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Abstract
We consider a stochastic individual-based model in con-
tinuous time to describe a size-structured population for
cell divisions. This model is motivated by the detection of
cellular aging in biology. We here address the problem of
nonparametric estimation of the kernel ruling the divi-
sions based on the eigenvalue problem related to the
asymptotic behavior in large population. This inverse
problem involves a multiplicative deconvolution opera-
tor. Using Fourier techniques we derive a nonparametric
estimator whose consistency is studied. The main diffi-
culty comes from the nonstandard equations connecting
the Fourier transforms of the kernel and the parameters
of the model. A numerical study is carried out and we
pay special attention to the derivation of bandwidths by
using resampling.

K E Y W O R D S

cell division, deconvolution, growth-fragmentation, kernel rule,
nonparametric estimation

1 INTRODUCTION
We consider a population model with size structure in continuous time, where individuals are
cells which grow continuously and undergo binary divisions after random exponential times at
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rate R> 0. When a cell of size x divides, it dies and is replaced by two daughter cells of sizes 𝛾x
and (1 − 𝛾)x, where 𝛾 is assumed here to be a random variable drawn according to a distribution
with a density with respect to the Lebesgue measure on [0, 1]: Γ(d𝛾) = h(𝛾)d𝛾 . Between divisions,
the sizes of the cells grow with speed 𝛼 > 0. Because the two daughter cells are exchangeable,
we assume that h is a symmetric density with respect to 𝛾 = 1∕2. When h is piked at 1/2, then
both daughters tend to have similar sizes, that is, the half of their mother’s size. The more
h puts weight in the neighborhood of 0 and 1, the more asymmetric the divisions are. They
give birth to one small daughter and one big daughter with size close to its mother’s. In this
article, we are interested in the estimation of this function h in the case of large populations
where the division tree is not observed. We stick to constant rate R and speed 𝛼 for the sake
of simplicity.

Our biological motivation for studying this model comes from the understanding of aging
phenomena associated with cell division. When a cell that contains toxic content divides asym-
metrically, the daughter that contains less toxicity can be viewed as younger in the sense that
it has a higher fitness. This toxic content could be detrimental cellular components, such as
proteins, extrachromosomal rDNA circles or possibly damaged mitochondria, etc. The concen-
tration of toxic content, that is an increasing function of time during the cell’s life, can be
seen as a “size.” Asymmetry during the divisions impacts the distributions of toxicity among
cells and the shapes of trees describing the successive generations of cells in continuous
time. Statistical evidence of asymmetrical divisions and biological consequences are described
in Stewart et al. (2005). See also Ackermann et al. (2003), Aguilaniu et al. (2003), Banks
et al. (2011), Robert et al. (2014), Doumic et al. (2019), or Moseley (2013) for discussions on
these topics.

The population can be described by a stochastic individual-based (particle) model, where
the population at time t is represented by a random measure that is the sum of Dirac masses
on R+ weighting the cells’ sizes. Stochastic continuous time individual-based models of divid-
ing cell populations with size-structure have made the subject of an abundant literature starting
from Athreya and Ney (2012), Harris (1963), Jagers (1969) etc. until recent years (e.g., Bansaye
& Tran, 2011; Bansaye et al., 2011; Cloez, 2011). Similar models in discrete time should also be
mentioned (e.g., Bansaye, 2008; Bansaye et al., 2013; Bercu et al., 2009; Delmas & Marsalle, 2010;
Guyon, 2007; Penda, 2015). For the individual-based model considered in this work, exact numer-
ical simulations are possible. This model offers a convenient framework for statistics (e.g.,
Hoang, 2016, 2017; Hoffmann & Olivier, 2016). It also connects to the partial differential equations
(PDEs) that are usually used in population dynamics (see Bansaye & Méléard, 2015).

We start from an initial population where the individuals are labeled in an exchangeable way
by integers. The population of cells descending from these initial individuals can be seen as the
forest of trees rooted in these initial individuals. We use the Ulam–Harris–Neveu notation to label
the cells appearing in the population: if the mother has a label i ∈  = ∪𝓁≥1N × {0, 1}𝓁−1, then the
two daughters have labels i0 and i1 obtained by concatenating the mother’s label with integers 0
or 1.

The population at time t is described by the point measure:

ZK
t = 1

K
∑
i∈V K

t

𝛿xi(t), (1)

where 𝛿x is the Dirac measure at x, V K
t is the set of labels of living individuals at time

t and K is a renormalizing parameter corresponding to the order of the initial population
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size. In what follows, the parameter K will tend to +∞. The individual with label i ∈ V K
t is

represented by a Dirac mass weighting the size xi(t) of this individual at time t. Notice that
if we follow a lineage starting from a cell at time 0 and choosing a daughter at random at
each division, we recover an ergodic process with multiplicative jumps (see Hoang (2016),
section 2.2.2) implying that the cell sizes are controlled over time, whatever the values
of 𝛼 and R.

When the complete division forest is observed, we can associate to each division an indepen-
dent random variable with distribution h: if Ti is the division time of the cell i, then, we define
Γi = xi0(Ti)∕xi(Ti−), where xi(Ti−) = limt→Ti,t<Ti xi(t). Estimating the function h from such a sam-
ple has been considered in Hoang (2016, 2017). Here, we focus on the situation when the division
tree is not completely observed. Following ideas from Doumic et al. (2012, 2015, 2017) or Bourg-
eron et al. (2014) whose aim was to recover the division rate R when the latter depends on the size,
our strategy is to consider the PDE approximating the evolution of the measure-valued process
(ZK

t )t≥0 when K is large. The long-time behavior of the solution of this PDE can be studied thanks
to an eigenvalue problem. This yields a stationary distribution N(x)dx from which we can assume
that we have drawn a sample of n i.i.d. random variables X1, … , Xn. Along this paper, we do not
take into account the approximation errors related to the asymptotic setting K →+∞ (the fluc-
tuations associated to the convergence of ZK could be established following Bansaye et al., 2011,
Tran, 2014) nor the approximation by the stationary solution. The latter assumption is discussed
in the next section. The function h is then solution to an intricate inverse problem involving a
multiplicative convolution operator. We use deconvolution techniques inspired by those used by
(Comte & Lacour, 2011; Comte & Lacour, 2013), Comte et al. (2014), Neumann (1997) to construct
and study a kernel estimator of h. Changing variables and taking Fourier transforms lead us to
an equation where the regularities of the different terms are strongly related to the regularity of
the unknown function h to be estimated. In the setting of a large population close to its stationary
state, we define an original estimator of h. The consistency of the estimator is studied, and simula-
tions are performed. In particular, we discuss and illustrate numerically the bandwidth selection
rules for the kernel estimator.

The paper is organized as follows. Section 2 describes the miscroscopic model. Section 3
tackles the problem of estimating the division kernel h. Section 4 presents the numer-
ical performances of our estimation procedure. Eventually, all the proofs are gathered
in Appendix.

1.1 Notation

We denote by F(R+) the space of finite measures on R+ endowed with the weak conver-
gence topology. For 𝜇 ∈ F(R+) and for f ∈ b(R+,R) a bounded continuous real function on
R+, ⟨𝜇, f ⟩ = ∫

R+
fd𝜇 is the integral of f with respect to 𝜇. We denote by D(R+,F(R+)) the

space of càdlàg functions from R+ to F(R+) embedded with the Skorokhod topology (e.g.,
Billingsley, 1968).

The set of integrable (resp. bounded) nonnegative functions with respect to the Lebesgue
measure on R+ is denoted by L1(R+,R+) (resp. L∞(R+,R+)).

The Fourier transform of any integrable function f is defined by

f ∗(𝜉) = ∫
+∞

−∞
f (x)eix𝜉dx, 𝜉 ∈ R.
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2 MICROSCOPIC MODEL

Let (Ω, ,P) be a probability space, let (ZK
0 )K∈N∗ be a sequence of random point measures on

R+ of the form (1) that converges to 𝜉0 ∈ F(R+) in distribution and for the weak convergence
topology on F(R+). We also assume that

sup
K∈N∗

E(⟨ZK
0 , 1⟩2) < +∞. (2)

For each K ∈ N∗ and initial condition ZK
0 as above, we can represent the measure-valued pro-

cess (ZK
t )t≥0 as the unique solution of a stochastic differential equation (SDE) driven by a Poisson

point measure that satisfies the following martingale problem.

Proposition 1. For a given K ∈ N∗ and a test function f : (x, s) → f (x, s)= f s(x)∈ 1,1
b (R+ × R+,R),

the process (ZK
t )t≥0 satisfies:

⟨ZK
t , ft⟩ = ⟨ZK

0 , f0⟩ + ∫
t

0 ∫
R+

(𝜕sfs(x) + 𝛼𝜕xfs(x)

+ R∫
1

0
(fs(𝛾x) + fs((1 − 𝛾)x) − fs(x)) h(𝛾)d𝛾)ZK

s (dx)ds + MK,f
t , (3)

where (MK,f
t )t≥0 is a square integrable martingale started at 0 with bracket:

⟨MK,f ⟩t = 1
K ∫

t

0 ∫
R+

∫
1

0
R(fs(𝛾x) + fs((1 − 𝛾)x) − fs(x))2h(𝛾)d𝛾ZK

s (dx)ds. (4)

The above equations in Proposition 1 show the evolution of a microscopic random system of
particles. The drift coefficient (r.h.s. in the first line of (3)) indicates that each particle grows with
speed 𝛼. When a particle of size x divides, it is replaced by two daughters of sizes 𝛾x and (1 − 𝛾)x,
where 𝛾 is drawn in the probability distribution with density h: this corresponds to the second line
of (3). When the function h is piked at 1/2, the daughter cells have almost equal sizes at division,
whereas when h has large variance, it is likely to have an asymmetrical division.

The detailed construction of the SDE satisfied by (ZK
t )t≥0 is given in Appendix A, as well as a

sketch of proofs for the results of this section. The martingale property and quadratic variation are
direct consequences of stochastic calculus with the SDE. The variance of the martingale part MK, f

is of order 1/K and we heuristically expect a deterministic limit when K → +∞. The following
theorem states the limit of (ZK)K∈N∗ when K → +∞.

Theorem 1. If (ZK
0 )K∈N∗ converges in distribution to the deterministic measure 𝜉0 ∈ F(R+) as

K → +∞ then (ZK)K∈N∗ converges in distribution in D(R+,F(R+)) as K → +∞ to the unique
solution 𝜉 ∈ (R+,F(R+)) of

⟨𝜉t, ft⟩ = ⟨𝜉0, f0⟩ + ∫
t

0 ∫
R+(

𝜕sfs(x) + 𝛼𝜕xfs(x) + R∫
1

0
(fs(𝛾x) + fs((1 − 𝛾)x) − fs(x)) h(𝛾)d𝛾

)
𝜉s(dx)ds, (5)

where ft(x) ∈ 1,1
b (R+ × R+,R) is a test function.
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When the limiting initial condition 𝜉0 admits a smooth density with respect to the Lebesgue
measure, the following proposition allows us to connect the measure-valued processes with
the growth-fragmentation integro-differential equations usually introduced for cell divisions, for
example, Perthame (2007) and Doumic et al. (2009).

Proposition 2. If 𝜉0 has a density n0 ∈ 1
b (R+,R+) with respect to the Lebesgue measure on R+,

then ∀t ∈ R+, 𝜉t(dx) admits a density n(t, x) that is the unique solution of the PDE:

𝜕tn(t, x) + 𝛼𝜕xn(t, x) + Rn(t, x) = 2R∫
∞

0
n(t, y)h

(
x
y

)
dy
y
, (6)

where h(x/y)= 0 if y< x (since h is supported on [0, 1]).

See Appendix A and Hoang (2016) (proposition 3.2.10) for the proof of this result. Besides
the drift 𝛼 associated with the continuous growth of individuals in time, the PDE (6) involves
the death term Rn(t, x) and the birth term 2R ∫ ∞

0 n(t, y)h(x∕y)dy∕y. These terms highlight that a
particle disappearing at x is replaced by two particles whose sizes are fractions of x. The division
is ruled by the density function h and as explained in the introduction, we are interested in the
estimation of this density function.

The long time behavior of the solution of PDE (6) is well-known and presented in the following
proposition. In this work, we shall base our statistical estimation of h on the long time limit of
the PDE. Notice that by change of variable in the integral, the right hand side of Equation (6) can
also be rewritten as: 2R ∫ 1

0 n(t, x∕u)h(u) du∕u. We observe that a convenient assumption on the
density h is the following:

∫
1

0
h(u)du

u
< +∞. (7)

In this paper, a stronger assumption will be needed to obtain the consistency of our estimators.

Proposition 3. Assume (7). Then, there exists a unique probability density N ∈ L1(R+,R+) solving
the following system:

⎧⎪⎨⎪⎩
𝛼𝜕xN(x) + 2R N(x) = 2R ∫ ∞

0 N(y)h
(

x
y

)
dy
y
, x ≥ 0,

N(0) = 0, ∫ N(x)dx = 1, N(x) ≥ 0.
(8)

With 𝜌 = ||n0||1 = ∫ ∞
0 n0(u)du (where n0 has been introduced in Proposition 2), we have:

∫
∞

0
|n(t, x)e−Rt − 𝜌N(x)|dx ≤ e−Rt

(||g0||1 + 6R
𝛼
||G0||1) , (9)

where g0(x) = n0(x) − 𝜌N(x), and G0(x) = ∫ x
0 g0(y)dy.

Proposition 3 shows that the renormalized population density 𝜌−1n(t, x)e−Rt converges expo-
nentially fast, when the time t tends to infinity, to a stationary density N(x) that is obtained by
solving an eigenvalue problem. The proof of Proposition 3 is given in Appendix A. Notice that we
do not have such a strong result if the division rate is not a constant. Another remark is that the
right-hand side of (8) is a multiplicative convolution between y →N(y)/y and h. Multiplicative
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convolutions appear naturally in problems where independent random variables are multiplied
(here the size of the cell undergoing division and the random variable of density h ruling how
the cell breaks into two daughters). Estimating h can thus be seen as performing a multiplicative
deconvolution. We explain in the next section the building of our statistical estimation procedure
based on the results of this proposition.

3 ESTIMATION OF THE DIVISION KERNEL

3.1 Estimation procedure and assumptions

3.1.1 Principle

We consider the problem of estimating the density h in the case of incomplete data of divisions.
As explained previously, we shall construct an estimator of h based on the stationary size distri-
bution which results from the study of the large population limit n(t, x). The long time behavior
provides us an observation scheme for the estimation of the density h in the statistical approach:
since e−Rtn(t, x) converges exponentially fast to N(x) (up to a constant) as t increases by Propo-
sition 3, when we pick n cells randomly in the population at a large time t, we can assume that
we have n i.i.d observations X1, X2, … , Xn with distribution N(x)dx. We estimate h from the data
X1, … , Xn and Equation (8). This experimental scheme has also been used in Doumic et al. (2012)
and Bourgeron et al. (2014).

Starting with Equation (8), the multiplicative convolution ∫ ∞
0 N(y)h

(
x
y

)
dy
y

leads to more
intricate technical problems than for the classical additive convolution. So, we apply a loga-
rithmic change of variables to transform the multiplicative convolution in the right hand side
of (8) into an additive one. Then, we classically apply the Fourier transform and work with
products of functions in the Fourier domain. We end up with a deconvolution problem which
is more involved and quite different when compared with classical deconvolution problems
(see Remark 2).

Let us now describe our estimation procedure in details. By using the change of variable x = eu

for x> 0 and u ∈ R, we introduce the functions

g(u) = euh(eu),

and

M(u) = euN(eu), D(u) = 𝜕u (u → N(eu)) = euN′(eu).

Equation (8) becomes

𝛼D(u) + 2R M(u) = 2R (M ⋆ g) (u), (10)

where ⋆ denotes the standard convolution product, so

(M ⋆ g)(u) = ∫ M(u − x)g(x)dx, u ∈ R.

We have h(𝛾) = 𝛾−1g
(
log(𝛾)
)

for 𝛾 ∈ (0, 1). Then, the estimator of h will be obtained from the
estimator of g once we have obtained estimators for unknown functions M and D.
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3.1.2 Assumptions on h

First, assumptions on the density h are needed. Of course, since h is the density of a symmetric
probability distribution on [0, 1], it satisfies ∫ h(x)dx = 1 and ∫ xh(x)dx = 1∕2. For the proofs, we
will also need the following condition.

Assumption 1. The function h is of class 𝛽 on [0, 1], for some 𝛽 > 3: the function h is [𝛽] times
differentiable (where [𝛽] is the largest integer smaller than 𝛽) and the derivative of order [𝛽] is
𝛽 − [𝛽] Hölder continuous.

Moreover, we assume that there exists a positive integer 𝜈0 ≥ 2 such that for all k ∈ {0, … , 𝜈0},
h(k)(0)= 0.

Under Assumption 1, h can take positive values only on (0, 1), and the function g introduced
previously is supported on R−.

Remark 1. Assumption 1 implies (7). For t ∈ (0, 1), by Taylor’s formula, there exists indeed 𝜃 ∈
(0, 1) such that:

0 ≤ h(t)
t

=
[𝛽]−1∑

k=𝜈0+1

1
k!

h(k)(0)tk−1 + h[𝛽](𝜃t)
[𝛽]!

t[𝛽]−1,

which is integrable in the neighborhood of 0 (the sum in the right hand side being 0 if 𝜈0 + 1 >
[𝛽] − 1.

This remark shows that, under Assumption 1, the results of Proposition 3 are hence available
to justify our approximation to start with a sample of i.i.d. random variables with density N(x).
We also have the following proposition that will be essential to show consistency and derive rates
of convergence (the proof is in Appendix B):

Proposition 4. Under Assumption 1:
(i) the first eigenvector N of the eigenproblem (8) satisfies

∫
+∞

0
x−𝜈N(x)dx < +∞ for 𝜈 ∈ {1, … , (𝜈0 + 2) ∧ ([𝛽] + 1)}. (11)

(ii) M is of class [𝛽] and its Fourier transform M* satisfies:

lim sup|𝜉|→+∞
{|𝜉|[𝛽]∧(𝜈0+3) × |M∗(𝜉)|} < +∞.

(iii) The extension of M∗(𝜉) to the complex half-plane {𝜉 ∈ C ∶ ℑ(𝜉) < 1}, 𝜉 → M∗(𝜉) =
∫
R

eix𝜉M(x)dx, is holomorphic and thus, M* admits only isolated zeros on this half-plane. Moreover,
M* does not admit zeros on the real line.

The point (i) is crucial for proving the consistency. This proof relies on the use
of the Rosenthal inequality (see Equation (D3)). This explains why we need 𝜈 ≥ 4 and
hence 𝜈0 ≥ 2 and 𝛽 > 3 in Assumption 1. The point (ii) establishes strong connections
between the regularities of functions involved in (8). Paradoxically, the more regular h
is, the faster M* converges to 0 at infinity, which may lead to some difficulties in view
of the subsequent (12). Fortunately, point (iii) shows that M∗(𝜉) does not vanish on the
real line.
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3.1.3 Fourier transformation

Notice that g is square integrable since we have

∫
R

g2(u)du = ∫
R

e2uh2(eu)du = ∫
∞

0
xh2(x)dx = ∫

1

0
xh2(x)dx < +∞.

We can thus take the Fourier transform of both sides of Equation (10). We obtain

𝛼D∗(𝜉) + 2R M∗(𝜉) = 2RM∗(𝜉) × g∗(𝜉).

Therefore, under Assumption 1, the Fourier transform of g is obtained via the formula

g∗(𝜉) = 𝛼D∗(𝜉)
2RM∗(𝜉)

+ 1, 𝜉 ∈ R. (12)

Remark 2. Note that Equation (12) is not standard in classical inverse problems. Actually, clas-
sical deconvolution problems with independent noise (see (29) below) can be transformed so
that, in the Fourier domain, they can be written similarly to (12) and assumptions are made on
the asymptotic behavior of the Fourier transform of the noise density, which is the analog of M*

(see Comte and Lacour (2013) for instance). Such assumptions are not possible here since the
smoothness of g is related to the smoothness of M via (10). Assumptions on M∗(𝜉)when |𝜉|→ +∞
would break these strong relationships between g and M. But these connections between g and
M allow us to deduce the asymptotic behavior of M∗(𝜉) in Proposition 4 and the issues are
circumvented.

3.1.4 Estimators of g and h

Given the sample of i.i.d random variables X1, … , Xn with density function x →N(x), we can
consider the random variables U1, … , Un defined as Ui = log(Xi). These random variables are
i.i.d of density function u →M(u)= euN(eu). In view of (12), the purpose is first to propose an
estimator for g* and then to apply the inverse Fourier transform to obtain an estimator of g. Our
procedure will be naturally based on M̂∗

n(𝜉) and D̂∗
n(𝜉), estimators of M∗(𝜉) and D∗(𝜉) respectively,

and defined by

M̂∗
n(𝜉) =

1
n

n∑
j=1

ei𝜉Uj , (13)

D̂∗
n(𝜉) = (−i𝜉) 1

n

n∑
j=1

e(i𝜉−1)Uj . (14)

Obviously, we have that M̂∗
n(𝜉) and D̂∗

n(𝜉) are unbiased estimators of M∗(𝜉) = E
[
ei𝜉U1
]

and
D∗(𝜉) = (−i𝜉)E[e(i𝜉−1)U1], respectively.

As usual in the nonparametric setting, the estimate of g will be obtained by regulariza-
tion technics. For density estimation, convoluting by an appropriate rescaled kernel is a natural
methodology. Convolution is expressed by products in the Fourier domain. Along the paper, we
use the sinus cardinal kernel defined by K(x) = sin(x)

𝜋x
for which K∗(t) = 1[−1,1](t). For 𝓁 > 0, define
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the rescaled kernel

K𝓁(⋅) ∶=
1
𝓁

K
( ⋅
𝓁

)
.

Definition 1. Given 𝓁 > 0, the estimate ĝn,𝓁 of g is defined through its Fourier transform:

ĝ∗n,𝓁(𝜉) = K∗
𝓁(𝜉) ×

(
𝛼D̂∗

n(𝜉)
2R

1Ωn(𝜉)

M̂∗
n(𝜉)

+ 1

)
, (15)

where Ωn(𝜉) =
{|M̂∗

n(𝜉)| ≥ n−1∕2
}

and 1Ωn (𝜉)

M̂∗
n(𝜉)

is the truncated estimator of 1
M̂∗

n(𝜉)
:

1Ωn(𝜉)

M̂∗
n(𝜉)

=
⎧⎪⎨⎪⎩

1
M̂∗

n(𝜉)
, if |M̂∗

n(𝜉)| ≥ n−1∕2,

0, otherwise.
(16)

The technique used to obtain (15) is similar to inverse truncation filtering (see Bert-
ero & Boccacci, 1998 or Byrne, 2014). Truncation is necessary to avoid explosion when|M̂∗

n(𝜉)| is close to 0. Finally, taking the inverse Fourier transform of ĝ∗n,𝓁 , we obtain the
estimator of g.

Definition 2. The estimator of g is

ĝn,𝓁(u) =
1

2𝜋∫R

ĝ∗n,𝓁(𝜉)e
−iu𝜉d𝜉, u ∈ R−. (17)

The estimator of the division kernel h is deduced from ĝn,𝓁:

ĥn,𝓁(𝛾) = 𝛾−1ĝn,𝓁
(
log(𝛾)
)
, 𝛾 ∈ (0, 1). (18)

The main difficulty lies in the choice of 𝓁. This problem is dealt with subsequently. Decon-
volution estimators have been studied in Comte and Lacour (2011, 2013), Comte et al. (2014),
Neumann (1997). However, the difference and the difficulty in our problem come from the fact
that the regularities of g and h are closely related to the functions M and D that solve the eigen-
value problem (8), in particular through Equation (12). This complicates the study of the rates of
convergence. The next section studies the quadratic risk of ĝn,𝓁 and ĥn,𝓁 .

3.2 Study of the quadratic risk

3.2.1 Relations between the risks of the estimators of h and g

The first goal is to connect the L2-risk of ĥn,𝓁 and the L2-risk of ĝn,𝓁 . Using a randomized estimator,
we can show the following result.

Proposition 5. For a Bernoulli random variable 𝜏 with parameter 1/2 independent of X1, … , Xn,
let us define the randomized estimator

ǧn,𝓁(u) = 𝜏 ĝn,𝓁(u) + (1 − 𝜏)g̃n,𝓁(u), where g̃n,𝓁(u) = euĥn,𝓁(1 − eu).
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We have

E

[||ĥn,𝓁 − h||22] = 2E
[||ǧn,𝓁 − g||22] = E

[
∫

R−

e−u(ĝn,𝓁(u) − g(u)
)2du
]
. (19)

The last equality in (19) shows that if we want to control the quadratic risk of ĥn,𝓁 with respect
to the Lebesgue measure, tight controls on the loss of ĝn,𝓁 at −∞ are needed. But, since h, as
defined in our biological problem, is a symmetric function (as the daughter cells obtained after a
division are exchangeable), it is natural to consider

ĥsym
n,𝓁 (x) =

1
2

(
ĥn,𝓁(x) + ĥn,𝓁(1 − x)

)
, (20)

whose quadratic risk is controlled by the quadratic risk of ĝn,𝓁 except at boundaries of the interval
[0, 1], as proved by the next proposition.

Proposition 6. Setting m(x)= x(1− x), we have that

∫
1

0

(
ĥsym

n,𝓁 (x) − h(x)
)2

m(x)dx ≤ ||ĝn,𝓁 − g||22. (21)

Propositions 5 and 6 are proved in Appendix C. The previous result does not provide any
control on boundaries of the interval [0, 1] but the consistency of ĝn,𝓁 will establish the consistency
of ĥsym

n,𝓁 on every compact set of (0, 1). The study of the consistency of ĝn,𝓁 is the goal of the next
section.

3.2.2 Consistency of the estimator of g for the quadratic-risk

This section is devoted to the theoretical study of the estimate ĝn,𝓁 . More precisely, we establish
the L2-consistency of ĝn,𝓁 under a suitable choice of the bandwidth 𝓁.

We first study the bias-variance decomposition of the L2-risk of ĝn,𝓁 . Recall that from Propo-
sition 4(iii), we have that under Assumption 1, |M∗(𝜉)| is strictly positive on every compact set of
the real line 𝜉 ∈ [−A,A], A> 0, and thus lower bounded by a positive constant on each of these
intervals (that depends on A).

Theorem 2. Under Assumption 1, there exists a positive constant C < +∞ such that

E
[||ĝn,𝓁 − g||22] ≤ ||K𝓁 ⋆ g − g||22 + C

n
S(𝓁), (22)

where

S(𝓁) =
|||||
|||||
K∗
𝓁(𝜉)𝜉

M∗(𝜉)

|||||
|||||
2

2
+
|||||
|||||

K∗
𝓁(𝜉)

M∗(𝜉)

|||||
|||||
2

2
.

Then the following corollary gives the L2-consistency of the estimator ĝn,𝓁 .

Corollary 1. We suppose that Assumption 1 is satisfied and the kernel bandwidth 𝓁 =𝓁(n) satisfies
lim

n→+∞
𝓁 = 0. Provided that

lim
n→+∞

1
n

(|||||
|||||
K∗
𝓁(𝜉)𝜉

M∗(𝜉)

|||||
|||||
2

2
+
|||||
|||||

K∗
𝓁(𝜉)

M∗(𝜉)

|||||
|||||
2

2

)
= 0, (23)
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we have

lim
n→+∞

E[||ĝn,𝓁 − g||22] = 0. (24)

The proof of Corollary 1 is straightforward. Indeed, due to the well-known results on kernel
density, we have lim

n→+∞
||K𝓁 ⋆ g − g||22 = 0 and under the assumptions of the corollary we have for

the variance term limn→+∞n−1S(𝓁) = 0. Thus we get the result (24). The proof of Theorem 2 is
given in Appendix D. Note that under Assumption 1, we have by Proposition 4 that |M∗(𝜉)| =
O(|𝜉|−([𝛽]∧(𝜈0+3))) when |𝜉|→ +∞. If we have |M∗(𝜉)| ∼ C|𝜉|−([𝛽]∧(𝜈0+3)), for a constant C> 0, a
bandwidth 𝓁 can be easily derived. Indeed,

K∗
𝓁(𝜉) = K∗(𝓁𝜉) = 1[−𝓁−1,𝓁−1](𝜉),

and |||||
|||||
K∗
𝓁(𝜉)𝜉

M∗(𝜉)

|||||
|||||
2

2
= ∫

𝓁−1

−𝓁−1

𝜉2|M∗(𝜉)|2 d𝜉 = O(𝓁−(3+2([𝛽]∧(𝜈0+3)))),

and then, Assumption (23) is satisfied if

𝓁−1 = o
(

n
1

3+2([𝛽]∧(𝜈0+3))

)
.

We obtain convergence rates for the quadratic risk of ĝn,𝓁 under additional smoothness properties
for the density g. For this purpose, we introduce Sobolev spaces defined as follows.

Definition 3. We consider Sobolev spaces S(𝛽,L) defined as the class of integrable functions
f ∶ R → R satisfying

∫ |f ∗(t)|2(1 + t2)𝛽dt ≤ L2.

We then obtain the following result.

Proposition 7. If g ∈ S(𝛽,L) and |M∗(𝜉)| ∼ C|𝜉|−([𝛽]∧(𝜈0+3)), for a constant C> 0, then we have

E[||ĝn,𝓁 − g||22] = O
(

n− 2𝛽
2𝛽+2([𝛽]∧(𝜈0+3))+3

)
.

The rate of convergence of Proposition 7 is the usual rate of convergence for ill-posed inverse
problems involving a derivative and an ordinary smooth noise with a polynomial decay of order
[𝛽] ∧ (𝜈0 + 3). This result shows good theoretical performances of our procedure.

4 NUMERICAL SIMULATIONS

4.1 Influence of the preliminary estimators M̂∗
n and D̂∗

n on the
performances of ĥn,𝓵 and ĝn,𝓵

In this section, we study the numerical performances of our estimation procedure.
In the literature (e.g., Stewart et al., 2005; Wang et al., 2010), it is possible to obtain real

datasets of sample size n= 30, 000 or even a larger: in Stewart et al. (2005), the authors followed
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divisions of E. coli and obtained a complete record of measurements of 35,049 cells, in Wang
et al. (2010), the authors introduced their experimental procedures and techniques that allow
to obtain a real dataset of 107 cells. Therefore, the simulations presented here are performed on
simulated samples of sizes n varying from 1000 to 30,000.

We consider the density of the Beta(2, 2)-distribution and the density of the truncated nor-
mal distribution on [0, 1] with mean 1/2 and variance 0.252, respectively, denoted h1 and h2. The
density h1 is proportional to x(1 − x)1[0,1](x) and h2 has the following form:

h2(x) =
𝜙
(

x−𝜇
𝜎

)
𝜎
(
Φ
(

1−𝜇
𝜎

)
− Φ
(

−𝜇
𝜎

)) , x ∈ [0, 1],

where 𝜇 = 0.5, 𝜎 = 0.25 and 𝜙(⋅) and Φ(⋅) are, respectively, the density and the cdf of the
standard normal distribution. Furthermore, for all simulations we take 𝛼 = 0.7 and R= 1.
Figures 1 and 2 show h1, h2 and their corresponding stationary densities N1, N2. The station-
ary densities are obtained by solving numerically the PDE (6) using the method presented
in Doumic et al. (2009).

For the estimation of h1 and h2, even if theoretical boundary conditions stated in Assumption 1
are not satisfied, we shall observe that the procedure does a good job. Before present-
ing the numerical results, let us point out some difficulties that affect the quality of the
estimation.

First, one can observe in Figures 1 and 2 that shapes of functions N1 and N2 are
very similar although functions h1 and h2 are very different. This illustrates a major dif-
ficulty of our inverse problem and leads to some difficulties for the estimation of the
densities g and h.

Secondly, in view of (12) and (15), the construction of the estimator ĝn,𝓁 is based on the esti-
mation of M* and D*. Remember that D∗(𝜉) = (−i𝜉)E

[
e(i𝜉−1)U1

]
and the leading term −i𝜉 of the

last expression, coming from the computation of the Fourier transform of the derivation function
D, gives large fluctuations for the estimation of D* when 𝜉 takes large values. To justify this point,

F I G U R E 1 The Beta(2, 2) density h1 (left) and its corresponding stationary density N1 (right)
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F I G U R E 2 The truncated normal density h2 (left) and its corresponding stationary density N2 (right)

F I G U R E 3 For the Beta(2, 2) density, the real part (left) and the imaginary part (right) of M̂∗
n (blue line)

compared with those of M* (red line)

we introduce the modified formulas of D* and D̂∗
n, denoted, respectively, by 𝔇∗ and 𝔇∗

n, obtained
by removing −i𝜉 from the original formulas:

𝔇∗(𝜉) = E
[
e(i𝜉−1)U1

]
and 𝔇∗

n(𝜉) =
1
n

n∑
j=1

e(i𝜉−1)Uj .

Figures 3, 4, and 5 provide a reconstruction of M̂∗
n, D̂∗

n and 𝔇∗
n based on a random sample

U1, … , Un of size n= 30, 000 for h1. For each figure, we represent both the real part and the imag-
inary part of M̂∗

n (resp. D̂∗
n, 𝔇∗

n) and we compare them with those of M* (resp. D*, 𝔇∗). The Fourier
transforms M*, D* and 𝔇∗ are computed directly from the function N1, indicating that one can
consider M*, D* and 𝔇∗ as the “true” functions.
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F I G U R E 4 For the Beta(2, 2) density, the real part (left) and the imaginary part (right) of D̂∗
n (blue line)

compared with those of D* (red line)

F I G U R E 5 For the Beta(2, 2) density, the real part (left) and the imaginary part (right) of 𝔇̂∗
n (blue line)

compared with those of 𝔇∗ (red line)

Figures 3 and 5 show that the reconstructions of M* and 𝔇∗ are very satisfying, whereas large
oscillations in the reconstruction of D∗(𝜉) appear when 𝜉 is large (see Figure 4), due to a large
variance term. This confirms what we mentioned: the estimation of the derivative D* has a strong
influence for our statistical problem.

In what follows, we introduce our bandwidth selection rules for the estimators ĝn,𝓁 and ĥn,𝓁 ,
then we present some numerical results to illustrate the performances of our estimators.

4.2 Bandwidth selection rules

To establish a bandwidth selection rule for the estimator ĝn,𝓁 and ĥn,𝓁 , we use resampling
techniques inspired from the principle of cross-validation. We first study the L2-risk of the
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estimator ĝn,𝓁 in the Fourier domain:

||ĝn,𝓁 − g||22 = 1
2𝜋
||ĝ∗n,𝓁 − g∗||22 = 1

2𝜋

(‖‖‖ĝ∗n,𝓁‖‖‖22 − 2
⟨

ĝ∗n,𝓁 , g
∗
⟩)

+ 1
2𝜋
‖‖‖g∗‖‖‖22.

Define

J(𝓁) ∶= ||ĝ∗n,𝓁||22 − 2⟨ĝ∗n,𝓁 , g∗⟩
where the scalar product of two complex functions u and v is defined as

⟨u, v⟩ = ∫
R

u(𝜉)v(𝜉)d𝜉.

Let  be a family of possible bandwidths, the optimal bandwidth is given by

𝓁CV ∶= argmin
𝓁∈

J(𝓁) = argmin
𝓁∈
||ĝn,𝓁 − g||22.

We aim at constructing an estimator of J(𝓁), which is equivalent to providing an estimate of the
scalar product ⟨ĝ∗n,𝓁 , g⟩ since ||ĝ∗n,𝓁||22 is known. Instead of finding a closed formula for the estima-
tor of the L2-risk which is intricate in our case, we use the following alternative approach: we
start from a random sample and divide it into two disjoint sets, called the training set and the
validation set. They are, respectively, used for computing the estimator and measuring its perfor-
mance. For sake of simplicity, those sets have the same size. Let ĝ∗(t)n,𝓁 (resp. ĝ∗(v)n,𝓁 ) be the estimator
of g* constructed on the training set (resp. on the validation set). The heuristics is that if ĝ∗(v)n,𝓁′ is an
estimator constructed on the validation set, then ⟨ĝ∗(t)n,𝓁 , ĝ

∗(v)
n,𝓁′⟩ gives us an estimate of ⟨ĝ∗(t)n,𝓁 , g

∗⟩ and
subsequently an estimate of J(𝓁). The final bandwidth is the one which minimizes the average of
all risk estimates computed over a number of couples of training-validation set selected from the
same sample.

In detail, let {X1, … , Xn} be a random sample. Let E and EC be the subsets of
{1, … , n} such that |E|=n/2 and EC = {1, … , n} ⧵E. We divide {X1, … , Xn} into two
subsamples:

XE ∶= (Xi)i∈E and XEC ∶= (Xi)i∈EC .

There are Vmax possibilities to select the subsets (E, Ec), where

Vmax ∶=
(

n
n∕2

)
.

If n is large then Vmax will be huge. Hence we choose in practice a number V which is smaller
than Vmax to reduce computation time.

We propose two criteria for the selection of bandwidths as follows.

Definition 4. Let (Ej,EC
j )1≤j≤V , V ≤ Vmax be the sequence of subsets selected from {1, … , n}

and the corresponding sub-samples (XEj ,XEC
j )1≤j≤V . Let ĝn,𝓁

∗(Ej) and ĝn,𝓁
∗(EC

j ) be the estimators of g∗𝓁
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respectively constructed on the subsamples XEj and XEC
j . Define

ĴCrit1(𝓁) ∶=
1
V

V∑
j=1

[||ĝn,𝓁
∗(Ej)||22 − 2

⟨
ĝn,𝓁
∗(Ej), ĝn,𝓁

∗(EC
j )
⟩]
. (25)

Then the selected bandwidth is given by

𝓁̂Crit1 ∶= argmin
𝓁∈

ĴCrit1(𝓁). (26)

Definition 5. Let ĝn,𝓁
∗(Ej) and ĝn,𝓁′

∗(E c
j ) be the estimators of g∗n,𝓁 as in Definition 4. Define,

ĴCrit2(𝓁,𝓁′) ∶= 1
V

V∑
j=1

[||ĝn,𝓁
∗(Ej)||22 − 2

⟨
ĝn,𝓁
∗(Ej), ĝn,𝓁′

∗(EC
j )
⟩]
. (27)

Then an alternative bandwidth selection rule is given as follows:

𝓁̂Crit2 ∶= argmin
𝓁∈
{

min
𝓁′∈ ĴCrit2(𝓁,𝓁′)

}
. (28)

Note that the second criterion is more computationally intensive.

4.3 Numerical results

Remember that we aim at reconstructing the densities h1 and h2, that is, the Beta(2, 2) density
and the density of a truncated normal  (0.5, 0.252) on [0, 1]. We apply formulas (15), (17) and
(18) to construct the estimators for these densities. The bandwidth 𝓁 is chosen in the family
 ⊂ {1∕(0.5Δ), Δ = 1, … , 50} according to two bandwidth selection rules. We compare the esti-
mated densities when using our selection rules with those estimated with the oracle bandwidth.
The oracle bandwidth is the optimal bandwidth obtained by assuming that we know the true
density and defined as follows:

𝓁oracle ∶= argmin
𝓁∈
||ĝn,𝓁 − g||22.

Of course, 𝓁oracle and ĝn,𝓁oracle cannot be used in practice (since they depend on the true function
to estimate) but they can be viewed as benchmark quantities. For n= 30, 000 observations, we
illustrate in Figures 6 and 7 the estimates of (g1, h1) and (g2, h2) using the first bandwidth selection
rule (see Definition 4).

These graphs show bad behaviors when reconstructing h1 and h2 if we do not take into
account the symmetry of theses densities. Considering symmetrization (see (20)) provides sig-
nificant improvements (see Figure 8). Reconstructions of densities are quite satisfying except at
boundaries of [0, 1], which is expected in view of remarks of Section 3.2.1.

Table 1 shows the L2-risk of ĝn,𝓁̂Crit1
and ĝn,𝓁̂Crit2

where 𝓁̂Crit1 and 𝓁̂Crit2 are the bandwidths
selected by our selection rules (see Definitions 4 and 5), over 100 Monte Carlo runs for estimating
h1 and h2 with respect to V = 10, 25, and 40. The sample size for each repetition is n= 30, 000. We
also provide associated Boxplots in Figures 9 and 10.
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F I G U R E 6 Estimation of g1(x)= exh1(ex) (left) and h1 (right)

F I G U R E 7 Estimation of g2(x)= exh2(ex) (left) and h2 (right)

Table 1 and boxplots show that the performances of our estimators are close to those of the
oracle. When comparing the first bandwidth selection rule Crit1 with the second one Crit2, one
can observe that the performances of Crit2 are slightly better than those of Crit1 (see Table 1).
However, Crit2 is more time-consuming than Crit1. For both selection rules, we observe that the
performances are slightly better when we increase the number of selected subsamples V . Remem-
ber that the larger the value of V , the larger the computation time whereas the performances are
improved marginally. Hence, in practice it is reasonable to choose the first bandwidth selection
rule Crit1 with V = 10. Finally, for both estimation of g1 and g2 according to the Beta(2, 2) distribu-
tion and the truncated normal distribution respectively, we illustrate in Figure 11 the regression
lines of the logarithm of the mean squared error of ĝn,𝓁̂Crit1

versus the logarithm of the sample size,
with n∈ {1000; 2000; 5000; 10, 000; 20, 000; 30, 000}. One can observe that the MSE’s decrease
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F I G U R E 8 Reconstructions of h1 (left) and h2 (right) after symmetrization

T A B L E 1 Average of the L2-risk of ĝn,𝓁̂Crit1
and ĝn,𝓁̂Crit2

over 100 Monte Carlo repetitions for
estimating h1 and h2, compared with those of the oracle

h1 - Beta(2, 2) h2 - Truncated normal

Crit1 Crit2 Oracle Crit1 Crit2 Oracle
V = 10 ē 0.04155 0.04031 0.03056 0.03703 0.03669 0.02806

̄̂𝓁 0.29839 0.29606 0.27583 0.30255 0.30312 0.27858

V = 25 ē 0.04145 0.03898 0.03056 0.03679 0.03602 0.02806
̄̂𝓁 0.29732 0.29787 0.27583 0.30348 0.30155 0.27858

V = 40 ē 0.04039 0.03708 0.03056 0.03613 0.03440 0.02806
̄̂𝓁 0.29837 0.29985 0.27583 0.30396 0.30303 0.27858

as the sample size n increases. This justifies the convergence of our estimators from the practical
point of view.

5 CONCLUSION

Many statistical papers interested in aging phenomena for population of dividing cells concentrate
on the estimation of the division rate (the constant R in the present work) (Bourgeron et al., 2014;
Doumic et al., 2012, 2015, 2017; Hoffmann & Olivier, 2016). In these papers, the division rate is
assumed to be a function that depends on certain quantities growing with time and that can be
seen as ages of the cells (bad chemical contents, size...). The decrease of the division rate with
respect to these quantities can be understood as senescence at the individual level. At the popula-
tion level, lineages along which the distribution of these quantities tend to shift to higher values
can be seen as aging or senescent lineages. In the present work, we investigate another aspect that
is the kernel h(.) ruling the division of the mother cell. In most of the previous works, for example,
(Doumic et al., 2012, 2015), the mother cell divides into two identical cells. From the microscopic
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F I G U R E 9 Bandwidths and errors for the estimation of h1 (Beta(2, 2) distribution)

F I G U R E 10 Bandwidths and errors for the estimation of h2 (Truncated normal)
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F I G U R E 11 The regression lines for log-mean square error for the reconstruction of g1 (left, Eq: y=−1.351
− 0.175x) and the reconstruction of g2 (right, Eq: y=−1.375− 0.179x) versus log(n), with the sample size n
varying from 1000 to 30,000

individual-based point of view, the senescence in lineages then arises from the sole randomness
in the times of division. The asymmetry between daughter cells is, however, an important feature
that has to be taken into account. Some recent developments have been made in this direction:
by the authors (Hoang, 2016, 2017) and also by Bourgeron et al. (2014), Doumic et al. (2017) but
from a deterministic point of view.

The inverse problem arising from the estimation of h, Equation (12), is not a standard decon-
volution problem. The function M* is closely linked to the function of interest g (i.e., the function
h in a logarithmic scale) through Equation (10). Compared with classical deconvolution prob-
lems (e.g., (29) below or Meister, 2009), M* cannot be handled as an independent known noise.
Firstly, the regularity and positivity of M* have to be studied and give way to involved and tech-
nical proofs. Secondly, one has to estimate M* in order to devise an estimator of g*. This actually
complicates the study of the proposed estimation procedure since we have to control the fluctu-
ations of the empirical process M̂∗

n. However, the theoretical study led in Section 3 allows us to
circumvent these issues and to show consistency of our estimates. These nice performances are
also illustrated from a numerical point of view by the use of artificial data whose size is consistent
with real ones.

In line with the previous comment, a natural extension would consist in deriving the band-
width by using an alternative theoretical approach to the cross-validation type approach described
in Section 4.3. It would be natural to use, for instance, the Goldenshluger–Lepski methodology
Goldenshluger and Lepski (2013) in the same spirit as Comte and Lacour (2013) or the PCO
methodology Lacour et al. (2017), with the aim of deriving oracle inequalities. But such techni-
cal approaches require sharp controls of the variance of estimates and powerful concentration
inequalities. Obtaining such results is beyond the scope of this paper but constitutes interesting
challenges for future research.

Of course, our probabilistic model could be enhanced by taking into account some observa-
tional noise and instead of the Xi’s we would observe,

Yi = Xi + 𝜀i, (29)
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with Xi and the noise 𝜀i being independent, which corresponds to a classical deconvolution
problem if we are interested in recovering the density of Xi’s. The estimation of h
would then require to combine classical deconvolution technics and the approach of
this paper.

Furthermore, our study is in line with the references mentioned at the beginning of the con-
clusion: large populations close to their stationary states. This is justified by the exponentially
fast convergence rate given in (9). A possible direction for further research would be to focus
directly on the evolution problem (6). Following ideas of Comte and Genon-Catalot (2020), it
could be possible to study a projection estimator computed from the finite particle system on the
compact time interval [0, T]. These challenging inverse problems provide nice motivations for
further work.
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APPENDIX A. LARGE POPULATION RENORMALIZATION

This section is devoted to the proofs of the paper’s results. C is a constant whose value may change
from line to line.

Before proving the results of Section 2, let us build the SDE satisfied by the process (ZK
t )t≥0.

Consider

Z̃K
t = 1

K
∑
i∈V K

t

𝛿(i,xi(t))

the random point measure on  × R+ = ∪𝓁≥1N × {0, 1}𝓁−1 × R+ with marginal measure ZK
t on

R+, and that keeps track of the sizes and labels of the individuals in the population.
Let us consider as in Section 2 a sequence (Z̃K

0 )K∈N∗ of random point measures on  ×
R+ such that the sequence of marginal measures (ZK

0 )K∈N∗ of the form (1) converges to 𝜉0 ∈
F(R+) in probability and for the weak convergence topology on F(R+) and satisfies (2).
Let also Q(ds, di, d𝛾) be a Poisson point measure on R+ ×  ∶= R+ ×  × [0, 1] with intensity
q(ds, di, d𝛾) = Rds n(di) h(𝛾)d𝛾 where n(di) is the counting measure on  and ds and d𝛾 are
Lebesgue measures on R+.
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We denote {t}t≥0 the canonical filtration associated with the Poisson point measure and the
sequence (Z̃K

0 )K∈N∗ .
For a given K ∈ N∗, it is possible to describe the measure Z̃K

t at time t by the following equation:

Z̃K
t =
∑
i∈V K

0

𝛿(i,xi(0)+𝛼t)

+ ∫
t

0 ∫
1{i∈V K

s−
}
(
𝛿(i0,𝛾xi(s−)+𝛼(t−s)) + 𝛿(i1,(1−𝛾)xi(s−)+𝛼(t−s)) − 𝛿(i,xi(s−)+𝛼(t−s)

)
Q(ds, di, d𝛾), (A1)

where the notation xi(s) stands for the size of the individual with label i in the population ZK
s

(we omit the dependence in K). This representation allows to take deterministic motions into
account and the idea comes from Tran (2008) and Metz and Tran (2013): we build the population
at time t by considering the contribution of the initial condition for this time t, and then the
modifications due to all the divisions between times 0 and t. The first term in the right-hand side
of (A1) corresponds to the individuals alive at time 0 with their sizes at time t if they do not die.
In the integral with respect to the Poisson point process, an atom at (s, i, 𝛾) of Q corresponds to
a “virtual” division event at time s of the individual i associated with the fraction 𝛾 . This event
effectively takes place only if the individual with label i is alive at time s−. In this case, the Dirac
masses corresponding to the mother at t (at size xi(s−) + 𝛼(t − s)) is replaced with the Dirac masses
of the two daughters, at the size that they will have if they are still alive at time t (𝛾xi(s−) + 𝛼(t − s)
and (1 − 𝛾)xi(s−) + 𝛼(t − s)).

The moment assumption (2) propagates to positive time and it is possible to show that for any
T > 0, (see Hoang, 2016, proposition 3.2.5)

sup
K∈N∗

E

(
sup

t∈[0,T]
⟨ZK

t , 1⟩2) < +∞.

For every K ∈ N∗ and every test function fs(x) = f (x, s) ∈ 1,1
b (R+ × R+,R), the stochastic process

(ZK
t )t∈R+

satisfies:

⟨ZK
t , ft⟩ = ⟨ZK

0 , f0⟩ + ∫
t

0 ∫
R+

(𝜕sfs(x) + 𝛼𝜕xfs(x))ZK
s (dx)ds

+ 1
K ∫

t

0 ∫
1{i∈V K

s−} (fs (𝛾xi(s−)) + fs ((1 − 𝛾)xi(s−)) − fs (xi(s−)))Q(ds, di, d𝛾),

= ⟨ZK
0 , f0⟩ + MK,f

t

+ ∫
t

0 ∫
R+

(
𝜕sfs(x) + 𝛼𝜕xfs(x) + R∫

1

0
(fs(𝛾x) + fs((1 − 𝛾)x) − fs(x)) h(𝛾)d𝛾

)
ZK

s (dx)ds,

(A2)

where (MK,f
t )t≥0 is a square integrable martingale started at 0 with bracket:

⟨MK,f ⟩t = 1
K ∫

t

0 ∫
R+

∫
1

0
R(fs(𝛾x) + fs((1 − 𝛾)x) − fs(x))2h(𝛾)d𝛾ZK

s (dx)ds. (A3)

The proof of Proposition 1 then follows the ideas in (Tran, 2006, 2008) and are detailed in
Hoang (2016). Equation (A2) corresponds to Equation (3) in the main body.
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The proof of Theorem 1 uses the martingale problem established in Proposition 1 and stan-
dard arguments (e.g., Bansaye & Méléard, 2015; Ethier & Kurtz, 2009; Joffe & Métivier ,1986;
Tran, 2014, theorem 1.1.8 and proof of theorem 1.1.11). Let us denote by AK, f the finite variation
part of ⟨ZK

t , ft⟩:
AK,f

t = ∫
t

0 ∫
R+

(
𝜕sfs(x) + 𝛼𝜕xfs(x) + R∫

1

0
(fs(𝛾x) + fs((1 − 𝛾)x) − fs(x)) h(𝛾)d𝛾

)
ZK

s (dx)ds. (A4)

First, using the moment assumptions together with (A2) and (A3), we can show that the
sequences of real-valued processes (AK,f )K∈N∗ and (⟨MK,f ⟩)K∈N∗ are tight in D(R+,R), which by
the Aldous–Rebolledo condition imply the tightness of the sequence (⟨ZK

. , f ⟩)K∈N∗ for all test
function f ∈ 1

b (R+,R). As a consequence, the sequence (ZK)K∈N∗ is tight in D(R+, (F(R+), v)),
where (F(R+), v) means that the space of finite positive measures F(R+) is embedded with
the topology of vague convergence.

Secondly, the limiting values Z to which subsequences of (ZK)K∈N∗ converge vaguely, are con-
tinuous measure-valued processes of (R+, (F(R+),w)), where F(R+) is embedded with the
weak convergence topology.

Thirdly, proceeding as in Tran (2014, proof of theorem 1.1.11) (see also Jourdain et al., 2012
and Méléard & Tran, 2012), we can prove that

lim
k→+∞

lim
K→+∞

E

(
sup
t≤T
⟨ZK

t , 𝜑k⟩) = 0,

where the functions 𝜑k are 2 approximations of 1l{x ≥ k} for k ∈ N and are defined by 𝜑0(x)= 1
and for all k ∈ N∗,𝜑k(x) = 𝜓(0 ∨ (x − k + 1) ∧ 1)with𝜓(x) = 6x5 − 15x4 + 10x3. This ensures that
for every subsequence of (ZK)K∈N∗ that converges vaguely to a limiting process Z, their masses
converge in distribution to ⟨Z, 1⟩, which provides the tightness in (F(R+),w) by a criterion due
to Méléard and Roelly (1993).

We can now establish that the limiting values to which subsequences of (ZK)K∈N∗ converge
in D(R+, (F(R+),w)) are solutions of (5) (see Hoang, 2016). This integro-differential equation
admits a unique solution. Indeed, let 𝜉1 and 𝜉2 be two solutions of (5) starting with the same initial
condition 𝜉0. For a test function 𝜑 ∈ 1

b (R+,R) and t> 0, setting

f (x, s) = fs(x) = 𝜑(x + 𝛼(t − s)), (A5)

we obtain that for i∈ {1, 2},

⟨𝜉i
t , 𝜑⟩ = ⟨𝜉0, 𝜑(. + 𝛼t)⟩ + ∫

t

0 ∫
R+

∫
1

0
R (fs(𝛾x) + fs((1 − 𝛾)x) − fs(x)) h(𝛾)d𝛾𝜉i

s(dx) ds.

Subtracting these two equations for i= 1 and i= 2, we obtain

||𝜉1
t − 𝜉2

t ||TV ≤ 3R||𝜑||∞ ∫
t

0
||𝜉1

s − 𝜉2
s ||TV ds,

where ||.||TV stands for the total variation norm. Gronwall’s inequality concludes the proof of
uniqueness of the solution of (5). Since the limiting value of (ZK)K∈N∗ is unique, the sequence
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hence converges in D(R+, (F(R+),w)) to this unique solution. This concludes the proof of
Theorem 1.

The proof of Proposition 2 is detailed in Hoang (2016) and see also Tran (2008).
First, notice that if 𝜉0(dx) admits a density n0(x) with respect to the Lebesgue measure, then

for any t> 0, 𝜉t also admits a density. Indeed, for a function 𝜑 ∈ 1(R+,R+) with nonnegative
values, let us define the test function f (x, s) as in (A5). Then, neglecting the negative terms in the
second line of (5) and using the symmetry of h with respect to 1/2:

⟨𝜉t, 𝜑⟩ ≤ ∫
R+

𝜑(x + 𝛼t)n0(x)dx + 2R∫
t

0 ∫
R+

∫
1

0
𝜑(𝛾x + 𝛼(t − s))h(𝛾)d𝛾𝜉s(dx) ds

= ∫
+∞

𝛼t
𝜑(y)n0(y − 𝛼t)dy + 2R∫

t

0
𝜑(𝛼(t − s))𝜉s({0}) ds

+ 2R∫
t

0 ∫
R+⧵{0}∫R

1(𝛼(t−s),x+𝛼(t−s))(y)𝜑(y)h
(

y − 𝛼(t − s)
x

)
dy
x
𝜉s(dx) ds

= ∫
+∞

𝛼t
𝜑(y)n0(y − 𝛼t)dy + 2R∫

𝛼t

0
𝜑(y)𝜉t− y

𝛼
({0})

dy
𝛼

+ 2R∫
+∞

0

{
∫

t

0 ∫
R+⧵{0}

1(𝛼(t−s),x+𝛼(t−s))(y)
1
x

h
(

y − 𝛼(t − s)
x

)
𝜉s(dx) ds

}
𝜑(y)dy.

Since 𝜉t is dominated by a nonnegative measure absolutely continuous with respect to the
Lebesgue measure on R+ it follows that 𝜉t admits itself a density. Let us denote by n(t, x) the
density of 𝜉t with respect to the Lebesgue measure dx on R+. Then, for a nonnegative test function
f ∈ 1

b (R+,R+) depending only on x and using the symmetry of h, (5) becomes:

∫
R+

f (x)n(t, x)dx = ∫
R+

f (x)n0(x)dx + ∫
t

0 ∫
R+

𝛼f ′(x)n(s, x)dx ds

+ ∫
t

0 ∫
R+

2R∫
1

0
f (𝛾x)h(𝛾)d𝛾 n(s, x)dx ds − R∫

t

0 ∫
R+

f (x)n(s, x)dx ds

= ∫
R+

f (x)n0(x)dx + ∫
t

0 ∫
R+

𝛼f ′(x)n(s, x)dx ds

+ ∫
t

0 ∫
R+

f (x) × 2R∫
+∞

x
h
(

x
y

)
n(s, y)

dy
y

dx ds − R∫
t

0 ∫
R+

f (x)n(s, x)dx ds,

(A6)

where we used Fubini’s Theorem for the third term in the right hand side. For the second term
in the right-hand side, integrating by part gives:

∫
t

0 ∫
R+

𝛼f ′(x)n(s, x)dx ds =∫
t

0

{[
𝛼f (x)n(s, x)

]+∞
0 − ∫

R+

𝛼f (x)𝜕xn(s, x)dx

}
ds

= − 𝛼f (0)∫
t

0
n(s, 0)ds − ∫

t

0 ∫
R+

𝛼f (x)𝜕xn(s, x)dx ds. (A7)

Gathering (A6) and (A7) that are true for any test function f and time t, we can identify
the equations satisfied by (n(t, x), x ∈ R+, t > 0). We find that n(t, 0)= 0 for every t ≥ 0 and that
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(n(t, x), x ∈ R+, t > 0) solves in distribution sense (6) for which uniqueness of the solution holds
(e.g., Perthame, 2007, theorem 4.3, p. 90).

The proof of Proposition 3 is a particular case of Perthame (2007, theorem 4.6, p. 94)
based on Krein-Rutman theorem (e.g., Perthame, 2007, theorem 6.5, p. 175; see also Doumic
& Gabriel, 2010). In the case that we consider, the proof can be simplified compared with
Perthame (2007). Let us consider the eigen elements (𝜆,N, 𝜙) associated with (6), that is, the
solution of:

⎧⎪⎪⎨⎪⎪⎩

𝛼𝜕xN(x) + (𝜆 + R)N(x) = 2R ∫ 1
0 N
(

x
𝛾

)
h(𝛾) d𝛾

𝛾
, x ≥ 0,

N(0) = 0, ∫ N(x)dx = 1, N(x) ≥ 0, 𝜆 > 0,
𝛼𝜕x𝜙(x) − (𝜆 + R)𝜙(x) = −2R ∫ 1

0 𝜙(𝛾x)h(𝛾)d𝛾, x ≥ 0,
𝜙(x) ≥ 0, ∫ +∞

0 𝜙(x)N(x)dx = 1.

(A8)

It is clear that𝜆 = R and𝜙 ≡ 1 solve the third equation of (A8). Because the first line is linear in
N, we can forget for the proof the condition ∫ N(x)dx = 1: if there exists a nonnegative integrable
solution, we can renormalize it.

Step 1: Let us consider the following auxiliary PDE, for a constant 𝜇 > 0 and two functions
f ∈ (R+,R+), and M ∈ L1(R+,R) ∩ (R+,R+):

𝛼𝜕xN(x) + (𝜇 + R) N(x) − 2R∫
1

0
M
(

x
𝛾

)
h(𝛾)d𝛾

𝛾
= f (x), x ≥ 0 ; N(0) = 0. (A9)

Equation (A9) is a first-order ordinary differential equation (ODE) that can be solved with the
variation of constant method. It admits a unique solution, that we denote T(M):

T(M)(x) = 1
𝛼 ∫

x

0
e−

𝜇+R
𝛼

(x−y)
(

2R∫
1

0
M
(

y
𝛾

)
h(𝛾)d𝛾

𝛾
+ f (y)
)

dy.

Consider M1 an M2 ∈ L1(R+,R) ∩ (R+,R+). Then, for x ≥ 0:

|T(M1)(x) − T(M2)(x)| ≤ 2R
𝛼 ∫

1

0 ∫
x∕𝛾

0
e−

𝜇+R
𝛼

(x−𝛾z)|M1(z) − M2(z)|h(𝛾)dz d𝛾

≤ 2R
𝜇 + R

(
1 − e−

(𝜇+R)x
𝛼

)
∫

1

0

h(𝛾)
𝛾

d𝛾||M1 − M2||∞. (A10)

Provided the integral in the term above is finite, then for 𝜇 > 2R ∫ 1
0 h(𝛾)∕𝛾 d𝛾 − R, the map

M ∈ L1(R+,R) ∩ (R+,R+) → T(M) ∈ L1(R+,R) ∩ (R+,R+) is a contraction. Thus it admits a
unique fixed point that is the unique solution of

𝛼𝜕xN(x) + (𝜇 + R) N(x) − 2R∫
1

0
N
(

x
𝛾

)
h(𝛾)d𝛾

𝛾
= f (x), x ≥ 0 ; N(0) = 0. (A11)

Step 2: The map A that associates to f ∈ (R+,R+) ∩ L1(R+,R+) the unique corresponding
solution of (A11) is thus well defined. Following the path of Perthame (2007, section 6.6.2), we can
show that this map is linear, continuous (with computation similar to (A10)) and strongly positive.
Finally, the boundedness of N implies the boundedness of 𝜕xN, with norms controlled by ||f ||∞.



28 HOANG et al.

This allows to use Arzela–Ascoli theorem to obtain the compactness of the map A. We can then
use Krein–Rutman theorem (using similar truncations as in Perthame, 2007) to obtain that the
spectral radius of A, 𝜌(A), is a positive simple eigenvalue associated with a positive eigenvector
satisfying:

𝛼𝜕xN(x) +
(
𝜇 + R − 1

𝜌(A)

)
N(x) − 2R∫

1

0
N
(

x
𝛾

)
h(𝛾)d𝛾

𝛾
= 0, x ≥ 0 ; N(0) = 0. (A12)

The fact that 𝜆 ∶= 𝜇 + R − 1
𝜌(A)

is equal to 2R is a consequence of integrating the direct
equation against the the adjoint eigenvector (here 𝜙 ≡ 1) and using that ∫ N(x)dx = 1.

Step 3: The computation to establish the speed of convergence of n(t, x)e−Rt to 𝜌N(x) stated
in (9), are obtained by generalizing the proof of Perthame (2007, theorem 4.2, p. 88) (see
also Perthame & Ryzhik, 2005). Define g(t, x) = n(x, t)e−Rt − 𝜌N(x), G(t, x) = ∫ x

0 g(t, y)dy and
K(t, x)= 𝜕tG(t, x). One can write the PDEs satisfied by g and G. The PDE for G implies that
𝜕t ∫ +∞

0
|||G(t, x)eRt|||dx ≤ 0. As a consequence,

∫
+∞

0
|G(t, x)|dx ≤ e−Rt||G0||1. (A13)

From the PDE of g, K(0, x) = 𝜕tG(t, x)|t=0 = 2R ∫ 1
0 G0(x∕u)h(u)du − 2RG0(x) − 𝛼g0(x). Pro-

ceeding similarly as for G, we show that

∫
+∞

0
|K(t, x)|dx ≤e−Rt ∫

+∞

0
|K(0, x)|dx ≤ e−Rt (3R||G0||1 + 𝛼||g0||1) . (A14)

Plugging (A13) and (A14) in the PDE of g (where we notice that g(t, x)= 𝜕xG(t, x)), we obtain
the result announced in the proposition.

APPENDIX B. PROOF OF PROPOSITION 4

Proof of Proposition 4 ( i). Let 𝜖 > 0 to be chosen small enough. Since N is a probability density,
we have for 𝜈 ≤ (𝜈0 + 2) ∧ ([𝛽] + 1):

∫
+∞

0
x−𝜈N(x)dx ≤ ∫

𝜖

0
x−𝜈N(x)dx + 1

𝜖𝜈
.

Hence, it remains to prove

∫
𝜖

0
x−𝜈N(x)dx < +∞.

We follow and adapt the steps of the proof of theorem 1 in Doumic and Gabriel (2010). Integrating
both side of Equation (8) between 0 and x0 ≤ x, we get:

𝛼N(x0) + 2R∫
x0

0
N(y)dy = 2R∫

x0

0 ∫
+∞

0
N(y)h
(

z
y

)
dy
y

dz. (B1)
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Thus,

𝛼N(x0) ≤ 2R∫
x0

0 ∫
+∞

0
N(y)h
(

z
y

)
dy
y

dz ≤ 2R∫
x

0 ∫
+∞

0
N(y)h
(

z
y

)
dy
y

dz.

Let us define:

f ∶ x → sup
x0∈(0,x]

N(x0),

then we have for all x

f (x) ≤ 2R
𝛼 ∫

x

0 ∫
+∞

0
N(y)h
(

z
y

)
dy
y

dz. (B2)

Recall Assumption 1. Using a Taylor expansion, it implies that for any t ∈ (0, 1),

∫
t

0
h(x)dx ≤ C ∫

t

0
x(𝜈0+1)∧[𝛽]dx ≤ Ct(𝜈0+2)∧([𝛽]+1) ≤ Ct𝜈 , (B3)

by choice of 𝜈 ≤ (𝜈0 + 2) ∧ ([𝛽] + 1). Then, we have for all x < 𝜖:

f (x) ≤ 2R
𝛼 ∫

+∞

0
N(y)dy∫

x

0
h
(

z
y

)
dz
y

≤ 2R
𝛼 ∫

+∞

0
N(y)min

(
1,C x𝜈

y𝜈

)
dy

≤ 2R
𝛼

(
∫

x

0
N(y)dy + C ∫

𝜖

x
N(y)x𝜈

y𝜈
dy + C ∫

+∞

𝜖

N(y)x𝜈
y𝜈

dy
)

≤ 2R
𝛼

(
∫

x

0
sup

z∈(0,x]
N(z)dy + Cx𝜈 ∫

𝜖

x
sup

z∈(0,y]
N(z)

dy
y𝜈

)
+
(

2CR
𝛼 ∫

+∞

𝜖

N(y)
y𝜈

dy
)

x𝜈

≤ 2R𝜖
𝛼

f (x) + 2CRx𝜈
𝛼 ∫

𝜖

x

f (y)
y𝜈

dy + Kx𝜈 ,

with K = 2CR
𝛼𝜖𝜈

. We choose 𝜖 such that

0 < 𝜖 < 𝛼

2R
.

and by setting F(x) = x−𝜈f (x), we get

F(x) ≤ K
1 − 2R𝜖

𝛼

+ 2CR
𝛼 − 2R𝜖 ∫

𝜖

x
F(y)dy. (B4)

Then, applying Gronwall’s inequality to (B4), we obtain

F(x) ≤ K
1 − 2R𝜖

𝛼

exp
( 2CR𝜖
𝛼 − 2R𝜖

)
=∶ C̃, ∀x ∈ [0, 𝜖],

and

x−𝜈N(x) ≤ C̃, ∀x ∈ [0, 𝜖].
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We finally obtain

∫
𝜖

0
x−𝜈N(x)dx ≤ C̃𝜖 < +∞.

This ends the proof of Proposition 4(i). □
Proof of Proposition 4(ii). Let us first notice that by the fixed point theorem in the proof of

Proposition 3, N is continuous as uniform limit of a sequence of continuous functions. Let us
show that under Assumption 1 the map

Φ ∶ x ∈ (0,+∞) → ∫
+∞

x
N(y)h
(

x
y

)
dy
y

is of class [𝛽] on (0,+∞). We proceed by induction, and start by computing the first derivative
of Φ for x> 0.

Φ(x + 𝜀) − Φ(x)
𝜀

= −1
𝜀 ∫

x+𝜀

x
N(y)h
(

x
y

)
dy
y

+ ∫
+∞

x+𝜀
N(y)

y
𝜀

[
h
(

x + 𝜀
y

)
− h
(

x
y

)]
dy
y2

→𝜀→0 −
N(x)h(1)

x
+ ∫

+∞

x
N(y)h′

(
x
y

)
dy
y2 = ∫

+∞

x
N(y)h′

(
x
y

)
dy
y2 , (B5)

since h(1)= h(0)= 0 by Assumption 1. This shows that Φ is of class 1. Plugging this information
into (8), it follows that 𝜕xN is continuous, and hence N is of class 1 and thus 𝜕xN also. This entails
from the computation of Φ′ that Φ is of class 2.

Suppose that we have computed the successive derivatives of Φ up to k− 1 and that we have
shown that N is of class k−1 for k ≤ [𝛽] ∧ 𝜈0. Then, since the successive derivatives of h at 0 vanish
by Assumption 1,

Φ(k)(x) = ∫
+∞

x
N(y)h(k)

(
x
y

)
dy

yk+1
.

Since N, h and their derivatives are bounded functions, the latter integrals are always finite for
x> 0. This implies that Φ is of class k and that using this information in (8), 𝜕xN is of class k−1

entailing that N is of class k. As the computation of the first derivative of Φ shows, we are limited
by the regularity of h.

So we finally have that x →N(x) is of class [𝛽], and thus, u →M(u) is also of class [𝛽].
Take k ≤ [𝛽]. That M is of class [𝛽] implies that (i𝜉)kM∗(𝜉) is the Fourier transform of M(k)

and bounded on R provided we additionally prove that the derivatives of M up to the order k are
integrable. Since M(u)= euN(eu), M(k) is a linear combination of terms of the form e(𝓁 + 1)uN(𝓁)(eu)
with 𝓁 ≤ k. We thus have to check the finiteness, for all 𝓁 ≤ k, of:

∫
R

e(𝓁+1)u|||N(𝓁)(eu)|||du = ∫
+∞

0
v𝓁|||N(𝓁)(v)|||dv. (B6)

It is known (as a direct adaptation of Perthame, 2007, theorem 4.6, p. 95 for example) that as
soon as 𝜇 < R∕𝛼,

N(x)e𝜇x ∈ L
1(R+,R+) ∩ L

∞(R+,R+). (B7)
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Assume that for some 𝓁 < k, we have proved that ∫ +∞
0 e𝜇x|||N(𝓁)(x)|||dx < +∞ for 𝜇 < R∕𝛼. Let

us prove that this also holds for 𝓁 + 1, which would entail (B6). Deriving (8) 𝓁 times, multiplying
by e𝜇x and integrating again in x ∈ (0,+∞), we obtain:

𝛼 ∫
+∞

0
e𝜇x|||N(𝓁+1)(x)|||dx ≤ 2R∫

+∞

0
e𝜇x|||N(𝓁)(x)|||dx + 2R∫

+∞

0
e𝜇x
|||||∫

+∞

x
h(𝓁)
(

x
y

)
N(y)
y𝓁+1

dy
|||||dx

≤ 2R∫
+∞

0
e𝜇x|||N(𝓁)(x)|||dx + 2R∫

+∞

0

N(y)e𝜇y

y𝓁
||h(𝓁)||1dy. (B8)

By the induction assumption, the first term in the right-hand side is finite. Because h(𝓁) is a
continuous function on [0, 1], ||h(𝓁)||1 is finite. Using that N(x)e𝜇x ∈ L1(R+,R+) implies that the
second term is integrable at +∞. Point (i) of Proposition 4 ensures the integrability at 0. Thus, the
right-hand side of (B8) is finite. The use of point (i) of Proposition 4 explains why [𝛽] ∧ (𝜈0 + 3)
appears in the announced result.

The finiteness of ∫ +∞
0 e𝜇x|||N(𝓁)(x)|||dx, for 𝓁 ≤ [𝛽] ∧ (𝜈0 + 3), is thus proved by recursion, imply-

ing the finiteness of the terms in (B6) and concluding the proof. □
Proof of Proposition 4(iii). The proof is divided into several steps.
Step 1: First, notice that

M∗ ∶ 𝜉 = 𝜉1 + i𝜉2 → ∫
+∞

−∞
eix𝜉M(x)dx = ∫

+∞

0
ei𝜉 log(y)N(y)dy = ∫

+∞

0
ei𝜉1 log(y)y−𝜉2 N(y)dy.

We first prove that M* has isolated zeros in {𝜉 ∈ C ∶ ℑ(𝜉) < 1}.
Because N is such that e𝜇xN(x) ∈ L∞(R+,R+) ∩ L1(R+,R+) for 𝜇 < R∕𝛼 (see Perthame, 2007,

p. 95), M* is well defined on the half plane {𝜉 ∈ C ∶ ℑ(𝜉) ≤ 0}. By Proposition 4(i), N(y)/y
is integrable on the neighborhood of zero. Hence, for 𝜉2 < 1, so is y−𝜉2 N(y). As a conse-
quence, M* is analytic on the lower half-plane {𝜉 ∈ C ∶ ℑ(𝜉) < 1} which contains the real
axis. The derivative of the integrand with respect to 𝜉 has modulus | log(y)| y−𝜉2 N(y). The
latter function is upper bounded, when 𝜉2 < 1 and when y< 1, by N(y)

y
which is integrable

on the neighborhood of zero by Proposition 4(i). It follows from the results on integrals
with parameters that the extension of M* to the complex plane is holomorphic on {𝜉 ∈ C ∶
ℑ(𝜉) < 1}. Because M* is not the null function, its zeros in {𝜉 ∈ C ∶ ℑ(𝜉) < 1} have to be
isolated.

Step 2: Let us now show that M* admits no zero on the real line. First we link the
Fourier transform to the Mellin transform of N. Recall that M* is related to the solu-
tion N of (8) where the right-hand term is a multiplicative convolution of x →N(x)/x and
h. A natural way of treating multiplicative deconvolution is by using Mellin transform
(e.g., Epstein, 1948; Titchmarsh, 1948).

It is natural to set

𝜓(x) = N(x)
x

, x ≥ 0. (B9)

The Mellin transforms of 𝜓 and h are defined for s ∈ C as:

Ψ(s) = ∫
+∞

0
xs−1𝜓(x)dx, and H(s) = ∫

1

0
xs−1h(x)dx. (B10)
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Notice that for 𝜉 ∈ R,

M∗(𝜉) ∶= ∫
∞

−∞
M(x)eix𝜉dx = ∫

∞

−∞
exN(ex)eix𝜉dx = ∫

+∞

0
N(u)ui𝜉du = Ψ(i𝜉 + 2). (B11)

So the Point (iii) of Proposition 4 will be proved if Ψ does not vanish on the line 2 + iR. We
first establish an equation satisfied by Ψ (Step 3) and then conclude with the proof by adapting
the results of Doumic et al. (2017).

Recall (B7). Let us prove below that for any s ∈ C such that

lim
x→0

xs−1N(x) = 0, (B12)

the function Ψ satisfies:

(1 − s)Ψ(s) = 2R
𝛼

(H(s) − 1) Ψ(s + 1). (B13)

Notice firstly that (B13) is in particular true for all s such that ℜ(s)> 1 since
(B12) is then satisfied. Secondly, let us add that (B13) is reminiscent of equation (2.4)
in Doumic et al. (2017), with the difference that our equation is establish on the
eigenvalue problem (8) with constant branching rate R, while Doumic and co-authors
work with an evolution equation with no evolution of the cell sizes but power-law
branching rate.

To prove (B13), observe that

N(x) = x𝜓(x) and 𝜕xN(x) = x𝜓 ′(x) + 𝜓(x).

Therefore, (8) can be expressed by using 𝜓 instead of N:

𝛼𝜕xN(x) + 2R N(x) = 2R∫
∞

0
N(y)h
(

x
y

)
dy
y
, x ≥ 0

⇔ x𝜓 ′(x) +
(

1 + 2R
𝛼

x
)
𝜓(x) = 2R

𝛼 ∫
+∞

x
y𝜓(y)h

(
x
y

)
dy
y
, x ≥ 0.

Multiplying each side of this equation by xs− 1 and integrating on x ∈ [0,+∞), we
obtain:

∫
+∞

0
xs𝜓 ′(x)dx + ∫

+∞

0

(
1 + 2R

𝛼
x
)

xs−1𝜓(x)dx = 2R
𝛼 ∫

+∞

0
xs−1 ∫

+∞

x
y𝜓(y)h

(
x
y

)
dy
y

dx

⇔ (1 − s)Ψ(s) = 2R
𝛼

(H(s) − 1) Ψ(s + 1),

by using an integration by parts for the left term and the Fubini theorem for the right term. This
shows (B13).

Step 3: We now prove that for any 𝜉 ∈ R, and any n ∈ N,

M∗(𝜉) ≠ 0 ⇔ Ψ(i𝜉 + n + 2) ≠ 0. (B14)
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This is true for n= 0, by (B11). For 𝜉 ∈ R, applying (B13) with s = 2 + i𝜉, for which (B12) is
satisfied:

M∗(𝜉) = Ψ(i𝜉 + 2) = − 2R
𝛼(1 + i𝜉)

(H(i𝜉 + 2) − 1) Ψ(i𝜉 + 3).

By induction, we have for any n ∈ N (n will be chosen subsequently),

M∗(𝜉) =
(
−2R
𝛼

)n n∏
k=1

1
k + i𝜉

(H(i𝜉 + k + 1) − 1) × Ψ(i𝜉 + n + 2).

Since for any 𝜉 = 𝜉1 + i𝜉2 ∈ C such that 𝜉1 ≥ 1,

|H(i𝜉2 + 𝜉1 + 1)| = |||||∫
1

0
xi𝜉2+𝜉1 h(x)dx

||||| ≤ ∫
1

0
xh(x)dx = 1

2
, (B15)

by symmetry of h, then the product in the right-hand side is nonzero and this leads to (B14).
As a consequence, to prove that M* admits no zero on the real line, it is sufficient to prove that

Ψ admits no zero on some line n0 + iR where n0 is an integer larger than 2.
Step 4: Following the computation in Doumic et al. (2017), we can prove that:

∀s ∈ C with ℜ(s) ≥ 2, |Ψ(s)| ≠ 0. (B16)

First, notice that (B15) implies that H(s)− 1≠ 0 as soon as ℜ(s)≥ 2. For such s ∈ C, dividing
by H(s)− 1, we can reformulate (B13) as:

Ψ(s + 1) = Φ(s)Ψ(s), where Φ(s) = 𝛼

2R
× 1 − s

H(s) − 1
. (B17)

Notice that our equation has much more regularities than the one studied in Doumic et al.
since the application Φ is analytic on {s ∈ C, ℜ(s) ≥ 2} and does not vanish on this half-plane.

Let us fix s0 ∈ R such that s0 ≥ 2. For s ∈ C such that s0 <ℜ(s)< s0 + 1, we look for particular
solutions of (B17) of the form

Ψ(s) = exp (P(𝜁(s))) where 𝜁(s) = ei2𝜋(s−s0).

Then, following the steps of proposition 2 in Doumic et al. (2017), the function P solves a Car-
leman equation, from which a solution of (B17) can be obtain. There exist several solutions to
(B17), and computing the inverse Mellin transforms of the latters, it appears that the solution
corresponding to the Mellin transform of the solution of (8) is:

Ψ(s) = exp
(
−∫ℜ(𝜎)=s0

log (Φ(𝜎))
[

1
1 − e2i𝜋(s−𝜎) −

1
1 + e2i𝜋(s0−𝜎)

]
d𝜎
)
, (B18)

for s∈ {ℜ(s)∈ (s0, s0 + 1)}, where the chosen determination of the logarithm is log(z) = log |z|
+ i arg(z) with arg(z) ∈ [0, 2𝜋). That the right-hand side of (B18) is well defined and does
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not vanish on {ℜ(s)∈ (s0, s0 + 1)} follows closely the proofs in Doumic et al. (2017, lemma
3 and section 6.3) by careful study of the behavior of Φ(s) when the imaginary part
of s tend to ±∞.

Conclusion: choose for example s0 = 5
2

so that s0 ≥ 2 and n0 = 3∈ (s0, s0 + 1). The
function given in (B18) is analytic, nonvanishing and coincide with the Mellin transform of 𝜓
on {s ∈ C ∶ ℜ(s) ∈ (s0, s0 + 1)}. This implies that Ψ admits no zero on n0 + iR and finishes
the proof. □

APPENDIX C. PROOF OF PROPOSITIONS 5 AND 6

Proof of Proposition 5. We have

||ĝn,𝓁 − g||22 = ∫
R−

(
ĝn,𝓁(u) − g(u)

)2du = ∫
R−

(
euĥn,𝓁(eu) − euh(eu)

)2
du

= ∫
1

0

(
ĥn,𝓁(x) − h(x)

)2
xdx. (C1)

Since g(u)= euh(eu)= euh(1− eu) by the symmetry of h, we can show that

||g̃n,𝓁 − g||22 = ∫
1

0

(
ĥn,𝓁(x) − h(x)

)2
(1 − x)dx.

Thus,

E
[||ǧn,𝓁 − g||22] = E

[||𝜏 ĝn,𝓁 + (1 − 𝜏)g̃n,𝓁 − g||22]
= 1

2
E
[||ĝn,𝓁 − g||22] + 1

2
E
[||g̃n,𝓁 − g||22] = 1

2
E

[||ĥn,𝓁 − h||22] , (C2)

since ||ĝn,𝓁 − g||22 + ||g̃n,𝓁 − g||22 = ||ĥn,𝓁 − h||22. Let us now compute E
[||g̃n,𝓁 − g||22]. Recall that

h= 0 on R ⧵ (0, 1), so g= 0 on R+. For u< 0, we define the new variable v ∈ R∗
− such that

ev = 1− eu. We have

g̃n,𝓁(u) =euĥn,𝓁(1 − eu) = euĥn,𝓁(ev) = eu−vĝn,𝓁(v) =
eu

1 − eu ĝn,𝓁
(
log(1 − eu)

)
.

Similarly, we have that g(u) = eu

1−eu g(log(1 − eu)) and thus

E[||g̃n,𝓁 − g||22] =E

[
∫

R−

(g̃n,𝓁(u) − g(u))2du
]

=E

[
∫

R−

( eu

1 − eu

)2
(ĝn,𝓁(log(1 − eu)) − g(log(1 − eu)))2du

]
=E

[
∫

R−

(1 − ev

ev

)
(ĝn,𝓁(v) − g(v))2dv

]
.
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As a consequence, the middle term in (C2) is

1
2
E
[||ĝn,𝓁 − g||22] + 1

2
E
[||g̃n,𝓁 − g||22] =E

[
∫

R−

1
2

(
1 + 1 − ev

ev

) (
ĝn,𝓁(v) − g(v)

)2dv
]

=E

[
∫

R−

e−v

2
(

ĝn,𝓁(v) − g(v)
)2dv
]
.

This concludes the proof. □
Proof of Proposition 6. Remember (C1). Then, since h(x)= h(1− x),

∫
1

0

(
ĥsym

n,𝓁 (x) − h(x)
)2

m(x)dx

= 1
4 ∫

1

0

(
ĥn,𝓁(x) − h(x) + ĥn,𝓁(1 − x) − h(1 − x)

)2
m(x)dx

≤ 1
2 ∫

1

0

(
ĥn,𝓁(x) − h(x)

)2
m(x)dx + 1

2 ∫
1

0

(
ĥn,𝓁(1 − x) − h(1 − x)

)2
m(1 − x)dx

= ∫
1

0

(
ĥn,𝓁(x) − h(x)

)2
m(x)dx

≤ ∫
1

0

(
ĥn,𝓁(x) − h(x)

)2
xdx = ||ĝn,𝓁 − g||22.

This concludes the proof. □

APPENDIX D. PROOF OF THEOREM 2

Proof of Theorem 2. Let g𝓁 =K𝓁 ⋆ g. We have

||ĝn,𝓁 − g||2 ≤ ||g𝓁 − g||2 + ||ĝn,𝓁 − g𝓁||2.
The first term of the above right hand side inequality is a bias term whereas the second is a

variance term. To control the variance term, we have by the Parseval’s identity and by (15):

||ĝn,𝓁 − g𝓁||22 = 1
2𝜋
||ĝ∗n,𝓁 − g∗𝓁||22

= 1
2𝜋∫R

|||||K∗
𝓁(𝜉)

[(
𝛼D̂∗

n(𝜉)
2R

1Ωn(𝜉)

M̂∗
n(𝜉)

+ 1

)
− g∗(𝜉)

] |||||
2

d𝜉

= 1
2𝜋∫R

|||||K∗
𝓁(𝜉)

[(
𝛼D̂∗

n(𝜉)
2R

1Ωn(𝜉)

M̂∗
n(𝜉)

−
𝛼D̂∗

n(𝜉)
2RM∗(𝜉)

+
𝛼D̂∗

n(𝜉)
2RM∗(𝜉)

+ 1

)
− g∗(𝜉)

] |||||
2

d𝜉

= 1
2𝜋∫R

||||| 𝛼2R
K∗
𝓁(𝜉)D̂

∗
n(𝜉)

(
1Ωn(𝜉)

M̂∗
n(𝜉)

− 1
M∗(𝜉)

)
+ K∗

𝓁(𝜉)

(
𝛼D̂∗

n(𝜉)
2RM∗(𝜉)

+ 1 − g∗(𝜉)

)|||||
2

d𝜉

≤ C∫
R

|||||K∗
𝓁(𝜉)D̂

∗
n(𝜉)

(
1Ωn(𝜉)

M̂∗
n(𝜉)

− 1
M∗(𝜉)

)|||||
2

d𝜉 + C∫
R

||K∗
𝓁(𝜉)

2|||||| 𝛼D̂∗
n(𝜉)

2RM∗(𝜉)
+ 1 − g∗(𝜉)

|||||
2

d𝜉

∶= I + II.
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We deal with variance of complex variables. Note that for a complex variable, say Z, by
distinguishing real and imaginary parts one gets that

Var(Z) ∶= E[|Z − E(Z)|2] = E[|Z|2] − |E[Z]|2 ≤ E[|Z|2].
For the term II, because

E

(
K∗
𝓁(𝜉)

(
𝛼D̂∗

n(𝜉)
2RM∗(𝜉)

+ 1

))
= K∗

𝓁(𝜉)
(
𝛼D∗(𝜉)

2RM∗(𝜉)
+ 1
)

= K∗
𝓁(𝜉)g

∗(𝜉),

we have

E[II] = C∫
R

Var

(
K∗
𝓁(𝜉)

(
𝛼D̂∗

n(𝜉)
2RM∗(𝜉)

+ 1

))
d𝜉

≤ C∫
R

Var

(
K∗
𝓁(𝜉)

D̂∗
n(𝜉)

M∗(𝜉)

)
d𝜉

≤ C∫
R

|||||
K∗
𝓁(𝜉)

M∗(𝜉)

|||||
2

Var

(
(−i𝜉)

n

n∑
j=1

e(i𝜉−1)Uj

)
d𝜉

≤ C
n∫

R

|||||
K∗
𝓁(𝜉)𝜉

M∗(𝜉)

|||||
2

Var(e(i𝜉−1)U1)d𝜉

≤ C
n∫

R

|||||
K∗
𝓁(𝜉)𝜉

M∗(𝜉)

|||||
2

E

[||e(i𝜉−1)U1 ||2] d𝜉 ≤ C
n∫

R

|||||
K∗
𝓁(𝜉)𝜉

M∗(𝜉)

|||||
2

E[e−2U1]d𝜉

≤ C
n

‖‖‖‖‖
K∗
𝓁(𝜉)𝜉

M∗(𝜉)

‖‖‖‖‖
2

2
,

since E[e−2U1] = ∫ +∞
0 x−2N(x)dx < +∞ thanks to Proposition 4.

We now set

▵ (𝜉) ∶=
1Ωn(𝜉)

M̂∗
n(𝜉)

− 1
M∗(𝜉)

. (D1)

Then we get

E[ I ] ≤ C∫
R

E[|K∗
𝓁(𝜉)D̂

∗
n(𝜉) ▵ (𝜉)|2]d𝜉 ≤ C∫

R

|||K∗
𝓁(𝜉)
|||2E [|||D̂∗

n(𝜉)
|||2||| ▵ (𝜉)|||2] d𝜉

≤ C∫
R

|||K∗
𝓁(𝜉)
|||2E [|||D̂∗

n(𝜉) − E

[
D̂∗

n(𝜉)
] |||2||| ▵ (𝜉)|||2] d𝜉

+ C∫
R

|||K∗
𝓁(𝜉)
|||2|||E [D̂∗

n(𝜉)
] |||2E [| ▵ (𝜉)|2] d𝜉

∶= III + IV.

To control the term IV, we need the following lemma whose proof is postponed in Appendix E.



HOANG et al. 37

Lemma 1. There exists a positive constant Cp such that

E[| ▵ (𝜉)|2p] ≤ Cp min
{

1|M∗(𝜉)|2p ,
n−p|M∗(𝜉)|4p

}
for p = 1, 2. (D2)

Since D̂∗
n is an unbiased estimator of D* using Lemma 1 with p= 1 we get

IV ≤ C∫
R

|||K∗
𝓁(𝜉)
|||2|||D∗(𝜉)|||2 n−1|M∗(𝜉)|4 d𝜉 = C

n∫
R

|||||
K∗
𝓁(𝜉)

M∗(𝜉)

|||||
2||||| D

∗(𝜉)
M∗(𝜉)

|||||
2

d𝜉.

Moreover, from equation (12) and using that g* is the Fourier transform of a density function, we
get |||| D∗(𝜉)

M∗(𝜉)
|||| ≤ 2R

𝛼
(|g∗(𝜉)| + 1) ≤ 4R

𝛼
.

Thus we obtain

IV ≤ C
n∫

R

|||||
K∗
𝓁(𝜉)

M∗(𝜉)

|||||
2

d𝜉 = C
n

|||||
|||||

K∗
𝓁(𝜉)

M∗(𝜉)

|||||
|||||
2

2
.

For the term III, we have by applying Cauchy–Schwarz’s inequality and by Lemma 1:

III ≤ C∫
R

|||K∗
𝓁(𝜉)
|||2
(

E

[|||D̂∗
n(𝜉) − E

[
D̂∗

n(𝜉)
] |||4]
)1∕2(

E

[||| ▵ (𝜉)|||4]
)1∕2

d𝜉

≤ C∫
R

|||K∗
𝓁(𝜉)𝜉
|||2
(

E

[||| 1n n∑
j=1

e(i𝜉−1)Uj − E
[
e(i𝜉−1)U1

] |||4
])1∕2

× min
{

1|M∗(𝜉)|4 , n−2|M∗(𝜉)|8
}1∕2

d𝜉

≤ C∫
R

|||K∗
𝓁(𝜉)𝜉
|||2|M∗(𝜉)|2
(

E

[||| 1n n∑
j=1

Zj(𝜉)
|||4
])1∕2

d𝜉,

where Zj(𝜉) = e(i𝜉−1)Uj − E
[
e(i𝜉−1)U1

]
. Since Z1(𝜉), … ,Zn(𝜉) are independent centered variables

with

E[|Z1(𝜉)|4] = E

[|||e(i𝜉−1)U1 − E
[
e(i𝜉−1)U1

] |||4] ≤ E

[(|||e(i𝜉−1)U1 ||| + |||E [e(i𝜉−1)U1
] |||)4
]

≤ 23
(
E

[|||e(i𝜉−1)U1 |||4] + |||E [e(i𝜉−1)U1
] |||4)

≤ 16E
[
e−4U1
]
= 16∫

+∞

0
x−4N(x)dx < +∞, (D3)

by Proposition 4, applying Rosenthal inequality to real and imaginary parts of complex variables
Zj’s, we get

E

[||| 1n n∑
j=1

Zj(𝜉)
|||4
]
≤ Cn−4

(
nE[|Z1(𝜉)|4] + (nE[|Z1(𝜉)|2])2) ≤ Cn−2.
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Hence

III ≤ C
n∫

R

|||K∗
𝓁(𝜉)𝜉
|||2|M∗(𝜉)|2 d𝜉 = C

n

|||||
|||||
K∗
𝓁(𝜉)𝜉

M∗(𝜉)

|||||
|||||
2

.

Finally, we obtain

E
[||ĝn,𝓁 − g||22] ≤ ||K𝓁 ⋆ g − g||22 + C

n

(|||||
|||||
K∗
𝓁(𝜉)𝜉

M∗(𝜉)

|||||
|||||
2

2
+
|||||
|||||

K∗
𝓁(𝜉)

M∗(𝜉)

|||||
|||||
2

2

)
.

This ends the proof of Theorem 2. □
Proof of Proposition 7. First let us find an upper bound for the bias term ||K𝓁 ⋆ g − g||22. We

assume that g* is integrable and g belongs to the Sobolev class S(𝛽,L). Proposition 1 of Comte and
Lacour (2013) yields ||K𝓁 ⋆ g − g||22 ≤ L2𝓁2𝛽 .

Now we shall consider the variance term. We have

|||||
|||||
K∗
𝓁(𝜉)𝜉

M∗(𝜉)

|||||
|||||
2

2
= ∫

𝓁−1

−𝓁−1

𝜉2|M∗(𝜉)|2 d𝜉 = O(𝓁−(3+2([𝛽]∧(𝜈0+3)))).

Performing the usual trade-off between the bias and the variance terms, we get the following
choice of the bandwith 𝓁, for a fixed 𝛼 > 0 :

𝓁 = 𝛼n− 1
2𝛽+2([𝛽]∧(𝜈0+3))+3 ,

which concludes the proof. □

APPENDIX E. PROOF OF TECHNICAL LEMMA

Proof of Lemma 1. This proof is inspired by the proof of Neumann (1997). We will prove the result
with p= 1. For p= 2, the proof is similar.

We split the proof in two cases: |M∗(𝜉)| < 2n−1∕2 and |M∗(𝜉)| ≥ 2n−1∕2. Recall that Ωn(𝜉) =
{|M̂∗

n(𝜉)| ≥ n−1∕2} and E

[
M̂∗

n(𝜉)
]
= E
[
ei𝜉U1
]
= M∗(𝜉), we have:

E[| ▵ (𝜉)|2] = E

[||||| 1Ωn(𝜉)

M̂∗
n(𝜉)

− 1
M∗(𝜉)]

|||||
2]

= E

[||||| 1Ωn(𝜉)

M̂∗
n(𝜉)

−
(
1Ωn(𝜉)

M∗(𝜉)
+

1Ωc
n(𝜉)

M∗(𝜉)

) |||||
2]

= P(Ωc
n(𝜉))|M∗(𝜉)|2 + E

[
1Ωn(𝜉)
|M̂∗

n(𝜉) − M∗(𝜉)|2|M̂∗
n(𝜉)|2|M∗(𝜉)|2

]
. (E1)

(i) If |M∗(𝜉)| < 2n−1∕2:

E[| ▵ (𝜉)|2] ≤ 1|M∗(𝜉)|2 +
E[|M̂∗

n(𝜉) − M∗(𝜉)|2]n|M∗(𝜉)|2 .
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But

E[|M̂∗
n(𝜉) − M∗(𝜉)|2] = Var[M̂∗

n(𝜉)] = Var

[
1
n

n∑
j=1

ei𝜉Uj

]
= 1

n
Var(ei𝜉U1) ≤ 1

n
E[|ei𝜉U1 |2] = 1

n
.

Hence we obtain

E[|▵ (𝜉)|2] ≤ C|M∗(𝜉)|2 ≤ C min
{

1|M∗(𝜉)|2 , n−1|M∗(𝜉)|4
}
, (E2)

since |M∗(𝜉)| < 2n−1∕2.
(ii) If |M∗(𝜉)| ≥ 2n−1∕2:
We first control the probability P(Ωc

n(𝜉)),

P(Ωc
n(𝜉)) = P(|M̂∗

n(𝜉)| < n−1∕2) = P(|M̂∗
n(𝜉)| < |M∗(𝜉)| − |M∗(𝜉)| + n−1∕2)

≤ P(|M̂∗
n(𝜉) − M∗(𝜉)| > |M∗(𝜉)| − n−1∕2)

≤ P(|M̂∗
n(𝜉) − M∗(𝜉)| > |M∗(𝜉)|∕2). (E3)

Let Tj(𝜉) = ei𝜉Uj − E
[
ei𝜉U1
]
, then

M̂∗
n(𝜉) − M∗(𝜉) = 1

n

n∑
j=1

ei𝜉Uj − E
[
ei𝜉U1
]
= 1

n

n∑
j=1

Tj(𝜉).

We have |T1(𝜉)| = |||ei𝜉Uj − E
[
ei𝜉U1
] ||| ≤ |||ei𝜉Uj ||| + |||E [ei𝜉U1

] ||| ≤ 2,

and
Var (T1(𝜉)) ≤ E

[|ei𝜉U1 |2] = 1.

Since |M∗(𝜉)| ≤ 1 for all 𝜉 ∈ R because of M is a density function, we get by Bernstein inequality
(cf. for instance Comte & Lacour, 2013, lemma 2, p. 20)

P(|M̂∗
n(𝜉) − M∗(𝜉)| > |M∗(𝜉)|∕2) ≤ 2 max

{
exp
(
−n|M∗(𝜉)|2

16

)
, exp
(
−n|M∗(𝜉)|

16

)}
≤ 2 exp

(
−n|M∗(𝜉)|2

16

)
≤ C n−1|M∗(𝜉)|2 . (E4)

We also have that

1|M̂∗
n(𝜉)|2 = |M∗(𝜉)|2|M̂∗

n(𝜉)|2|M∗(𝜉)|2 =
|||M̂∗

n(𝜉) −
(

M̂∗
n(𝜉) − M∗(𝜉)

) |||2|M̂∗
n(𝜉)|2|M∗(𝜉)|2

≤ 2

{
1|M∗(𝜉)|2 +

|M̂∗
n(𝜉) − M∗(𝜉)|2|M̂∗
n(𝜉)|2|M∗(𝜉)|2

}
. (E5)
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Thus, from (E1), (E3), and (E5) we have:

E[| ▵ (𝜉)|2] ≤ C

{
n−1|M∗(𝜉)|4 + E

[
1Ωn(𝜉)
|M̂∗

n(𝜉) − M∗(𝜉)|2|M̂∗
n(𝜉)|2||M∗(𝜉)|2

]}

≤ C
⎧⎪⎨⎪⎩

n−1|M∗(𝜉)|4 +
E

[|M̂∗
n(𝜉) − M∗(𝜉)|2]|M∗(𝜉)|4 +

E

[|M̂∗
n(𝜉) − M∗(𝜉)|4]n|M∗(𝜉)|4

⎫⎪⎬⎪⎭ . (E6)

To find an upper bound for E

[|M̂∗
n(𝜉) − M∗(𝜉)|4], recall that Tj(𝜉) = ei𝜉Uj − E

[
ei𝜉U1
]
. By sim-

ilar calculations as obtained (D3), we have E[|T1(𝜉)|4] < +∞ as |T1(𝜉)| ≤ 2. Thus we get by
Rosenthal’s inequality applied to real and imaginary parts of the sequence of independent
centered variables T1(𝜉), … ,Tn(𝜉):

E

[|M̂∗
n(𝜉) − M∗(𝜉)|4] = E

[||| 1n n∑
j=1

Tj(𝜉)
|||4
]

≤ Cn−4
(

nE[|T1(𝜉)|4] + (nE[|T1(𝜉)|2])2) ≤ Cn−2.

Thus, from (E3) and (E6) we get

E[| ▵ (𝜉)|2] ≤ C n−1|M∗(𝜉)|4 .
Furthermore

1|M∗(𝜉)|2 ≥ n−1|M∗(𝜉)|4 ,
since |M∗(𝜉)| > 2n−1∕2. Hence

E[| ▵ (𝜉)|2] ≤ C min
{

1|M∗(𝜉)|2 , n−1|M∗(𝜉)|4
}
.

Combining the two cases, we obtain

E[| ▵ (𝜉)|2] ≤ C min
{

1|M∗(𝜉)|2 , n−1|M∗(𝜉)|4
}
.

This ends the proof of Lemma 1. □


