixing γ. We have the following result:
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THEOREM 2.2. Let us assume that for any k ≥ 1 sk = σ−1
k and we are given p and q such

that 1 ≤ q <∞ and 0 < p < q. We note for any λ ≥ 0,

F̃ (λ) = 2
∫ +∞

λ
γ(x)dx.

If there exists a constant C such that

sup
λ>0

λp
∑

k

σq
k1 |θk|>σkλ ≤ Cp a.s.,

then

(2.8) sup
λ>0

λpF̃ (λ)
∑

k

wkσ
q
k ≤ Cp.

Conversely, if there exists a constant C such that

sup
λ>0

λpF̃ (λ)
∑

k

wkσ
q
k ≤ Cp,

then
sup
λ>0

λp
∑

k

σq
k1 |θk|>σkλ <∞ a.s.

and θ ∈ w`p,q(σ).

The previous result cannot be formulated as an equivalence because we have to fix the radius of
the w`p,q(σ)-space to obtain (2.8). But we point out the condition supλ>0 λ

p
∫ +∞
λ γ(x)dx < ∞,

which means that the tails of γ cannot be heavier than those of a Pareto(p)-variable. Consequently,
similarly to the result presented in Section 2, this result illustrates the strong connections between
Pareto(p)-distributions and w`p,q(σ)-spaces. This emphasizes the relevance of heavy-tailed dis-
tributions, and in particular of Pareto distributions, to build Bayes models designed to capture
sparsity.

Now, it is of interest to study the performances of the Bayes rules associated with prior models.
That is the goal of the next section.

4. Wavelet Bayesian thresholding procedures

4.1. From minimax procedures to constructive estimates. In this paragraph, we start from
the wavelet procedure which achieves the minimax rates on weak Besov ballsWBα

p,p(C). Section
4.2 of [R4] shows that the upper bound of the risk Rε considered in Theorem 2.1 is obtained by
using the following estimator based on the soft thresholding rule:

(2.9) f̂ε =
∑

j

∑

k

sign(yjk)(|yjk| − λj)+ψjk,

with

(2.10) λj =

{
ε
√
−2 log(αp

j ) if j ≥ j∗,
0 otherwise,

where

(2.11) j∗
ε→0∼ j0(ε) := min{j ≥ −1 : αj < 1}.

Let us note that the threshold λj depends on the parameters p and αj of the least favorable priors
πε. It is not surprising since a minimax estimator for a given function space Θ is well adapted to
the worst functions of Θ that are modeled by least favorable priors. We mention that there exists
j∗ such that for j > j∗, αj = 0 and λj = +∞. So, the sum in (2.9) is actually finite. We inspire
from this minimax rule to build constructive estimators.
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In the sequel, we consider the standard regression model

(2.12) gi = f

(
i

n

)
+ σεi, εi

iid∼ N (0, 1), 1 ≤ i ≤ n,

where n = 2N , N ∈ N∗. Using the discrete wavelet transform, the regression model (2.12) is
reduced to the following one:

(2.13) wjk = djk + σzjk, −1 ≤ j ≤ N − 1, k ∈ Ij ,

where Ij = {k ∈ N : 0 ≤ k < 2j}. Since the discrete wavelet transform is an orthogonal
transform, z = (zjk)jk is a vector of independent N (0, 1) variables. Now, instead of estimating
f , we estimate the djk’s. We suppose in the following that σ is known. Nevertheless, it could
robustly be estimated by the median absolute deviation of the (dN−1,k)k∈IN−1

divided by 0.6745
(see Donoho and Johnstone (1994)). The prior model considered in this paragraph is very close to
πε: we suppose that the djk’s are independent and for any j and any k,

(2.14) djk ∼ Fj , where Fj =
1
2
(F+

j + F−j ),

F−j is the reflection of F+
j about 0 and if Xj is a Pareto variable of parameter p, F+

j is the
distribution of min(αjXj − αj , µj). Finally, αj and µj are positive real numbers. Because of its
improper nature, we place no prior on the scaling coefficient d−10. The distribution Fj is a slight
modification of the distribution of ε−1βjk of Section 2. In particular, to avoid any discontinuity in
the definition of the support of djk, we translate the variable αjXj by αj . This slight modification
enables us to capture very small values of djk. We suppose that the parameter αj has the form

αj = C2−jδ

where C and δ are positive constants. The parameter µj , that tends to +∞ when j goes to +∞,
does not play any role in the sequel. So, its value is not specified in this manuscript. To estimate
djk, we propose

d∗jk = sign(wjk)(|wjk| − λj)+,
where λj has the following form

λj =

{
σ
√
−2 log(αp

j ) if j ≥ j1,

0 otherwise,

where j1 is the first integer j such that αj < 1. Then, the threshold λj can be rewritten as follows:

(2.15) λj = σ

√
max

(
0,−2 log(αp

j )
)
.

The function to be estimated is supposed to belong to the class of the worst functions to be esti-
mated of an unknown weak Besov ball. So, under this assumption, we expect this thresholding
procedure to achieve good performances since it is strongly inspired by the previous minimax
procedure and more precisely by equations (2.10) and (2.11).

To apply our procedure, it is necessary to specify the values of C and δ that define αj and the
value of p. Of course, the weak Besov ball in which f lies is unknown, so we have to estimate
these hyperparameters. The parameter p is not estimated and will be taken equal to 1 in Section
4.3 where numerical performances of this procedure are analyzed. For the estimation of (C, δ),
we set

N̂j(λu) =
1
2j

∑

k∈Ij

1 |wjk|>λu ,

where λu is the universal threshold defined by λu = σ
√

2 log(n), and we set

(2.16) α̂j = λuN̂j(λu)
1
p (1− N̂j(λu)

1
p )−1.
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Level j Blocks Bumps Heavisine Doppler
j=0 0 0 0 0
j=1 0 0 0 0
j=2 0 0 0 0
j=3 0 0 0 0
j=4 0 0 6.93 0
j=5 0 0 8.07 0
j=6 0.46 0 8.62 1.22
j=7 3.53 2.08 8.68 3.61
j=8 5.00 3.45 8.69 4.92
j=9 6.13 4.41 8.69 5.95

TABLE 1. Values of λ̂j (p = 1) associated with ’Blocks’, ’Bumps’, ’Heavisine’
and ’Doppler’; n=1024; rsnr=3 (σ = 7/3); λu = 8.69.

We estimate C and δ by using the linear regression:

(Ĉ, δ̂) = argminC,δ

∑

j∈S
(log(α̂j)− log(C) + jδ log(2))2,

where
S = {j ∈ {1, . . . , N − 1} : α̂j ∈ (0,+∞)}

when card(S) ≥ 2. In this case, we set

(2.17) λ̂j = σ

√
max

(
0,−2p log(Ĉ2−jδ̂)

)
.

If card(S) ≤ 1, we set

(2.18) λ̂j =





0 if α̂j = +∞,

σ
√

max (0,−2p log(α̂j)) for j ∈ S,
λu if α̂j = 0.

Table 1 gives the average over 100 replications of the values of the level-dependent threshold λ̂j as-
sociated with the classical four test functions Blocks, Bumps, Heavisine and Doppler (see Donoho
and Johnstone (1994)). Before going further, let us give a brief justification of this procedure
(more details are given in [R2]): we notice that for all λ < µj ,

P(|djk| > λ) =
(

αj

αj + λ

)p

.

But, using extended Glivenko-Cantelli’s Theorem,

sup
λ>0

∣∣∣∣
1
2j

∑

k∈Ij

1 |djk|>λ − P(|djk| > λ)
∣∣∣∣

j→∞−→ 0 a.e.

Therefore,
(

αj

αj+λ

)p
is well approximated by

Nj(λ) =
1
2j

∑

k∈Ij

1 |djk|>λ.

We choose λ = λu, and we estimate Nj(λu) by N̂j(λu). So,
(

αj

αj + λu

)p

≈ N̂j(λu)

and
αj = C2−jδ ≈ α̂j = λuN̂j(λu)

1
p (1− N̂j(λu)

1
p )−1.
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This provides a theoretical justification for (2.16). A numerical justification is given by Table 1 of
[R2]. The pair of equations (2.17) and (2.18) are naturally justified by (2.15).
Now, we set

d̂jk = sign(wjk)(|wjk| − λ̂j)+,

for all j ≥ 0, k ∈ Ij , and d̂−10 = w−10. Finally, the estimate of the signal f is obtained by
applying the inverse discrete wavelet transform to the vector d̂ = (d̂jk)jk. The performances of
this Bayesian thresholding procedure, denoted ParetoThresh, are analyzed in Section 4.3.

4.2. Heavy-tailed and large variance Gaussian priors. This paragraph studies the theo-
retical performances of Bayesian procedures based on the commonly used prior model of the
following form:

(2.19) βjk ∼ pj,εγj,ε + (1− pj,ε)δ(0).

We consider the statistical white noise model of Section 2 and the wavelet setting described there.
Here, the βjk’s are independent, δ0 still denotes the Dirac mass at 0, and pj,ε ∈ [0, 1] can be
interpreted as the proportion of non-negligible coefficients. The non-zero part of the prior, γj,ε, is
assumed to be the dilation of a fixed symmetric, positive, unimodal and continuous density γ:

γj,ε(βjk) =
1
τj,ε

γ

(
βjk

τj,ε

)
,

where the dilation parameter τj,ε is positive. The most popular choice for γ is the normal density.
When the noise is Gaussian, it is also the density giving rise to the easiest procedures from a
computational point of view (the prior and the noise are conjugate). From the minimax point of
view, recent works have studied these Bayes procedures and it has been proved that Bayes rules
can achieve optimal rates of convergence. Abramovich, Amato and Angelini (2004) investigated
theoretical performance of the procedures introduced by Abramovich, Sapatinas and Silverman
(1998) based on the Gaussian prior model (2.19) with

(2.20) τ2
j,ε = c12−aj , pj,ε = min(1, c22−bj),

where c1, c2, a and b are positive constants. For the mean squared error, they proved that the non
adaptive posterior mean and posterior median achieve optimal rates up to a logarithmic factor on
the Besov spaces Bα

p,q when p ≥ 2. When p < 2, these estimators only behave as linear estimates.
Recently, Johnstone and Silverman (2004, 2005) investigated minimax properties of Bayes rules,
with priors based on heavy-tailed distributions in an empirical Bayes setting. In this case, the
posterior mean and median turn out to be optimal for the whole scale of Besov spaces.

The main goal of this paragraph is to push a little further comparisons of Bayesian procedures
by adopting the maxiset point of view. In particular, since Gaussian priors have very interesting
properties from the computational point of view, one of our motivations is to answer the following
question: Are Gaussian priors always outperformed by heavy-tailed priors? And quite happily,
one of our results is to show that if some Bayesian procedures using Gaussian priors behave quite
unwell (in terms of maxisets as it was the case in terms of minimax rates) compared to those
with heavy tails, it is nevertheless possible to attain a very good maxiset behavior. We prove that
this can only be achieved under the condition that the hyperparameter τj,ε is “large”. Under this
assumption, the density γj,ε is then more spread around 0, mimicking in some ways the behavior
of a distribution with heavy-tails. Moreover, we prove that these procedures can be built in an
adaptive way: their construction does not depend on the specified regularity or sparsity of the
function at hand.

In the sequel, we consider either the posterior median or the posterior mean of each βjk and
we denote:

β̆jk = Med(βjk|yjk) and β̃jk = E(βjk|yjk).
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If f̂ε is an estimator and ρε a rate of convergence, we set for any R > 0:

MS(f̂ε, ρε)(R) =
{
f : sup

ε

{
ρ−2

ε E
[
‖f̂ε − f‖2

L2

]}
≤ R2

}

and we use Convention 1.1. Finally, we note

tε = ε
√
| log ε|.

We first consider the procedure proposed by Abramovich, Sapatinas and Silverman (1998) and
studied in the minimax setting by Abramovich, Amato and Angelini (2004). Consequently, we
take the hyperparameters defined in (2.20) with 0 ≤ b < 1 and γ the density of N (0, 1). We set

f̆ε(τ, p) =
∑

j,k

β̆jkψjk and f̃ε(τ, p) =
∑

j,k

β̃jkψjk.

As shown by Abramovich, Amato and Angelini (2004), the case a < 2α + 1 is of no interest and
optimal minimax properties are achieved with a = 2α+ 1. We obtain the following result.

THEOREM 2.3. Let α > 0. We assume that f̂ε is either f̆ε(τ, p) or f̃ε(τ, p).

(1) For a > 2α+ 1, Bα
p,∞ 6⊂MS(f̂ε, t

4α/(1+2α)
ε ) for any 1 ≤ p ≤ ∞.

(2) For a = 2α+ 1, Bα
p,∞ 6⊂MS(f̂ε, t

4α/(1+2α)
ε ) if p < 2.

(3) For a = 2α+ 1, MS(f̂ε, ε
4α/(1+2α)) ( Bα

2,∞.

Theorem 2.3 shows that the posterior median and mean associated with Gaussian priors and
hyperparameters (2.20) do not achieve a suitable behavior. The last point even shows that they are
outperformed by linear estimates (see [R1]).

We now consider heavy-tailed priors. We assume that there exist two positive constants M
and M1 such that

(2.21) sup
x≥M1

∣∣(log γ)′ (x)
∣∣ = M <∞.

Assumption (2.21) means that the tails of γ have to be exponential or heavier. Indeed, under (2.21),
we have for any x ≥M1:

γ(x) ≥ γ(M1) exp(−M(x−M1)).
To complete the prior model, we assume that:

(2.22) τj,ε = ε and pj,ε = pε
ε→0−→ 0,

where ε −→ pε a positive continuous function. We set

(2.23) f̆ε(τ, p, jε) =
∑

j<jε

∑

k

β̆jkψjk and f̃ε(τ, p, jε) =
∑

j<jε

∑

k

β̃jkψjk,

where jε is such that 2jε = bt−2
ε c. Proposition 1 of [R3] states that these estimates are shrinkage

rules and f̆ε(τ, p, jε) is even a thresholding rule. So, we expect these procedures to mimic classical
thresholding rules from the maxiset point of view, at least when the posterior median is considered.
Indeed Theorems 2, 3, 4 and 5 in [R5] lead to the following result.

THEOREM 2.4. Let α > 0. Under (2.22), we suppose that there exist two positive constants
ρ1 and ρ2 such that for ε > 0 small enough,

ερ1 ≤ pε ≤ ερ2 .

Then, we have:

MS(f̂ε, t
4α/(1+2α)
ε ) :=: B

α
1+2α

2,∞ ∩W 2
2α+1

,

where f̂ε is either f̆ε(τ, p, jε) or f̃ε(τ, p, jε), as soon as ρ2 ≥ 16 for the posterior median and
ρ2 ≥ 64 for the posterior mean.
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So, the performances achieved by adaptive Bayesian procedures based on heavy-tailed prior
densities are similar to those of classical non-linear procedures in the maxiset framework. In
particular, they outperform the previous Gaussian Bayesian procedures from the maxiset point of
view.

Now, we wonder whether heavy-tailed priors are unavoidable. Is it possible to build Gaussian
priors leading to procedures with maxiset properties comparable to the properties of heavy-tailed
methods discussed above? This is a very important issue since computations using Gaussian priors
are mostly direct and obviously much easier than heavy-tailed priors. The answers are provided
by the following theorem.

THEOREM 2.5. Let α > 0. We consider the prior model (2.19), where γ is the Gaussian
density. As previously, we assume that τj,ε = τε and pj,ε = pε are independent of j. We consider
estimates defined in (2.23) with following hyperparameters τε and pε. If

1 + ε−2τ2
ε = t−1

ε

and there exist q1 and q2 such that for ε small enough

εq1 ≤ pε ≤ εq2 ,

we have:
MS(f̂ε, t

4α/(1+2α)
ε ) :=: B

α
1+2α

2,∞ ∩W 2
2α+1

,

where f̂ε is either f̃ε(τ, p, jε) or f̆ε(τ, p, jε) as soon as q2 > 63/2 for the posterior median and
q2 ≥ 65/2 for the posterior mean.

Unlike the previous choice (τ2
j,ε = ε2 or τ2

j,ε = c12−jα), here we impose a “larger” variance:

τ2
j,ε

ε→0∼ ε√
| log ε| .

It is the key point of the proof of Theorem 2.5. In a sense, we re-create the heavy tails by increasing
the variance.

4.3. Numerical comparison study. We now investigate the behavior of Bayesian procedures
from a practical point of view and show a comparative simulations study with several standard and
Bayesian procedures of the literature. For this purpose, we consider the regression model (2.12)
(with n = 1024 observations) considered in Section 4.1 and its transformation (2.13) by using the
discrete wavelet transform:

wjk = djk + σzjk, −1 ≤ j ≤ 9, k ∈ Ij .

We use the four test functions: ’Blocks’, ’Bumps’, ’Heavisine’ and ’Doppler’. These functions
have been chosen by Donoho and Johnstone (1994) to represent a large variety of inhomogeneous
signals. In the subsequent applications of ParetoThresh, we take p = 1 for every function, which
provides quite good results. However, we shall discuss below the effect of varying p. To implement
the Bayes rules based on Gaussian priors studied in Theorem 2.5 we reconstruct the djk’s, with
the posterior median and the posterior mean of a prior having the following form:

djk ∼ ωn

1 + ωn
γj,n +

1
1 + ωn

δ(0),

where ωn = 10σ√
n

, γ is the Gaussian density and

γj,n(djk) =
1
τn
γ

(
djk

τn

)
,

with τn is such that nτ2
n

σ2+nτ2
n

= 0, 999. We respectively denote GaussMedian and GaussMean the
posterior median and mean.
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RSNR=3 Blocks Bumps Heavisine Doppler
VisuShrink 3.88 5.63 0.32 1.59
SureShrink 1.93 2.15 0.31 0.89

ParetoThresh (p = 1) 1.56 1.78 0.30 0.78
GaussMedian 1.50 1.73 0.33 0.70
GaussMean 1.45 1.62 0.32 0.64

CauchyMean 1.41 1.52 0.27 0.60
BayesFactor 1.80 1.83 0.36 0.82
BayesThresh 1.47 1.62 0.31 0.67

RSNR=5 Blocks Bumps Heavisine Doppler
VisuShrink 2.10 2.66 0.18 0.78
SureShrink 0.86 0.82 0.15 0.38

ParetoThresh (p = 1) 0.68 0.72 0.13 0.36
GaussMedian 0.72 0.76 0.20 0.30
GaussMean 0.62 0.68 0.19 0.29

CauchyMean 0.55 0.63 0.13 0.27
BayesFactor 0.67 0.70 0.24 0.34
BayesThresh 0.61 0.65 0.14 0.28

RSNR=8 Blocks Bumps Heavisine Doppler
VisuShrink 1.07 1.26 0.12 0.40
SureShrink 0.34 0.37 0.09 0.19

ParetoThresh (p = 1) 0.32 0.35 0.07 0.17
GaussMedian 0.32 0.36 0.08 0.15
GaussMean 0.30 0.31 0.08 0.13

CauchyMean 0.25 0.28 0.07 0.14
BayesFactor 0.29 0.31 0.08 0.14
BayesThresh 0.27 0.30 0.07 0.13

TABLE 2. AMSEs for VisuShrink, SureShrink, ParetoThresh (p = 1), GaussMe-
dian, GaussMean, CauchyMean, BayesFactor and BayesThresh with various test
functions and various values of the RSNR.

We compare our procedure to some classical procedures described in Section 4.2 of [R2] or
Section 6 of [R5]: VisuShrink (Donoho and Johnstone (1994)), SureShrink (Donoho and John-
stone (1995)) for which we do not threshold the five coarsest levels, BayesFactor (Vidakovic
(1998)), BayesThresh (proposed by Abramovich, Sapatinas and Silverman (1998) studied in The-
orem 2.3) and CauchyMean (proposed by Johnstone and Silverman (2004, 2005) based on the
heavy-tailed quasi-Cauchy prior that satisfies Assumption (2.21)). The Symmlet 8 wavelet filter
is used for all the methods. The performance of each procedure is measured by using the mean-
squared error associated to an estimator f̂ :

MSE(f̂) =
1
n

n∑

i=1

(
f̂

(
i

n

)
− f

(
i

n

))2

.

Table 2 shows the average mean-squared error (denoted AMSE) using 100 replications with dif-
ferent values for the root signal to noise ratio (RSNR). See [R2] and [R5] for graphs of reconstruc-
tions. Table 2 shows that ’purely Bayesian’ procedures (GaussMedian, GaussMean, CauchyMean,
BayesFactor, BayesThresh) are preferable to ’purely deterministic’ ones (VisuShrink and Sure-
Shrink). Furthermore, CauchyMean provides the best behaviors here (its AMSEs are globally the
smallest). We add that Table 2 and [R5] show that Bayesian rules using the posterior mean have
better performances than those using the posterior median.
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ParetoThresh has smaller mean-squared errors than SureShrink and VisuShrink but has gen-
erally larger mean-squared errors than the ’purely Bayesian procedures’. If the Bayesian methods
achieve quite good performances under the AMSE approach, high-frequency artefacts may ap-
pear, whereas VisuShrink and SureShrink provide the best methods for removing the noise. But
for ParetoThresh, these artefacts may partially disappear if we take small values of p. This effect
could be expected taking into account the conclusions we have drawn from the realizations of
section 4.1. We remark that except for ’Doppler’ for which the AMSE (RSNR=3) attains its mini-
mum for p = 0.7, this improvement has a cost: the AMSE increases. When p is larger than 1, the
AMSEs are worse and there are more artefacts. Let us also mention that a possible alternative is
to use the hard thresholding rule with (λ̂j)j or a Bayes rule (the posterior median or the posterior
mean). But we do not obtain better results as far as the AMSE is concerned. Furthermore, the
choice of the hard thresholding rule provides less regular reconstructions.

To conclude, if, as said previously, ’purely Bayesian’ procedures are preferable to ’purely
deterministic’ ones from the AMSE point of view, they may have a drawback not shared by Vi-
suShrink and SureShrink: their high computational time. ParetoThresh built by using a prior,
without being ’purely Bayesian’, does not have to cope with this handicap: the parameters of
the prior model that define the level-dependent thresholds are easily computed. So, ParetoThresh
appears as a good compromise between ’purely Bayesian’ and ’purely deterministic’ procedures.

5. Conclusions

The Bayesian approach of sparsity enhances heavy-tailed priors and Pareto distributions. And,
roughly speaking, various points of view have shown that the Pareto parameter provides the pa-
rameter of the Lorentz space containing the realizations of the prior model. These studies lie in the
wake of other works that have popularized the use of heavy-tailed priors in many frameworks. As
an illustration of this statement, I just mention the paper by Dalalyan and Tsybakov (2009) who
established sparse oracle inequalities for aggregation in the PAC-Bayesian setting. Of course, the
numerical difficulties raised by such Bayes models (that can nevertheless be overcome by Monte-
Carlo methods) explain why some reluctance for the use of heavy-tailed priors remains. In this
case, we have observed that Gaussian distributions with large variance constitute an alternative.

The possible extensions of the results presented earlier have naturally evolved with time, and
are not the same as in the early 2000s when most of previous works have been written. In par-
ticular, recent contributions have answered many questions related to heavy-tailed priors. For
instance, minimax optimality of the associated Bayes rules has been established by Johnstone and
Silverman (2004, 2005), Pensky (2006) and Pham Ngoc (2009) in different settings. More gen-
erally, recent works have provided major advances for the frequentist study of Bayes rules either
from the methodological and practical points of view (in the spirit of [R2]) or from the theoretical
point of view (in the spirit of [R5]). I just mention the most significant papers among the recent
published ones: Abramovich, Grinshtein and Pensky (2007), Abramovich, Angelini and de Candi-
tiis (2007), Pensky and Sapatinas (2007), Bochkina and Sapatinas (2005, 2006, 2009), Silverman
(2007) and Cutillo, Jung, Ruggeri and Vidakovic (2008). Of course, some problems remain open
as, for instance, the sharp study of Bayes rules associated with block prior models built to model
possible dependency between coefficients.

As far as I am concerned, one of the most exciting topic for further research consists in the
study of asymptotic properties of posterior distributions in the non-parametric or semi-parametric
settings, where there is still little work. Most of existing works deal with consistency or, more
recently, with concentration rates. We refer the reader to Ghosal, Ghosh and van der Vaart (2000),
Shen and Wasserman (2001), Ghosal and van der Vaart (2007) and Gayraud and Rousseau (2005).
There is also a growing literature on more specific cases, i.e. when specific families of non-
parametric prior distribution are considered, see for instance van der Vaart and van Zanten (2008),
Scricciolo (2006) and Castillo (2008) who obtained non adaptive minimax posterior concentration
rates based on Dirichlet mixtures and Gaussian process priors. Recently some adaptive minimax
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concentration rates have been obtained (see for instance Belitser and Ghosal (2003), Huang (2004),
Kruijer, Rousseau and van der Vaart (2009), van der Vaart and van Zanten (2009) or Rousseau
(2009)). Beyond their own interest, deriving non-parametric posterior rates often constitutes the
first step to obtain Bernstein Von Mises theorems. The latter consists in the asymptotic normality
of the posterior distribution centered at some kind of maximum likelihood estimator with variance
equal to the asymptotic frequentist variance of the centering point. This kind of results has many
interesting applications. To my opinion its major application is in ensuring that Bayesian credible
sets have good frequentist coverage. I mention that in a joint work [R14] with Judith Rousseau,
we are investigating Bernstein-Von Mises properties in semi-parametric models where the param-
eter of interest is a linear functional of the density of the observations such as the cumulative
distribution function when the prior puts positive mass on absolutely continuous densities with
respect to the Lebesgue measure. For this purpose, we establish concentration rates for posterior
distributions on Sobolev and Besov balls in the Fourier and wavelet settings (note that we only
consider Besov balls Bα

p,q(C) with p ≥ 2). This work is in progress. A natural extension of this
work is the study of Bernstein-Von Mises properties for non-linear functionals such as integrated
quadratic functionals studied in Section 3 of Chapter 1. This problem is of particular interest since
the minimax rate is not always parametric and varies according to the regularity of the underlying
function f . Another interesting problem is the computation of concentration rates for posterior
distributions on Besov balls Bα

p,q(C) with p < 2.
As seen previously, from the frequentist point of view, the power of the Bayes approach is

to provide a complete methodology to construct estimation rules: we first choose a Bayes model
depending on hyperparameters, then we use simple heuristics to estimate these hyperparameters.
Finally, we rely on natural posterior Bayes rules, such as the posterior median or the posterior
mean for instance, to obtain the final estimate. In particular, in the wavelet setting, this approach
provides an automatic way of calibrating shrinkage or thresholding procedures. This methodology
has successfully been applied in many works but in particular by Abramovich, Sapatinas and Sil-
verman (1998), Vidakovic (1998) and Johnstone and Silverman (2004, 2005), illustrating the good
performances of Bayes rules in practice. However, elicitation of the hyperparameters (for instance
by using the empirical Bayes approach) makes the theoretical study of these estimators difficult
which remains in general an open question (except for the procedure proposed by Johnstone and
Silverman (2004, 2005)). So, this constitutes a wide quasi-unexplored research field. In the se-
quel, we shall deal with this calibration problem for thresholding rules from both practical and
theoretical points of view. It will be studied in the standard frequentist approach and will rely on
sharp concentration inequalities. Before this, we revisit very classical non-parametric estimation
problems handled in the next chapter outside the framework provided by standard assumptions.



CHAPTER 3

Assumption-free non-parametric estimation

1. Introduction

This chapter deals with the classical problem of density or Poisson intensity estimation for
unidimensional data. Such statistical problems are questions that lie at the core of many data
preprocessing. From this point of view, no assumption should be made on the underlying function
to estimate. So, our aim is to provide an adaptive method which requires as few assumptions as
possible on the underlying signal. In particular, we do not want to have any assumption on the
density support or on the radius of the ball of L∞ the signal belongs to. Moreover, this method
should be quite easy to implement and should have good theoretical performances as well.

As noted in [R13], in our setting, methodologies based on kernel methods are the most wide-
spread in practice and most of them are intensively based on cross-validation. These methods
do not require in general the preliminary knowledge of the support but do not provide theoretical
guarantees from the minimax point of view. Concerning wavelet thresholding, the DWT algorithm
due to Mallat (1989) combined with a keep or kill rule on each coefficient makes these methods
as one of the easiest adaptive methods to implement, once the threshold is known. After rescaling
and binning the data as in Antoniadis, Grégoire and Nason (1999) for instance, one can reason-
ably think that the number of observations in a “not too small” interval is Gaussian. So basically
the thresholding rules adapted to the Gaussian regression setting should work here. But, Herrick,
Nason and Silverman (2001) have observed that in practice the basic Gaussian approximation for
general wavelet bases was quite poor. Furthermore, we shall see in Section 2.2 that this method re-
lies heavily on the precise knowledge of the support so that the size of the bins has to be adequately
chosen. Finally, model selection estimates fundamentally depend on the a priori knowledge of the
support to choose the model collections (see Section 1 of [R13] for more details).

The goal of Section 2 is to suggest a wavelet thresholding procedure based on data-driven
thresholds. If the signal to be estimated is denoted f , we just assume that f ∈ L1(R) and f ∈
L2(R). The first assumption is natural since f is either a density or an intensity. We use the second
one to allow L2-decompositions of f on an orthonormal basis. We emphasize that in particular,
in the sequel, f can be unbounded and nothing is said about its support which can be unknown or
even infinite. Our results are based on the very general Theorem 3.1. Its purpose is to give general
conditions under which our estimate satisfies oracle inequalities. Since it does not depend on the
statistical model at hand, it can be viewed as en extension of Theorem 3.1 of Kerkyacharian Picard
(2000). It is then applied in the density and Poisson models.

Then, in Section 3, we extend this setting by using a dictionary of functions (instead of a
single basis) in the recently widely investigated framework of the curse of dimension (that can be
denoted by using subsequent notations ’M À n’). We aim at establishing sharp oracle inequalities
under very mild assumptions on the dictionary. Our starting point is that most of the papers in the
literature assume that the functions of the dictionary are bounded by a constant independent of M
and n, which constitutes a strong limitation, in particular for dictionaries based on histograms or
wavelets (see for instance Bunea, Tsybakov and Wegkamp (2006, 2007a, 2007b, 2007c), Bunea
(2008) or van de Geer (2008)). We propose a data-driven Dantzig procedure for which such
assumptions on the functions of the dictionary will not be considered. Furthermore, I mention that,
in contrast with what Bunea, Tsybakov and Wegkamp (2009) did, we obtain oracle inequalities
with leading constant 1, that are established under much weaker assumptions on the dictionary.

33
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2. Theoretical and numerical studies of a data-driven wavelet thresholding procedure

As said in Introduction, we first state a general result that can be viewed as a generalization
of Theorem 3.1 of Kerkyacharian and Picard (2000). The following theorem is self-contained and
can be used in various settings, as done in the sequel. This is the main reason for the following
very abstract formulation.

THEOREM 3.1. To estimate a countable family β = (βλ)λ∈Λ, such that ‖β‖`2 < ∞, we
assume that a family of coefficient estimators (β̂λ)λ∈Γ, where Γ is a known deterministic subset
of Λ, and a family of possibly random thresholds (ηλ)λ∈Γ are available and we consider the
thresholding rule β̃ = (β̂λ1|β̂λ|≥ηλ

1λ∈Γ)λ∈Λ. Let ε > 0 be fixed. Assume that there exist a
deterministic family (Fλ)λ∈Γ and three constants κ ∈ [0, 1[, ω ∈ [0, 1] and µ > 0 (that may
depend on ε but not on λ) with the following properties.

(A1) For all λ in Γ,
P(|β̂λ − βλ| > κηλ) ≤ ω.

(A2) There exist 1 < p, q <∞ with 1
p + 1

q = 1 and a constant R > 0 such that for all λ in Γ,
(
E(|β̂λ − βλ|2p)

) 1
p ≤ Rmax(Fλ, F

1
p

λ ε
1
q ).

(A3) There exists a constant θ such that for all λ in Γ such that Fλ < θε

P(|β̂λ − βλ| > κηλ, |β̂λ| > ηλ) ≤ Fλµ.

Then the estimator β̃ satisfies

1− κ2

1 + κ2
E‖β̃−β‖2

`2 ≤ E inf
m⊂Γ





1 + κ2

1− κ2

∑

λ6∈m

β2
λ +

1− κ2

κ2

∑

λ∈m

(β̂λ − βλ)2 +
∑

λ∈m

η2
λ



+LD

∑

λ∈Γ

Fλ

with

LD =
R

κ2

((
1 + θ−1/q

)
ω1/q + (1 + θ1/q)ε1/qµ1/q

)
.

Observe that this result makes sense only when
∑

λ∈Γ Fλ <∞ and in this case, if LD (which
stands for large deviation inequalities) is small enough, the main term of the right hand side is
given by the first term. Comments of Assumptions (A1), (A2) and (A3) can be found in Section
4.1 of [R10]. In the sequel, this result is applied in the Poisson intensity estimation and density
estimation settings.

The Poisson intensity model (see [R10]): We just give notations for this statistical model. More
details can be found in [R10]. In the sequel, we consider a Poisson process on the real line, de-
noted N , whose mean measure µ is finite and absolutely continuous with respect to the Lebesgue
measure. Given n a positive integer, we introduce fp ∈ L1(R) the intensity of N as

fp(x) =
dµx

ndx
.

Since fp belongs to L1(R), the total number of points of the process N , denoted NR, satisfies
E(NR) = n||fp||1 and NR <∞ almost surely. In the sequel, fp will be held fixed and n will go to
+∞. The introduction of n could seem artificial, but it allows to present our asymptotic theoretical
results in a meaningful way. We denote by dN the discrete random measure

∑
T∈N δT . Hence we

have for any compactly supported function g,
∫
g(x)dNx =

∑
T∈N g(T ). In this framework, our

goal is to estimate fp by using the realizations of N .

The density model (see [R13]): In this model, the goal is to estimate a density fd from the
observations of an iid n-sample of density fd, denoted X1, . . . , Xn.
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In both cases, to apply Theorem 3.1, we specify the coefficients β = (βλ)λ∈Λ, the estimates
(β̂λ)λ∈Γ and the random thresholds (ηλ)λ∈Γ. In the sequel, we consider the signal f that can be
either fp or fd and is assumed to belong to L2(R). We consider a special biorthogonal wavelet
basis and the decomposition of f on this basis takes the following form:

(3.1) f =
∑

k∈Z
β−1kφ̃k +

∑

j≥0

∑

k∈Z
βjkψ̃jk,

where for any j ≥ 0 and any k ∈ Z,

β−1k =
∫

R
f(x)φk(x)dx, βjk =

∫

R
f(x)ψjk(x)dx.

The most basic example of biorthogonal wavelet basis is the Haar basis where the father wavelets
are given by

φk = φ̃k = 1[k;k+1]

and the mother wavelets are given by

ψjk = ψ̃jk = 2j/2
(
1[k2−j ;(k+1/2)2−j) − 1[(k+1/2)2−j ;(k+1)2−j ]

)
.

The other examples we consider are more precisely described in Section 2.2 of [R10] and Appen-
dix A of [R13] but we just mention that they are obtained by the standard dilations and translations
of four compactly supported functions φ, ψ, φ̃, ψ̃. The essential feature is that it is possible to
use, on the one hand, decomposition wavelets φ and ψ that are piecewise constants, and, on the
other hand, smooth reconstruction wavelets φ̃ and ψ̃. In particular, except for the Haar basis, de-
composition and reconstruction wavelets are different. To shorten mathematical expressions, we
set

Λ = {λ = (j, k) : j ≥ −1, k ∈ Z}
and for any λ ∈ Λ, ϕλ = φk (respectively ϕ̃λ = φ̃k) if λ = (−1, k) and ϕλ = ψj,k (respectively
ϕ̃λ = ψ̃j,k) if λ = (j, k) with j ≥ 0. Similarly, βλ = αk if λ = (−1, k) and βλ = βj,k if
λ = (j, k) with j ≥ 0. Now, (3.1) can be rewritten as

f =
∑

λ∈Λ

βλϕ̃λ with βλ =
∫
ϕλ(x)f(x)dx.

Now, we introduce for any λ ∈ Λ, the natural estimator of βλ defined by

(3.2) β̂λ =
1
n

∫
ϕλ(x)dNx

for the Poisson model and

(3.3) β̂λ =
1
n

n∑

i=1

ϕλ(Xi)

for the density model, that satisfies E(β̂λ) = βλ. We denote V̂λ,n an unbiased estimate of Vλ,n =
var(β̂λ), the variance of β̂λ, defined by

V̂λ,n =
1
n2

∫
ϕ2

λ(x)dNx

for the Poisson model and

V̂λ,n =
1

n2(n− 1)

n∑

i=2

i−1∑

j=1

(ϕλ(Xi)− ϕj,k(Xj))2

for the density model. Then, given some parameter γ > 0, we define the threshold

(3.4) ηλ,γ =
√

2γṼλ,nlogn+
c1||ϕλ||∞γlogn

3n
,
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with

Ṽλ,n = V̂λ,n +
c1||ϕλ||∞

n

√
2γlognV̂λ,n +

c2||ϕλ||2∞γlogn
n2

where {
c1 = 1 and c2 = 3 for the Poisson model,
c1 = 2 and c2 = 8 for the density model.

Finally given some subset Γn of Λ of the form

Γn = {λ = (j, k) ∈ Λ : j ≤ j0} ,
where j0 = j0(n) is an integer, we set for any λ ∈ Λ,

β̃λ = β̂λ1{|β̂λ|≥ηλ,γ}1{λ∈Γn}

and we set β̃ = (β̃λ)λ∈Λ. The estimator of f is

f̃n,γ =
∑

λ∈Λ

β̃λϕ̃λ

and only depends on the choice of γ and j0 fixed later.
The definition of ηλ,γ is based on the following heuristics. Given λ = (j, k) ∈ Λ, when there

exists a constant c0 > 0 such that f(x) ≥ c0 for x in the support of ϕλ satisfying ‖ϕλ‖2∞ =
on(n(logn)−1), then, with large probability, the deterministic term of (3.4) is negligible with
respect to the random one. In this case, the random term is the main one and we asymptotically
derive

(3.5) ηλ,γ ≈
√

2γṼλ,nlogn.

Having in mind that Ṽλ,n is a convenient estimate for var(β̂λ), the shape of the right hand term
of the formula (3.5) is classical. In fact, it strongly looks like the threshold proposed by Juditsky
and Lambert-Lacroix (2004) in the density estimation framework or the universal threshold ηU

proposed by Donoho and Johnstone (1994) in the Gaussian regression framework. Indeed, we
recall that

ηU =
√

2σ2 log n,
where σ2 (assumed to be known in the Gaussian framework) is the variance of each noisy wavelet
coefficient. Actually, the deterministic term of (3.4) constitutes the main difference with the thresh-
old defined in Juditsky and Lambert-Lacroix (2004). It allows to consider γ close to 1, which is
essential for the calibration issue handled in Section 4. In addition, it allows to control large devi-
ations terms for high resolution levels. As often suggested in the literature, instead of estimating
var(β̂λ), we could use the inequality

var(β̂λ) ≤ ||f ||∞
n

and we could use this upper bound in the definition of the threshold. But this requires a strong as-
sumption: f is bounded and ||f ||∞ is known. In this chapter, var(β̂λ) is estimated, which allows not
to impose these conditions. But unlike Juditsky and Lambert-Lacroix (2004) who propose to use
V̂λ,n, we slightly overestimate var(β̂λ) to control large deviation terms and this is the reason why
we introduce Ṽλ,n. Finally, observe that the constants c1 and c2 differ according to the statistical
model. Actually, proofs and computations are more involved for density estimation because sharp
upper and lower bounds for the variance of the noisy wavelet coefficients β̂λ are more intricate.

In the next section, once fixed j0 and γ, we apply Theorem 3.1 with β̂λ defined in (3.2) or
(3.3), ηλ = ηλ,γ defined in (3.4) and

Γ = Γn = {λ = (j, k) ∈ Λ : −1 ≤ j ≤ j0} .
The other quantities are specified in [R10] and [R13].
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2.1. Theoretical results. This section gives the theoretical properties of the estimate f̃n,γ .

2.1.1. Oracle results. We refer to [R10] and [R13] for the detailed presentation of the oracle
point of view, proposed by Donoho and Johnstone (1994), in our settings. We just mention that,
here, the oracle is

f̄ =
∑

(j,k)∈Γn

β̄λϕ̃λ,

where β̄λ = β̂λ1{β2
λ>Vλ,n} satisfies

E
[
(β̄λ − βλ)2

]
= min

(
β2

λ, Vλ,n

)
.

By keeping the coefficients β̂λ larger than the thresholds defined in (3.4), our estimator satisfies
the following oracle inequality.

THEOREM 3.2. Let us consider a biorthogonal wavelet basis satisfying the properties de-
scribed in Section 2.2 of [R10]. Let us fix two constants c ≥ 1 and c′ ∈ R and let us define for
any n, j0 = j0(n) the integer such that 2j0 ≤ nc(logn)c′ < 2j0+1. If γ > c, then f̃n,γ satisfies the
following oracle inequality: for n large enough

(3.6) E
[
||f̃n,γ − f ||22

]
≤ C1


 ∑

(j,k)∈Γn

min
(
β2

λ, Vλ,nlogn
)

+
∑

(j,k)/∈Γn

β2
λ


 +

C2 log n
n

whereC1 is a positive constant depending only on γ, c and the functions that generate the biorthog-
onal wavelet basis. C2 is also a positive constant depending on γ, c c′, ‖f‖1, ‖f‖2 and the
functions that generate the basis.

Note that Theorem 3.2 holds with c = 1 and γ > 1 and in the Poisson setting the negligi-
ble term logn/n can be replaced with 1/n. Following the oracle point of view of Donoho and
Johnstone, Theorem 3.2 shows that our procedure is optimal up to the logarithmic factor. This
logarithmic term is in some sense unavoidable. It is the price we pay for adaptivity (i.e. for not
knowing the coefficients that we must keep). Our result is true provided f ∈ L1(R) ∩ L2(R). So,
assumptions on f are very mild here. From this key result, we can deduce maxiset results for our
procedure and then minimax rates for f̃n,γ . See Section 3.1 of [R10] that is devoted to maxiset
results of our procedure.

2.1.2. Minimax results. The goal of this section is to derive the minimax rates on the whole
class of Besov spaces. The subsequent results will constitute generalizations of the results derived
by Juditsky and Lambert-Lacroix (2004) who pointed out minimax rates for density estimation on
the class of Hölder spaces. For this purpose, j0 = j0(n) is the integer such that

2j0 ≤
(

n

log n

)c

< 2j0+1.

So, in this subsection, c′ = −c but the real number c is chosen later. Unfortunately, in some
situations, it will be necessary to strengthen our assumptions. More precisely, sometimes, we
assume that f is bounded. So, for any R ≥ 1, we consider the following set of functions:

L1,2,∞(R) = {f is such that ||f ||1 ≤ R, ||f ||2 ≤ R and ||f ||∞ ≤ R} .
Note that, when f = fd, then the condition ||f ||1 ≤ R is automatically satisfied since R ≥ 1. In
the Poisson setting, we could take R > 0. Now, let us state the upper bound of the L2-risk of f̃n,γ .

THEOREM 3.3. Let R > 0, R′ ≥ 1, 1 ≤ p, q ≤ ∞ and α ∈ R such that max
(
0, 1

p − 1
2

)
<

α < r+ 1, where r denotes the wavelet smoothness parameter introduced in Section 2.2 of [R10].
Let c ≥ 1 such that

(3.7) α

(
1− 1

c(1 + 2α)

)
≥ 1
p
− 1

2
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and γ > c. Then, there exists a constant C depending on R′, γ, c, on the parameters of the Besov
ball and on Φ = {φ, ψ, φ̃, ψ̃} such that for any n,

- if p ≤ 2,

(3.8) sup
f∈Bα

p,q(R)∩L1,2,∞(R′)
E

[
||f̃n,γ − f ||22

]
≤ C

(
logn
n

) 2α
2α+1

,

- if p > 2,

(3.9) sup
f∈Bα

p,q(R)∩L1(R′)∩L2(R′)
E

[
||f̃n,γ − f ||22

]
≤ C

(
logn
n

) α

α+1− 1
p .

First, let us briefly comment assumptions of these results. When p ≤ 2, the result is true as
soon as c is large enough to satisfy Condition (3.7). But when p > 2, Condition (3.7) is satisfied
and the result is true for any c ≥ 1 and 0 < α < r + 1. In addition, we do not need to restrict
ourselves to the set of bounded functions. But, when p ≤ 2, we establish (3.8) only for bounded
functions. Actually, this assumption is in some sense unavoidable as proved in Section 6.4 of Birgé
(2008).

When p ≤ 2, the rate of the risk of f̃n,γ corresponds to the classical minimax rate (up to the
logarithmic term) for estimating a compactly supported density (see Donoho, Johnstone, Kerky-
acharian and Picard (1996)). When p > 2, the upper bound of the risk deteriorates. Note that
when p = ∞, the risk is bounded by (logn/n)α/(1+α) up to a constant. This rate was also derived
by Juditsky and Lambert-Lacroix (2004) for estimation on balls of Bα∞,∞. Now, combining upper
bounds (3.8) and (3.9), under assumptions of Theorem 3.3, we point out the following rate for our
procedure:

sup
f∈Bα

p,q(R)∩L1,2,∞(R′)
E

[
||f̃n,γ − f ||22

]
≤ C

(
logn
n

) α

α+1
2+( 1

2−
1
p)

+ .

The following result derives lower bounds of the minimax risk showing that this rate is the optimal
rate up to a logarithmic term. So, the next result establishes the optimality properties of f̃n,γ under
the minimax approach.

THEOREM 3.4. Let R > 0, R′ ≥ 1, 1 ≤ p, q ≤ ∞ and α ∈ R such that max
(
0, 1

p − 1
2

)
<

α < r + 1. Then, there exists a positive constant C̃ depending on R′, γ, c, on the parameters of
the Besov ball and on Φ such that

lim inf
n→+∞n

α

α+1
2+( 1

2−
1
p)+ inf

f̂
sup

f∈Bα
p,q(R)∩L1,2,∞(R′)

E
[
||f̂n − f ||22

]
≥ C̃.

Furthermore, let p∗ ≥ 1 and α∗ > 0 such that

(3.10) α∗
(

1− 1
c(1 + 2α∗)

)
≥ 1
p∗
− 1

2
.

Then, f̃n,γ is adaptive minimax up to a logarithmic term on
{Bα

p,q(R) ∩ L1,2,∞(R′) : α∗ ≤ α < r + 1, p∗ ≤ p ≤ +∞, 1 ≤ q ≤ ∞}
.

Note that when restricting on compactly supported signals, when p > 2, Bα
p,∞(R) ⊂ Bα

2,∞(R̃)
for R̃ large enough and in this case, the rate does not depend on p.

Our results show the role played by the support of the functions to be estimated on minimax
rates. As already observed, when p ≤ 2, the support has no influence since the rate exponent
remains unchanged whatever the size of the support (finite or not). Roughly speaking, it means
that it is not harder to estimate bounded non-compactly supported functions than bounded com-
pactly supported functions from the minimax point of view. It is not the case when non-compactly
supported signals are considered. Actually, we note an elbow phenomenon at p = 2 and the rate
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deteriorates when p increases. Let us give an interpretation of this observation in terms of sparsity.
When p < 2, functions of the Besov spaces Bα

p,q are sparse where at each level, a very few number
of the wavelet coefficients are non-negligible. But these coefficients can be very large. When
p > 2, Bα

p,q-spaces typically model dense signals where the wavelet coefficients are not large but
most of them can be non-negligible. This explains why the size of the support plays a role for
minimax rates when p > 2: when the support is larger, the number of wavelet coefficients to be
estimated increases dramatically.

Finally, we note that our procedure achieves the minimax rate, up to a logarithmic term: f̃n,γ

is near rate-optimal without knowing the regularity and the support of the underlying signal to be
estimated.

2.2. Numerical study. We give here a brief overview of the numerical performances of our
procedure. We just present the results for the density model. The simulation study for the Poisson
model can be found in Section 5.2 of [R11] where comparisons with methodologies proposed
by Rudemo (1982), Kolaczyk (1999), Reynaud-Bouret (2003), Willet and Nowak (2007), Birgé
(2006), Baraud and Birgé (2006) and Figueroa-López and Houdré (2006) are discussed. Our goal
is essentially to detect the existence of a curse of support from the numerical point of view. We
first provide a simulation study illustrating the distortion of the most classical support-dependent
estimators when the support or the tail is increasing. Next we provide an application of our method
to famous real data sets.

We compare our method to representative methods of each main trend in density estimation,
namely kernel, binning plus thresholding and model selection. The considered methods are the
following. The first one is the kernel method, denoted K, consisting in a basic cross-validation
choice of a global bandwidth with a Gaussian kernel. The second method requires a complex pre-
processing of the data based on binning. Observations X1, . . . , Xn are first rescaled and centered
by an affine transformation denoted T such that T (X1), . . . , T (Xn) lie in [0, 1]. We denote fT the
density of the data induced by the transformation T . We divide the interval [0, 1] into 2bn small in-
tervals of size 2−bn , where bn is an integer, and count the number of observations in each interval.
We apply the root transform due to Brown, Cai, Zhang, Zhao and Zhou (2007) and the universal
hard individual thresholding rule on the coefficients computed with the DWT Coiflet-basis filter.
We finally apply the unroot transform to obtain an estimate of fT and the final estimate of the
density is obtained by applying T−1 combined with a spline interpolation. This method is denoted
RU. The last method is also support-dependent. After rescaling the data as previously, we estimate
fT by the algorithm of Willett and Nowak (2007). It consists in a complex selection of a grid and
of polynomials on that grid that minimizes a penalized loglikelihood criterion. The final estimate
of the density is obtained by applying T−1. This method is denoted WN. Our practical method
has been implemented in the Haar basis (method H) and in the Spline basis (method S). Moreover,
we have also implemented the choice γ = 0.5 in the Spline basis. We denote this method S*. See
Section 4.1 of [R13] for more details.

We have generated n-samples according to very different densities gd and hk, with n = 1024.
Both signals are supported by the whole real line. We have computed for each estimator its inte-
grated squared error (ISE).

The first signal, gd, consists in a mixture of two standard Gaussian densities:

gd =
1
2
N (0, 1) +

1
2
N (d, 1),

where N (µ, σ) represents the density of a Gaussian variable with mean µ and standard deviation
σ. The parameter d varies in {10, 30, 50, 70} so that we can see the curse of support on the quality
of estimation.

Figure 1 shows the reconstructions for d = 10 and Figure 2 for d = 70. In the sequel, the
method RU is implemented with bn = 5, which is the best choice for the reconstruction with
d = 10. All the methods give satisfying results for d = 10. When d is large, the rescaling and
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FIGURE 1. Reconstruction of gd (true: dotted line, estimate: solid line) for the 6
different methods for d = 10
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FIGURE 2. Reconstruction of gd (true: dotted line, estimate: solid line) for the 6
different methods for d = 70

binning preprocessing leads to a poor regression signal which makes the regression thresholding
rules non convenient, as illustrated by the method RU with d = 70. Reconstructions for K, WN,
S and S* seem satisfying but a study of the ISE of each method (see Figure 3) reveals that both
support-dependent methods (RU and WN) have a risk that increases with d. On the contrary,
methods K and S are the best ones and more interestingly their performances do not vary with d.
This robustness is also true for H and S*. S* is a bit undersmoothing which explains the variability
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FIGURE 3. Boxplot of the ISE for gd over 100 simulations for the 6 methods and
the 4 different values of d. A column, delimited by dashed lines, corresponds to
one method (respectively K, WN, RU, S, H, S*). Inside this column, from left
to right, one can find for the same method the boxplot of the ISE for respectively
d = 10, 30, 50 and 70.

of its ISE. Finally note that H is even better than RU despite the inappropriate choice of the Haar
basis.

The other signal, hk, is both heavy-tailed and irregular. It consists in a mixture of 4 Gaussian
densities and one Student density:

hk = 0.45T (k) + 0.15N (−1, 0.05) + 0.1N (−0.7, 0.005) + 0.25N (1, 0.025) + 0.15N (2, 0.05),

where T (k) denotes the density of a Student variable with k degrees of freedom. The parameter k
varies in {2, 4, 8, 16}. The smaller k, the heavier the tail is and this without changing the shape of
the main part that has to be estimated. Figure 4 shows the reconstruction for k = 2. Clearly RU is
not suitable. The kernel method K suffers from a lack of spatial adaptivity, as expected. The four
remaining methods seem satisfying. In particular for this very irregular signal it is not clear that
the Haar basis is a bad choice. Note however that to represent reconstructions, we have focused on
the area where the spikes are located. In particular the support-dependent method WN is non-zero
on a very large interval which tends to deteriorate its ISE. Indeed, Figure 5 shows that the ISE of
the support-dependent methods (RU, WN) increases when the tail becomes heavier, whereas the
other methods have remarkable stable ISE. Methods S and H are more robust and better than WN
for k = 2. The ISE may be improved for this irregular signal by taking γ = 0.5 as noted with the
performances of S*.

To illustrate our procedure on real data, we consider two real data sets named, respectively
in our study, “Old Faithful geyser” and “Suicide” taken from Weisberg (1980) and Copas and
Fryer (1980). These data are well known and have been widely used elsewhere. This allows to
compare our procedure with other methods. To estimate the function f , we apply our practical
methodology with the spline basis and the parameter γ equal to 1. Figures 7 and and 8 of [R13]
represent, respectively, the resulting estimate for the “Old Faithful geyser” set and for the “Suicide”
one. Respectively two or three peaks are detected providing multimodal reconstructions. So, in
comparison with the ones performed in Silverman (1986) and Sain and Scott (1996), our estimate
detects significant events and not artefacts. More interestingly, both estimates equal zero on an
interval located between the last two peaks. This cannot occur with the Gaussian kernel estimate
mentioned previously. Of course, this has a strong impact for practical purposes, so this point is
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FIGURE 4. Reconstruction of hk (true: dotted line, estimate: solid line) for the 6
different methods for k = 2
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FIGURE 5. Boxplot of the ISE for hk over 100 simulations for the 6 methods and
the 4 different values of k. A column, delimited by dashed lines, corresponds to
one method (respectively K, WN, RU, S, H, S*). Inside this column, from left
to right, one can find for the same method the boxplot of the ISE for respectively
k = 2, 4, 8 and 16.

crucial. This tends to show that the proposed procedure is relevant for real data, even for relatively
small sample size.

3. A data-driven Dantzig procedure for density estimation

In this section, we still consider the density model already studied for the Lasso estimate by
Bunea, Tsybakov and Wegkamp (2007a, 2009) and van de Geer (2008). By using the observations
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of a n-sample of variables X1, . . . , Xn of density f ∈ L1(R) ∩ L2(R), we aim at building a
data-driven Dantzig estimate of f inspired by the data-driven wavelet thresholding rule of the
previous section. As in Section 4 of Chapter 1, we consider a dictionary of functions denoted
Υ = (ϕλ)λ=1,...,M , with

(3.11) n ≤M ≤ exp(nδ)

for δ < 1. Assumption (3.11) can be relaxed and we can takeM < n provided slight modifications
of the subsequent quantities. We search estimates of f as linear combinations fµ of the dictionary
functions:

fµ =
M∑

λ=1

µλϕλ,

with µ = (µλ)λ=1,...,M ∈ RM . In the sequel, we assume without any loss of generality that, for
any λ, ‖ϕλ‖2 = 1. But we emphasize that, unlike Section 2, the functions ϕλ’s do not necessarily
constitute a basis. We still denote, for λ ∈ {1, . . . ,M},

βλ =
∫
ϕλ(x)f(x)dx and β̂λ =

1
n

n∑

i=1

ϕλ(Xi).

Note also that for any µ and any λ, the L2-scalar product between fµ and ϕλ can be easily com-
puted:

∫
ϕλ(x)fµ(x)dx =

M∑

λ′=1

µλ′

∫
ϕλ′(x)ϕλ(x)dx = (Gµ)λ

where G is the Gram matrix associated to the dictionary Υ defined for any 1 ≤ λ, λ′ ≤M by

Gλ,λ′ =
∫
ϕλ(x)ϕλ′(x)dx.

Any reasonable choice of µ should ensure that the coefficients (Gµ)λ are close to β̂λ for all λ.
Therefore, using Candès and Tao’s approach (see Candès and Tao (2007)), we define the Dantzig
constraint:

(3.12) ∀λ ∈ {1, . . . .M}, |(Gµ)λ − β̂λ| ≤ ηλ,γ

and the Dantzig estimate f̂D by f̂D = fµ̂D,γ with

µ̂D,γ = argminµ∈RM ||µ||`1 such that µ satisfies the Dantzig constraint (3.12),

where for γ > 0 and λ ∈ {1, . . . ,M}, ηλ,γ is defined in (3.4) (with c1 = 2 and c2 = 8). The
constraint (3.12) will be referred as the adaptive Dantzig constraint in the sequel. To justify the
introduction of the density estimate f̂D, let us set µ0 = (µ0,λ)λ=1,...,M ∈ RM such that

PΥf =
M∑

λ=1

µ0,λϕλ

where PΥ is the projection on the space spanned by Υ. We have

(Gµ0)λ =
∫

(PΥf)ϕλ =
∫
fϕλ = βλ.

If γ > 1, for any 0 < ε < γ − 1, Theorem 1 of [R12] proves that µ0 satisfies the adaptive
Dantzig constraint (3.12) with probability larger than 1−C1(ε, δ, γ)M

1− γ
1+ε , where C1(ε, δ, γ) is

a constant only depending on ε, δ and γ (the probability 1−C1(ε, δ, γ)M
1− γ

1+ε will be used in the
sequel). Actually, we force the set of parameters µ satisfying the adaptive Dantzig constraint to
contain µ0 with large probability and to be as small as possible. Therefore, f̂D is a good candidate
among sparse estimates linearly decomposed on Υ for estimating f .
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3.1. Theoretical results. Let us state the main result of this chapter. We introduce the vector
ηγ = (ηλ,γ)λ=1,...,M considered with the tuning parameter γ > 1. For any J ⊂ {1, . . . ,M}, we
set JC = {1, . . . ,M}r J and define µJ the vector which has the same coordinates as µ on J and
zero coordinates on JC . We introduce a local assumption indexed by a subset J0.

• Local Assumption Given J0 ⊂ {1, . . . ,M}, for some constants κJ0 > 0 and νJ0 > 0
depending on J0, we have for any µ,

(LA(J0, κJ0 , νJ0)) ||fµ||2 ≥ κJ0 ||µJ0 ||`2 − νJ0

(
||µJC

0
||`1 − ||µJ0 ||`1

)
+
.

We obtain the following oracle type inequality.

THEOREM 3.5. Let J0 ⊂ {1, . . . ,M} be fixed. We suppose that (LA(J0, κJ0 , νJ0)) holds.
Then, with probability at least 1− C1(ε, δ, γ)M

1− γ
1+ε , we have for any β > 0,

||f̂D − f ||22 ≤ inf
µ∈RM



||fµ − f ||22 + β

Λ(µ, Jc
0)2

|J0|

(
1 +

2νJ0

√
|J0|

κJ0

)2

+ 16|J0|
(

1
β

+
1
κ2

J0

)
||ηγ ||2`∞



 ,

with

Λ(µ, Jc
0) = ||µJC

0
||`1 +

(||µ̂D,γ ||`1 − ||µ||`1
)
+

2
.

Let us comment each term of the right hand side of the oracle inequality. The first term is
an approximation term which measures the closeness between f and fµ. This term can vanish if
f can be decomposed on the dictionary. The second term is a price to pay when either µ is not
supported by the subset J0 considered or it does not satisfy the condition ||µ̂D,γ ||`1 ≤ ||µ||`1 which
holds as soon as µ satisfy the adaptive Dantzig constraint. Finally, the last term, which does not
depend on µ, can be viewed as a variance term corresponding to the estimation on the subset J0.
Indeed, remember that ηλ,γ relies on an estimate of the variance of β̂λ. Furthermore, we have with
high probability (see Theorem 1 of [R12]):

||ηγ ||2`∞ ≤ 2

(
16var(β̂λ)γ logM +

(
10||ϕλ||∞γ logM

n

)2
)
.

So, if ||f ||∞ <∞ and if there exists a constant c1 such that for any λ,

(3.13) ||ϕλ||2∞ ≤ c1

(
n

logM

)
||f ||∞,

(which is true for instance for a bounded dictionary), then

||ηγ ||2`∞ ≤ C||f ||∞ logM
n

,

(where C is a constant depending on γ and c1) and tends to 0 when n goes to ∞. Furthermore, if
f = fµ0 and if (LA(J0, κJ0 , νJ0)) holds with J0 = Jµ0 , under (3.13), the proof of Theorem 3.5
yields the more classical inequality: with at least the probability 1− C1(ε, δ, γ)M

1− γ
1+ε ,

||f̂D − f ||22 ≤ C ′|J0|||f ||∞ logM
n

,

where C ′ is a constant.
Assumption (LA(J0, κJ0 , νJ0)) is local, in the sense that the constants κJ0 and νJ0 (or their

mere existence) may highly depend on the subset J0. For a given µ, the best choice for J0 in the
oracle inequality of Theorem 3.5 depends thus on the interaction between these constants and the
value of µ itself.
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As usual, when M > n, properties of the Dantzig estimate can be derived from global as-
sumptions on the structure of the dictionary Υ. For l ∈ N, we denote

φmin(l) = min
|J |≤l

min
µ∈RM

µJ 6=0

||fµJ ||22
||µJ ||2`2

and φmax(l) = max
|J |≤l

max
µ∈RM

µJ 6=0

||fµJ ||22
||µJ ||2`2

.

These quantities correspond to the ’restricted eigenvalues’ of the Gram matrixG. We also consider
the ’restricted correlations’

θl,l′ = max
|J |≤l
|J ′|≤l′

J∩J ′=∅

max
µ,µ′∈RM

µJ 6=0,µ′
J′ 6=0

〈fµJ , fµ′
J′
〉

||µJ ||`2 ||µ′J ′ ||`2
.

We will use one of the following assumptions considered in Bickel, Ritov and Tsybakov (2009)
(see [R12] for a discusion of these assumptions).

• Assumption 1 For some integer 1 ≤ s ≤M/2, we have

(A1(s)) φmin(2s) > θs,2s.

.
• Assumption 2 For some integers s and l such that

(3.14) 1 ≤ s ≤ M

2
, l ≥ s and s+ l ≤M,

we have

(A2(s,l)) lφmin(s+ l) > sφmax(l).

In the sequel, we set, under Assumption 1,

κ1(s) =
√
φmin(2s)

(
1− θs,2s

φmin(2s)

)
> 0, ν1(s) =

θs,2s√
sφmin(2s)

and under Assumption 2,

κ2(s, l) =
√
φmin(s+ l)

(
1−

√
sφmax(l)

lφmin(s+ l)

)
> 0, ν2(s, l) =

√
φmax(l)

l
.

To shorten notations, we set κ = κ1(s) and ν = ν1(s) under (A1(s)) (respectively κ = κ2(s, l) and
ν = ν2(s, l) under (A2(s,l)). If (A1(s)) and (A2(s,l)) are both satisfied, κ = max(κ1(s), κ2(s, l))
and ν = min(ν1(s), ν2(s, l)). Roughly speaking, Proposition 1 of [R12] proves that either As-
sumption 1 or Assumption 2 implies (LA(J0, κJ0 , νJ0)). We deduce the following result.

THEOREM 3.6. Let s and l two integers satisfying (3.14). We suppose that (A1(s)) or (A2(s,l))
is true. Then, with probability at least 1− C1(ε, δ, γ)M

1− γ
1+ε , we have for any β > 0,

||f̂D − f ||22 ≤ inf
µ∈RM

inf
J0⊂{1,...,M}

|J0|=s

{
||fµ − f ||22 + β

Λ(µ, Jc
0)2

s

(
1 +

2ν
√
s

κ

)2

+ 16s
(

1
β

+
1
κ2

)
||ηγ ||2`∞

}

where

Λ(µ, Jc
0) = ||µJC

0
||`1 +

(||µ̂D,γ ||`1 − ||µ||`1
)
+

2
.

Remark that the best subset J0 of cardinal s in Theorem 3.6 can be easily chosen for a given
µ: it is given by the set of the s largest coordinates of µ. This was not necessarily the case in
Theorem 3.5 for which a different subset may give a better local condition and then may provide a
smaller bound. If we further assume the mild assumption (3.13) on the sup norm of the dictionary,
we deduce the following result.
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COROLLARY 3.1. Let s and l two integers satisfying (3.14). We suppose that (A1(s)) or
(A2(s,l)) is true. If (3.13) is satisfied, with probability at least 1 − C1(ε, δ, γ)M

1− γ
1+ε , we have

for any β > 0, any µ that satisfies the adaptive Dantzig constraint and for the best subset J0 of
cardinal s (that corresponds to the s largest coordinates of µ in absolute value),

(3.15) ||f̂D − f ||22 ≤ ||fµ − f ||22 + βc2(1 + κ−2ν2s)
||µJC

0
||2`1

s
+ c3(β−1 + κ−2)s||f0||∞ logM

n
,

where c2 is an absolute constant and c3 depends on c1 and γ.

Note that, when µ is s-sparse so that µJC
0

= 0, the oracle inequality (3.15) corresponds to
the classical oracle inequality obtained in parametric frameworks (see Candès and Plan (2007)
or Candès and Tao (2007) for instance) or in non-parametric settings. See, for instance Bunea,
Tsybakov and Wegkamp (2006, 2007a, 2007b, 2007c), Bunea (2008) or van de Geer (2008) but in
these works, the functions of the dictionary are assumed to be bounded by a constant independent
of M and n. So, the adaptive Dantzig estimate requires weaker conditions since under (3.13),
||ϕλ||∞ can go to ∞ when n grows. This point is capital for practical purposes, in particular when
wavelet bases are considered.

We end this theoretical study by briefly showing the strong connections between Lasso and
Dantzig estimates, which has already been illustrated in Bickel, Ritov and Tsybakov (2009) for
non-parametric regression models (see Section 4 of [R12] for more details). We consider the Lasso
estimator given by the solution of the following minimization problem

(3.16) µ̂L,γ = argminµ∈RM

{
R(µ) + 2

M∑

λ=1

ηλ,γ |µλ|
}
,

where

R(µ) = ||fµ||22 −
2
n

n∑

i=1

fµ(Xi)

and µ̂L,γ appears as a data-driven version of classical Lasso estimates. We denote f̂L = fµ̂L,γ .
The first order condition for the minimization of the expression given in (3.16) corresponds

exactly to the adaptive Dantzig constraint and thus Theorem 3.6 always applies to µ̂L,γ . Actually,
one can prove a slightly stronger result.

THEOREM 3.7. Let us assume that assumptions of Theorem 3.6 are true. Let J0 ⊂ {1, . . . ,M}
of size |J0| = s. Then, with probability at least 1− C1(ε, δ, γ)M

1− γ
1+ε , we have for any β > 0,

∣∣∣||f̂D − f ||22 − ||f̂L − f ||22
∣∣∣ ≤ β

||µ̂L,γ

JC
0
||2`1

s

(
1 +

2ν
√
s

κ

)2

+ 16s
(

1
β

+
1
κ2

)
||ηγ ||2`∞ .

3.2. Numerical study. We end this section by very briefly describing the numerical perfor-
mances of the data-driven Dantzig and Lasso procedures respectively computed with the homotopy-
path-following method proposed by Asif and Romberg (2009) and the LARS algorithm. Following
recommendations of the next chapter, we take γ = 1.01. I refer the reader to Section 5.2 of [R12]
for more details where the simulation study is performed with a collection of 6 dictionaries de-
scribed below, 4 densities and for 2 sample sizes. We compare our procedures with a non adaptive
Dantzig estimator where var(β̂λ) is replaced with ||f ||∞/n and we consider a two-step estimation
procedure proposed by Candès and Tao (2007) which consists in the following additional least-
square step. Let ĴD,γ be the support of the estimate µ̂D,γ . This defines a subset of the dictionary
on which the density is regressed

(
µ̂D+LS,γ

)
ĴD,γ = G−1

ĴD,γ
(β̂λ)ĴD,γ

where GĴD,γ is the submatrix of G corresponding to the subset chosen. The values of µ̂D+LS,γ

outside ĴD,γ are set to 0 and f̂D+LS,γ is set accordingly. We describe now the dictionaries we
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consider. We focus numerically on densities defined on the interval [0, 1] so we use dictionaries
adapted to this setting. The first four are orthonormal systems, which are used as a benchmark,
while the last two are “real” dictionaries. More precisely, our dictionaries are

(1) the Fourier basis with M = n+ 1 elements (denoted “Fou”),
(2) the histogram collection with the classical number

√
n/2 ≤ M = 2j0 <

√
n of bins

(denoted “Hist”),
(3) the Haar wavelet basis with maximal resolution n/2 < M = 2j1 < n and thus M = 2j1

elements (denoted “Haar”),
(4) the more regular Daubechies 6 wavelet basis with maximal resolution n/2 ≤M = 2j1 <

n and thus M = 2j1 elements (denoted “Wav”),
(5) the dictionary made of the union of the Fourier basis and the histogram collection and

thus comprising M = n+ 1 + 2j0 elements. (denoted “Mix”),
(6) the dictionary which is the union of the Fourier basis, the histogram collection and the

Haar wavelets of resolution greater than 2j0 comprising M = n + 1 + 2j1 elements
(denoted “Mix2”).

The orthonormal families we have chosen are often used by practitioners. Our dictionaries com-
bine very different orthonormal families, sine and cosine with bins or Haar wavelets, which ensures
a sufficiently incoherent design.

Boxplots of Figures 3 and 4 of [R12] summarize the numerical experiments for n = 500
and n = 2000 and 100 repetitions of the procedures. As expected, Dantzig and Lasso estimators
are strictly equivalent when the dictionary is orthonormal and very close otherwise. For both
algorithms and most of the densities, the best solution appears to be the “Mix2” dictionary. This
shows that the dictionary approach yields an improvement over the classical basis approach. One
observes also that the “Mix” dictionary is better than the best of its constituent, namely the Fourier
basis and the histogram family, which corroborates our theoretical results. The adaptive constraints
are much tighter than their non adaptive counterparts and yield to much better numerical results.
Our last series of experiments shows the significant improvement obtained with the least-square
step. As hinted by Candès and Tao (2007), this can be explained by the bias common to `1 methods
which is partially removed by this final least-square adjustment.

4. Conclusions

This chapter has revisited the very classical problems of estimating a density and a Poisson
intensity in a setting where the unknown signal or its support is unbounded. We have shown
that we can build wavelet thresholding estimation procedures that achieve minimax rates (up to
a logarithmic term) and are adaptive with respect to the support and the unknown regularity. We
have in particular shown that rates can deteriorate according to the sparsity of the signal and have
detected an elbow phenomenon for the value p = 2 (see Section 2.1.2). Previous results are stated
for the L2-loss and natural extentions should be to consider Lp′-losses, with p′ 6= 2, in particular
to analyze how the rates and the elbow phenomenon depend on the loss function. We could also
investigate whether the logarithmic term appearing in the upper bound is necessary or not.

It seems to me that another interesting research field consists in the building of data-driven
coarsest and finest resolution levels for reconstruction to take into account spatial features of the
signal. This scaling problem is a key issue and I do not know theoretical or practical methodologies
concerning this point. More generally, given a statistical framework, the question of the ideal
dictionary for signal reconstructions remains a topic which is still to a great extent unexplored.
Section 3 has shown that such an issue is crucial.

The Lasso and wavelet thresholding procedures proposed in this chapter, that could be used
or adapted for very various unidimensional and multidimensional frameworks, are further studied
from the calibration point of view in the next chapter.





CHAPTER 4

Calibration

1. Introduction

This chapter constitutes a natural extension of the previous chapter and we still use the no-
tations introduced there. The topic of this chapter is the study of the calibration of the tuning
parameter γ of the wavelet thresholding and Dantzig estimates proposed in Chapter 3. We wonder
how should this parameter be chosen to obtain good results in both theory and practice.

Previously, we have proved that f̃n,γ achieves optimal theoretical results provided γ is large
enough. Such an assumption is very classical in the wavelet thresholding literature (see for instance
Cavalier and Koo (2002), Donoho, Johnstone, Kerkyacharian and Picard (1996) or Juditsky and
Lambert-Lacroix (2004)). Unfortunately, most of the time, the theoretical choice of the threshold
parameter is not suitable for practical issues. More precisely, this choice is often too conservative.
See for instance Juditsky and Lambert-Lacroix (2004) who illustrate this statement in Remark 5
of their paper: the tuning parameter of their threshold has to be larger than 14 to obtain theoretical
results, but they suggest to take it in the interval [

√
2, 2] for practical issues. So, one of the main

goals of this chapter is to fill the gap between the optimal parameter choice provided by theoretical
results on the one hand and by a simulation study on the other hand.

For Lasso-type estimators, the regularization parameter is, most of the time, of the form
a
√

logM/n with a a positive constant (see Bickel, Ritov and Tsybakov (2009), Bunea, Tsybakov
and Wegkamp (2006, 2007a, 2007b), Candès and Plan (2007), Lounici (2008) or Meinhausen
and Yu (2009) for instance). Then, one can derive oracle inequalities that are satisfied with large
probability that depends on the tuning parameter a that is hard to calibrate in practice.

Only a few papers have been devoted to theoretical calibration of statistical procedures. In
the model selection setting, the issue of calibration has been addressed by Birgé and Massart
(2007). They considered penalized estimators in a Gaussian homoscedastic regression framework
with known variance and calibration of penalty constants is based on the following methodology.
They showed that there exists a minimal penalty since taking smaller penalties leads to estimation
procedures with suboptimal convergence rates. Under some conditions, they further prove that
the optimal penalty is twice the minimal penalty. This so-called ‘slope heuristic’ method has
been successfully applied for practical purposes by Lebarbier (2005) for change points detection
or Maugis and Michel (2008) in mixture models. Baraud, Giraud and Huet (2008) (respectively
Arlot and Massart (2009)) generalized these results when the variance is unknown (respectively
for non-Gaussian or heteroscedastic data). These approaches constitute alternatives to popular
cross-validation methods whose computational cost can be a drawback.

The next section describes the framework in which the theoretical study of calibration is lead
for the wavelet thresholding and Dantzig estimates. We prove the existence of a minimal value for
the tuning parameter γ. The numerical study of Section 3 allows to go further by presenting the
situations for which theoretical results seem to remain valid. This section also provides a simple
guide on how to select a convenient tuning parameter in practice.

Finally, I mention that some calibration results for kernel rules can also be found in [R8] but
they are not presented in this manuscript.

49



50 Calibration

2. A theoretical approach of calibration

2.1. Wavelet thresholding in the Poisson setting. In this theoretical section, we consider the
estimator f̃n,γ proposed in (3.5) built with the Haar basis in the Poisson model. In the sequel, j0
is the integer such that 2j0 ≤ n < 2j0+1 and we discuss the choice of γ. The calibration study is
restricted to the class F defined as the set of positive functions that can be decomposed on a finite
combination of (ϕ̃λ)λ∈Λ:

F =

{
f =

∑

λ∈Λ

βλϕ̃λ ≥ 0 : card{λ ∈ Λ : βλ 6= 0} <∞
}
.

To study sharp performances of our procedure, we introduce a subclass of the class F : for any n
and any radius R, we define:

Fn(R) =
{
f ≥ 0 : f ∈ L1(R) ∩ L2(R) ∩ L∞(R), Fλ ≥ (logn)(loglogn)

n
1βλ 6=0, ∀ λ ∈ Λ

}
,

where for any λ, we set

Fλ =
∫

supp(ϕλ)
f(x)dx and supp(ϕλ) = {x ∈ R : ϕλ(x) 6= 0} ,

which allows to establish a decomposition of F . Indeed, we have the following result proved in
Section 3 of [R11]:

PROPOSITION 4.1. When n (or R) increases, (Fn(R))n,R is a non-decreasing sequence of
sets. In addition, we have: ⋃

n

⋃

R

Fn(R) = F .

The definition of Fn(R) especially relies on the technical condition

(4.1) Fλ ≥ (logn)(loglogn)
n

1βλ 6=0.

Remember that the distribution of the number of points of N that lies in supp(ϕλ) is the Poisson
distribution with mean nFλ. So, the previous condition ensures that we have a significant number
of points of N to estimate non-zero wavelet coefficients. Another main point is that under (4.1),

√
Vλ,nlogn ≥ logn||ϕλ||∞

n
×

√
loglogn,

so (3.5) is true with large probability. The term (logn)(loglogn)
n appears for technical reasons but

could be replaced by any term un such that

lim
n→∞un = 0 and lim

n→∞u
−1
n

(
logn
n

)
= 0.

In practice, many interesting signals are well approximated by a function of F . So, using Propo-
sition 4.1, a convenient estimate is an estimate with a good behavior on Fn(R), at least for large
values of n and R. We now focus on f̃n,γ with the special value γ = 1 +

√
2 and we study its ora-

cle properties on Fn(R). Roughly speaking, the following result can be viewed as a complement
of Theorem 3.2 for which the constants C1 and C2 are specified at the price of the restriction to
Fn(R).

THEOREM 4.1. Let R > 0 be fixed. Let γ = 1 +
√

2 and let ηλ,γ be as in (3.4) (with c1 = 1
and c2 = 3). Then f̃n,γ achieves the following oracle inequality: for n large enough, for any
f ∈ Fn(R),

(4.2) E
[
||f̃n,γ − f ||22

]
≤ 12logn


 ∑

λ∈Γn

min(β2
λ, Vλ,n) +

1
n


 .
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Inequality (4.2) shows that on Fn(R), our estimate achieves the oracle risk up to the term
12 logn and the negligible term 1

n (see Paragraph 2.1.1 of Chapter 3). Finally, let us mention that
when f ∈ Fn(R), ∑

λ/∈Γn

β2
λ = 0.

Our result is stated with γ = 1+
√

2. This value comes from optimizations of upper bounds given
by technical arguments of the proofs of Theorem 4.1. So, the value γ = 1 +

√
2 should not be

seen as the optimal one. But, Theorem 4.1 constitutes a first theoretical calibration result and this
is the first step for choosing the parameter γ in an optimal way.

Now, we are ready to lead the calibration study. Theorem 3.2 has established that for any
signal, we achieve the oracle estimator up to a logarithmic term provided γ > 1. So, our primary
interest is to wonder what happens, from the theoretical point of view, when γ ≤ 1? To handle
this problem, we consider the simplest signal in our setting, namely

f = 1[0,1].

Applying Theorem 3.2 with γ > 1 gives

E
[
||f̃n,γ − f ||22

]
≤ C

logn
n

,

where C is a constant. The following result shows that this rate cannot be achieved for this partic-
ular signal when γ < 1.

THEOREM 4.2. Let f = 1[0,1]. If γ < 1 then there exists δ < 1 not dependent of n such that

E
[
||f̃n,γ − f ||22

]
≥ c

nδ
,

where c is a constant.

Theorem 4.2 establishes that, asymptotically, f̃n,γ with γ < 1 cannot estimate a very simple
signal at a convenient rate of convergence. This provides a lower bound for the threshold parameter
γ: we have to take γ ≥ 1.

Now, let us study the upper bound for the parameter γ. For this purpose, we do not consider a
particular signal, but we use the worst oracle ratio on the whole class Fn(R). When γ = 1 +

√
2,

Theorem 4.1 shows that for n large enough,

sup
f∈Fn(R)

E
[
||f̃n,γ − f ||22

]

∑
λ∈Γn

min(β2
λ, Vλ,n) + 1

n

≤ 12logn.

Our aim is to establish that the oracle ratio on Fn(R) for the estimator f̃n,γ where γ is large, is
larger than the previous upper bound. This goal is reached in the following theorem.

THEOREM 4.3. Let γmin > 1 be fixed and let γ > γmin. Then, for any R ≥ 2,

sup
f∈Fn(R)

E
[
||f̃n,γ − f ||22

]

∑
λ∈Γn

min(β2
λ, Vλ,n) + 1

n

≥ 2(
√
γ −√γmin)2logn× (1 + on(1)).

Now, if we choose γ > (1 +
√

6)2 ≈ 11.9, we can take γmin > 1 such that the resulting
maximal oracle ratio of f̃n,γ is larger than 12logn for n large enough. So, taking γ > 12 is a bad
choice for estimation on the whole class Fn(R).

Note that the function 1[0,1] belongs to Fn(2), for all n ≥ 2. So, combining Theorems 4.1, 4.2
and 4.3 proves that the convenient choice for γ belongs to the interval [1, 12]. Finally, observe that
the rate exponent deteriorates for γ < 1 whereas we only prove that the choice γ > 12 leads to
worse rates constants.

We do not present the calibration results of f̃n,γ in the density model and we refer the reader
to Section 2.2 of [R13]. Let us just mention that the analogue of Theorem 4.2 can be established
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at the cost of more involved computations. The rest of this section is devoted to the problem of
calibrating the Dantzig and Lasso estimates.

2.2. Dantzig and Lasso estimates in the density setting. We consider the estimates f̂D =
fµ̂D,γ and f̂L = fµ̂L,γ defined in Section 3 of Chapter 3, and as previously, we prove that the
sufficient condition γ > 1 is ’almost’ a necessary condition since we derive a special and very
simple framework in which Lasso and Dantzig estimates cannot achieve the optimal rate if γ < 1
(’almost’ means that the case γ = 1 remains an open question). Let us describe this simple
framework. The dictionary Υ considered in this section is again the orthonormal Haar system. In
this case, M = n. In this setting, since functions of Υ are orthonormal, the Gram matrix G is the
identity. Thus, the Lasso and Dantzig estimates both correspond to the soft thresholding rule:

f̂D = f̂L =
M∑

λ=1

sign(β̂λ)
(
|β̂λ| − ηλ,γ

)
1{|β̂λ|>ηλ,γ}ϕ̃λ.

Now, our goal is to estimate f = 1[0,1] by using f̂D depending on γ and to show the influence of
this tuning parameter.

THEOREM 4.4. On the one hand, if γ > 1, there exists a constant C such that

(4.3) E
[
||f̂D − f ||22

]
≤ C logn

n
.

On the other hand, if γ < 1, there exists a constant c and δ < 1 such that

(4.4) E
[
||f̂D − f ||22

]
≥ c

nδ
.

This result shows again that choosing γ < 1 is a bad choice in our setting.

3. A numerical approach of calibration

In this section, we discuss the ideal numerical choice for the parameter γ keeping in mind
that the value γ = 1 constitutes a border for the theoretical results (see Theorems 3.2 and 4.2 and
4.4). For this purpose, we first consider the Poisson setting. We consider either the Haar basis or
a special case of spline systems given in Figure 1 of [R11]. The latter, called hereafter the spline
basis, has the following properties. First, the support of φ, ψ, φ̃ and ψ̃ is included in [−4, 5]. The
reconstruction wavelets φ̃ and ψ̃ belong to C1.272. Finally, the wavelet ψ is a piecewise constant
function orthogonal to polynomials of degree 4. We still consider the thresholding rule f̃n,γ with
f̃n,γ defined in (3.5) with

ηλ,γ =
√

2γlog(n)V̂λ,n +
γlogn

3n
||ϕλ||∞.

Observe that ηλ,γ slightly differs from the threshold defined in (3.4) since Ṽλ,n is now replaced with
V̂λ,n. It allows to derive the parameter γ as an explicit function of the threshold which is necessary
to draw figures without using a discretization of γ, which is crucial in the sequel. The performances
of our thresholding rule associated with the threshold ηλ,γ defined in (3.4) are probably equivalent.
Given n and a function f , we denoteRn(γ) the ratio between the `2-performance of our procedure
(depending on γ) and the oracle risk where the wavelet coefficients at levels j > j0 are omitted.
We have:

Rn(γ) =

∑
λ∈Γn

(β̃λ − βλ)2∑
λ∈Γn

min(β2
λ, Vλ,n)

=

∑
λ∈Γn

(β̂λ1|β̂λ|≥ηλ,γ
− βλ)2

∑
λ∈Γn

min(β2
λ, Vλ,n)

.

Of course, Rn is a stepwise function and the change points of Rn correspond to the values of
γ such that there exists λ with ηλ,γ = |β̂λ|. The average over 1000 simulations of Rn(γ) is
computed providing an estimation of E(Rn(γ)). This average ratio, denoted Rn(γ) and viewed
as a function of γ, is plotted for n ∈ {64, 128, 256, 512, 1024, 2048, 4096} and for three very
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FIGURE 1. The function ’Bumps’.
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FIGURE 2. The function γ → Rn(γ) at two scales for ’Haar1’ decomposed on
the Haar basis and for n ∈ {64, 128, 256, 512, 1024, 2048, 4096} with j0 =
log2(n).

different signals. The signal ’Haar1’ is 1[0,1], the signal ’Gauss1’ is the density of a centered
Gaussian variable with variance 0.0625. The signal ’Bumps’ is given in Figure 1 (see Section
8 of [R11] for a precise definition of Bumps). For non compactly supported signals, we need
to compute an infinite number of wavelet coefficients to determine this ratio. To overcome this
problem, we omit the tails of the signals and we focus our attention on an interval that contains all
observations. Of course, we ensure that this approximation is negligible with respect to the values
of Rn. As previously, we take j0 = log2(n). Figure 2 displays Rn for ’Haar1’ decomposed on the
Haar basis. The left side of Figure 2 gives a general idea of the shape of Rn, while the right side
focuses on small values of γ. Similarly, Figures 3 and 4 display Rn for ’Gauss1’ decomposed on
the spline basis and for ’Bumps’ decomposed on the Haar and the spline bases.

To discuss our results, we introduce

γmin(n) = argminγ>0Rn(γ).

For ’Haar1’, γmin(n) ≥ 1 for any value of n and taking γ < 1 deteriorates the performances
of the estimate. The larger n, the stronger the deterioration is. Such a result was established from
the theoretical point of view in Theorem 4.2. In fact, Figure 2 allows to draw the following major
conclusion for ’Haar1’:

(4.5) Rn(γ) ≈ Rn(γmin(n)) ≈ 1

for γ belonging to a large interval that contains the value γ = 1. For instance, when n = 4096, the
function Rn is close to 1 for any value of the interval [1, 177]. So, we observe a kind of “plateau
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FIGURE 3. The function γ → Rn(γ) for ’Gauss1’ decomposed on the spline
basis and for n ∈ {64, 128, 256, 512, 1024, 2048, 4096} with j0 = log2(n).
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FIGURE 4. The function γ → Rn(γ) for ’Bumps’ decomposed on the Haar and
the spline bases and for n ∈ {64, 128, 256, 512, 1024, 2048, 4096} with j0 =
log2(n).

phenomenon”. Finally, we conclude that our thresholding rule with γ = 1 performs very well
since it achieves the same performance as the oracle estimator.

For ’Gauss1’, γmin(n) ≥ 0.5 for any value of n. Moreover, as soon as n is large enough,
the oracle ratio for γmin(n) is close to 1. Besides, when n ≥ 2048, as for ’Haar1’, γmin(n) is
larger than 1. We observe the “plateau phenomenon” as well and as for ’Haar1’, the size of the
plateau increases when n increases. This can be explained by the following important property of
’Gauss1’: ’Gauss1’ can be well approximated by a finite combination of the atoms of the spline
basis. So, we have the strong impression that the asymptotic result of Theorem 4.2 could be
generalized for the spline basis.

Conclusions for ’Bumps’ are very different. Remark that this irregular signal has many sig-
nificant wavelet coefficients at high resolution levels whatever the basis. We have γmin(n) < 0.5
for each value of n. Besides, γmin(n) ≈ 0 when n ≤ 256, which means that all the coefficients
until j = j0 have to be kept to obtain the best estimate. So, the parameter j0 plays an essential
role and has to be well calibrated to ensure that there are no non-negligible wavelet coefficients
for j > j0. Other differences between Figure 2 (or Figure 3) and Figure 4 have to be emphasized.
For ’Bumps’, when n ≥ 512, the minimum of Rn is well localized, there is no plateau anymore
and Rn(1) > 2. Note that Rn(γmin(n)) is larger than 1.

Previous preliminary conclusions show that the ideal choice for γ and the performance of the
thresholding rule highly depend on the decomposition of the signal on the wavelet basis. This study
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has been pursued for six other signals in Section 5.2 of [R11], which allows to draw consistent
conclusions with respect to the issue of calibrating γ from the numerical point of view. To present
them, let us introduce two classes of functions.

The first class is the class of signals that only have negligible coefficients at high levels of
resolution. The wavelet basis is well adapted to the signals of this class that contains ’Haar1’ for
the Haar basis and ’Gauss1’ for the spline basis. For such signals, the estimation problem is close
to a parametric problem. In this case, the performance of the oracle estimate can be achieved
at least for n large enough and (4.5) is true for γ belonging to a large interval that contains the
value γ = 1. These numerical conclusions strengthen and generalize theoretical conclusions of
Section 2.1.

The second class of functions is the class of irregular signals with significant wavelet co-
efficients at high resolution levels. For such signals γmin(n) < 0.8 and there is no “plateau”
phenomenon (in particular, we do not have Rn(1) ' Rn(γmin(n))).

Of course, estimation is easier and performances of our procedure are better when the signal
belongs to the first class. But in practice, it is hard to choose a wavelet system such that the
intensity to be estimated satisfies this property. However, our study allows to use the following
simple rule. If the practitioner has no idea of the ideal wavelet basis to use, he should perform the
thresholding rule with γ = 1 (or γ slightly larger than 1) that leads to convenient results whatever
the class the signal belongs to.

For the Dantzig and Lasso estimates, a small simulation study is also carried out to strengthen
theoretical asymptotic results. Performing our estimation procedure 100 times, we compute the
average risk for several values of the tuning parameter γ and several values of n. This computation
is summarized in Figure 1 of [R12]. Still denoting γmin(n) the value of γ that minimizes the
average risk, we note that 1/2 ≤ γmin(n) ≤ 1 for all values of n, with γmin(n) getting closer to
1 as n increases. Taking γ too small strongly deteriorates the performance while a value close to
1 ensures a risk withing a factor 2 of the optimal risk. The assumption γ > 1 giving a theoretical
control on the quadratic error is thus not too conservative. Following these results, we have taken
γ = 1.01 in our numerical experiments in the previous chapter.

4. Conclusions

Theoretical calibration issues have not been widely investigated yet, although it constitutes a
major concern for practitioners. This topic is a very exciting research field, and, in the wake of
works by Massart and Arlot, can be considered for very various estimation procedures or statistical
models. We can note that this chapter does not address all the theoretical issues raised previously.
Indeed, if Section 3 seems to show that Theorems 4.2 and 4.4 can be extended outside the Haar
basis setting, we are, at this stage, unable to prove it. Furthermore, Section 3 presents some
situations in which the choice γ > 1 is not convenient and the question of the existence of a
theoretical minimal value for γ remains open. More dramatically, we have actually no guarantee
that the shape of the threshold is convenient for such situations. I emphasize that, of course,
calibration issues can be handled only if the form of tuning parameter is suitable. Finally, observe
that if we have pointed out minimal tuning parameters in some cases, the question of the optimal
ones has not been addressed in our theoretical setting. In particular, the problem of the existence
of a relationship analog to the remarkable magic formula derived by Birgé and Massart :

the optimal penalty = 2× the minimal penalty,

valid in very special cases, remains an open problem hard to solve from both theoretical and
practical points of view.





Conclusion

To end this manuscript, I present Laure Sansonnet’s PhD dissertation topic entitled ’Adaptive
estimation of Poisson interactions’. Co-supervised with Patricia Reynaud-Bouret, this topic con-
stitutes a natural extension of some results presented in the previous chapters.

”The subject of this thesis is the study of some non-parametric statistical problems in the frame-
work of a Poisson interactions model. Such models are used for instance in genetics, to study
favored distances between patterns on a strand of DNA. In this setting, we naturally introduce a
so-called reproduction function that allows to quantify the favored positions of the patterns and can
be modeled as the intensity of a Poisson process. Our primary interests are the estimation of this
function and some associated problems on tests. Besides, it is natural to assume that the reproduc-
tion function is localized. Therefore, natural tools to handle these issues are wavelet thresholding.
Such algorithms have proved efficient in a very simple Poisson setting, both from a theoretical and
a practical point of view. The task of Laure Sansonnet will consist in extending these methods
in the setting mentioned above, in which the basic model has different versions. Very few non-
parametric statistical results have been established in this field, where applications are manifold.
This gives the opportunity to Laure to consider various research directions.”
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