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Bayesian nonparametric inference for non-linear Hawkes processes

Co-authors
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Bayesian nonparametric inference for non-linear Hawkes processes

Temporal point processes for event data

We wish to consider a probabilistic framework to model

1. multivariate sequences of temporal events

2. with interactions between past and future occurrences

3. that can be positive (excitation) or negative (inhibition)

Alan G. Hawkes (1971a, 1971b, 1972) introduced a family of
models for self-exciting and mutually exciting point processes. The
”Hawkes process” terminology is due to Brillinger (1975) and
Ogata (1978) and popularized by Daley and Vere-Jones (1988).

In the sequel, we shall consider non-linear versions of Hawkes processes.
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Functional connectivity graph of neurons
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Our goal is to propose a scalable and adaptive statistical procedure to estimate

parameters of the Hawkes model allowing to detect independence or exciting/inhibiting

interactions between pairs of dimensions.
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From linear to non-linear Hawkes processes

A point process N = (Nt)t∈R is a random countable set of points of R or
equivalently a non-decreasing integer-valued process.

The intensity λt of N represents the probability to observe a point at the time t
conditionally on the past before t:

λtdt = P(N has a jump ∈ [t, t + dt] | Ns , s < t)

Examples:
- Poisson processes correspond to the case where (λt)t is not random. And the
Poisson process is homogeneous if, in addition, λt does not depend on t.

- Linear univariate Hawkes process: with ν > 0 and h ≥ 0 supported by R+:

λt = ν +

∫ t−

−∞
h(t − u)dNu = ν +

∑
X∈N, X<t

h(t − X )

ν is called the background rate and h the self-exciting function.
Cluster representation (Hawkes and Oakes (1974)): A univariate linear Hawkes
process can be viewed as a branching process over an homogeneous Poisson process
- Non-linear univariate Hawkes process: with Φ ≥ 0,

λt = Φ

(∫ t−

−∞
h(t − u)dNu

)
= Φ

( ∑
X∈N, X<t

h(t − X )
)
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Multivariate non-linear Hawkes processes

To model interactions between K neurons, we extend the previous expression. For a
neuron k ∈ J1;KK, we model its activity by a point process N(k) whose intensity is

λ
(k)
t = ψk

(
νk +

K∑
`=1

∫ t−

−∞
h`k(t − u)dN(`)(u)

)

= ψk

(
νk +

K∑
`=1

∑
X`∈N(`), X`<t

h`k(t − X`)
)

- ψk : nonnegative and nondecreasing link function
- linear link function: ψk(x) = x but requires h`k ≥ 0 for all `
- example of non-linear link function: ψk(x) = x+ = max(x , 0) (ReLU)

- νk > 0: background rates
- h`k : interaction functions

- If h`k = 0: N(k) is locally independent of N(`)

- If h`k is positive: N(`) excites N(k)

- If h`k is negative: N(`) inhibits N(k)

- If h`k is signed: excitation and inhibition
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Multivariate Hawkes processes

Definition

A K -dimensional continuous time process N = (Nt)t = (N
(1)
t , . . . ,N

(K)
t )t is a multivariate

non-linear Hawkes process if

(i) almost surely, for k 6= `, (N
(k)
t )t and (N

(`)
t )t never jump simultaneously

(ii) for all k, the intensity of (N
(k)
t )t is given by

λ
(k)
t = ψk

(
νk +

K∑
`=1

∫ t−

−∞
h`k(t − u)dN(`)(u)

)
.

Existence and uniqueness of a stationary distribution for N established by Brémaud
and Massoulié (1996, 2001).

See also Delattre, Fournier and Hoffmann (2016) and Costa, Graham, Marsalle and
Tran (2020) for other relevant probabilistic results.

Statistical Goal: Estimation of f = (νk , (h`k)`∈J1;KK)k∈J1;KK based on observations of

N = (N(k))k∈J1;KK on [0,T ] with intensity process (λ(k))k∈J1;KK.
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Nonlinear Hawkes processes: State of the art and our
contribution

Hawkes (2018) claimed : ”Some function of the intensity gives us a non-linear Hawkes
process. These are more difficult to deal with, and therefore not frequently used.”

State of the art for non-linear Hawkes processes:

- Asymptotic analysis of second order statistics (cross-covariance): Chen, Shojaie,
Shea-Brown and Witten (2019) extended by Cai, Zhang and Guan (2022)

- Parametric approaches for exponential interaction functions: Lemonnier and Vayatis
(2014), Bonnet, Martinez Herrera and Sangnier (2021, 2023) and Deutsch and
Ross (2022).

- Variational Bayes algorithms: For very specific link functions, Zhou, Kong, Zhang,
Feng and Zhu (2021) and Malem-Shinitski, Ojeda and Opper (2021) developed
efficient Bayesian algorithms based on mean-field approximations and augmented
likelihood. However, these methods do not consider the high-dimensional
nonparametric setting.

Our contribution: Scalable nonparametric Bayesian estimation in the multivariate setting

for the non-linear case
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Inference for non-linear Hawkes models

We observe N = (N(k))k∈J1;KK on [0,T ] with intensity process (λ(k))k∈J1;KK given by

λ
(k)
t = ψ

(
νk +

K∑
`=1

∫ t−

−∞
h`k(t − u)dN(`)(u)

)
where ψ : R 7−→ R+ is known and non-decreasing

Assumptions:
- the νk ’s are positive
- the h`k ’s are bounded
- the support of the h`k ’s is included into [0,A], with A <∞ known
We do not assume that the h`k ’s are non-negative, so inhibition is possible.

Statistical goals: Bayesian estimation of

f = (νk , (h`k)`∈J1;KK)k∈J1;KK

with in mind T → +∞
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Stationarity

Intensity process of N = (N(k))k∈J1;KK:

λ
(k)
t = ψ

(
νk +

K∑
`=1

∫ t−

−∞
h`k(t − u)dN(`)(u)

)
= ψ

(
νk +

K∑
`=1

∑
X`∈N(`)

X`<t

h`k(t − X`)
)

with ψ : R 7−→ R+ known and non-decreasing. Extension of results by Brémaud and
Massoulié (1996, 2001):

Proposition

If one of the following conditions is satisfied:

(S1) ψ is bounded: ∃Λ > 0, ∀x ∈ R, ψ(x) ≤ Λ

(S2) ψ is L-Lipschitz, with L > 0 and ‖S+‖, the spectral norm of the matrix S+ with
entries S+

`k = L||h+
`k ||1 satisfies ‖S+‖ < 1

then there exists a unique stationary version of the process N with finite average

Notation:
h+
`k(x) = max(h`k(x), 0), h−`k(x) = max(−h`k(x), 0)
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Typical link functions
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Identifiability

Intensity process of N = (N(k))k∈J1;KK:

λ
(k)
t = ψ

(
νk +

K∑
`=1

∫ t−

−∞
h`k(t − u)dN(`)(u)

)
= ψ

(
νk +

K∑
`=1

∑
X`∈N(`)

X`<t

h`k(t − X`)
)

with ψ : R 7−→ R+ known, non-decreasing and L-Lipschitz.

Proposition

If ψ is bijective on an open interval I so that for any k

[νk −max
`
‖h−`k‖∞; νk + max

`
‖h+
`k‖∞] ⊂ I ,

then the distribution of N is identifiable for T large enough.

Remark: Identifiability is satisfied
- for logit ψ(x) = log(1 + ex) and sigmoid ψ(x) = (1 + e−x)−1 link functions
- for the ReLU function, ψ(x) = max(x , 0), we assume for any k,

max
`
‖h−`k‖∞ < νk

- for the clipped exponential function, ψ(x) = min(ex ,Λ), we assume for any k,

max
`
‖h+
`k‖∞ + νk < log Λ
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Bayesian inference framework

We observe over a time window [−A,T ] a stationary K -dimensional Hawkes
process N with unknown parameter f0 = (ν0, h0) = (ν0

k , (h
0
`k)`∈J1;KK)k∈J1;KK.

The log-likelihood for a parameter f = (ν, h) = (νk , (h`k)`∈J1;KK)k∈J1;KK is

LT (f ) :=
K∑

k=1

Lk
T (f ), Lk

T (f ) =

∫ T

0

log(λk
t (f ))dNk

t −
∫ T

0

λk
t (f )dt.

Let Π a prior distribution on the parameter space F . The posterior distribution is:

Π(B|N) =

∫
B

exp(LT (f ))dΠ(f )∫
F exp(LT (f ))dΠ(f )

, B ⊂ F .

Remark: The posterior distribution is doubly intractable.

Questions:
- When T → +∞, does Π(·|N) concentrate around f0?
- If yes, at which rate?

We shall consider the L1-loss:

‖f − f0‖1 := ‖ν − ν0‖`1 +
K∑

k=1

K∑
`=1

‖h`k − h0
`k‖1
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Posterior concentration rates

We assume previous conditions to obtain stationarity and identifiability are satisfied.

Theorem

Assume
inf
x
ψ(x) > 0. (1)

Let εT = o(1) be a positive sequence verifying log3 T = O(T ε2
T ). We set for B > 0

B(εT ,B) =
{
f ∈ F ; ‖ν − ν0‖`∞ ≤ εT , max

`,k
‖h`k − h0

`k‖∞ ≤ εT , max
`,k
‖h`k‖∞ < B

}
.

Let Π be a prior distribution on F . We assume that for T large enough:

- ∃ c1 > 0 s.t. Π(B(εT ,B)) ≥ e−c1Tε
2
T

- ∃FT ⊂ F , ζ0 > 0 and x0 > 0 such that

Π(F c
T ) = o(e−c1Tε

2
T ), logN (ζ0εT ,FT , ‖ · ‖1) ≤ x0T ε

2
T

Then, for M > 0 large enough, we have

E0

[
Π
(
‖f − f0‖1 > MεT

∣∣N)] = o(1).
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Posterior concentration rates

Assumption infx ψ(x) = 0 is strong.

The result of the theorem holds by replacing εT with εT
√

logT if we only assume
that ψ(x) > 0 for any x ∈ R, and

√
ψ and log(ψ) are Lipschitz functions. This is

satisfied by logit, sigmoid and clipped exponential functions.

The result of the theorem holds by replacing εT with εT logT if

ψ(x) = max(x , 0)

and if we further assume that

lim sup
T→+∞

1

T
E0

[∫ T

0

1{λ(k)
t (f0)>0}

λ
(k)
t (f0)

dt

]
< +∞, ∀k ∈ J1;KK.

This is satisfied if for instance for any ` h0
`k is an histogram and for all t, h0

`k(t) ∈ Q
The case

ψ(x) = θ + max(x , 0), x ∈ R,
with θ unknown and positive can be dealt with. Under the same assumptions of the
theorem, we also achieve the rate εT .
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Spike and slab prior distribution

We define a prior distribution on f = (νk , (h`k)`∈J1;KK)k∈J1;KK of the form

dΠ(f ) = dΠh(h)
∏
k

dΠν(νk),

with

1. Πν having a positive and continuous density on R∗+, e.g. a Gamma distribution.

2. For h = (h`k)`,k , we write

h`k = δ`k h̄`k , δ`k ∈ {0, 1}, δ`k 6= 0 ⇐⇒ h̄`k 6= 0

so that δ = (δ`k)`k is the connectivity graph. We then consider

(a) δ ∼ Πδ, where Πδ is a prior on {0, 1}K
2

, e.g. δ`k
i.i.d.∼ Ber(p)

(b) Given δ, we use a truncated distribution on h|δ of the form

dΠh(h|δ) ∝
(∏
`,k

dΠ̃h|δ(h`k)
)
× 1||S+||<1(h),

with

Π̃h|δ(h`k) = δ`k Π̃h(h̄`k) + (1− δ`k)δ{0}(h̄`k),

and Π̃h is a nonparametric prior, e.g. a random histogram, or a spline prior
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Minimax rate on Hölder classes

Corollary

Assume all interaction functions are Hölderian functions:

h0
`k ∈ H(β, L0), 1 ≤ `, k ≤ K ,

with β > 0 and L0 > 0. Then, under the previous prior,

E0

[
Π
(
‖f − f0‖1 & εT

∣∣N)] = o(1),

with
εT = T−

β
2β+1 (logT )�,

which is optimal up to the logarithmic term. Furthermore, with

(ν̂, ĥ) = EΠ[f |N] =

∫
F
fdΠ(f |N),

f̂ converging to f0 at the rate εT for the L1-norm:

P0

(
‖f̂ − f0‖1 & εT

)
= o(1).
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Bayesian nonparametric inference for non-linear Hawkes processes

Numerical results - Histogram case

We sample one observation of a Hawkes process with K neurons, link function ψ
and parameter f0 = (ν0, h0) on [0,T ]. We take A = 0.1.

We assume h0 ∈ HD
histo for some D ≥ 1, with

HD
histo =

{
h = (h`k)`,k ; h`k(x) =

2D∑
j=1

w j
`kej(x), x ∈ [0,A]

}
, ej =

2D

A
1[ A(j−1)

2D
, Aj

2D

)

Figure: True graph: 2K − 1 non-zero
interaction functions. Scenario 1
corresponds to self-excitation and
Scenario 2 corresponds to
self-inhibition

Figure: True graph for different
dimensions: 2K − 1 non-zero
interaction functions for
K ∈ {2, 4, 8, 16, 32, 64} (correspond
to white squares)
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Variational Bayesian estimation

Difficulty of computing the nonparametric posterior distribution since

Π(B|N) =

∫
B
eLT (f )dΠ(f )∫

F eLT (f )dΠ(f )
eLT (f ) =

K∏
k=1

[
e−

∫ T
0 λk

t (f )dt
∏

Xk∈N(k)

Xk≤T

λ
(k)
Xk

(f )
]

and λ
(k)
t (f ) = ψ

(
νk +

∑K
`=1

∑
X`∈N(`)

X`<t

h`k(t − X`)
)

Instead, we approximate the posterior distribution and use Variational Bayes
methods. Let V be an approximating family of distributions on F .

Q̂ := arg min
Q∈V

KL (Q||Π(.|N)) , KL(Q||Q ′) :=

{ ∫
log
(

dQ
dQ′

)
dQ if Q � Q ′

+∞ otherwise

Standard assumptions + minQ∈V KL(Q||Π(.|N)) = O(T ε2
T ) gives

E0

[
Q̂ (||f − f0||1 > εT )

]
= o(1)

A common choice of variational class is a mean-field family:

VMF =

{
Q : dQ(ϑ) =

D∏
d=1

dQd(ϑd)

}
.
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Augmented mean-field variational inference

The log-likelihood function of the non-linear Hawkes model is augmented with some
latent variable z ∈ Z, with Z the latent parameter space. We denote LA

T (f , z) the
augmented log-likelihood and define the augmented posterior distribution as

ΠA(B|N) =

∫
B
eL

A
T (f ,z)d(Π(f )× PA(z))∫

F×Z eL
A
T

(f ,z)d(Π(f )× PA(z))
, B ⊂ F ×Z,

where PA is a prior distribution on z and we consider

VAMF =
{
Q : F × Z → [0, 1]; Q(f , z) = Q1(f )Q2(z)

}
.

The augmented mean-field variational posterior is defined as

Q̂AMF (f , z) := arg min
Q∈VAMF

KL (Q(f , z)||ΠA(f , z |N)) =: Q̂1(f )Q̂2(z)

and verifies

Q̂1(f ) ∝ exp
(
EQ̂2

[log p(f , z ,N)]
)
, Q̂2(z) ∝ exp

(
EQ̂1

[log p(f , z ,N)]
)
,

where p(f , z ,N) is the joint density of the parameter, the latent variable, and the
observations ⇒ Iterative algorithm that updates each factor alternatively
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Adaptive variational Bayes algorithm in the sigmoid model

We consider the sigmoid case

ψ(x) = (1 + e−x)−1

and follow the augmentation strategy proposed by Zhou, Kong, Zhang, Feng and
Zhu (2021) and Malem-Shinitski, Ojeda and Opper (2021) based on a Gaussian
representation of ψ in terms of Pólya-Gamma variables.

For certain families of Gaussian priors, Q̂1 and Q̂2 are conjugate to the priors, which
allows to design iterative algorithms with closed-forms updates.

More precisely, in the following parametrization for the prior model:

dΠ(f ) = dΠh(h)
∏
k

dΠν(νk),

we write

h`k = δ`k h̄`k , δ`k ∈ {0, 1}, δ`k 6= 0 ⇐⇒ h̄`k 6= 0,

and
h̄`k(x) =

∑
j

w j
`kej(x), w j

`k ∼ N (0, σ2)

For fixed δ, the previous strategy is tractable.
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Augmented mean-field variational for the sigmoid case

Strategy proposed by Zhou, Kong, Zhang, Feng and Zhu (2021) and
Malem-Shinitski, Ojeda and Opper (2021) for the sigmoid case

ψ(x) = (1 + e−x)−1.

1. If pPG is the Polya-Gamma density

ψ(x) = Eω∼pPG

[
eg(ω,x)

]
, g(ω, x) = −ωx

2

2
+

x

2
− log 2

2. Campbell’s theorem: For a Poisson point process N̄ on a space X with
intensity measure Λ : X → R+, and for any function ζ : X → R

exp

(∫
(eζ(x) − 1)Λ(dx)

)
= E

[∏
x∈N̄

eζ(x)

]
.

Using these ideas, we obtain the doubly augmented log-likelihood:

LA
T (f , ω, Z̄ ;N) =

∑
k∈[K ]

{ ∑
i∈[Nk ]

[
g(ωk

i , λ̃T k
i

(f )) + log pPG (ωk
i ; 1, 0)

]

+
∑
j∈[N̄k ]

[
g(ω̄k

j ,−λ̃T̄j
(f )) + log pPG (ω̄k

j ; 1, 0)
]}

.
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Model selection

How to estimate δ?

Model selection for Variational Bayes: Compute VB posterior Q̂δ and

ELBO(Q̂δ) = EQ̂δ

[
log

p(f , z ,N)

Q̂δ(f , z)

]

Choose
δ̂ = argmaxδELBO(Q̂δ)

With δ = (δ`k)1≤`,k≤K ∈ {0, 1}K
2

, we have 2K2

models: intractable as soon as K is
moderately large.

We propose the following alternative:

1. We apply the previous strategy with δ`k = 1 for any `, k.
2. We order the obtained L1-norm of the interaction functions ‖ĥ`k‖1

3. We determine the largest jump providing a threshold η and set

δ̂`k = 0 ⇐⇒ ‖ĥ`k‖1 ≤ η.

4. We apply the previous strategy with δ̂.
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Numerical experiments

We investigate the behavior of our procedure with respect to:
- the dimension K
- the graph sparsity
- model mis-specification
- the support of interaction functions: A
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Numerical performances

Figure: True (sparse) graph: 2K − 1 non-zero
interaction functions.
- Green edges: excitation
- Red edges: self-excitation (scenario 1) or
self-inhibation (scenario 2)

K Scenario # observations

2
Self-excitation (T = 500) 5 680
Self-inhibition (T = 700) 4 800

4
Self-excitation (T = 500) 11 338
Self-inhibition T = 700) 9 895

8
Self-excitation (T = 500) 22 514
Self-inhibition T = 700) 19 746

16
Self-excitation (T = 500) 51 246
Self-inhibition T = 700) 37 166

32
Self-excitation (T = 500) 96 803
Self-inhibition T = 700) 76 106

64
Self-excitation (T = 200) 117 862
Self-inhibition (T = 300) 133 200
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Numerical performances

Figure: Estimated L1-norms of interaction
functions plotted in increasing order in the
Self-excitation scenario for
K ∈ {2, 4, 8, 16, 32, 64}

Figure: Heatmaps of the entries of the matrix
(||h0

`k ||1)`,k (top) and (E[||h0
`k − h`k ||1])`,k

(bottom) in the Self-excitation scenario.
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Numerical performances

Figure: Estimated L1-norms of interaction
functions plotted in increasing order in the
Self-inhibition scenario for
K ∈ {2, 4, 8, 16, 32, 64}

Figure: Heatmaps of the entries of the matrix
(||h0

`k ||1)`,k (left) and (E[||h0
`k − h`k ||1])`,k

(right) in the Self-inhibition scenario.
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Numerical performances

K Scenario δ̂ = δ0 Risk

2
Self-excitation Yes 0.79
Self-inhibition Yes 0.35

4
Self-excitation Yes 1.01
Self-inhibition Yes 0.92

8
Self-excitation Yes 2.10
Self-inhibition Yes 2.12

16
Self-excitation Yes 5.77
Self-inhibition Yes 4.48

32
Self-excitation Yes 10.57
Self-inhibition Yes 8.53

64
Self-excitation Yes 23.74
Self-inhibition Yes 18.33

Table: Performance of Algorithm. We report the
L1-risk and if the model with largest marginal
probability corresponds to the true one.
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Figure: Computational times of our two-step
mean-field variational algorithm in the Excitation
(exc) and Self-inhibition (inh) scenarios for
K = 2, 4, 8, 16, 32, 64.

‖f − f0‖1 := ‖ν − ν0‖`1
+

K∑
k=1

K∑
`=1

‖h`k − h0
`k‖1
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Numerical performances

Figure: Mode variational posterior
distributions on ν1 (left column) and
interaction functions h11 and h21 (second
and third columns) in the excitation
scenario.

Figure: Mode variational posterior
distributions on ν1 (left column) and
interaction functions h11 and h21 (second
and third columns) in the self-inhibition
scenario.
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Numerical performances - Graph sparsity

We test the performances of our procedure with respect to the graph sparsity (K = 10).

Scenario Graph # Edges # Events # Excursions

Self-excitation
Sparse 2K − 1 24638 431

Random 3K − 1 27475 398
Dense 5K − 6 90788 2

Self-inhibition
Sparse 2K − 1 22683 911

Random 3K − 1 24031 884
Dense 5K − 6 35291 547
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Numerical performances - Graph sparsity

Figure: Estimated L1-norms of interaction
functions plotted in increasing order

Scenario Graph Graph accuracy Risk

Self-Exc.
Sparse 1.00 2.91

Random 1.00 4.00
Dense 0.5 17.67

Self-Inh.
Sparse 1.00 2.62

Random 0.99 3.44
Dense 1.00 2.67
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Numerical performances - Mis-specification

We set T = 300 and K = 10 and construct synthetic mis-specified data by simulating a
Hawkes process where the link function ψ is chosen as:

- ReLU: ψ(x) = max(x , 0);

- Logit: ψ(x) = log(1 + ex);

- Mis-specified sigmoid, with unknown multiplicative parameter.

Figure: Estimated L1-norms of interaction functions plotted in
increasing order in the Self-excitation and Self-inhibition scenarios

Scenario Link Graph acc.

Self-exc.
ReLU 1.00

Softplus 1.00
MS sigmoid 1.00

Self-inh.
ReLU 1.00

Softplus 1.00
MS sigmoid 0.99

The gaps allow to estimate well the connectivity graph but the other parameters cannot

be well estimated. Nonetheless, the sign of the interaction functions is well recovered in

all settings.
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Numerical performances - Robustness with respect to A

We test the robustness of our variational method to mis-specification of the memory

parameter A. We generate data from the sigmoid Hawkes process with K = 10 and with

ground-truth parameter A0 = 0.1, T = 500 and apply our variational method with

A ∈ {0.05, 0.1, 0.2, 0.4}.

Figure: Estimated L1-norms of interaction functions plotted
in increasing order in the Self-excitation and Self-inhibition
scenarios

The graph is well estimated with the gap heuristics.
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Thank you for your attention.
Questions and remarks are welcomed!
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