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A  method  based  on Hawkes  processes  to reconstruct  functional  connectivity  of  networks.
It  used  least-square  estimators  and  LASSO  penalty  criteria.
It  does  not  requires  prior  knowledge  of  network  properties  or architecture.
It is  robust,  stable,  can  be  used  with  experimentally  realistic  amount  of data.
It can  be  run on  personal  computer.
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a  b  s  t  r  a  c  t

Background:  Statistical  models  that predict  neuron  spike  occurrence  from  the  earlier  spiking  activity  of  the
whole  recorded  network  are  promising  tools  to reconstruct  functional  connectivity  graphs.  Some  of  the
previously  used  methods  are  in  the  general  statistical  framework  of  the  multivariate  Hawkes  processes.
However,  they  usually  require  a huge  amount  of  data,  some  prior  knowledge  about  the  recorded  network,
and/or may  produce  an  increasing  number  of  spikes  along  time  during  simulation.
New  method:  Here,  we  present  a  method,  based  on  least-square  estimators  and  LASSO  penalty  criteria,
for a particular  class of Hawkes  processes  that  can  be used  for simulation.
Results:  Testing  our  method  on  small  networks  modeled  with Leaky  Integrate  and  Fire  demonstrated  that
it efficiently  detects  both  excitatory  and  inhibitory  connections.  The  few  errors  that  occasionally  occur
with  complex  networks  including  common  inputs,  weak  and  chained  connections,  can  be discarded  based
on  objective  criteria.
Comparison  with  existing  methods:  With  respect  to other  existing  methods,  the present  one  allows  to

reconstruct  functional  connectivity  of  small  networks  without  prior  knowledge  of their  properties  or
architecture,  using  an  experimentally  realistic  amount  of  data.
Conclusions:  The  present  method  is  robust,  stable,  and  can  be used  on  a personal  computer  as  a  routine
procedure  to infer  connectivity  graphs  and  generate  simulation  models  from  simultaneous  spike  train

recordings.
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1. Introduction

Ensemble spiking activities in neuron networks are the bases of
information coding and information processing within the brain.
Thanks to the significant advances in electrophysiological tech-
niques (Buzsaki, 2004) and computational power over the last 20

years, simultaneous spike train recordings have been collected
in many brain areas under various experimental conditions from
anesthetized (see for example Roy et al., 2011) to fully awake
animals performing complex behavioral tasks (see for example
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chmitt et al., 2017). Consequently, significant efforts are currently
evoted to develop state of the art methods analyzing simultane-
usly recorded spike trains (Stevenson et al., 2008; Roudi et al.,
015). One of the main challenges faced by these methods is how
o determine the potential interactions existing between the dif-
erent neurons, i.e. to reconstruct the functional connectivity graph
f the recorded network.

Commonly used approaches include several histogram-based
ethods to calculate the cross-correlation functions (Perkel et al.,

967), the cross-intensity functions (Brillinger et al., 1976) or the
oint peri-stimulus time histogram (Gerstein and Perkel, 1969).
hese methods however only consider pairs of neurons and may
asily lead to inaccurate functional connectivity graphs due, for
xample, to the presence of common inputs or connection chains
ithin the recorded networks (Stevenson et al., 2008).

More recent methods are based on models of the whole set of
bserved spike trains (Stevenson et al., 2008; Roudi et al., 2015).
mong these methods, much attention has been paid to statistical
odels that aim to predict spike occurrences in a given neuron

s a function of its earlier spikes, of the preceding activities of
he other recorded neurons, and possibly of some other known
xternal variables, such as stimuli or movement (Brillinger et al.,
976; Chornoboy et al., 1988; Jovanovíc and Rotter, 2016; Krumin
t al., 2010; Masud and Borisyuk, 2011; Okatan et al., 2005; Pernice
t al., 2011, 2012; Pillow et al., 2008; Pouzat and Chaffiol, 2009).
uch models where mutual excitation, inhibition and synaptic inte-
ration play a key role are naturally described by the general
robabilistic framework of the multivariate Hawkes processes. For
uch processes, the conditional intensity of point occurrence is a
unction � of a linear combination of the background point rate
nd of multiple temporal kernels. These kernels usually materialize
he potential impact of the preceding activities of every recorded
euron. The model is generally fitted using maximum likelihood
stimation by determining the parameters of the kernels for which
he actual recorded spike history has the highest probability. If
othing is known about the potential connectivity, the total num-
er of parameters is typically of the order of pn2 where n is the
umber of spike trains and p the number of parameters per kernel.
herefore, if little is known in advance (shape of the kernels, con-
ections to discard, etc.), the number of parameters to estimate is
uge even for very small networks and several thousands of spikes
er train are required to perform good estimations (Chornoboy
t al., 1988). Moreover the computational cost of maximum like-
ihood estimation can be very large even with only two recorded
pike trains. Therefore, because of the shape of the log-likelihood
or such processes, a popular choice is to use �(.) = exp(.), which
implifies the computation (see for example Pillow et al., 2008). In
he neuroscience literature, such processes are often referred as (a
articular case of) General Linear Models (GLMs). However, from a
odeling point of view, it is possible that, once the parameters are

stimated and plugged in simulation of the corresponding Hawkes
rocesses, the amount of simulated spikes per unit of time increases
ith simulation time, a behavior that is not biologically relevant.

Our main aim is to propose a turnkey procedure, i.e. an efficient
rocedure that can be used routinely on laptops of experimenters
ithout the help of any specialist, to reconstruct functional con-

ectivity. Therefore, the procedure needs to be performed quickly
t least when dealing with the relatively small number of simulta-
eously recorded spike trains that are usually analyzed in in vivo
tudies. Moreover, it has to be run without any prior knowledge or
ypothesis regarding the recorded network, i.e. the few parameter
ettings that are left to the practitioner need to be perfectly under-

tandable and calibrated in advance. Finally, the procedure should
econstruct a connectivity graph that comes with a fully estimated
rocess, which can be simulated to reproduce realistic datasets.
ience Methods 297 (2018) 9–21

In these respects, the recent method introduced in Reynaud-
Bouret et al. (2013) and Hansen et al. (2015), based on a
least-squares criterion combined with a LASSO penalty, is very
promising. The practitioner only needs to set one tuning param-
eter � and to choose an appropriate bin size (ı) and number of
bins (K) (equivalently a range (Kı)) to quantify the point process
interactions. Here, using small Leaky Integrate and Fire networks,
we evaluate for the first time if such Hawkes model approxima-
tions apply to neuronal spike trains and can efficiently reconstruct
the underlying neuronal network functional connectivity. Chal-
lenging the method with complex network architectures, including
chained connections and/or common inputs, drove us to propose
an appropriate value for the tuning parameter � and a correction
of this LASSO method for Hawkes processes that makes it suitable
to analyze realistic neuronal spike trains. The resulting procedure
is effective with experimentally compatible amount of data, and
is therefore proposed as a turnkey procedure to become a classical
tool in the analysis of small numbers of simultaneously recorded
neuronal activities.

The code required to run the present analysis method on sim-
ulated or recorded spike trains is implemented and parallelized
in C++ and interfaced with R. It is available at https://github.com/
ybouret/neuro-stat.

2. Method

2.1. Hawkes models

The n simultaneous spike trains, modeled as multivariate
Hawkes processes, are usually characterized by their (conditional)
intensity. More precisely, the intensity �i(t) of the ith spike train
Ni represents the probability to observe a new point around t for
the spike train i given what already occurred on all the spike trains
strictly before time t. Hence, the conditional intensity of a given
point process can be seen as an instantaneous firing rate given the
past events. For spike trains modeled by Hawkes processes, their
intensities are of the following form

�i(t) =

⎛
⎝�i + n∑

j = 1

∑
T ∈ Nj,T<t

hj→i(t − T)

⎞
⎠

+

,

where (.)+ is the positive part. The coefficient �i is the spontaneous
firing rate of the ith spike train and the functions hj →i model the
interaction of the jth spike train on the ith spike train. A large posi-
tive value of hj →i(d) at a certain delay d indicates an excitation from
the neuron generating the jth spike train onto the neuron generat-
ing the ith spike train. As a consequence, when a spike occurs on the
jth spike train, the apparition of a new spike on the ith spike train is
very likely after a delay d (see Fig. 1). Conversely, if hj →i(d) < 0 with
large value for |hj →i(d)|, the jth spike train inhibits the apparition of
new spikes on the ith spike train after a delay d. By summing up all
the possible interactions with all the possible delays, one obtains
the current firing rate given the past events. It should be noted that
the function hi →i represents the auto-interaction of the spike train
and therefore models some intrinsic properties of the neuron such
as the spike refractory period. Since the inhibition might be strong
enough to generate negative �i, the overall positive part (.)+ is con-
sidered to avoid negative firing rate. However in the sequel and to

make the method intelligible, we will assume that the case of too
strong inhibitions, given the past events, never occurs so that �i
remains linear in both �i and the hj →i’s, meaning that the positive
part (·)+ is useless.

https://github.com/ybouret/neuro-stat
https://github.com/ybouret/neuro-stat
https://github.com/ybouret/neuro-stat
https://github.com/ybouret/neuro-stat
https://github.com/ybouret/neuro-stat
https://github.com/ybouret/neuro-stat
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Fig. 1. Spike train model using multivariate Hawkes processes. Top: For the 2
presented trains (Ni,j), each dot indicates the time of occurrence of a spike. The
probability that a new spike occurs at time t on the spike train Ni is given by the
conditional intensity �i(t) (see Section 2). Bottom: The function hj →i is defined as
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iecewise constant on a partition of K bins of size ı. In the illustrated example,
 preceding spikes occurring on Nj at different delays (1,2,3) will condition spike
eneration on Ni according to the corresponding ak

j→i coefficients (see crosses).

The point measure dNit , which counts 1 in a small interval if there
s a spike for the ith spike train in t and 0 otherwise, can therefore
e seen as a noisy version of

i +
n∑
j = 1

∑
T ∈ Nj,T<t

hj→i(t − T) (1)

Therefore, modeling the n spike trains by Hawkes processes
mplies to estimate the parameters �i and the functions hj →i. To
arameterize this problem, we assume the functions hj →i to be
iecewise constant on a partition of K bins of size ı (Fig. 1)

j→i =
K∑
k = 1

akj→i1((k−1)ı,kı]

ith ak
j→i and �i in Hz. The spontaneous part �i gives the average

requency of apparition of a new spike given that there is no past
vents. The coefficient ak

j→i gives the average frequency gain, or loss,
f the ith spike train induced by the occurrence of a spike on the

th train in the preceding period between (k − 1)ı  and kı.
Note that each term of the sum given by (1) can be rewritten as

∑
 ∈ Nj,T<t

hj→i(t − T) =
K∑
k = 1

akj→iN
j
[t−kı,t−(k−1)ı)

here NjA denotes the number of spikes in interval A. Therefore
rganizing the unknown parameters (�i and ak

j→i) in the vector ai

f size 1 + nK,  one can rewrite (1) as
i +
n∑
j = 1

∑
T ∈ Nj,T<t

hj→i(t − T) = c†tai
ience Methods 297 (2018) 9–21 11

where † denotes the transposition and ct is an observable vector of
size 1 + nK that depends on t. In this scalar product, the first coor-
dinate of ct is equal to 1 and is multiplied by the unknown �i; the
other coordinates of ct are given by the number of past spike occur-
rences, so are in the form of Nj[t−kı,t−(k−1)ı) for some j and k and each

of them is multiplied by the corresponding unknown ak
j→i.

2.2. Least-squares estimation

The true vectors ai are unknown but since dNit can be viewed
as a noisy version of c†tai, one can therefore minimize the distance

between the dNit ’s and the c†t  ̌ over all the possible vectors  ̌ of
size 1 + nK.  If the spike trains are observed between 0 and Tmax, one
wants therefore to minimize∫ Tmax

0

(dNit − c†tˇdt)
2

Developing and keeping only the terms that depend on ˇ, we end
up with the following least-square criterion

LSi(ˇ) = −2

∫ Tmax

0

c†tˇdN
i
t +

∫ Tmax

0

ˇ†ctc
†
tˇdt = −2b†

i
 ̌ + ˇ†Gˇ(2)

where the matrix G is defined by

G =
∫ Tmax

0

ctc
†
tdt,

and where bi is an observable vector of size 1 + nK:  its first coordi-
nate is the number of spikes between 0 and Tmax for the ith spike
train and the other coordinates are given by∫ Tmax

0

Nj[t−kı,t−(k−1)ı)dN
i
t,

for all j and k, that is in other words the cross-correlogram between
the ith spike train and the other jth spike trains.

Therefore, minimizing in ˇ, the least-squares estimate of the
parameter ai is given by

âi = G−1 bi (3)

Note that the classical direct estimation of interactions between
j and i that is performed via cross-correlograms appears in bi.
However, in many cases the simple cross-correlogram analysis can
be misleading. For instance, a strong chain of excitation between
3 neurons as 1 → 2 → 3 might result in cross-correlograms that
suggest a non-existing direct excitation from 1 to 3. In Eq. (3),
the matrix G takes into account such potential complex rela-
tionships between the different recorded spike trains and its
inversion untangles these links (see also the numerical experiment
in Reynaud-Bouret et al., 2013) for Hawkes processes. However, as
it is, the method is not optimal for two reasons:

• the number of parameters to be estimated is huge. For example,
simultaneous recordings of n = 10 spike trains, considering hj →i
functions over a range of 50ms divided in K = 10 bins, require the
estimation of 1010 parameters. Therefore, the observation dura-
tion Tmax is usually not long enough to calculate a good estimation
of such a huge number of parameters.
• many parameters are potentially irrelevant, in particular many
hj →i functions are generally null. Therefore, one wants to esti-
mate a sparse graph of interactions revealing the connections that
really exist.
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.3. LASSO estimation

To stabilize the method as well as gain sparsity, we use a two-
tep LASSO method and first minimize the following criterion

ASSOi(ˇ) = −2b†
i

 ̌ + ˇ†G  ̌ + 2d†
i
|ˇ|, (4)

here |ˇ| is the vector whose coordinates are the absolute val-
es of  ̌ and where di is a vector of weights. The theory presented

n Hansen et al. (2015) shows in a much more general framework
hat multivariate counting processes are highly heteroscedastic (i.e.
he variance depends on the coefficients) and that therefore the
eights need to be set accordingly to obtain a robust method. In

articular Hansen et al. (2015) proposes data-dependent weights
hat are based on an estimation of the variance on the data them-
elves. By simplifying the method fully detailed in Hansen et al.
2015), we end up with (the following equality should be under-
tood coordinate by coordinate)

i =
√

2� log(n + n2K)

∫ Tmax

0

c2
t dN

i
t + � log(n + n2K)

3
sup

t ∈ [0,Tmax]
|ct |.

ote that these weights, and therefore the presented LASSO
ethod itself, depend on only one tuning parameter � . For a fixed

alue of � , the minimization of LASSOi(ˇ) leads to an estimate â
BL

i
f the true parameters ai. “BL” stands for “Bernstein Lasso” since
he shape of the weights is derived by a Bernstein concentration
nequality.

The derivation of the weights in Hansen et al. (2015) shows
hat �: (i) qualitatively controls the probability that the estimator
s good, (ii) should be an absolute constant that does not depend
n the problem at hand and (iii) can be tuned in advance. Note

hat � = 0 corresponds to the least-square estimate âi which is not
parse at all and that the sparsity (that is the number of null coeffi-
ients) increases with � . As a consequence, reconstructed networks
ssociated with � too small will contain non-existing interactions,
hereas taking � too large will not detect all existing interactions.

herefore, the first required step to use the present method in spike
rain analysis is the choice of a reasonable value for � (see Section
).

Since the first applications of LASSO methods (Tibshirani, 1996),
t is well known that, if a true sparse set of parameters underlying
he observed data exists, the LASSO estimator, once correctly tuned,
ill find the set of non-zero parameters if enough observations are

rovided. In our case, it means that if the spike train dataset indeed
beys a Hawkes process with a sparse vector ai, then âBLi will be
ull exactly where the true parameter vector is. In particular, this

mplies that if the data are generated by such a Hawkes process,
hen the reconstructed connectivity graph which is obtained by
eeping an edge from the jth to the ith spike train as soon as there

s one non-zero |âBL,kj→i | is the correct one. But it is also well known
Tibshirani, 1996) that the LASSO reconstruction of the non-zero
oefficients is not optimal. This can be easily corrected by perform-
ng a second step of parameter estimation, where the Ordinary Least
quare estimator is restricted to the coordinates where the |âBL,kj→i |’s

re non zero. Since the LASSO properties guarantee that there is

 very small number of such coefficients, the variance of such a
east-square is much smaller than the full least-square estimator.

his second estimator is denoted â
BOL

i .
ience Methods 297 (2018) 9–21

Using â
BOL

, it is therefore possible to estimate the interaction
strength of a given connection j → i in the connectivity graph, which
is defined by∫
hj→i(x)dx =

K∑
k = 1

akj→iı

This interaction strength gives the overall average number of spikes
gained (if positive) or lost (if negative) on the ith train following the
occurrence of a spike on the jth train at any delay. However, since
the occurrence of spikes in the jth train may  have complex effects
combining both excitation and inhibition at different delays on the
ith spike train, the net modification in the number of spikes in the
ith train can be close to 0 in cases of strong combined excitatory
and inhibitory interactions.

Therefore, we also introduce the overall energy of an interaction
as the average number of spikes of the ith spike train that has been
modified (either gain or loss) by the presence of a spike on the jth
train at any delay, which is mathematically defined by∫

|hj→i(x)|dx =
K∑
k = 1

|akj→i|ı

3. Results

If � is fixed and large enough, the method was shown to achieve
very good performance in recovering sparse vectors of parame-
ters when point processes are generated by Hawkes processes (see
Hansen et al., 2015). We  refer the interested reader to the simu-
lation study in Hansen et al. (2015) for a comparison with other
LASSO methods. However, the method has never been tested with
Hawkes processes that simulate classical difficulties encountered
in neuronal spike train analysis. Therefore, as a first step to evaluate
its efficiency and provide an estimation of the � value, we  analyzed
data obtained from simulations of small networks in which each
neuron was modeled as a true Hawkes process. Note that, since our
aim is to provide a method that is not too computationally intensive
and can already reconstruct connectivity graphs with a small num-
ber of datasets, we focus here on determining a reasonable tuning
value for � instead of developing an automatic selection procedure
as cross-validation methods.

3.1. Calibration of � using Hawkes process simulation

We  used a 4 neuron network where 2 neurons received a strong
excitatory input from a third one (see Connectivity graph in Fig. 2A).
This generates a classical difficulty in spike train analysis since the
spike correlation of the 2 neurons receiving the strong common
input may  create false non-existing links in the reconstructed con-
nectivity graph. More precisely, to design a Hawkes network model
that behaves like a classical neuronal network, we  first constructed
a template network with 4 Leaky Integrate and Fire (LIF). Each LIF
presented a spontaneous activity set to 11 Hz and two of them
shared a common input with a weight equal to 0.7 (see below for
details on LIF). The parameters of the best Hawkes model approx-
imation of this LIF network were then estimated by âBOL and used
to construct the Hawkes model corresponding to the connectivity
graph of Fig. 2A.

In this framework, where only Hawkes processes are simulated,
we first investigated the impact of different � values on the con-

nectivity graph reconstructions. Note that perfect reconstruction
of such Hawkes process network could be especially challenging
due to the overall strength of the interaction functions that is larger
than 1. Indeed, more than 1 spike is created on average in the target
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Fig. 2. Reconstructing a simple Hawkes model network. A. Left: Connectivity graph of the simulated network. Each Hawkes process generates an intrinsic firing activity
around 11 Hz. Hawkes processes 2 and 4 shared a strong common excitatory input from Hawkes process 1 (see Section 3 for details). Right: The % of connectivity graphs
that  were perfectly reconstructed when analyzing 100 datasets of a given duration are plotted for different values of � . B. Simulated (red lines) and typical reconstructed
f e line
( i of th
a  legen

n
t
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f
F
r
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a

unctions hj →i obtained with datasets of 50 s (green lines) and 360 s (black and blu
green and blue lines) or K = 20, ı = 2 ms  (black lines). Note that only the functions hj →
re  presented for clarity. (For interpretation of the references to color in this figure

eurons when the input neuron fires. For each � , the reconstruc-
ion efficiency was evaluated as a function of the dataset duration
y calculating in each case the number of graphs that were per-
ectly reconstructed at the end of 100 dataset analysis. As shown in
ig. 2A, the LASSO method (with � around 3 or larger) recovers the
ight connectivity graph in a large majority of simulations as soon
s the dataset duration is larger than 10–20 s.

In these analyses, the hj →i functions were evaluated with K = 10
ins of ı = 5 ms.  A closer look at the shape of the interaction func-

ions (Fig. 2B) indicates that, as expected, the estimation of the
nteraction functions improves with the dataset duration. However,

odifying K, ı and the overall support Kı does not change the over-
ll shape of the interaction functions nor the connectivity graph.
s) duration. The optimization was performed using � =3 and either K = 10, ı = 5 ms
e 2 existing excitatory connections and the 2 potential false additional connections

d, the reader is referred to the web version of the article.)

Indeed, the sparsity of âBOL implies a sparsity of the connectivity
graph but also in the range of the interaction functions. Therefore if
a parameter K larger than required to accurately describe the inter-
action function is provided, the non-necessary estimated ak

j→i are
set to zero and the effective range remains qualitatively unchanged.

3.2. Hawkes-model based detection of excitatory and inhibitory
connections within LIF networks
It has been shown in Hansen et al. (2015) that, when the underly-
ing processes are not Hawkes processes, like in case of real neuronal
spike trains, the present method fits the “best Hawkes approx-
imation”, which is sparse. In this case, the estimated intensity
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unctions should rightly approximate the probability to see a new
oint around the time t but the connectivity graph may  be wrong.
herefore the robustness of the present method in terms of connec-
ivity reconstruction has to be further tested using classical model
etworks of known architectures that mimic  neuronal spike gen-
ration and are not Hawkes models.

Hence, to evaluate the efficiency of the present method in
etecting spike train interactions, artificial networks of 10 spon-
aneously active LIF were constructed using the IntFire4 class of
he Neuron 7.4 environment (Hines and Carnevale, 1997). Briefly,
rtificial neurons integrated fast monoexponentially decaying
�e = 3 ms)  excitatory or slower alpha function like biexponential
�i1 = 5 ms,  �i2 = 10 ms)  inhibitory inputs with a membrane time
onstant �m (30 ms)  and fired when the membrane state variable
eached the threshold 1. After firing, the membrane state was  set
o 0. Excitatory events were scaled such that an isolated event of
eight 1 produced a maximum membrane potential of 1 (thresh-

ld) and an isolated inhibitory event of weight −1 produced a
inimum membrane potential of −1 (see details in Carnevale and
ines, 2006). Each LIF was driven by a Poisson excitatory input to

nduce spontaneous firing activity of 11 Hz.
The first simulated networks only contained a single excitatory

r inhibitory connection inserted between 2 of the neurons (Fig. 3A)
nd simulations of various duration (from 20 s to 360 s) were run
ith increasing connection weights (from 0.1 to 1 and −0.4 to −1.4

or excitatory and inhibitory connections, respectively). In each
ondition, the analysis was performed on 100 datasets in order
o assess the reproducibility of the results. � was systematically
ncreased from 0.02 to 6 (on a non-regular grid) in order to deter-

ine whether a value for � can be fixed that allows to rightly
etect excitatory or inhibitory connections between LIF neurons.
s presented in Section 2, if � is too small, the estimation proce-
ure should provide reconstructions based on Hawkes models with
on-null interaction functions that do not correspond to existing
onnections in the neuronal network. We,  therefore, calculated in
ach condition the False Positive Rate (FPR) as the percentage of
atasets where an additional interaction (i.e. a non zero interaction

unction hj →i that does not correspond to an existing interaction
etween the simulated neurons) was found. As presented in Fig. 3B
howing for each condition the smallest value of � (noted � lim) that
uarantees an FPR inferior to 5%, values larger than 2.15 for exci-
atory interactions and 2.45 for inhibitory interactions should be
elected in order to avoid reconstructions suggesting non-existing
onnections. Note that our aim is to determine a fixed � value that
uarantees good performances (at least in terms of FPR) whatever
he model, the interaction strength or the observation duration.
herefore, considering � equal or larger than 3, as suggested by the
revious analysis of Hawkes model networks, should be an accurate
hoice when using the present method to analyze more realistic
pike trains.

However, since larger values for � may  favor Hawkes mod-
ls with “missing connections” (i.e. non-detected connections), we
alculated in a second step the True Detection Rate (TDR) as the
ercentage of datasets where the functional connectivity graph was
erfectly estimated for � = 3, 3.5 and 4 (Fig. 3C). For both excitatory
nd inhibitory connections, the TDR curves are similar for the three

 values, with a slightly better performance for � = 3. As shown in
ig. 3C1, although the TDR is larger for stronger excitatory connec-
ions since a high connection weight increases the proportion of
pikes due to the excitatory inputs in the analyzed data, detection
f excitatory interaction appears highly efficient in every condition.
ence, with approximately 1350 spikes spontaneously generated
n each LIF during 120 s long datasets, network reconstructions
ere already perfect in every trial with a connection weight of

.15 that only added about 230 supplementary spikes to the tar-
et LIF, corresponding to a 17% increase in firing rate. However, as
ience Methods 297 (2018) 9–21

for any statistical methods, detection efficiency drops dramatically
with shorter datasets such that, for 20 s long duration where about
230 spontaneously generated spikes/LIF were available to perform
the analysis, the excitatory connection had to increase the firing
frequency by at least 63% for accurate detection in every trial.

For obvious statistical reasons, inhibitory inputs are trickier to
detect than excitatory ones. Indeed, in the analyses based on extra-
cellular recordings, the presence of an inhibitory connection is
revealed by missing spikes, i.e. spikes that are suppressed due to the
inhibitory input. Such spike suppression may  be rare if the intrinsic
firing rate of the target neuron is low or the inhibitory input weak.
Therefore, accurate detection of inhibitory inputs requires a large
amount of data and a sufficient probability of spike suppression.
Accordingly, although perfect detection was already achieved in
every trial with a dataset of 160 s (about 1800 spontaneously gen-
erated spikes/LIF), a strong inhibitory connection weight of −0.6
is required to decrease the firing frequency of the target neurons
by 61% (Fig. 3C2). An additional difficulty to detect inhibitory con-
nection is illustrated by the shapes of the TDR curves that are not
monotone functions of the inhibitory input weight. Indeed very
strong inhibition can paradoxically make the target neuron almost
silent and therefore invisible in the dataset, inducing a drastic
decrease in the detection efficiency.

Nevertheless, we  conclude from these first series of simulations
that setting � = 3 is a compromise that minimizes the probability to
reconstruct networks with non-existing and/or missing connection
from spike trains generated by either Hawkes (see above) or LIF
models.

In the previous analysis, the hj →i functions were evaluated with
K = 10 bins of ı = 5 ms.  As long as the choice of the support Kı
remains reasonable with respect to the kinetics of the excitatory or
inhibitory events, modifying the K or ı values does not change the
reconstructed connectivity graph for a given value of � . However,
as shown in Fig. 4, if one is interested in the precise shape of the
hj →i functions the length of the support should be chosen to largely
exceed the maximal duration of the synaptic events. Indeed, with
our initial choice of K = 10 bins of ı = 5 ms  (support of 50 ms), the
Lasso method accurately estimates the fast excitatory inputs set-
ting the nonrelevant ak

j→i coefficients to zero. Decreasing ı while
keeping a large enough support does not drastically change the
hj →i function (Fig. 4A). However, since the inhibitory events have
a much slower kinetics (biexponential decay with time constants,
�i1 = 5 ms  and �i2 = 10 ms)  than the excitatory ones (monoexponen-
tial decay with time constant,�e = 3 ms), our initial support of 50 ms
was not long enough to properly describe the corresponding hj →i
function. This function was  therefore truncated (Fig. 4B). Neverthe-
less, note that such truncation did not impede the reconstruction
of the connectivity graph (see blue line in the left panel of Fig. 3C2).

3.3. “Energy” of the hj →i functions helps to discard non-existing
connections

The previous simulations show that the LASSO method based
on Hawkes models correctly infers excitatory relationships from
spike trains within simple small LIF networks. In a second step,
we investigated the success rate of the method when it was  chal-
lenged with classical difficulties in spike correlation analysis such
as large differences in firing frequencies or the presence of common
inputs in the network. The values K = 10 bins of ı = 5 ms were used in
order to keep conditions that provide good detection of excitatory
connections.
So far, the intrinsic firing rates of every LIF in our simulated
networks were similar and fixed around 11 Hz. However, two inde-
pendent neurons recorded simultaneously and displaying very
different firing rates may  present apparent spike correlations if,
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Fig. 3. Detection of a single connection within a small network. A. Connectivity graph of the simulated networks. Each LIF received a Poisson excitatory input (not shown)
generating intrinsic firing rate around 11 Hz. Simulations were run while systematically increasing the weight of the excitatory (we) or inhibitory (wi) connection between
LIFs  5 and 8. B. Color coded graphs presenting the minimal � values (� lim) that guaranteed an additional false interaction in less than 5% of the datasets as a function of the
e ataset
t IF 5 t
c nd, th

d
t
a

xcitatory (left graph) or inhibitory (right graph) weight and the duration of the d
he  single excitatory (1: top graphs) or inhibitory (2: bottom graphs) input from L
onnectivity weight. (For interpretation of the references to color in this figure lege
ue to its high firing probability, the fastest neuron often fires at
he same time than the slowest one. In such cases, the most favor-
ble Hawkes model that fits the data may  include a false excitatory
s. C. Graphs presenting the % of datasets, for which the network connectivity with
o LIF 8 was  perfectly estimated (TDR), as a function of both dataset duration and
e reader is referred to the web version of the article.)
connection linking the two  neurons. Therefore, simulating non-
connected LIFs among which one neuron presented an up to 20
times faster firing rate than the other ones, we evaluated in each
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Fig. 4. Typical hj →i functions of single excitatory and inhibitory connection between
LIFs. A. Reconstructed hj →i function of the excitatory connection (weight = 0.6)
within the network presented in Fig. 3. The estimation was  performed using � =3
and  either K = 10, ı = 5 ms  (red lines) or K = 20, ı = 2 ms (black lines) on a dataset of
360 s. B. Reconstructed hj →i function of the inhibitory connection (weight = −0.6)
within the network presented in Figure 3. The estimation was performed using � =3
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nd  either K = 10, ı = 5 ms  (red lines) or K = 12, ı = 10 ms  (black lines) on a dataset of
60 s. (For interpretation of the references to color in this figure legend, the reader

s  referred to the web version of the article.)

ase � lim, the minimal value for � , that guaranteed an FPR inferior
o 5%. As shown in Fig. 5A, � = 3 could not assure an FPR inferior
o 5% in every case, in particular for long datasets that contained

any spike coincidences. From a mathematical point of view, it
ay  seem counter-intuitive that error occurrences increased with

he dataset duration. However, LIF and neuron firings are not true
awkes processes and reducing the data variance effect with long
atasets makes the bias of the model more apparent. Nevertheless,
he method was  surprisingly robust since for every tested dura-
ion, FPR inferior to 5% was still achieved with � ≤ 3 for simulations
here one of the LIFs was firing almost ten times faster than the

ther ones.
Another classical difficulty in spike train analysis arises when

ecorded neurons are serially connected with strong excitatory
inks since correlation may  exist between the spikes of the first
nd last neurons of the chain although no direct connection is
resent. A similar problem is met  when neurons share a strong
ommon excitatory input that creates spike correlation in the tar-
et neurons although these are not directly connected. Therefore
e systematically investigated, as a function of the dataset dura-

ion and connection weight, the ability of our model-based method
o infer connection graphs in networks comprising serial connec-
ions (Fig. 5B) or shared inputs (Fig. 5C). In both cases, no value
or � can be found on the grid that provides Hawkes reconstruc-
ion with false connection in less than 5% of the analysis as soon

s the weight of the connection is very large. If we consider in
ore details the network of Fig. 5C with w = 0.7 and datasets of

60 s, In almost every simulation, although the strength of the
orresponding reconstructed interaction functions was very small,
ience Methods 297 (2018) 9–21

additional edges between LIF 2 and 4 were present in the approxi-
mated Hawkes model even for � = 6.5. However, we demonstrated
above (see Section 3.1) that when simulating the same network
with Hawkes processes, the present method perfectly reconstructs
the connectivity graph without additional edges with � = 3 (Fig. 2).
Our interpretation is that, in case of data that are not generated
by true Hawkes processes, the LASSO method indeed fits the best
Hawkes approximation of the intensity when the observation time
is long enough (as mathematically proved in Hansen et al., 2015)
but the reconstructed connectivity graph of this approximation
does not always coincide with the true connectivity graph. When
the observation time is long enough, all the statistical fluctuations
have vanished, being completely controlled by the LASSO penalty
with � = 3, but the bias of approximating the data by a Hawkes
model remains. This is precisely the phenomenon that needs to be
anticipated to make the method robust when real data are analyzed.

To increase the robustness of our procedure, we further ana-
lyzed the functions hj →i. As already stated, it clearly appears that,
when reported, the additional interactions display a very low
“energy” compared to existing connections (Fig. 6). Therefore, sys-
tematically discarding connections with “energy” smaller than an
arbitrary threshold allows to almost perfectly suppress the addi-
tional false connections of the LASSO method with � = 3 (Fig. 5B and
C, middle graphs). However, although discarding low “energy” func-
tions always improves reconstruction of the true connection graph,
optimizing the choice of the discarded connection requires to adapt
the threshold value in each case. Different rules can be designed to
fix such a threshold value and we report here a correction of the
LASSO method that produced good results in the relatively simple
simulations used in the present paper.

This correction is based on the strength of the interaction func-
tions rather than on their energy since we  never observed in our
simulations any additional inhibitory connections (as illustrated
in the next paragraph). Therefore, we  chose a correction parame-
ter that easily distinguishes excitatory from inhibitory connections.
More precisely, the values Ej →i =

∫
hj →i, which represent the num-

ber of additional points created in average in the spike train i thanks
to the presence of one spike on the jth spike train, were computed
from the coefficients âBOL and sorted in increasing order. The first
large “jump” in the ordered sequence of Ej →i can then be used to
set the threshold value. In practice, the successive differences in
the sorted sequence of Ej →i are calculated and the first difference
superior to 15% of the largest one designs the first large “jump”.
Accordingly, the excitatory hj →i functions corresponding to the val-
ues Ej →i smallest than this first large “jump” are discarded (Fig. 7).
When applied to the estimation in the previous simulations (Fig. 5B
and C, bottom graphs), this first large “jump” correction allowed us
to perfectly reconstruct the simulated network in every case.

3.4. Functional connectivity graphs

The ability of the present method (with � = 3; K = 20 and ı = 5 ms
in order to fix an appropriate support for both excitatory and
inhibitory interaction functions) to reconstruct functional connec-
tivity graphs was  finally tested using randomly generated small
networks of LIFs (n = 7). Each LIF presented a spontaneous firing
rate selected at random in [10, 40] Hz. Connection from the jth
to the ith LIF had a 1/n  probability in order to ensure a sparse
graph according to Erdös–Renyi random graph properties. Each
existing connection was  determined as excitatory or inhibitory
with a probability taken at random on [0, 1] and fixed for each

graph. Excitatory and inhibitory weights wj→i were set uniformly
at random in [0.2, 0.5] and [−0.9, − 0.6], respectively. Among the
100 randomly designed networks that were simulated, 11 net-
works generated less than 8 spikes in 7 min  due to strong global
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Fig. 5. Robustness of excitatory connection detection. A. Left: each of the 4 unconnected LIFs received Poisson excitatory inputs (not shown) to induce spontaneous
firing.  Simulations were run with various intrinsic firing rates for the 1st LIF (�1 from 11 to 234 Hz, non-regular grid) while the 3 other LIFs were kept at a constant
firing  rate of 11 Hz. Right: Color coded graph presenting � lim the minimal values for � that guaranteed an additional false interaction in less than 5% of the datasets
as  a function of the 1st LIF firing rate and the duration of the datasets. In simulations where none of the tested values for � could fulfill the required condition the
corresponding squares were left white. B. Top Connectivity graphs: Each LIF received a Poisson excitatory input (not shown) generating intrinsic firing rate around 11 Hz.
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Fig. 6. Small network implementing common excitatory inputs. A. Connectivity
graph of the simulated networks. Each LIF received a Poisson excitatory input (not
shown) generating intrinsic firing rate around 11 Hz. LIFs 2 and 4 shared a common
input of weight we from LIF 1. B. Color coded graphs presenting the % of 60 s long
datasets where the presence of a connection from LIFj to LIFi (non null hj →i) was
indicated by Hawkes models fitted with � = 3. For we = 0.25 (top graph) only the
auto-interaction functions, hi →i , and the 2 functions h1 →2 and h1 →4, correspond-
ing to existing connections within the network were reported. However, when
increasing we to 0.60 (bottom graph), Hawkes models suggested the presence of
a  non-existing bidirectional connection between LIFs 2 and 4 in less than 10% of the
datasets. C. Color coded graphs of the “energy” of the hj →i functions for simulations
with we = 0.25 (top graph) and 0.60 (bottom graph). Note that the average values of
the “energy” were calculated from datasets reporting non-null hj →i functions. (For
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nhibition and were thereafter discarded. We  then counted the
umber of errors, either additional or missing excitatory/inhibitory
onnections, in the 89 remaining functional connectivity graphs
hat were reconstructed (Fig. 8A). Non-existing inhibition was
ever observed and increasing the dataset duration improved
he detection of inhibitory connections, as already mentioned.
s a consequence, the proportion of networks in which inhibi-

ion was perfectly inferred drastically increased from 30 to 75%

ith the dataset duration (Fig. 8B, left graph). However, although

ong dataset duration similarly improved the detection of exist-
ng excitatory connections, it also favored Hawkes approximations

imulations were run while systematically increasing the weight of the excitatory (we) c
raph  presenting � lim the minimal values for � that guaranteed an additional false intera
f  the datasets. In simulations where none of the tested values for � could fulfill the requi
ame  graph constructed from models where connections with energy inferior to 0.13 wer
onnections were discarded according to the “first large jump correction” (see Section 3). C
top  Connectivity graph). (For interpretation of the references to color in this figure legen
ience Methods 297 (2018) 9–21

with non-existing excitatory connections (Fig. 8A). Therefore, the
improved detection of existing excitatory connections being coun-
terbalanced by the appearance of non-existing ones (see green
line in the left graph of Fig. 8B), the proportion of networks with
perfectly detected excitation remained almost stable above 60%.
Hence, refining the functional excitatory connectivity graphs (hj →i
functions with Ej →i =

∫
hj →i > 0) by discarding functions using the

first large “jump” correction significantly increases the proportion
of perfectly detected excitatory networks up to 80% (Fig. 8B, right
graph).

3.5. Computational time

As shown in Fig. 9, the analysis presented for about ten spike
trains and K = 10 can be run effectively in a few seconds on a classical
laptop. Note however that the complexity of the algorithm is mainly
driven by the size of the matrix G, i.e. K2n4. Since the number of
threads on a classical laptop is usually small, any multiplication by
10 of the number of neurons would multiply the computational
time by about 10,000. Hence the method can indeed be used as a
routine procedure on laptops as long as the number of spike trains
remains reasonable.

4. Discussion

We  will briefly discuss below the rationale that presides to the
design of the present method modeling spike trains with multivari-
ate Hawkes processes.

The general expression of the intensity of Hawkes processes is
given by

�i(t) = �

⎛
⎝�i + n∑

j = 1

∑
T ∈ Nj,T<t

hj→i(t − T)

⎞
⎠ ,

where � is a fixed function. For linear Hawkes processes initially
introduced by Hawkes in the 1970’s to model earthquakes and their
aftershocks (Hawkes, 1971), � is the identity (�(t) = t for any t) but
from a probabilistic point of view, such processes can only be used
when every interaction function hj →i corresponds to excitation to
preclude the possibility of negative intensity. To solve this problem
when modeling networks with both excitatory and inhibitory con-
nections, we  considered the positive part �(.) = (.)+ instead of the
identity.

One of the main desirable properties of such processes is the
stationarity. When a point process is stationary, the distribution of
the points in a neighborhood of t does not depend on t, whatever
the t. Moreover, the stationary distribution is typically achieved by
letting the system evolve for a long time. In this case, even if the
observed biological system is not stationary per se,  the model of
this system somehow goes back to a stable behavior, the station-
ary regime, after a reasonable delay following any perturbation.
One can prove that linear Hawkes processes can be in a stationary
regime if and only if the largest eigenvalue of the matrix (

∫
hj →i)

is smaller than 1 (Hawkes and Oakes, 1974). If this condition is
ing number of spikes when the simulation time increases, which
obviously precludes the use of such Hawkes processes to simulate
neuronal activity. For more general Hawkes processes, Brémaud

onnections between the LIFs 1 → 2 and 2 → 4. Top color coded graph: Color coded
ction in less than 5% of the datasets as a function of excitatory weight and duration
red condition, the corresponding squares were left white. Middle color coded graph:
e discarded. Bottom color coded graph: same graph constructed from models where
. Same legends as in B for 4 LIF networks where LIFs 2 and 4 shared a common input
d, the reader is referred to the web  version of the article.)
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Fig. 7. Discarding false interaction functions using the first large “jump” correction. A. Connection diagram of the simulated network. The strong excitatory connections
of  weight we = 0.60 are indicated with black edges. Each LIF received a Poisson excitatory input (not shown) generating intrinsic firing rate around 11 Hz. The presence
of  multiple common inputs in this strongly connected network increases the probability that some non-existing connections (red dotted edges) may  be added in the
reconstructed networks. B. Color coded graph presenting the % of 60 s long datasets where the presence of a connection from LIFj to LIFi (non null hj →i) was indicated

by  Hawkes models fitted with � = 3. As expected, non-existing connections were suggested in a small number of cases. C. Plots showing the values Ej →i =
∫

hj →i sorted in

increasing order for 3 datasets of 40 s (graph 1.), 60 s (graph 2.) and 300 s (graph 3.). In each plot, black edges indicate the largest “jump” in the ordered sequence of Ej  →i and
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nd Massoulié (Brémaud and Massoulié, 1996) showed that if �
s k-Lipschitz (i.e. the slope of every segment linking 2 points of
he graph of the function � is less than k) with k ≤ 1, and if the
argest eigenvalue of the energy matrix (

∫
|hj →i|) is strictly smaller

han 1, then such Hawkes processes can be in a stationary regime.
hese conditions are easily fulfilled in our model using �(.) = (.)+.
his ensures that our method generates stationary models that can
e used not only to reconstruct the functional connectivity graph
rom spike trains but also to simulate datasets without producing
n exponentially growing number of spikes during simulation.

In counting processes, parameter estimation is generally per-
ormed using methods based on maximum likelihood since, under
ome regularity conditions, maximum likelihood estimators pro-
uce the smallest asymptotic variance (van der Vaart, 1998).
owever, they are generally difficult to compute. Therefore to
fficiently optimize linear Hawkes models with experimentally
anageable datasets, we rather used least-square estimators that

re consistent and much easier to derive than maximum likelihood
stimators. Due to the presence of the log function in the maxi-
um  likelihood equation, some authors made a different choice

nd still used Hawkes models with maximum likelihood estima-
ors and �(.) = exp(.) (see Pillow et al., 2008; Okatan et al., 2005;
arstensen et al., 2010) to facilitate parameters estimation. How-
ver, as explained above, such Hawkes models do not fulfill the
tationary conditions identified so far and therefore may  produce
n exponentially growing number of spikes during simulations.

espite the computational difficulty, maximum likelihood estima-

ors of linear Hawkes processes have nevertheless been previously
sed on spike trains (Chornoboy et al., 1988). However, good per-

ormances were only obtained with more than thousands of points
g to the Ej →i ’s smaller than this threshold removed the non-existing connections
e references to color in this figure legend, the reader is referred to the web version

per spike train precluding the use of this approach to analyze a
majority of experimental data. An alternative method especially
designed to optimize linear Hawkes process relies on the inversion
of an empirical version of the Wiener Hopf system that couples
the matrix of interaction functions to the infinitesimal covariance
matrix (Bacry et al., 2016). Although such methods also require a
huge dataset to make the empirical version of the Wiener Hopf
system close enough to the expected one, similar approaches have
been previously used in neurosciences (Pernice et al., 2011, 2012;
Jovanovíc and Rotter, 2016; Krumin et al., 2010).

Due to experimental constraints, the number of unknown
parameters in the model is large with respect to the size of the
dataset and the output variability of the optimization procedure is
high. To reduce this variability, we  apply a penalized criterion by
looking for a sparse parameter vector, assuming that many of the
unknown coefficients should be null. In the classical “�0 penalty”
approach, the final contrast (either the log-likelihood or the least
square contrast) of a given parameter vector is penalized by a func-
tion of the number of non zero coefficients. It is commonly accepted
that this method efficiently approximates the right non zero coef-
ficients as long as the number of parameters is relatively small
and fixed with respect to the number of observations. In Reynaud-
Bouret and Schbath (2010), we demonstrated that up to a small
modification of the “�0 penalty”, this penalization coupled with
the least-squares contrast can also be used for a large number of
parameters and applied even if this number is large with respect

to the size of the available data. However, the computation cost of
the minimization of this non-convex criterion is prohibitive. To cir-
cumvent this problem, we  proposed to use an “�1 penalty”, namely,
we penalize the contrast by the �1-norm of the coefficients rather
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Fig. 8. Inferring functional connectivity graphs with Hawkes model-based method. A. Number of additional and missing excitation/inhibition connections (median and 0.1
quantile values) in the reconstructed functional connectivity graphs of 89 randomly generated LIF networks (see Section 3) as a function of dataset duration. Hawkes models
were  fitted using a � value of 3. B. Left graph: Percentage as a function of the dataset duration of 89 randomly generated LIF networks in which the excitatory (red line) or
i ased method. The green line shows the % of non-existing excitation added in the Hawkes
m ucted from models where connections were discarded according to the “first large jump
m egend, the reader is referred to the web version of the article.)
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Fig. 9. Computational cost of the Hawkes model-based method. Graph present-
nhibitory (blue line) connections were perfectly inferred with the Hawkes model-b
odels. The dashed line materializes the 5% limit. Right graph: same graph constr
ethod”  (see Section 3). (For interpretation of the references to color in this figure l

han by the number of non zero coefficients (see also Pillow et al.,
008 for other �1-type penalties). This convex criterion, known as

 LASSO criterion, was first introduced by Tibshirani in regression
Tibshirani, 1996), and we  previously proved (Hansen et al., 2015)
hat one should use a weighted “�1 penalty”, like the one described
n (4), to derive a calibrated procedure that adapts to the prob-
em heteroscedasticity, i.e. the potential large differences in the
ariance of the estimated parameters.

It is worth mentioning that few other models, close to Hawkes
rocesses, were previously used to assess functional connectivity.
ne of the initial work was performed by Brillinger and coauthors

Brillinger, 1975; Brillinger et al., 1976) who successfully identified
nteractions between pairs and triplets of neurons in nonrecur-
ent Aplysia networks. However, it appears difficult to apply this

ethod to multiple simultaneously recorded spike trains with-
ut prior knowledge of the network connectivity. More recently,
ox models with classical Cox estimations, pseudolikelihood, and
orresponding tests were used to assess the existence of neuron
onnectivity (Masud and Borisyuk, 2011). Such model may  be con-

idered as Hawkes models (with �(.) = exp(.)) where the influence
f only the first preceding spikes, and not the whole history of the
euron spiking activities, is considered to determine the inten-
ity functions. Furthermore, the optimization procedure implied

ing the median (black line) and 0.1 quantile values (dotted lines) of the required
computational time to reconstruct functional connectivity graphs of 89 randomly
generated LIF networks (see Figure 8) as a function of dataset duration (with K = 10,
ı  = 0.005). Parallel computation using 4 threads were performed on a MacBook Pro
2.7GHz with 8GB of RAM.
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connections between neurons. Curr. Opin. Neurobiol. 18 (6), 582–588.
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o limit the number of estimated parameters, a strong paramet-
ic assumption that may  involve prior knowledge of the studied
euron networks. Pouzat and Chaffiol (Pouzat and Chaffiol, 2009)
eveloped similar approaches (Wold model) considering the dis-
ances to the two preceding spikes, and estimated the “interaction”
unctions using log-likelihood criterion penalized by Wahba regu-
arization. However, the method is computationally intensive and

ould be difficult to apply to more than 2 simultaneously recorded
pike trains on classical laptops.

The results of (Hansen et al., 2015) show that the LASSO method
hould provide the best sparse Hawkes approximation of the inten-
ity once the fixed parameter � is large enough and this even if the
nderlying process is not a Hawkes process. However, we showed
ere that the corresponding reconstructed connectivity graph does
ot match, in some difficult but classical cases, the real connectiv-

ty graph when the data are not simulated according to a Hawkes
rocess. This caveat is not due to a high level of noise since it per-
ists and is even more present with long observation duration. Our
imulation study shows that it is consistent with a bias due to the
iscrepancy between the model underlying the data and a true
awkes process. This phenomenon, revealed here with LIF net-
orks, will obviously be present when analyzing real neuronal data

ut we demonstrated that correction based on the strength of the
nteractions will efficiently correct the obtained graph.

. Conclusion

In conclusion, when challenging LIF models of small neuron
etworks, the present method based on multivariate Hawkes pro-
esses and the optimization of least squares criteria combined with

 LASSO penalization and a correction method based on the inte-
ral of the functions hj →i, efficiently retrieves the hidden functional
onnectivity. The method is robust, stable, does not require huge
mount of data nor additional parameter constraints and can be
uickly run on a personal computer. Therefore, we propose that

t can be used as a routine turnkey procedure to infer potential
onnectivity graphs and to generate simulation models from simul-
aneous spike train recordings.
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