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Abstract

The aim of this article is to review the different rates of convergence encountered in inverse
problems, with both deterministic and stochastic noise. Indeed, in the litterature, several
regularity conditions are often assumed leading to apparently different rates. We point out

the different points of view and provide global assumptions that handle most of the cases
encountered. Moreover we discuss optimality of some different usual estimators in the
minimax but also the maxiset framework.
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1 Introduction

Driven by the needs of application in sciences and industry, the field of inverse problem has

been one of the fastest growing area over the recent years. Indeed inverse problems are

found in a large number of pratical situations, in mathematics, in biology, in seismology or

in economy. Hence mathematicians tried to model the different situations encountered using

tools from different fields of applied mathematics, more particulary from numerical analysis,

econometrics and statistics. We try, in this paper, to review the different sets of results together

with the assumptions made for each model. We aim at relating the different results into a

more general framework. More precisely we will draw correspondence between the regularity

assumptions and the different rates of convergence. A particular attention will be paid to the

difference between the deterministic settings and the stochastic framework.

An inverse problem deals with the estimation of a function ��� which is not observed directly

but through an operator
�

. We assume that we do not observe the image of the function of

interest but that our observations are close to this image. More precisely, assume we observe
� such that � �	� � �
����
 . The norm ����� depends on the framework as well as the definition of

the noise level 
 . The noise can either be a deterministic error or a stochastic random noise,



which will determine the difficulty of the estimation problem and the asymptotics is given by


 ��� . The operator is often assumed to be known in a statistical or deterministic framework

since the estimation issue is due to observation errors. On the contrary in econometrics, the

operator often depends on the law of the data and so has to be estimated. As a result, the

noise comes from the estimation of the unknown law of the data, leading to an estimator of the

operator, which defines the level of the observation noise.

The problem is ill-posed in the sense that our noise corrupted observations might lead to large

deviations when trying to estimate � � . In the linear case, the best � � approximation of � �
is ����� � � � � , where

� � is the Moore-Penrose (generalized) inverse of
�

. We will say the

problem is ill-posed if
� � is unbounded. This might entail, and is generally the case, that

� �	� ��

is not close to � � . Hence, the inverse operator needs to be, in some sense, regularized.

Regularization methods replace an ill-posed problem by a family of well-posed problems. Their

solution, called regularized solutions, are used as approximations of the desired solution of the

inverse problem. These methods always involve some parameter measuring the closeness of

the regularized and the original (unregularized) inverse problem. Rules (and algorithms) for the

choice of these regularization parameters as well as convergence properties of the regularized

solutions are central points in the theory of these methods, since they allow to find the right

balance between stability and accuracy. Generally, one often consider a regularized operator

acting over the data ���
������ � ��
 where � is a smoothing sequence depending on the noise

level 
 such that ��� � is close to � � . Regularization techniques are widely described in (Engl,

Hanke and Neubauer, 1996). In a deterministic settings, rates of convergence are given in

(Tautenhahn and Jin, 2003), (Tikhonov and Arsenin, 1977) or (Engl, 2000) for instance. In a

statistical framework, optimal rates are given for linear and non linear procedures in (Cavalier,

Golubev, Picard and Tsybakov, 2002), (Cavalier and Tsybakov, 2002) or (Mair and Ruymgaart,

1996) for example and in (Darolles, Florens and Renault, 2004) and (Hall and Horowitz, 2005)

in econometrics.

When
�

is linear, the statistical problem has been extensively studied, although in general

efficient parameter choice is still under active research. Two main kinds of estimators have

been considered. First regularized estimators such as Tikhonov type estimators, then non lin-

ear thresholded estimators. The first approach has been studied in great detail. An interesting

early survey of this topic is provided by O’Sullivan in (O’Sullivan, 1986). In this setting, the main

issues are what kind of regularizing functional should be considered and closely related what

the relative weight of the regularizing functional should be. More recently, Mair and Ruymgaart

in (Mair and Ruymgaart, 1996) studied different regularized inverse problems and proved the

optimality of the rate of convergence for their estimators. Special attention has been devoted

in this setting when considering a Singular value decomposition (SVD) of the operator � . We

cite the recent work in this direction developed by Cavalier and Tsybakov in (Cavalier and

Tsybakov, 2002) or Cavalier, Golubev, Picard and Tsybakov in (Cavalier et al., 2002). The sec-

ond approach has its most popular version in the wavelet-vaguelet decomposition introduced

by Donoho (Donoho, 1995). In this case the main issue is finding an appropriate basis over

which � � , the generalized inverse, is almost diagonal. This idea is further developed by Kalifa



and Mallat (Kalifa and Mallat, 2003) who introduce mirror wavelets. Closely related, Cohen,

Hoffmann and Reiss in (Cohen and Reiss, 2003) construct an adaptive thresholded estimator

based on Galerkin’s method.

We point out that scarce statistical literature exists when
�

is non linear. Among the few papers

available, we point out the works (O’Sullivan, 1990) or (Snieder, 1991) where some rates are

given, and that of Bissantz et al. in (Bissantz, Hohage, Munk and Ruymgaart, 2007) where

they discuss a nonlinear version of the method of regularization (MOR). A different type of

approach is developed in Chow and Khasminskii (Chow and Khasminskii, 1997) for dynamical

inverse problems. Finally in (Loubes and Ludeña, 2008) are handled a particular class of non

linear operators. But such problems are not fully studied. Hence, in this work, we will restrict

ourselves to linear operators with linear or non linear estimation procedures.

So, in all these papers, rates are given according to the regularity of the operator and the

function to be estimated. First, the difficulty of the inverse problem is measured through the

ill-posedness of the operator. Then some regularity is assumed for the function to be esti-

mated but the sets of assumptions differ according to the 3 frameworks. In statistics, one often

assume smoothness assumptions such Sobolev or Besov imbeddings. In econometrics, sat-

uration sets are defined to measure the bias of an estimation procedure and will be shown to

be equivalent to maxisets (see (Cohen, DeVore, Kerkyacharian and Picard, 2001) for the defi-

nition of maxisets). They are also closely related to the source sets, widely used in numerical

analysis litterature. All these assumptions lead to different rates of converge depending on

the different regularity indexes defined within all frameworks. Hence, we aim at drawing lines

between the different settings and show the common points as well as the differences between

all ! the different models.

The paper falls into the following sections. Section 2 introduces the different models used

in the three field studied here, numerical analysis, econometry and statistics, as well as the

common assumptions over the operator and the parameter of interest. In Section 4, we study

the different rates of convergence obtained in the different frameworks. Section 5 is devoted

to a comparison between stochastic and deterministic noise. The differences between the

different regularity sets in econometrics and analysis are highlighted in Section 3. Finally in

Section 6, we give some results about optimaly of thresholding procedures as regards the

maxiset theory.

2 Models for inverse problems

We first recall the basic properties of operators in Hilbert spaces. Let
�

and � be Hilbert

spaces. Let
��� � � � be a compact linear operator, one to one and bounded. The adjoint

operator
���

is hence defined everywhere from � to
�

such that� ��� �
	 � ��� 	 � � � 	 ��
 � � � 	 � � ��
 �
Then the operator

� � �
is self-adjoint and non negative. This operator admits a unique spectral

measure ��� such that � � � � ����� � � � � 
 �



So we will use the following standard notations

��� 	 � � � � � 
 � � � � � 
 � � � � � 
 �
Moreover, this operator admits a SVD decomposition, ��� �� � � � 	�� � 	�� � 
 	
	���


. So we get

� ��� �
	 � � � � �
�� ��� � � � � � 	�� � 
 � � �

� � �
�� ��� � � � � � 	�� � 
 � � �

Ill-posedness means using this decomposition that the eigenvalues goes to zero when the

resolution level
	

increases. If
� � were observable, the solution would be given by

� � �
�� ��� � � � � 	�� � 
� � � � �

But the asymptotic behaviour of the eigenvalues implies that a small perturbation of the data

lead to a large deviation of the estimate. The faster is the decay, the more difficult the estimation

becomes, since inverting the operator is a more challenging issue.

As explained previously, we do not observe the image of the unknown function but noisy data.

So in statistics or in numerical analysis, the model is defined as

� � � � ��� 
�� 	 (2.1)

where � � is a function which belongs to a subset of a Hilbert space
�

. A is a compact ill-posed

operator from
�

to � , � is a noise and 
 the level of the noise.

The following assumption is crucial in inverse problems with deterministic noise.

Assumption D1 The exact solution when 
�� � is assumed to exist and to be such that there

exist � a regularity index and � ,

� � � ��� � � �
The definition of the noise change according to the framework. In numerical analysis, it corre-

sponds to measurement errors so it is assumed that � ��� and is such that ����� � 
 � Moreover,

it is assumed that the functions are observed at all points.

In statistics, the noise is a Gaussian white noise ����� � � 	�
 
 and does not belong necessarily

to � . In Section 5, we study the main differences between these two definitions and their

consequences.

Moreover, the asymptotics is given by the number of observations and not the noise level. For

this, Model (2.1) is discretized in � points and can be written as follows

�! � � � � �#"  
 � 
�$%�  	
& � 
 	 � � � 	 � � (2.2)"  	'& � 
 	 � � � 	 � are given observation times. The noise is defined as a sequence of random

Gaussian variables � & � 
 	 � � � 	 � 	 
 $ �  )(+* (+* ,�-�/. � 	 
�10 �



So, the noise level is related to the number of observations in the following way 
 $ � 
 ��� � . For

sake of simplicity we restric ourselves to the case of Gaussian noise but other kinds of noise

can be studied provided concentration bounds exist over the random variables. This model

is the more complicated one since it mixes several issues, both the inverse problem and the

discretization in a regression model issue. It is tackled in (Bissantz et al., 2007), (Loubes and

Ludeña, 2008) for instance.

Dealing with (2.2) requires introducing an empirical norm based on this design. Set � $ to be

the empirical measure of the covariables:

� $ � 
� $�  � � 
���� �
Here we have set 
 the Dirac function. The � � � � $ 
 -norm of a function � ��� is then given by

� � ��$ � . � � � � � $ 0 �	� � 	
and the empirical scalar product by

� � 	 � 
 $ � 
� $�  � � �  � �#"  
 �
Remark this empirical norm is defined over the observation space � . Over the solution space�

we will consider the norm given by the Hilbert space structure. Hence we deal with two

norms, one is discretized and the other is continuous, which implies that the adjoint of the

operator
�

with such topology depends also on the discretization scheme. Hence extra as-

sumptions are needed to control the amplification of the error with respect to the choice of the

discretization sequence as done in (Neubauer, 1992), (Kaltenbacher, 2000) or (Loubes and

Ludeña, 2008).

In the particular case where � � � , the functions
� � 	 � � are orthonormal families of

�
. Hence

we can associate to model (2.1) the sequence model

� � � � � � � � 
�� � 	 � 	 ��
 � � (2.3)

Hence multiplying by
�
� �� gives rise to the following sequence model for inverse problems

� � � � � ��

� � �� � � 	 � 	 ��
 � � (2.4)

In this settings, the inverse problem is more easily studied as a particular case of a sequential

heteriscedastic regression model with variance growing to infinity as the resolution level
	

increases. A large amount of litterature in statistical estimation exists for this model. We refer

to (Cavalier et al., 2002), (Mair and Ruymgaart, 1996) for general references.

The main advantage of this model is that the estimation issue as well as the ill-posedness

are well defined in terms of decay of coefficients. However this model does not correspond

to the real observation due to the bias induced by the discretization. Even if under regularity

conditions, discrete coefficients are good approximations of real coefficients, this drawback

may induce a bias when working with real data as well as a loss of efficiency as quoted in

(Donoho and Johnstone, 1999) or (Autin, Le Pennec, Loubes and Rivoirard, 2008).



Inverse problems in economy appear in particular when studying inference with instrumental

variables. Consider a random observable vector � �� 	 � 	 � 
 with distribution � such that there is

an unknown funtion � � �� � �� � � � � � 
 ���� � �	� � 
 � � �
(2.5)

� is a random noise, which is identified by the mean of the instrumental variable � such that� � �
� � 
 � � � This framework is explained in (Hall and Horowitz, 2005) or (Darolles et al., 2004).

So consider the unknown operator
� � � � � ��� � � � 
 � ��
 and define � � � � � �� � � 
 . Hence we can

write the regression model with instrumental variables as

� � �	� � � (2.6)

So define the The operator depends on the unknown law � of the data and can be written� � ���
. A nonparametric estimation of the distribution provides an estimation of the operator

�� � ���� � Hence Model (2.5) can be rewritten as follows

� � �� � � ��� � � � � �� � ��� � (2.7)

In order to compare this model with the classical model for inverse problems (2.1) by consider-

ing the estimation of the operator as an error term in the regression model, 
�� ��� � � � � �� � ��� ,
with known operator �� . Then the model (2.7) has the classical form

� � �� � � � 
�� 	
where 
�� depends on the number of observations through the rate of convergence of the

nonparametric estimate of the density of the law of the data.

Finally, all three main models are similar in the sense that the inverse regression model is the

main framework for studying the efficiency of estimation procedures. The main differences lay

in the definition of the noise level.

3 Regularity conditions for inverse problems

In the litterature of inverse problems, the rate of convergence depends on two parameters� The ill-posedness of the operator
�

. It is stated using Hilbert scales or Sobolev imbed-

dings.

More precisely ill-posedness can be defined considering the Hilbert scale framework. A

Hilbert scale is defined with a family of Hilbert spaces � ��� 	�� � �	! � Consider the inner

product in
�"�

:
� � 	 �

 � � � � � � 	 � � � 
 , where � is an unbounded self-adjoint strictly

positive operator in
�

and
� � 	 � 
 is the inner product in

�
. More precisely

� �
stands

for the completion of the intersection of domains of operators �
� 	�� � � � So we get that

� ��� � � � � 	 � 
 � � �� and by definition we set � ��� � � ��� �



The degree of ill-posedness is � such that

� � � � � 	 � � �
� � � � � � � � � � � �
� � � 	 (3.1)

for two given positive constants
� 	 �

.

This expresses a smoothing action. Indeed the operator maps any space of smoothness� into a space of smoothness � � � , for instance � � � � � � � � In an equivalent way, ill

posedness of order � is equivalent with the ellipticity property

� ��� �
	 � � � 	 � 
 � � � �����
	���
 	
where �

� � � �
stands for the dual space of the Sobolev space � � � �

.

Ill-posedness can be seen through the decay of the eigenvalues as follows. Under previ-

ous assumptions (3.1), we obtain the following equivalence� � � 	 � � �
If we do not consider natural assumptions over the operators but only the decay of the

eigenvalues, we can imagine a larger class of inverse problems with other kinds of decay,

for instance exponential decay.� The regularity of the function � � to be estimated. This regularity can be expressed in

several ways, corresponding to the various frameworks.

In statistical estimation, when considering the sequence model (2.4), regularity is expressed

through sparsity constraints. This assumption is standard in non parametric estimation and can

be expressed by the decay of the coefficients of the unknown function in a good basis. This

decay may be polynomail or exponential. So, there is a regularity parameter � an increasing

sequence � � and a constant
� 
 � such that

� � ��� � � � 
 � � � � � �� ��� � � � � � 	 ����� � � � �� � �� � � ! �
The sequence can be chosen exponential � ����� � or polynomial � ��� 	 � It is the case in most

of the papers in statistical analysis of inverse problems, see for instance (Donoho, 1995), (Mair

and Ruymgaart, 1996) or (Cohen and Reiss, 2003) for instance. Such assumption corresponds

to well known regularity spaces, such as Sobolev or Besov spaces. For more references for

such functional spaces, we refer to (Besov, Ilin and Nikolskiı̆, 1978). Moreover for pratical use,

such set of assumptions can be easily checked.

In econometrics, the situation is different since the operator is unknown and has to be esti-

mated. In this case, the authors often separate the problem into a bias-variance trade-off and

write the following decomposition

�� �$ � � $ � � � � �'� �� $ � � � �� ��� �
����� ( ���� "! � ��� � � �� ��� �# ( ��$ �

��� is the regularization operator chosen to build the estimator and � is the smoothing se-

quence. � � is obtained by smoothing the data without noise by the smoothing operator. The



bias term measures in a way the efficiency of the regularization procedure to handle a deter-

ministic ill-posed problem for a given class of functions. Hence the regularity of the function of

interest is assumed to undergo the following condition:
� � ��� � 


,

� � ����� � � � � 	 � � � � � � ��� � � � 
 ! � (3.2)

Such set is called a saturation space, which is often used in econometrics paper. It is the case

when studying inverse problems due to instrumental variables, the consumer surplus variations

or generalized moments methods, see for instance (Darolles et al., 2004), (Carasco, Florens

and Renault, 2004) or (Loubes and Vanhems, 2004). Such spaces are defined for a given

regularization scheme. They define the regularity of a function as the necessary smoothness

to achieve, without noise, an estimation of the inverse problem at a given rate of convergence

� � � � 
 . Hence such definition can also be interprated as a deterministic maxiset associated

to the estimation procedure � � with rate of convergence � � , provided � is a given sequence.

Hence we should assume that these sets are properly defined, so assume that

Assumption A1 For every � � " � � � 

, we have � �
	 � � �

In a deterministic framework, or in a statistical framework where the sequence model can not

be used, authors define the following spaces� � � � ��� � 	 ��� � � � 	 � � � � � � 
 � � ! ��
 � � � � � 
 � � 	
where 
 stands for the range of an operator. We refer to (Engl et al., 1996) for the complete

definition of such spaces in a deterministic settings and to (Bissantz et al., 2007) or (Loubes

and Ludeña, 2008) with a random noise regression framework.

Such spaces aim at relating the decay of the coefficients of the function to be estimated, with

the decay of the eigenvalues of the operator. So the spaces
� � compares the regularity of

the unknown function with the ill-posedness of the operator. These spaces are usually called

source sets.

For compact operators, these spaces can be characterized via the singular values a follows

� � � � � 	 �� ��� � � � � 	�� � 
 � ���� �� � ��� ! � (3.3)

This way of characterizing the regularity in ill-posed inverse problem appears naturally when

considering the bias term in the estimation. However, such assumption is difficult to check

in practice since the two characteristics of the issue (the ill-posedness and the regularity) are

mixed in one main condition.

There is a close connection between source sets and maxisets of a particular regularization

procedure. Assume that the regularization procedure assumes the following assumptions

Assumptions A2 The regularization scheme � � defined on
� � 	!
 
 is such that there are a

constant �
� and constants
� 	 � 	��

such that for all sequence � � � � � 
 ��� � , � � � � �
� � 	 � 	���


� � � 
 � � ��� � � 
 � � � 	 � � � � � � 	� 
 � � ��� � � 
 � �� � �
	 � � � � � 
 �



Moreover, it is possible to give another interpretation of such maxisets for well chosen regular-

ization sequence.

Proposition 3.1 (Spectral and sequential definitions of maxisets for regularization methods).

Under Assumtions A2, we obtain the following equivalent definitions

� � ��� ��� � 	 � �
� � � � � � �
� � � � � " � ��� !

��� � � �� ��� � � � � � 	 �� � $ � �� ��� � � � �$ � ! �
Proof. Recall here the guidelines in (Neubauer, 1997) or (Engl et al., 1996), we get clearly that

� � � � � � � � �
� �
� � 
 � � ��� � � 
 
 � � � � � � � � �

� �
� � .�� � � � � �� � 
 � � � � � � 
 
 � � � ��� � � � � 0��� � � .�� � � � � � �� � 
 � � ��� � � 
 
 � � �� � � � � � � � � � � � � 0 �

As a result, if � �� � � �
� �

�
� � � � � " � � � , then since

� � � �
�
�
� ��� � � � � � � �� �


 � � � � � � 
 
 � � � � � � � � � � � � � �
�
�
� � � � � � � 	 (3.4)

we obtain that � � � � � � � ��� � � � 
 �
Conversely, if � � � � � � � ��� � � � 
 	 then bound (3.4), as well as� �

� � 
 � � � � � � 
 
 � � �� � � � � � � � � � � � � ��� �
� �
�
� � � � � � � � � � �

enable to conclude the proof.

Such equivalent definitions enable to characterize the maxisets for particular class of inverse

problems. Once the degree of ill-posed of the operator
�

is fixed, say for instance � , the rate

of decay of the eigenvalues is fixed. More precisely we get
� � � 	 � � � This implies that

� � �
����� � � � � � � � � � ���� $ � �� ��� � � � � � � � �

Hence in problem (2.1), the quadratic bias estimation error in � � corresponds to an approxima-

tion, by its projection onto a finite dimensional space with dimension � , of order � � � � � � Hence

we obtain clearly that for � � � � , we get sets which are related to Sobolev spaces with degree

of regularity � . Indeed, define as in (Mair and Ruymgaart, 1996) the following Sobolev spaces

� � � � � � � �� ��� � � � 	�� � 
 � � � � � � � � 	!
 
 
 	 ����� � 	 � � � � � 	�� � 
 � � � ��� ! �
Remark 3.1. In this case (compact operator with � its degree of ill-posedness), we can also

interpret definition of the source sets to interpret them in terms of Sobolev regularity, leading

to the following result. � � � � 	��
 �
This remark will be extended in Theorem 4.2 in order to compare rates of convergence in the

source sets framework and in the statistical smoothness framework.



The following theorem draws some relation between maxisets in econometrics and the source

sets used in a deterministic settings.

Theorem 3.2 (Deterministic maxisets and source sets). Under assumptions A1 and A2, we

obtain the following inclusions.

1. For � � � ��

, � � 	 ��� 	 � � � � � 	 � " 
 � �

2. � � � � � �
This theorem is gathered from the results in (Engl et al., 1996).

We recall here the main regularization scheme used in the statistical litterature� Tikhonov regularization:
�
� � �
�

 � � �� � � �� Landweber regularization:

�
� � �
�

 � � 
 � � 
 � � � 
��� for some

� 
 � ,� Spectral cut-off:
�
��� �
�

 � ����� ��� �
	 �

�

 � �� � ��� �
� ��� �

These usual regularization operators satisfy clearly the assumptions A2.

4 Rates of convergence for inverse problems

Define for a deterministic noise and respectively a random noise, the optimal (minimax) rate of

convergence for recovering an unknown signal � � � � as

� 
, !�� � ���������������� � ! �"���#�$�#&% � � � � �� � � 
 � (4.1)

� 
$'�)( � ��������� ������ � !
� � � � � �� � � 
 � � � � (4.2)

Regularization of ill-posed inverse problems in Hiblert scales lead to the following result

� 
, !*� � � 	 � � � � 
 
 � 
,+	.- +
	

(4.3)

and this rate of convergence is achieved. Such results have been introduced by Natterer in

(Natterer, 1984) and are also given in (Engl et al., 1996).

In a statistical setting, consider first the sequence model (2.4) with Gaussian noise. We now

obtain the following theorem

Theorem 4.1 (Stochastic convergence in sequence model). Suppose we are given in a se-

quence space
� � � � � � � 


� � �� � � 	
	 � 
 	 � � �
where � � are i.i.d � � � 	!
 
 and

� � � 	 � �
and

� � � � � 	 � ��� � 	 � � � �� � � � ! �



Hence

� ����� �"���� � ����� �
� 
 � � 
 � %�� 
 � � � � � � �� � �� 
 � � � � 
 ��'-��)- � ��
 �

This result is taken from (Donoho, 1995) or (Cavalier and Tsybakov, 2002). Here also the

optimal rate is achieved for a particular class of estimators.

If we do not want to consider this sequential model but try to work with a more realistic model,

we need other types of assumptions more adapted to operators. These assumptions are given

by the deterministic settings by the sets
� � � In this framework, the following theorem provides

a rate of convergence.

Theorem 4.2 (Stochastic convergence in operator model). Suppose we are given the fol-

lowing observations

�� � � � � � "  
 � 
��  	 & � 
 	 � � � 	 � 	 �  (+* (+* ,� � � � 	�
 
 �
Assume that the source condition holds � � � 
 � � � � 
 � and that

�
is ill-posed with degree � ,

then we obtain
� 
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+
		

+
	.- 
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This result is obtained in (Bissantz et al., 2007), (Loubes and Ludeña, 2008) using respectively

regularized estimators and either projection estimators or adaptive regularized estimators.

This rate can be compared to the rate obtain in Theorem 4.1 with the following correspon-

dence � ��
 � � � This relation enlights that in the definition of the spaces
� � , the degree of

ill-posedness and the Hilbert type regularity of the unknown function are put together while all

the sequence model enables to separate the two kind of assumptions.

To sum up, the different rates obtained in Hilbert scales for linear ill-posed problems with known

operators are given in the following table. We separated the different cases of degree of ill-

posedness together with the two frameworks with either deterministic noise or random noise.

Rates of convergence Deterministic noise Stochastic noise

Polynomial ill-posedness �� � � � �� � � � � � �
Exponential ill-posedness �� � � �� � �

Finally, we proved that the two sets of assumptions (Hilbert scales of source sets) in a statistical

framework lead to the same rate of convergence, provided the indexes of regularity are properly

defined. The correspondence � ��
 � � relates the smoothness regularity assumed over the

function � � and the smoothness of the function with respect to the operator, defined through

the source sets. If the operator maps the Hilbert space onto itself, then model (2.4) is well

appropriated and various smoothness assumptions are clearly settled for each parameter of

the estimation problem. This also explains the particular interest of this model to analyze

inverse problems. Otherwise, the action of the operator is more difficult to understand. So it

is not possible to separate anymore the two effects and the source sets are an esay tool to

provide regularity assumptions to functions studied in an ill-posed framework. Hopefully, the

rates of convergence are the same.



In an econometrical settings, the problem is quite distinct since the operators are unknown,

leading to different rates of convergence. Such rates are given in (Darolles et al., 2004) and

(Hall and Horowitz, 2005) but for different assumptions. We obtain the following theorems

Theorem 4.3 (Consistency in Hilbert scale framework). Consider the following assumptions.�
is ill-posed with degree � and � � � � �� � � � � � � with � � � 	 � � � Under technical additional as-

sumptions and for optimal choices of the smoothing parameter, we can construct an estimate

converging at the following rate of convergence� � �� � � ��� �� � ����� � 
 � � �
 �'- 	�� �
This theorem can be found in (Hall and Horowitz, 2005).

Theorem 4.4 (Consistency under determinist maxiset assumption). Assume that � � � � ,
then a kernel estimate with an optimal choice of the bandwidth leads to the following rate of

convergence. � � �� � � � � �� ��� � � � +
�- +
� �

The proof of this result can be found in (Darolles et al., 2004).

Using results from previous section, we can provide an interpretation of the previous rates of

convergence. Assume that the operator is ill-posed of order � and that � � � � � then we obtain

that if moreover � � � � � , then we can write

� � 
 �� �
Theorem 4.4 implies the following rate of convergence� � �� � � � � �� ��� � +
�- + �
Using the correspondence, we get that� � �� � � � � �� ��� � �	 - � 	
which corresponds to the optimal rate of convergence under source assumptions with a noise

in 
�� �$ . So the rate in � � +
�- + can be seen as a rate of converge in a deterministic setting with

source sets conditions. The noise is deterministic in the sense that it doest not depend on the

level of noise in the observation data but is defined as the noise coming from the estimation of

the unknown operator.

The differences between stochastic and deterministic rates of convergence do not depend on

the smoothness assumptions but rely on the nature of the observation noise. They are studied

in the next section.

5 Comparison between Deteministic and Stochastic settings

Consider the inverse regression framework (2.1). The difference between the deterministic

and the stochastic case is not in the inverse problem but in the definition of the observation



noise. Indeed, in the deterministic case, the noise � is an element of the Hilbert space � such

that ��� � � 
 � One could think the stochastic noise as a random element of � , but the situation

is quite different. The noise is not defined any more as an element of the Hilbert since for a

Gaussian white noise, ��� � � � , hence � is a distribution over � .

Let
� � 	 	 � 


be an orthonormal basis of Hilbert space � , then � is defined by the inner

products � 	 ��
 	 � � 	�� � 
 ��� � (+* (+* ,�-� � � 	!
 
 �
In the Gaussian white noise, the series

� ���� � � � 	�� � 
 � � is divergent.

As a result, the stochastic noise is of complete different nature than the deterministic noise,

leading to a more difficult estimation issue. It is highlighted by the rates of convergence ob-

tained in Section 4. Recall that for polyniomaly ill-posed problems the determinist rate is given

by
� , !*� � 
 
 � � �� � � � � � ��� � 


	 �
 �'- 
"	 
 	
while the stochastic rate is given by

� $'�)( � 
 
 � � � �� � � � � � � � � 
 	 �
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Hence when the inverse problem vanishes as � � � , when obtain the rates considering to the

regression problem
� , !�� � 
 
 � � � 
 � 
 	 � $'�)( � 
 
 � � � 


	 �
 �'- � 
 �
Hence denoising in the deterministic noise can be achieved at the parametric rate of conver-

gence. On the contrary the efficiency of a denoising procedure depends on the regularity of the

function, here defined by the parameter � . If we consider the sequence model (2.4), the error

contribution in the deterministic case is smaller when the resolution level
	

increases, while the

stochastic error is of same order for each coefficient � � . So in the statistical estimation problem,

there is a trade-off between bias and variance, which does not exist in the deterministic case.

The whole set of available data can be used, leading to the parametric rate of convergence.

As a conclusion, there is a huge difference between the two situations. To introduce some links

between the two cases, let us consider a � -value Gaussian noise as follows

� 	 � 
 	 � � � 	�� � 
 � � � � � 	 � � (+* (+* ,�-� � � 	�
 
 	 � � ��� � � 
 
 � (5.1)

In this case the noise is defined as

� � � �� ��� � � � � 	�� � 
 � � 	
which converges almost surely in � . This definition is close to the one used by Munk et al. in

(Bissantz et al., 2007). We can associate to � � a linear bounded operator � $ � acting from � to

the space � � , such that for any
� ��� ,

��� 	 � � 
 � ��� $ � � � � � �



So, the operator can be written as follows

� $ � �
�� ��� � � � � � � � � 	 � 
 �

The same definition can be extended for Gaussian white noise with
� � � 


.

The following theorem gives the optimal rate of convergence for an ill-posed inversed problem

with an adapted stocastic noise.

Theorem 5.1. Consider the following model

� � � � � � � � 
 � � � � 	
	 ��
 �
Then, with

� � � 	 � � for � � � � 	 � 
 ,
� 
$'�)(� � � 	 � �� 	 � � 
 � 
 ��'- 	��

+
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 �

Proof. The proof of this theorem implies only rewritting the model with different eigenvalues.

Indeed the model can be stated as follows

� � � � � � 
 	 � � � � � 	
leading to the rate of convergence in 
 ��'- 	��

+
- � ��
 .

Remark that for � � �� , the optimal rate of convergence obtained in the stochastic framework

coincides with the deterministic one. However the noise only belongs to � for � 
 
 � 
 . To get

convergence, we need to consider
� � � 	 � �	� � ����� � � � 	 � 
 
 . For this particular choise, we obtain

the equivalence between stochastic and determinist framework, up to a logarithmic factor. This

particular point is also highlighted in (Cavalier, 2003).

In a maxiset point of view, the situation is also different. Indeed maxisets in a deterministic

framework are defined as saturation spaces in Section 3. In a statistical settings and with the

model defined in (2.4), maxisets appear as weak Besov spaces, whose nature is far more

complicated than previous sets. For more reference about this topic, we refer to (Rivoirard,

2004).

6 Maxisets for Inverse Problems

6.1 Model

In this section, we consider the following heteroscedastic white noise model:

� � � � � ��
 � � � � 	 	 � 
 	 
 	 � � � (6.1)

where � � � � � 
 ��� � is an unknown sequence to be estimated by using observations � � � 
 � � � ,

 
 � is a small parameter and � � � 
 � � � is an independent and identically distributed (i.i.d.)

sequence of Gaussian variables with mean zero and unit variance. Point also that
� � � � � �� .

Along this paper, we assume that
� � � � � 
 � � � is a known sequence of positive real numbers.



This heteroscedastic white noise model, that appears as a generalization of the classical white

noise model (for which, we have
� 	 � 


,
� � � 


), is extensively used by statisticians. Let

us briefly recall the reasons for this large use and provide references. Given a known linear

operator
�

, we use the heteroscedastic white noise model when we have to estimate the

solution
�

of the linear equation � � � �
, with noisy observations of � . Most of the time, to

deal with such a problem, we exploit the singular value decomposition of
�

and the sequence

� � � �� 
 ��� � is then the eigenvalues sequence of the operator
� � �

, with
� �

the adjoint of
�

.

In the wavelet context, (Johnstone, 1999) and (Johnstone and Silverman, 1997) explained

that the heteroscedastic white noise model can also be used to represent direct observations

with correlated structure. More precisely, let us assume that we are given the following non

parametric regression model:

�  � � � &� 
 � �  	 & � � 
 	 
 	 � � � 	 � ! 	 (6.2)

where � is an integer,
�

is the signal to be estimated and the �  ’s are drawn from a stationary

Gaussian process. By studying the autocorrelation function of the �  ’s , (Johnstone, 1999) and

(Johnstone and Silverman, 1997) showed that under a good choice of 
 and
� � � � � 
 ��� � , the

model (6.1) appears as a good approximation of the model (6.2) when � is large.

6.2 The maxiset theory and functional spaces

Let us first motivate the introduction of the maxiset point of view. When non parametric prob-

lems are explored, the minimax theory is the most popular point of view: it consists in ensuring

that the used procedure �� � � �� � � � � 
 
 � � � achieves the best rate on a given sequence space � .

But, at first, the choice of � is arbitrary (what kind of spaces has to be considered: Sobolev

spaces? Besov spaces? why?), secondly, � could contain sequences very difficult to estimate.

Since the unknown quantity � � � � � 
 ��� � could be easier to estimate, the used procedure could

be too pessimistic and not adapted to the data. More embarrassing in practice, several minimax

procedures may be proposed and the practitioner has no way to decide but his experiment. To

answer these issues, an other point of view has recently appeared: the maxiset point of view

introduced by (Cohen et al., 2001) and (Kerkyacharian and Picard, 2000). Given an estimate
�� , it consists in deciding the accuracy of �� by fixing a prescribed rate � 
 and to point out the

set of all the sequences � that can be estimated by the procedure �� at the target rate � 
 . So,

under the statistical model (6.1), we introduce the following definition.

Definition 6.1. Let

 ��� � � and any estimator �� � � �� � � � � 
 
 � � � , the maxiset of �� associated

with the rate � 
 and the ��� -loss is

�
	 � �� 	 � 
 	 � 
 � ��� �� � � � � � 
 ��� � � �"���


�
������ � � � � � �� � � � � 
 � � � � ���� �� � � �
 ���� � � � ���� �
The maxiset point of view brings answers to the previous issues. Indeed, there is no a priori

assumption on � and then, the practitioner does not need to restrict his study to an arbitrary

sequence space. The practitioner states the desired accuracy and then, knows the quality of



the used procedure. Obviously, he chooses the procedure with the largest maxiset. Let us give

first examples of maxiset results in the statistical framework of this paper. For this purpose, we

need to introduce the following sequence spaces.

Definition 6.2. For all

 ��� � � and � � � � � , we set:���� � � � �� � ��� � � � 
 � � � � �������� � � � � ���� � � � � � � � �

� �� 	
and if � is a real number such that � � � � � , we set� ��� � � � � 
 � �

� � � � � 
 ��� � � �"������ � � � � � �
	 � � 	 ��� � � � � � � ��� �

6.3 Maxisets for thresholding and linear rules

In this section, under the model (6.1), we estimate each � � by using thresholding rules. More

precisely, we focus on thresholding rules associated with the universal threshold
� � � 
 � � � 
�
 ����� � 
 � 
 


(see (Donoho and Johnstone, 1994)) : for all 
 
 � , we assume that we are given a real number

�	
 
 � only depending on 
 and tending to ��� when 
 tends to 0, and we set:

�� � � � � � 
 � � � � � 	 � � 	 ����� � ��� � if
	 � �	
 	

� otherwise,

where � � is a constant. (Kerkyacharian and Picard, 2000) have studied the maxisets for this

procedure. They obtained the following result for �� � � � �� � � 
 � ��� �
:

Theorem 6.1. Let

 ��� � � be a fixed real number and � � � � � . We suppose that

� � � 
 � 
 � 	 � 
 � � 
 
 ����� � 
 � 
 
 � ��� 	
where 
 � is such that 
 ��
 � � � � 
 � 
 � 
 � 


, and there exists a positive constant � , such that� � � 
 � 
 � 	

�� 
 �� � � � � � 
 � 
 
 � �	 � � 
 ��"!$# � � � � �%� �

Let � be a fixed positive real number such that � � � .

Then, if � � � � 
 � , �
	 . �� � 	 � 
 
 � � � � 
 � �'& � � � � � � 	 � 0 � � ��� � � � � 
�( � �) & � � � � � �� � � �
For the same statistical model, (Rivoirard, 2004) proves that under some mild conditions,

the maxisets associated with linear estimates of the form � � � � � 
 � �*� �
, where � � � 
 � �*� �

is a

non increasing sequence of weights lying in
� � 	!
 
 , are Besov bodies. These conditions are

checked for instance by projection weights, Tikhonov-Phillips weights or Pinsker weights. For

further details see (Rivoirard, 2004). We can add that Rivoirard proved that for the rate

� 
�
 � � � � 
 � 
 
 � & � � � � � �
, the maxisets of linear estimates are strictly included into the maxisets

of thresholding rules. It means that from the maxiset point of view, linear estimates are outper-

formed by thresholding ones, as mentioned in Introduction.

In the next section, we consider a Bayesian model and we evaluate the maxisets respectively

for the median and the mean of the posterior distribution.



6.4 Maxisets for Bayes rules

The sequence � to be estimated is supposed to be sparse. With this in mind, we wish to

estimate each � � by using Bayes rules and we consider the following Bayesian model: we

suppose that we are given a fixed unimodal density � , assumed to be positive on � , symmetric

about 0 and such that there exist two positive constants
�

and
� � such that

� � � 
 �"���� ���
�

�
�
�
�

��
�

����� � � � 

�
�
�
� �

� � � �

Then, we assume that the � � ’s are independent and
� 	 ��
 � ,

� � � 
 � � � � � � 
 � � � 
 � � � 
 � � 
 � � � � 
 
 
 � � � � 
 	
where

� ����� ,
� � � 
 � � 
 ��� � � 
 � � � � � 
 � 
 	 � � � 
 � � 
 � � 
 � � 	

and � � � 
 is a real number lying in � � 	!
 
 . The hypothesis � � � 
 will be useful to determine

maxisets for Bayes rules. Assumption � � � 
 implies that

��� � � � 	 � � � 
 � � � � � 
��	� � � �
� � � � � � 
 
 �

It means that the tails of � have to be exponential or heavier. It can be shown (see (Rivoirard,

2005)) that this assumption is essential to get maxisets as large as possible. Furthermore,� � � 
 � � 
 depends only on 
 and we shall assume throughout this paper that 
�� � � 
 � � 
 
 � � �

satisfies the following mild assumptions, globally denoted � � � 
 .

1. 
 � � 
�� is continuous,

2. � ��� 
 � �

 
 
 

,

3. 
 � � �	� � �

 
 ,

4. 
 �

�� �� � ��� ,

5. 
 � � � �

 �

�� �� � � .

In this section, we consider the Bayes rules associated with the � � -loss (the median of the

posterior distribution) and with the � � -loss (the mean of the posterior distribution). For all 
 
 � ,
we assume that we are given a real number � 
 
 


depending only on 
 and tending to ���
when 
 tends to 0. We estimate each � � by �� � �� � � � 
 or by �� � 
� � � � 
 defined by the following

procedure.� If
	 � � 
 , �� � �� � � � 
 (respectively �� � 
� � � � 
 ) is the median (respectively the mean) of the

posterior distribution of � � given � � .� If
	�� �	
 , �� � �� � � � 
 � �� � 
� � � � 
 � � .

We have the following result for the posterior median.



Theorem 6.2. We assume that � � � 
 and � � � 
 hold. Let � � � � � and

 � � � � be two

fixed real numbers. We suppose that
� 
 
 � ,
�	
 � � 
 
 � � �


�� 

��� 	

and there exist two positive constants � � and � � , such that
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 � ,



� �



� �
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�
�
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 �%� � 	 (6.3)




�
��

� � ����� 
�� 

�
�	
� � 
 ��"!�# � � � � �%� � � (6.4)

Let � be a fixed positive real number such that � � � .

Then, � 	 � �� � � 	 � 
 
 �����

 � 


� � � � � 	 � � � � � � � � � � 
 ( � �) & � � � � �
�� � � �
For the posterior mean, we have:

Theorem 6.3. We assume that � � � 
 and � � � 
 hold. Let � � � � � and

 � � � � be two

fixed real numbers. We suppose that
� 
 
 � ,
�	
 � � 
 
 � � �


�� 

��� 	

and there exist two positive constants � � and � � , such that
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 � ,
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Let � be a fixed positive real number such that � � � . Then,� 	 � �� � 
 	 � 
 
 �����

 � 


� � � � � 	 � � � � � � � � � � 
 ( � �) & � � � � �
�� � � �

For the proofs of these results, see (Rivoirard, 2005). When 
 � is a power of 
 , then, by us-

ing Theorem 6.1, we can compare the Bayesian procedures �� � � and �� � 
 with the thresholding

one. We can conclude that each of them achieves the same performance as the threshold-

ing one. Finally, since linear estimates are outperformed by thresholding ones, they are also

outperformed by �� � � and �� � 
 .

6.5 Some remarks

Maxiset Procedure

The comparison of procedures using maxisets is not as famous as minimax comparison. How-

ever the results that have been obtained up to now are very promising since they generally

show that the maxisets of well-known procedures are spaces that are well established and

easily interpretable. Indeed, in the maxiset approach, the Besov bodies (the spaces
� �� � � )



control the � � ’s for the large values of
	
. As for the spaces � � � � � � � 
 , they can be viewed as

weighted weak � � spaces. The weak � � space is the space � � � � � � � 
 when
� � � 


for any	 � 

, so we denote it � ��� � � � 
 
 . This space was studied in approximation theory and coding by

(DeVore, 1989). We easily see that if we order the components of a sequence � according to

their size: � � � & � � � � � � & � � � �����
� � � � & $ � � � � � 	

then

��� � � � � � � 
 
���� �����$ � �� � � � & $ � � � �
So, � ��� � � � 
 
 spaces naturally measure the sparsity of a signal. Of course, the weighted versions

of these spaces, the � � � � � � � 
 spaces, share the same property.

Other models

As we pointed out in section 3, the regularity spaces � � can be seen as a very particular class

maxisets for the deterministic problem of recovering a signal observed in an inverse framework

without noise. They characterize the set of functions that can be recovered by a given regular-

ization procedure at a given rate of convergence. It is stricking to see that such sets can in this

setting define regularity spaces in the associated random model.

When considering maxisets with observations drawn from model (2.1), we face the problem of

discretization. Indeed, as seen in (Autin et al., 2008), the smoothness assumptions needed

to ensure the equivalence between this model and the sequential model are stronger than

the minimum assumptions necessary to ensure the convergence of the estimator. As a con-

sequence, the maxiset associated to any estimation procedure comes from the discretization

assumptions and not from the inverse problem, leading to weak results preventing any inter-

pretation of maxisets results.

7 Conclusion

In this paper, we have linked the different notions of regularity used in the inverse problem

litterature in the three main fields, statistics, analysis and econometry. We have showed that

under some regularity assumptions, the three main regularity spaces can be compared to each

other. This leads to rates of convergence which are well understood in Hilbert scales and when

the operator is known and that can be studied in the three settings. Several main differences

also appeared, mainly when dealing with observation noise of different nature, i.e deterministic

or random noise.

Several questions still remain unadressed, such as whether it is possible to separate regularity

conditions over te operator and the unknown function when the operator maps a space into a

different one. Neither did we pay attention to the adaption issue and its different understanding

in the different frameworks.
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