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Abstract

This paper addresses the problem of model selection in the sequence model Y = θ+
εξ when ξ is sub-Gaussian for non-euclidian loss-functions. In this model, the Penalized
Comparison to Overfitting procedure is studied for the weighted ℓp-loss, p ≥ 1. Several
oracle inequalities are derived from concentration inequalities for sub-Weibull variables.
Using judicious collections of models and penalty terms, minimax rates of convergence
are stated for Besov bodies Bs

r,∞. These results are applied to the functional model of
nonparametric regression.
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1 Introduction

The problem of selecting a model from among several candidates is essential in statistics
and machine learning, as well as in many application fields. In the most general sense, the
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aim of model selection is to construct data-driven criteria for selecting a model m from
a given collection M. In other words, if one observes some random variable ξ(n) (which
can be typically a random vector of size n) with unknown distribution depending on some
quantity f (the target) belonging to a set S, a flexible approach to estimate f is to consider
some collection of preliminary estimators

(
f̂m
)
m∈M and then try to design some genuine

data-driven procedure m̂ ∈ M to produce a new estimator f̂m̂. Considering some loss
function ℓ, we measure the quality of each estimator f̂m, through the quantity ℓ

(
f, f̂m

)
and

mathematical results on estimator selection are formulated in terms of upper bounds on
ℓ
(
f, f̂m̂

)
that allow to measure how far this quantity is from what is usually called the oracle

risk infm∈M E ℓ
[(
f, f̂m

)]
. These comparison inequalities are called oracle inequalities. The

quadratic loss ℓ
(
f, f̂m

)
=
∥∥f − f̂m

∥∥2 is a standard choice, but of course other losses are
considered in the literature.

Actually, in the classical model selection framework, developed and popularized by
Birgé and Massart [BM01], [BM07], [Mas07], the list of estimators and the loss function are
intimately related in the sense that they derive from the same contrast function (also called
empirical risk in the machine learning literature). More precisely, a contrast function Ln
is a function on the set S depending on the observation ξ(n) in such a way that

g ∈ S 7−→ E [Ln (g)]

achieves a minimum at point f . Given some collection of subsets (Sm)m∈M of S, called
models in the sequel, for every m ∈ M, some estimator f̂m of f is obtained by minimizing
Ln over Sm (f̂m is called minimum contrast estimator or empirical risk minimizer). In
the case where ξ(n) = (ξ1, . . . , ξn), an empirical criterion Ln can be defined as an empirical
mean

Ln (g) = Pn [L (g, .)] :=
1

n

n∑
i=1

L (g, ξi) ,

which justifies the terminology of empirical risk. Empirical risk minimization includes
maximum likelihood and least squares estimation. The penalized empirical risk selection
procedure consists in considering some proper penalty function pen: M → R+ and taking
m̂ minimizing

Ln

(
f̂m

)
+ pen(m) (1)

over M. We can then define the selected model Sm̂ and the corresponding selected estimator
f̂m̂. Penalized criteria have been proposed in the early seventies by Akaike or Schwarz
(see [Aka73] and [Sch78]) for penalized maximum log-likelihood in the density estimation
framework and Mallows for penalized least squares regression (see [Mal73]). In both cases
the penalty functions are proportional to the number of parametersDm of the corresponding
model Sm. In such settings, the performance of model selection estimators can be studied
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for the “natural” (non negative) loss function ℓ attached to Ln through the simple definition

ℓ (f, g) = E[Ln(g)] − E[Ln(f)], g ∈ S. (2)

This approach has been successfully applied in many settings: density estimation or Poisson
intensity estimation where ℓ is the Kullback-Leibler divergence or the L2-loss, nonparamet-
ric regression for the L2-loss, binary classification for the 0-1 loss or the Gaussian white
noise model still for the L2-loss. See [Mas07] and references therein. Although it is not
derived from an empirical contrast, we mention the model selection work associated with
the Hellinger distance [Bir86], [Bar11]. This explains why, although successfully applied in
many settings, model selection procedures have only been defined and analyzed for very
specific loss functions. In particular, non-Euclidian loss functions, as Lp-losses, have rarely
been considered for model selection procedures. It is not the case for other classical non-
parametric estimation procedures.

Although the use of Lp-loss in nonparametric statistics goes back at least to [BH79,
IH80, Sto82], an important advance was made by [Nem85] who established optimal rates of
convergence in the problem of multivariate nonparametric regression for Lp-loss and func-
tions belonging to Lq-Sobolev classes with possibly p ̸= q. Some years later, fundamental
works have been made by Oleg Lepski, who proposed the so-called famous Lepski-method
for selecting a bandwidth of a kernel estimator. In [Lep91], he studied adaptive estimation
under Lp-loss, 1 ≤ p ≤ ∞ over the collection of Hölder classes. Then [LMS97] introduced
a local bandwidth selection scheme to give kernel estimates which achieve optimal rates of
convergence over Besov classes in the Gaussian white noise model, the anisotropic multi-
variate case being examined by [KLP01]. Then [GL08] developed a powerful methodology
for selecting a bandwidth of a kernel estimate, which works in a multitude of contexts
and allows to establish oracle inequalities and to derive optimal rates of convergence: see
[GL11], [GL13], [GL14]. Nevertheless, the implementation of this method needs two steps
of minimization, each requiring a thorough calibration. Note that the estimation under the
L1-loss for bandwidth-selected kernel estimators has been investigated in [DL96], and the
Lp-aggregation of estimators has been studied by [Gol09].

In a very different spirit, another very popular method for adaptive estimation of func-
tions is wavelet thresholding. In a series of papers, Donoho, Johnstone, Kerkyacharian
and Picard have shown the power of wavelet thresholding for Lp-estimation over the scale
of Besov classes: see [DJKP95], [DJKP96],[DJKP97], [DJ98]. Refinements have been pro-
posed in [Jud97], [KPT96], [HKP99], [JS05], to name but a few. It must be noted that these
thresholding methods generally suffer from logarithmic losses in the rates of convergence.
We refer the reader to the book by [HKPT98] which details the construction of wavelet
bases, their use in statistical estimation, Lp-minimax results as well as computational as-
pects. Johnstone’s recent book [Joh19] addresses nonparametric function estimation by
carefully studying the infinite Gaussian sequence model, with many results and thoughts
about wavelet thresholding and adaptive minimaxity over ellipsoids.
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We finally mention the forthcoming manuscript [ACE25] which considers Bayesian non-
parametric concentration rates of procedures based on Heavy-tailed and Horseshoe priors
for ℓp-norms in the Gaussian white noise model.

The main goal of this paper is then to answer the following natural question: Is it
possible to design a model selection procedure in the same spirit as in (1), and in particular
resulting from one minimization step, so that it achieves optimal theoretical performances
for non-Euclidian losses? In particular, we have in mind that classical model selection proce-
dures are able to achieve optimal oracle properties and sharp minimax rates of convergence
on classical functional spaces for Euclidian losses. We tackle this issue by considering the
classical infinite sequence model and study a specific model selection procedure, called PCO,
for weighted ℓp-loss functions, with 1 ≤ p < ∞. As explained by [Joh19] (see his Preface
and Section 1.5), the Gaussian sequence model ”captures many of the conceptual issues
associated with non-parametric estimation”.

1.1 The PCO estimation procedure for the sub-Gaussian sequence model

For Λ a countable set, we consider the following classical sequence model:

Yλ = θλ + εξλ, λ ∈ Λ. (3)

In this model, the noise level ε is assumed to be smaller than a constant, say 1, and ε→ 0
defines the asymptotic setting of our study. The ξλ’s are i.i.d. centered variables, satisfying
the sub-Gaussian property, i.e.

P(|ξλ| ≥ t) ≤ 2e−t
2/2, t ≥ 0. (4)

The previous definition refers, for instance, to Proposition 2.5.2 of [Ver18] with scale pa-
rameter K1 =

√
2; note that fixing K1 =

√
2 is not a restriction since, in our setting, we

can replace the noise level ε with K1ε without loss of generality.
We aim at estimating the sequence θ = (θλ)λ∈Λ by using a finite number of observations,

say (Yλ)λ∈Λ(N) where Λ(N) denotes the first N elements of Λ. The integer N may increase as
ε decreases, so we actually face with a nonparametric problem. To connect our setting with
nonparametric regression, we may have in mind that N ∝ ε−2 (see [DJKP95, Jud97, KP00]
and Sections 3.2 and 4) but, unless specified, our results hold for any N .

For each m a subset of Λ(N), called model in the sequel, we set

θ̂(m) =
(
Yλ1{λ∈m}

)
λ∈Λ.

In particular, θ̂
(m)
λ = 0 for λ /∈ Λ(N). For 1 ≤ p < ∞, and w = (wλ)λ∈Λ a sequence of non

negative weights, we denote ℓp(w) the weighted ℓp-norm on RΛ:

∥ϑ∥pℓp(w) =
∑
λ∈Λ

wλ|ϑλ|p, ϑ ∈ RΛ. (5)
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In Model (3), we consider the risk associated with this weighted ℓp-norm. We assume in
the sequel that ∥θ∥ℓp(w) <∞.

Given a collection of models M ⊂ P(Λ(N)), we wish to select m̂ ∈ M in the best possible
way. For this purpose, as explained previously, we rely on the PCO criterion introduced by
[LMR17, VLMR23]. The heuristic of this approach is to build the goodness of fit criterion
by using the estimator which has the smallest bias among the collection (θ̂(m))m∈M. In our

setting, it means that we have to consider θ̂(Λ
(N)) (see (7)). Then, adding as usual in the

nonparametric setting a penalty term, we set

m̂ = arg min
m∈M

{
∥θ̂(m) − θ̂(Λ

(N))∥pℓp(w) + pen(m)
}

and estimate θ by
θ̃ = θ̂(m̂).

The idea of this methodology is to use ∥θ̂(m)− θ̂(Λ(N))∥pℓp(w) as a preliminary estimator of the

bias of θ̂(m). The role of pen(m) is then twofold: adjusting this preliminary step and taking
into account the variance of θ̂(m). The estimator θ̃ will be called the Penalized Comparison
to Overfitting (abbreviated as PCO) in the sequel. This terminology is justified by the

overfitting properties of θ̂(Λ
(N)). Of course, setting for m ∈ M,

Crit(m) = −
∑
λ∈m

wλ|Yλ|p + pen(m),

we obtain
m̂ = arg min

m∈M
Crit(m).

The heuristic of this approach is then different from the classical approach based on the
contrast function. However, observe that if we take p = 2, the criterion function Crit
corresponds to the one used in regression for various famous criteria such as Mallows’s Cp
[Mal73], AIC [Aka73] or BIC [Sch78] for instance. Two remarks are in order: Unlike Lepski
type procedures, the derivation of the PCO estimate θ̃ involves only one minimization step,
so its computational cost is much lower. Furthermore, if we take pen(m) of the form

pen(m) =
∑
λ∈m

wλt
p, (6)

for some t > 0, we have:
m̂ =

{
λ ∈ Λ(N) : |Yλ| > t

}
and the PCO estimate corresponds to the thresholding estimate with threshold t:

θ̃λ =

{
Yλ × 1{|Yλ|>t} λ ∈ Λ(N),

0 λ /∈ Λ(N).
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Results of Sections 2, 3.2 and 4 show that we have to refine the definition of pen(m) given
in (6) to obtain optimal results. This is described in the next subsection.

1.2 Contributions

As observed before, Lespki-type procedures achieve optimal properties in many settings
but their computational cost is prohibitive. The main contributions of this paper consist
in showing that under a convenient choice of pen(m), the PCO estimate, which is based
on the simple ℓp(w)-criterion Crit and whose computational cost is reasonable, is able to
achieve optimal results in oracle and minimax settings for any value of p ∈ [1,+∞).

We first prove in Theorem 2.1 that θ̃ satisfies a very general oracle inequality whatever
the expression of the penalty term pen(m). For this purpose, we analyse the behavior
of bias and variance terms of any estimate θ̂(m). This first result shows how to choose
pen(m), so that we obtain a more specific oracle inequality established in Theorem 2.5.
As usual, these results depend on sharp concentration inequalities and our results rely on
Theorem 2.3 involving sharp concentration of terms of the form

∑
λ∈I |ξλ|p around their

mean. The sharp tail bound involves the sum of two terms: a quadratic one, proportional
to

√
x, which is classical, and a second one proportional to xp/2. This last term is linear

for p = 2 but it raises many technical difficulties otherwise in particular for p > 2. This
result then reveals an elbow phenomenon depending on whether p is larger than 2 or not.
We take into account this elbow to propose a more refined function pen(m) for the case
p > 2 in Theorem 2.7. This result allows to deal with very large collections of models M
when p > 2, which is crucial for the minimax setting.

Minimax rates of convergence for the estimate θ̃ are first derived when weights are
constant and sequences θ have tails with a polynomial decreasing. We then consider the
classical class of Besov bodies Bsr,∞(R) and study rates for any r ≥ 1 and any s > 1/r for

the ℓp(w)-risk. We prove in Theorem 3.2 that for p ≤ 2, θ̃ is optimal under a suitable choice

of the penalty function. For p > 2, θ̃ is also optimal if r ≥ p and if r ≤ p/(2s + 1). For
the case p > 2 and p/(2s + 1) < r < p, the upper bound differs from the lower bound by
a logarithmic term. To deal with the case r < p, we need to consider very large collection
of models, in particular if r ≤ p/(2s + 1). The last contribution of our paper consists in
extending these last results to the functional framework. In Section 4, we consider the
nonparametric regression model

Xi = f

(
i

n

)
+ σηi, 1 ≤ i ≤ n,

(see Model (25)) and propose a PCO estimate of the function f based on wavelet rep-
resentations. The generalization of results of Theorem 3.2 allows to obtain Theorem 4.1
that provides rates of our procedure on functional Besov spaces for the standard functional
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Lp-loss and to discuss optimality. The conclusions are similar to those of the sequential
case. We also present the main steps of the methodology to derive functional minimax
rates, which represents an interest per se.

1.3 Plan of the paper and notation

The paper is organized as follows. Section 2 is devoted to oracle results and the statement
of concentration inequalities used in this paper. Section 3 presents the minimax rates of
convergence achieved by the PCO estimator. Section 4 is devoted to the nonparametric
regression model. Finally, Section 5 presents the proofs of the results.

For any set A we denote by |A| the cardinal of A, and P(A) the set of its subsets. The
notation N is the set of non-negative integers: N =

{
0, 1, 2, · · · }. We denote by uε ≲ vε

when there exists 0 < A <∞ such that uε ≤ Avε for all ε > 0. When uε ≲ vε and vε ≲ uε
we write uε ≈ vε. Remember that, for 1 ≤ p ≤ ∞, ℓp(w) denotes the weighted ℓp-norm,
defined in (5). When weights wλ are all equal to 1, we use the classical notation ℓp instead
of ℓp(w). In the sequel, for short, we set ∥ · ∥p = ∥ · ∥ℓp(w). The functional norm on the
Banach space Lp(R) will be denoted by ∥ · ∥Lp .

2 Oracle approach and concentration inequalities

Given any p ≥ 1, the goal of this section is to provide some optimality results in the oracle
setting for the ℓp(w)-risk in Model (3). In particular, in the sequel, except in Theorem 2.3
(for the first point), we assume that the ξλ’s are i.i.d. centered sub-Gaussian variables.
Along this section, we denote

σq :=
(
E[|ξλ|q]

)1/q
, 1 ≤ q <∞.

We first derive in subsequent Theorem 2.1 a very general result which holds for any penalty
function. Actually, by highlighting the key role of sums of the form

∑
λ∈I |ξλ|p, Theorem 2.1

allows to determine the ideal choice for the penalty pen(m). Concentrations of such sums
around their mean are precisely studied in Theorem 2.3 and Corollary 2.4. This allows to
refine Theorem 2.1, and sharp oracle inequalities are established in Theorems 2.5 and 2.7.

Before stating these results, we first observe that for any modelm, we can easily compute
the distance of the estimator θ̂(m) with respect to θ for the norm ℓp(w). Indeed, we have
for m ⊂ Λ(N):

∥θ̂(m) − θ∥pp =
∑
λ∈m

wλ|Yλ − θλ|p +
∑
λ/∈m

wλ|0 − θλ|p

= Vp(m) +Bp(m),
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with
Bp(m) :=

∑
λ∈Λ\m

wλ|θλ|p and Vp(m) := εp
∑
λ∈m

wλ|ξλ|p. (7)

In the last decomposition, Bp(m) (resp. Vp(m)) can be viewed as an ℓp(w)-bias term (resp.

an ℓp(w)-variance term). We now study θ̃ = θ̂(m̂) in the oracle setting.

2.1 A general oracle inequality

Recall that θ̃ = θ̂(m̂) with

θ̂(m) = (Yλ1{λ∈m})λ∈Λ, m̂ = arg min
m∈M

{
−
∑
λ∈m

wλ|Yλ|p + pen(m)

}
.

We obtain the following general oracle inequality for any p ∈ [1,+∞).

Theorem 2.1. If p > 1, for any arbitrary m ∈ M, we have for any α ∈ (0, 2):

∥θ̃ − θ∥pp ≤Mp,α∥θ̂(m) − θ∥pp +
2

α

[
(1 + α)Vp(m̂) − pen(m̂)

]
− 2

α

[
(1 + α)Vp(m) − pen(m)

]
,

where Mp,α depends only on p and α. In particular, with α = 1, we obtain:

∥θ̃ − θ∥pp ≤Mp∥θ̂(m) − θ∥pp + 2
[
2Vp(m̂) − pen(m̂)

]
− 2
[
2Vp(m) − pen(m)

]
, (8)

where Mp = Mp,1 is given in Equation (31) (see the proof).
If p = 1, the previous inequalities are true by replacing 2

α by 1
α∧1 in the right hand side of

the first inequality.

The proof of Theorem 2.1 is provided in Section 5.1.2.

Remark 2.2. The value of Mp,α is rather intricate (see the proof of Theorem 2.1) and the
best choice for α depends on p. Nevertheless, we numerically observe that Mp,1 is not far
from the minimum of the function α 7−→ Mp,α, and is even optimal for p = 1 and p = 2.
This is why we focus on the case α = 1 and state Inequality (8).

In view of the first result of Theorem 2.1, optimality of the estimate θ̃ will be achieved
among all estimates (θ̂(m))m∈M if we are able to find pen(m) such that for a constant
α ∈ (0, 2), pen(m) is close to (1 + α)Vp(m) for all m ∈ M. Note that Vp(m) is not
observable. Therefore, we need concentration inequalities to find the suitable expression
of pen(m) that is involved in our procedure. Since Vp(m) = εp

∑
λ∈mwλ|ξλ|p, we need to

study sums of |ξλ|p where the ξλ’s are independent sub-Gaussian variables.
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2.2 Concentration inequalities

Let I ⊂ Λ. We denote D = card(I) and

Z :=
∑
λ∈I

|ξλ|p.

Using, for r > 0, the Orlicz norm of a random variable X, defined by

∥X∥ψr = inf
{
η > 0 : E[exp((|X|/η)r)] ≤ 2

}
,

we set bλ =
∥∥∥|ξλ|p − E|ξλ|p

∥∥∥
ψ2/p

. We have the following result.

Theorem 2.3. Let p ≥ 1. Assume that the ξλ’s are centered independent sub-Gaussian
variables. There exist positive constants d1,p and d2,p only depending on p such that, for
any x > 0,

P(|Z − E(Z)| ≥ d1,p∥b∥ℓ2
√
x+ d2,p∥b∥ℓ1/(1−p/2)+

xp/2) ≤ 2e−x.

Moreover, if the ξλ’s are also identically distributed, then, for any x > 0,

P
(
|Z − E[Z]| ≥ c1,p

√
Dx+ c2,pD

(1−p/2)+xp/2
)
≤ 2e−x,

where c1,p and c2,p only depend on p and ∥ξλ∥ψ2.

Note that for the Gaussian i.i.d. case, when p = 1, the Cirelson-Ibragimov-Sudakov
inequality gives c1,1 =

√
2 and c2,1 = 0 (see Theorem 3.4 in [Mas07]). When p = 2, we

retrieve the well-known inequality for chi-squared variables and c1,2 = c2,2 = 2 works: see
Lemma 1 of [LM00]. This also matches with the Hanson-Wright inequality with identity
matrix or Bernstein inequality for sub-exponential variables, see e.g. [Ver18].
In the general case p ≥ 1, the result ensues from concentration theorems for sub-Weibull
variables. Indeed, if we denote Xλ = |ξλ|p − E|ξλ|p, we observe that the sub-Gaussianity
property of ξλ entails that Xλ has a Weibull behavior:

P(|Xλ| ≥ t) ≤ C exp(−ct2/p),

for C a constant. Such a variable, with bounded Orlicz norm with function ex
r −1, is called

a sub-Weibull variable. Note that the Weibull parameter here is r = 2/p ≤ 2. Now our
theorem directly follows from recent Theorem 1 of [ZW22], or Theorem 3.1 of [KC22] (see
also their Equation (3.6)), both giving explicit formulas for d1,p and d2,p. In the i.i.d case,
all bλ’s are equal and bounded by ∥|ξλ|p∥ψ2/p

= ∥ξλ∥ψ2 , up to a universal constant.
Observe that Theorem 2.3 can also be deduced from older results, like moment bounds

of [GK95] for the case r > 1. In particular, their corollary shows that our bound cannot
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be improved when p < 2. For r < 1, Theorem 6.2 of [HMSO97] gives a two-sided moments
inequality that leads to our tail result. Their bound cannot be improved meaning that
if the ξλ’s are Gaussian, the upper bound is achieved up to a constant. Same optimality
considerations are raised by [KC22].

From Theorem 2.3, we obtain the following corollary.

Corollary 2.4. Let p ≥ 1. Assume that the ξλ’s are i.i.d. centered sub-Gaussian variables.
For any x ≥ 1, with probability larger than 1 − 2 exp(−x),

1

2
σppD − κpD

(
1− p

2

)
+x

p
2 ≤

∑
λ∈I

|ξλ|p ≤
3

2
σppD + κpD

(
1− p

2

)
+x

p
2 , (9)

where κp = c2,p + c1,p max(1, c1,p/(2σ
p
p)) is a positive constant only depending on p and σp

and ∥ξλ∥ψ2.

Proof. We obviously have E[Z] = Dσpp. If p ≥ 2, we use 2
√
Dx ≤ θD + θ−1x with

θ = σpp/c1,p, and the inequality x ≤ xp/2. If p < 2 and x ≤ D, we use the same bound for√
Dx with the same θ, and this time x ≤ D1−p/2xp/2. Finally, if p < 2 and x > D, we

directly write
√
Dx ≤ D1− p

2x
p
2 .

Note that Corollary 2.4 holds by replacing 1/2 (resp. 3/2) in (9) by (1−ϵ) (resp. (1+ϵ))
for ϵ arbitrary small (with κp depending on ϵ).

2.3 Refined oracle inequalities

In this section, we apply the general oracle inequality of Theorem 2.1 with α = 1 (see
Remark 2.2) and use sharp concentration inequalities of Corollary 2.4 to derive suitable
penalties.

Typically, weights wλ may not depend on λ or may be constant on some slices (see
subsequent sections). Therefore, we consider the following partition of Λ(N):

Λ(N) =
⋃
j∈J

Λj (10)

so that wλ is constant for any λ ∈ Λj with wλ = ωj . For ease of notation, we omit the
dependence of the Λj ’s and J on N . We also assume that ωj ̸= ωj′ if j ̸= j′. Therefore,
up to some permutation of elements of J , the partition (10) is unique. Then, given (10),
we consider for any model m ∈ M

mj = m ∩ Λj , j ∈ J ,

and we set
Mj =

{
mj : m ∈ M

}
, j ∈ J .
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In view of Inequality (8) and Corollary 2.4, we take

pen(m) := 2εp
∑
j∈J

ωjpj(mj), (11)

with, for some xmj ≥ 1,

pj(mj) =
3

2
σpp|mj | + κp2

(p−2)+
2 |mj |

(
1− p

2

)
+x

p
2
mj . (12)

Observe that:

pj(mj) =

{
3
2σ

p
p|mj | + κp|mj |1−

p
2x

p
2
mj if p ≤ 2,

3
2σ

p
p|mj | + κp2

p
2
−1x

p
2
mj if p ≥ 2.

The factor xmj , depending on mj , will be specified later. But note that, mimicking the
computations of Section 1.1, the thresholding rule corresponds to the case where pj(mj) is
proportional to |mj |, which is obtained for instance by taking xmj proportional to |mj | when
p ≤ 2 and in this case the threshold is proportional to the noise level ε as expected. However,
subsequent results show that the resulting estimate is suboptimal in some situations by at
least a logarithmic factor. When p = 2, pen(m) corresponds to the penalty extensively
used to derive oracle inequalities for model selection procedures on Hilbert spaces. See,
for instance, oracle inequalities established in Theorems 4.2, 4.5 and 4.18 of [Mas07]. The
extension of these results to the case p ̸= 2 is provided by the following theorem.

Theorem 2.5. Let p ≥ 1. We consider the estimate θ̃ = θ̂(m̂) associated with the penalty
defined in (11) and pj(mj) given in (12). Then

E
[
∥θ̃ − θ∥pp

]
≤ M̃p inf

m∈M

{
E
[
∥θ̂(m) − θ∥pp

]
+ pen(m)

}
+ M̆pε

pR(M) (13)

with
R(M) =

∑
j∈J

ωj
∑

mj∈Mj ,mj ̸=∅

|mj |(
1− p

2 )
+e−xmj , (14)

and M̃p and M̆p are two constants only depending on p and σp.

The proof of Theorem 2.5 is provided in Section 5.1.3.

Remark 2.6. Theorem 2.5 remains true if we replace the equality in (11) by the inequality:

pen(m) ≥ 2εp
∑
j∈J

ωjpj(mj).

11



Now let us discuss the choice of the factors xmj . We fix them in order θ̃ to be optimal
in the oracle setting, meaning that

E
[
∥θ̃ − θ∥pp

]
≲ inf

m∈M
E
[
∥θ̂(m) − θ∥pp

]
. (15)

Now, observe that for any model m,

E
[
∥θ̂(m) − θ∥pp

]
= Bp(m) +

∑
j∈J

E
[
Vp(mj)

]
=
∑
λ/∈m

wλ|θλ|p + εpσpp
∑
j∈J

wj |mj |

and pen(m) can be compared to the second term of the right hand side. In particular,
Theorem 2.5 shows that θ̃ is optimal as soon as we have

|mj |(
1− p

2 )
+x

p
2
mj ≲ |mj | ⇐⇒ xmj ≲ |mj |2/max(2,p), for all j ∈ J (16)

and
R(M) <∞. (17)

More precisely, under (16) and (17), we obtain:

E
[
∥θ̃ − θ∥pp

]
≲ inf

m∈M
E
[
∥θ̂(m) − θ∥pp

]
+ εp,

which corresponds to (15) up to the residual term εp. Therefore, we wish to fix the factors
xmj so that Conditions (16) and (17) are satisfied. Condition (16) means that the factors
cannot be too large. But the condition R(M) < ∞ holds only if M is not too large or
factors are large enough. In particular, to have (17), we need:∑

mj∈Mj ,mj ̸=∅

|mj |(
1− p

2 )
+e−xmj <∞ (18)

(see (14)). Given d ≥ 1, consider situations where the number of models of size d is
exponential in d, say exp(cd) for c > 0. When p ≤ 2, we can choose xmj satisfying (16)
and such that (18) holds by taking

xmj = c̃|mj | or xmj = c̃ log(|mj |)

with c̃ large enough. But, when p > 2, if (16) is verified, we have, for c∗ a positive constant,

∑
mj∈Mj ,mj ̸=∅

|mj |(
1− p

2 )
+e−xmj ≥

Dj∑
d=1

exp(cd− c∗d
2/p),

12



with Dj = maxmj∈Mj (|mj |) (assumed to be larger than 1). The right hand side becomes
very large when Dj is large, which occurs when the model collection is large. Therefore,

the optimality of θ̃ for the case p > 2 requires a modification of the penalty to deal with
large collections of models. Since the elbow occurs at the value p = 2, we use pj(mj) with
the value p = 2 and we introduce

p#
j (mj) =

3

2
σ22|mj | + κ2xmj . (19)

We obtain the following theorem.

Theorem 2.7. Let q > 1 and p ≥ 2. Let m ∈ M. For j ∈ J and mj ∈ Mj, we take

xmj ≥ 1 and we consider the estimate θ̃ = θ̂(m̂) associated with the penalty

pen(m) := 2εp
∑
j∈J

ωj min
(

pj(mj), (2q logN)
p
2
−1p#

j (mj)
)
, (20)

where pj(mj) and p#
j (mj) are defined in (12) and (19) respectively. Then

E
[
∥θ̃−θ∥pp

]
≤ M̃p inf

m∈M

{
E
[
∥θ̂(m) − θ∥pp

]
+ pen(m)

}
+M̆p,q

(
N1−q∥θ∥pp+εpR#(M)

)
, (21)

with M̃p (resp. M̆p,q) a constant only depending on p (resp. p, σp and q) and

R#(M) = N (1−q)/2
∑
λ∈Λ

wλ + (logN)
p
2
−1R(M),

where R(M) is defined in (14).

The proof of Theorem 2.7 is provided in Section 5.1.4. Unfortunately, the use of p#
j (mj)

requires to add the multiplicative logarithmic term (2q logN)
p
2
−1 which vanishes only if

p = 2.
If logN is of order of | log(ε)|, by taking q large enough, the residuable term of the oracle

inequality is the same as in (13) up to the logarithmic term | log(ε)|
p
2
−1. Two scenarios are

then of interest.

1. If we can take xmj satisfying (16) such that R(M) <∞, we use

pen(m) ≤ 2εp
∑
j∈J

ωjpj(mj)

and Theorem 2.7 gives:

E
[
∥θ̃ − θ∥pp

]
≲ inf

m∈M
E
[
∥θ̂(m) − θ∥pp

]
+ εp| log(ε)|

p
2
−1.

13



2. If we can take xmj ≈ |mj | such that R(M) <∞, we use

pen(m) ≲ | log(ε)|
p
2
−1εp

∑
j∈J

ωjp
#
j (mj) ≲ | log(ε)|

p
2
−1εp

∑
j∈J

wj |mj |

and Theorem 2.7 gives:

E
[
∥θ̃ − θ∥pp

]
≲ | log(ε)|

p
2
−1 inf

m∈M
E
[
∥θ̂(m) − θ∥pp

]
+ εp| log(ε)|

p
2
−1.

The first scenario provides optimality of θ̃ up to the residual term εp| log(ε)|
p
2
−1. An addi-

tional logarithmic factor | log(ε)|
p
2
−1 is required for the main term for the second scenario.

In each case, the condition R(M) < ∞, depending on the chosen collection M is crucial.
In the next section devoted to the minimax setting, M will be specified in order to study
optimality of θ̃ under different regularity conditions for θ.

3 Minimax approach

The goal of this section is to prove the optimality of our procedure. For this purpose, we
consider the minimax setting. Two cases are considered. In next Section 3.1, we illustrate
our results on a simple situation, namely the case of constant weights and sequences θ
whose tails have a polynomial decreasing. Then, in Section 3.2, we investigate the minimax
rates of convergence of our procedure on Besov bodies.

3.1 Case of constant weights

In this section, we assume that weights wλ do not depend on λ and without loss of generality,
we assume:

wλ = 1, λ ∈ Λ.

We study minimax rates of convergence of our procedure when tails of θ have a polynomial
decreasing. Therefore, assuming without loss of generality that Λ is the set of positive
integers denoted N∗, we introduce for s > 0 and R > 0, the set Bsp(R) defined by

Bsp(R) :=

{
ϑ = (ϑλ)λ∈N∗ , sup

k∈N∗
ks
(∑
λ>k

|ϑλ|p
)1/p

≤ R

}
.

This functional class, allowing for an easy control of the bias term, is natural in our setting.
In the sequel, θ is assumed to belong to Bsp(R). Now, we take:

M =
{
{1, . . . , k}, 1 ≤ k ≤ N

}
14



and we apply Theorem 2.5 by plugging the value xm = a log(|m|) (and x∅ = 0) in pen(m)
with a > 1 +

(
1 − p

2

)
+

. In this case, since for each value d ∈ N∗ there is only one model
m ∈ M with cardinal d, we obtain:

R(M) =
J∑
j=1

ωj
∑

mj∈Mj ,mj ̸=∅

|mj |(
1− p

2 )
+e−xmj

≤
+∞∑
d=1

d(1− p
2 )

+e−a log(d) <∞.

In the previous inequality, we have used that J = {1} and Λ1 = Λ(N); therefore, mj = m
for any j and any m ∈ M. Theorem 2.5 gives

E
[
∥θ̃ − θ∥pp

]
≤ M̃p inf

m∈M

{
E
[
∥θ̂(m) − θ∥pp

]
+ pen(m)

}
+ M̆pε

pR(M).

Since
E
[
∥θ̂(m) − θ∥pp

]
= Bp(m) + E

[
Vp(m)

]
we have

pen(m) ≲ εp|m| ≲ E
[
Vp(m)

]
and we finally obtain:

E
[
∥θ̃ − θ∥pp

]
≤ M̃ ′

p inf
m∈M

E
[
∥θ̂(m) − θ∥pp

]
,

for M̃ ′
p a constant only depending on p. For a model m = {1, . . . , k},

E
[
Vp(m)

]
= σppkε

p and Bp(m) =
∑
i>k

|θi|p.

We obtain:

sup
θ∈Bs

p(R)
E
[
∥θ̃ − θ∥pp

]
≲ inf

1≤k≤N

{
Rpk−sp + εpk

}
≲ R

p
1+ps ε

p2s
1+ps

as soon as N ≥ Rpε−p. In particular, when p = 2, we obtain the bound

sup
θ∈Bs

2(R)
E
[
∥θ̃ − θ∥22

]
≲ R

2
1+2s ε

4s
1+2s .

In particular, the rate in the right hand side is the optimal minimax rate on the class Bs2(R),
see [Riv04].
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3.2 Case of non-constant weights and minimax rates on Besov bodies

3.2.1 Setting

In this section, we wish to consider minimax rates on the very general class of Besov bodies.
The latter is naturally associated with the wavelet framework. Therefore, we naturally
adapt previous notations to this framework and, without loss of generality, we can rewrite
the setting of Section 1.1 by assuming that

Λ =
⋃
j≥−1

{
{j} ×Kj

}
, Kj =

{
k ∈ N : 0 ≤ k < 2j

}
.

Such adaptations are also justified by the extensions of subsequent results to the regression
framework studied in Section 4. For any j ≥ 0, we have |Kj | = 2j and |K−1| = 1 since
K−1 = {0}. Now, our statistical model writes:

Yjk = θjk + εξjk, j ≥ −1, k ∈ Kj . (22)

In the sequel, we shall assume that the sequence θ = (θjk)(j,k)∈Λ belongs to a Besov ball
with smoothness s defined, as usual, by

Bsr,∞(R) =

ϑ = (ϑjk)(j,k)∈Λ ∈ RΛ : sup
j≥−1

2j(s+
1
2
− 1

r
)

( ∑
k∈Kj

|ϑjk|r
)1/r

≤ R


for 0 < s <∞, 1 ≤ r <∞, 0 < R <∞ and

Hs(R) = Bs∞,∞(R) =

{
ϑ ∈ RΛ : sup

j≥−1, k∈Kj

2j(s+
1
2
)|ϑjk| ≤ R

}
.

The sequence θ will be estimated by using the first N observations Yjk, with N = 2J+1 for
some J ≥ 0. It means that

Λ(N) =
⋃

−1≤j≤J
Λj , Λj =

{
{j} ×Kj

}
.

We still denote for any sequence ϑ in RΛ,

∥ϑ∥pp =

+∞∑
j=−1

∑
k∈Kj

wjk|ϑjk|p =

+∞∑
j=−1

ωj
∑
k∈Kj

|ϑjk|p, (23)

but we assume that the weights satisfy

wjk = ωj = 2j(
p
2
−1), (j, k) ∈ Λ. (24)

Such weights are naturally justified by the subsequent regression framework and strong
relationships between the sequence norm ∥ · ∥p and the classical functional Lp-norm. See
Section 4.

16



3.2.2 Lower bounds

In this section, we still consider Model (22) but we assume that the ξjk’s are i.i.d. standard
Gaussian variables. The lower bound for the ℓp(w)-risk is known for s > 1/r, see Theorems 7
and 9 of [DJKP95] (by taking, using their notation, (σ, p, q) = (s, r,∞), (σ′, p′, q′) = (0, p, p)
and C = R).

Theorem 3.1. Assume that s > 1/r and ε−2 ≲ N . Then, for ε small enough, we have:

inf
θ̂

sup
θ∈Bs

r,∞(R)
E
[
∥θ̂ − θ∥pp

]
≥ c


R

p
2s+1 ε

2ps
2s+1 if r > p

2s+1

R
p

2s+1 ε
2ps
2s+1 | log(ε)|

ps
2s+1

+1 if r = p
2s+1

R
p−2

2s+1− 2
r

(
ε2| log(ε)|

) p(s− 1
r+1

p )

2s+1− 2
r if r < p

2s+1

where the infimum is taken over all estimators, i.e. measurable functions of (Yjk)(j,k)∈Λ
and c is a positive constant depending on p, r and s.

The lower bounds reveal several zones according to the sign of r − p/(2s + 1). The
case r < p/(2s + 1) will be called the sparse case. The dense case r > p/(2s + 1) can
be decomposed into two cases: the case r ≥ p and the case p/(2s + 1) < r < p referred
respectively as the homogeneous and intermediate cases. Finally the case r = p/(2s + 1)
will be called the frontier case. We refer to the zones for the upper bounds.

3.2.3 Upper bounds

Our aim is to obtain the rate of convergence on the class Bsr,∞(R) of our estimator for
some well-chosen collection of models. Our collection of models is the union of three sub-
collections MH , MI and MS , each of them being the most suitable for homogenous (H),
intermediate (I) and sparse and frontier cases (S). For each sub-collection, we use a penalty
(see (11) and (20)) with corresponding factor xHmj

, xImj
and xSmj

(see below). The selection
of the sub-collection and associated penalty is performed by our procedure automatically.
We denote

M =
⋃

a∈{H,I,S}

Ma × {a}

with Ma defined as follows (recall that m = ∪−1≤j≤Jmj):

• strategy a = H: m ∈ MH if there exists L ∈ {0, . . . , J} such that

for all −1 ≤ j ≤ J, mj =

{
Λj if − 1 ≤ j ≤ L,

∅ if j > L

and xHmj
= p

2 log |mj | (log 0 = 0);
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• strategy a = I: m ∈ MI if there exists L ∈ {0, . . . , J} such that

for all −1 ≤ j ≤ J, mj =

{
Λj if − 1 ≤ j ≤ L− 1

mL+l ⊂ ΛL+l if l = j − L ≥ 0 with |mL+l| = ⌊2L+l2−lp/2(l + 1)−3⌋,

and xImj
= K|mj |

(
1 + log

(
2j

|mj |

))
with K a constant only depending on p (see the

proof);

• strategy a = S: m ∈ MS (full collection) if

for all −1 ≤ j ≤ J, mj = {j} × E, E ∈ P(Kj),

and xSmj
= (p+ 1)|mj |j.

For (m, a) ∈ M, having in mind Theorems 2.5 and 2.7, denote

pen(m, a) = pena(m) =

{
2εp
∑J

j=−1 ωjpj(mj , a) if p ≤ 2

2εp
∑J

j=−1 ωj min
(
pj(mj , a), (2q logN)

p
2
−1p#j (mj , a)

)
if p > 2

with q = p+ 1 and

pj(mj , a) = paj (mj) =
3

2
σpp|mj | + κp2

(p−2)+
2 |mj |

(
1− p

2

)
+(xamj

)
p
2 ,

p#j (mj , a) = p#a
j (mj) =

3

2
σ22|mj | + κ2x

a
mj
.

We consider (m̂, â) which minimizes over all (m, a) ∈ M the criterion

−
∑
λ∈m

wλ|Yλ|p + pen(m, a).

It can also be defined by minimizing over a the quantity −
∑

λ∈m̂a wλ|Yλ|p + pena(m̂a)
where m̂a minimizes over Ma the quantity −

∑
λ∈mwλ|Yλ|p + pena(m). Finally our PCO

estimator is θ̃ = θ̂(m̂,â).

Theorem 3.2. Assume that s > 1/r and R the radius of the Besov ball belongs to the

interval [ε, ε−1]. We take the number of observations N such that
(
R
ε

)2 ≤ N ≤
(
R
ε

)γ
, with

γ ≥ 2. Then

sup
θ∈Bs

r,∞(R)
E
[
∥θ̃ − θ∥pp

]
≤ C



R
p

2s+1 ε
2ps
2s+1 if r ≥ p

R
p

2s+1 ε
2ps
2s+1 | log(ε)|

s(p−2)+
2s+1 if p

2s+1 < r < p

R
p

2s+1 ε
2ps
2s+1 | log(ε)|

ps
2s+1

+1 if r = p
2s+1

R
p−2

2s+1− 2
r

(
ε2| log(ε)|

) p(s− 1
r+1

p )

2s+1− 2
r if r < p

2s+1

for C a constant depending on p, σp, s, r and γ.
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We remark that the radius R may decrease to 0 or increase to +∞ when ε → 0. The
lower bound R ≥ ε allows to have N ≥ 1. The upper bound R ≤ ε−1 can be replaced
by any upper bound R ≤ ε−u, with u > 0, so we have log(N) ≈ | log(ε)|. Note that if
R ∈ [R0, R1] with known constants R0 and R1 with 0 < R0 < R1 <∞ then we can choose
N not depending on R.

The proof of Theorem 3.2 is provided in Section 5.2. Theorem 3.2 shows that our
procedure achieves the optimal rate in the homogeneous case r ≥ p, in the sparse case
r < p/(2s+1) and in the frontier case r = p/(2s+1). In the intermediate case p

2s+1 < r < p,

we have a logarithmic loss with exponent s
2s+1(1− 2

p)+ which is non-zero if and only if p > 2.
When p ≤ 2, the rate is optimal. To the best of our knowledge, all other adaptive methods
suffer from a logarithmic loss in at least one case, except the adaptive procedure proposed
in [Jud97] based on an involved combination of thresholding and Lepski-type procedures.
In particular, [DJKP95] have a logarithmic loss, both in homegeneous and intermediate
cases, with power s

2s+1 . It is also the case in [LMS97] (for the study of the white noise
model) or [KLP01] (for the study of the multivariate white noise model) or [GL14] (for the
study of the density model).

4 Nonparametric regression

In this section, we consider the following nonparametric regression model

Xi = f(ti) + σηi, 1 ≤ i ≤ n, (25)

with ηi some i.i.d. centered sub-Gaussian variables modelling the noise and σ > 0 assumed
to be known. In the previous expression, f has support included into [0, 1] and the ti’s are
deterministic and equidistant : ti = i/n, i = 1, . . . , n. We assume in the sequel that log2(n)
is an integer. Our goal is to estimate the function f by using observations (Xi)i=1,...,n. The
risk of any estimate will be evaluated by using the Lp-norm for some 1 ≤ p < ∞. For this
purpose, we shall use results of Section 3.2.3 and in particular the weights (24) introduced
in Section 3.2.1.

In this setting, we consider a decomposition of the signal f , assumed to be squared-
integrable, on a wavelet basis. The expansion of f is then of the form:

f =
∑
k

⟨f, ϕk⟩ϕk +
+∞∑
j=0

∑
k

⟨f, ψjk⟩ψjk, (26)

where ϕk is the translation of a father wavelet ϕ and ψjk is the dilation and translation a
mother wavelet ψ: for any x, we have:

ϕk(x) = ϕ(x− k), ψjk(x) = 2j/2ψ(2jx− k).
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The expansion (26) can be of course rewritten as

f =
+∞∑
j=−1

∑
k∈Kj

⟨f, φjk⟩φjk, (27)

with for any (j, k), φjk = ψjk if j ≥ 0 and φjk = ϕk if j = −1. Considering the specific
construction of Section 4 of [CDV93] to obtain an orthonormal basis of L2[0, 1], we can
assume that the wavelets that generate the basis have a compact support which is then
included into the interval [A,B] for some 0 < A < B < ∞ and is M + 1 times weakly
differentiable, where M can be chosen by the practitioner. Finally, the construction of
[CDV93] shows that we can take

Kj =
{

0, 1, 2, . . . , 2j − 1
}
, j ≥ 0

and K−1 = {0}.
Now, as in Section 3.2, we consider Λ(N) of size N = 2J+1, for some J ≥ 0, with

Λ(N) =
⋃

−1≤j≤J
Λj , Λj =

{
{j} ×Kj

}
and we set for any (j, k) ∈ Λ(N),

Yjk =
1

n

n∑
i=1

Xiφjk(ti), θjk =
1

n

n∑
i=1

f(ti)φjk(ti), ξjk =
1√
n

n∑
i=1

ηiφjk(ti).

Setting

ε =
σ√
n
,

we have:
Yjk = θjk + εξjk, (j, k) ∈ Λ(N),

where the ξjk’s are centered. We obtain the model of Section 3.2.1, except that the ξjk’s
are not independent and not identically distributed. Furthermore, our target is f and not
θ = (θjk)(j,k)∈Λ(N) . However, we consider θ̃ the PCO estimate of Section 3.2.3 (except that

me modify the strategy I by taking |mL+l| = ⌊2L+l2−lp/2(l+ 1)−3p/2⌋ when p > 2) and we
set

f̃ =
∑

(j,k)∈Λ(N)

θ̃jkφjk

to estimate f . We study the upper bound of the Lp-risk of f̃ on the class of Besov spaces.
We refer the reader to Section 9.2 of [HKPT98] for the definition of Besov spaces in terms
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of modulus of continuity. In the sequel, we use the characterization of Besov spaces through
wavelet coefficients (see Corollary 9.1 of [HKPT98]): Under additional mild conditions on
the wavelet functions ϕ and ψ, for 1 ≤ r, q < ∞ and 0 < s < M + 1, a function g ∈ Lr
belongs to Bsr,q if and only if∑

j≥−1

2qj(s+
1
2
− 1

r
)
( ∑
k∈Kj

∣∣⟨g, ψjk⟩∣∣r) q
r
<∞.

When q = ∞, this condition becomes

sup
j≥−1

2j(s+
1
2
− 1

r
)
( ∑
k∈Kj

∣∣⟨g, ψjk⟩∣∣r) 1
r
<∞.

We shall use this sequential characterization to define the radius of a Besov ball, which
allows us to use the setting and notations of Section 3.2. We obtain the following result.

Theorem 4.1. Let 1 ≤ p, r < ∞ and s > 0 such that 1/r < s < M + 1. We recall that
ε = σ√

n
. Assume that R, the radius of the Besov ball, belongs to an interval [R0, R1], with

0 < R0 < R1 < +∞. We take the resolution level N = 2J+1 such that ε−2 ≤ N ≤ ε−γ , γ ≥
2. Then, we have:

sup
f∈Bs

r,∞(R)
E
[
∥f̃ − f∥pLp

]
≤ C



ε
2ps
1+2s if r ≥ p

ε
2ps
1+2s | log(ε)|

s(p−2)+
(1+2s) if p

2s+1 < r < p

ε
2ps
2s+1 | log(ε)|

ps
2s+1

+1 if r = p
2s+1(

ε2| log(ε)|
) p(s− 1

r+1
p )

2s+1− 2
r if r < p

2s+1

for C a constant depending on p, s, r, γ, R0, R1 and the wavelet functions ϕ and ψ.

Similarly to Theorem 3.2, Theorem 4.1 shows the optimality of our estimation procedure
for the homogeneous case r ≥ p, the frontier case r = p

2s+1 , the sparse case r < p
2s+1 and

the intermediate case p
2s+1 < r < p when p ≤ 2. We refer the reader to [Nem85] for

corresponding lower bounds, see also [DJ98] and Theorem 4 of [DJKP95]. When p > 2, for

the intermediate case p
2s+1 < r < p, we obtain the additional logarithmic term | log(ε)|

s(p−2)
(1+2s)

similarly to Theorem 3.2.
To end this section, we give main arguments of the proof of Theorem 4.1. The Lp-risk

of f̃ is deduced from the following control:

E
[
∥f̃ − f∥pLp

]
≤ 2p−1

E[∥∥∥ ∑
(j,k)∈Λ(N)

(θ̃jk − θjk)φjk

∥∥∥p
Lp

]
+
∥∥∥ ∑
(j,k)∈Λ(N)

θjkφjk − f
∥∥∥p
Lp

 (28)
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and the application of Theorem 3.2 to bound the first term. However, several additional
technical arguments are needed and we have to tackle several problems:

1. Concentration inequalities on the ξjk’s, which are now not i.i.d., were essential in
previous sections. So, the question is the following: Do the noise variables ξjk have
sufficiently nice concentration properties to apply Theorem 3.2?

2. How can we control the second term of the right hand side, which corresponds to an
approximation term?

3. Can we connect the first term of the right hand side of (28) to the ℓp(w)-risk of θ̃?

To address the first issue, we establish in the next proposition, proved in Section 5.3.1, that
the ξj,k’s satisfy a result similar to the result of Corollary 2.4. We use that the ηi’s are i.i.d.
centered sub-Gaussian random variables.

Proposition 4.2. For any j and for any Ij ⊂ Kj, we set

Zj :=
∑
k∈Ij

|ξjk|p.

There exist positive constants cφ, σp and κ′p only depending on p and the compactly father
and mother wavelets ϕ and ψ such that for any x ≥ 1,

P
(
Zj ≥

3

2
σpp|Ij | + κ′p|Ij |

(
1− p

2

)
+x

p
2

)
≤ cφe

−x.

Regarding the approximation term, we can prove the following result (see Section 5.3.2
for the proof).

Lemma 4.3. Assume that f belongs to the Besov set Bsr,∞(R) with 1/r < s < M + 1. Let

θjk = 1
n

∑n
i=1 f(ti)φjk(ti). Then, if N ≥ ε−2

| log(ε)| ,

∥∥∥ ∑
(j,k)∈Λ(N)

θjkφjk − f
∥∥∥p
Lp

≤ C

 Rpε
2ps
1+2s if r ≥ p

2s+1 ,

Rp
(
ε2| log(ε)|

) p(s− 1
r+1

p )

2s+1− 2
r if r < p

2s+1 ,

for C a constant depending on ϕ, ψ, s, r and p.

Finally, to address the third issue, we wish to compare the Lp-risk of f̃ (or rather the first

terms of its decomposition) with the ℓp(w)-risk of θ̃ when weights are those of Section 3.2.1
(see (24)). We first state the following lemma whose proof can be found in Section 5.3.3.
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Lemma 4.4. Let 1 ≤ p <∞. For any function g, we have:

∥g∥Lp ≤ C∥g∥B0
p,p∧2

,

for C a constant and with

∥g∥p∧2B0
p,p∧2

:=
∑
j≥−1

2
j(p∧2)( 1

2
− 1

p
)
( ∑
k∈Kj

∣∣⟨g, φjk⟩∣∣p) p∧2
p
.

Now, we naturally distinguish two cases.

- If 1 ≤ p ≤ 2, using Lemma 4.4, we have:

E

[∥∥∥ ∑
(j,k)∈Λ(N)

(θ̃jk − θjk)φjk

∥∥∥p
Lp

]
≲ E

[∥∥∥ ∑
(j,k)∈Λ(N)

(θ̃jk − θjk)φjk

∥∥∥p
B0
p,p

]

≲ E
[ J∑
j=−1

2j(
p
2
−1)

∑
k∈Kj

∣∣θ̃jk − θjk
∣∣p] ≤ E∥θ̃ − θ∥pp, (29)

with the ∥ · ∥p-norm is defined in (23) with weights defined in (24). Therefore, results
of Section 3.2.3 can be applied.

- If 2 < p <∞, still using Lemma 4.4, we have:

E

[∥∥∥ ∑
(j,k)∈Λ(N)

(θ̃jk − θjk)φjk

∥∥∥p
Lp

]
≲ E

[∥∥∥ ∑
(j,k)∈Λ(N)

(θ̃jk − θjk)φjk

∥∥∥p
B0
p,2

]

≲ E

( J∑
j=−1

2
j(1− 2

p
)
( ∑
k∈Kj

∣∣θ̃jk − θjk
∣∣p) 2

p

) p
2


≲

 J∑
j=−1

(
E
[
2j(

p
2
−1)

∑
k∈Kj

∣∣θ̃jk − θjk
∣∣p]) 2

p


p
2

, (30)

by using the generalized Minkowski inequality. Since we cannot insert the sum in
j before taking the power 2/p, the control of the Lp-risk by the ℓp(w)-one is not
immediate. This last issue is addressed in Section 5.3.

These arguments and technical complements of Section 5.3 allow to prove Theorem 4.1.
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5 Proofs

5.1 Proofs of oracle results of Section 2

5.1.1 Technical lemmas

Lemma 5.1. Let p ≥ 1. Let K > 0 and a, b two reals such that |a| ≥ K|b|. Then, for any
α > 0,

||a+ b|p − |a|p − α|b|p| ≤ C1p(α,K)|a|p

and
||a+ b|p − α|a|p − |b|p| ≤ C2p(α,K)|a|p

where C1p(α,K) and C2p(α,K) are positive constants depending on p, α,K such that
limK→∞C1p(α,K) = 0.

Proof. : The case a = 0 is obvious, so we assume a ̸= 0. Denoting x = b/a, it is sufficient
to study the function gα(x) = |1 + x|p− 1−α|x|p on [−K−1,K−1]. Since it is a continuous
function on a compact set, it is bounded and we denote by C1p(α,K) the maximum of |gα|
on [−K−1,K−1]. Moreover gα(0) = 0 so that limK→∞C1p(α,K) = 0. In the same way,
the continuous function |1 + x|p − α − |x|p is bounded on [−K−1,K−1] and we denote by
C2p(α,K) its bound.

Lemma 5.2. For any p > 1, for any α > 0, there exists C(α, p) such that for any x > 0
and y > 0,

(x+ y)p ≤ (1 + α)xp + C(α, p)yp.

We have, when α→ 0,

C(α, p) ∼
( α

p− 1

)1−p
→ +∞.

Proof. We prove that

C(α, p) =
1(

1 − (1 + α)
− 1

p−1

)p−1

by studying the function t 7−→ C(α, p) + (1 + α)tp − (t+ 1)p.

5.1.2 Proof of Theorem 2.1

Let us denote

J(m) =
∑

λ∈Λ\m

wλ|θλ|p +
∑

λ∈Λ(N)\m

wλ
(
αεp|ξλ|p − |Yλ|p

)
.
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Setting

C1 = εp
∑

λ∈Λ(N)

wλ|ξλ|p and C2 =
∑

λ∈Λ(N)

wλ|Yλ|p,

we can write

J(m) = Bp(m) + α(C1 − Vp(m)) − (C2 −
∑
λ∈m

wλ|Yλ|p)

= ∥θ̂(m) − θ∥pp − (1 + α)Vp(m) +
∑
λ∈m

wλ|Yλ|p + αC1 − C2.

But the definition of m̂ gives

−
∑
λ∈m̂

wλ|Yλ|p + pen(m̂) ≤ −
∑
λ∈m

wλ|Yλ|p + pen(m).

Then, since C1 and C2 do not depend on m,

∥θ̂(m̂)−θ∥pp−(1+α)Vp(m̂)−J(m̂)+pen(m̂) ≤ ∥θ̂(m)−θ∥pp−(1+α)Vp(m)−J(m)+pen(m).

Thus

∥θ̂(m̂)−θ∥pp ≤ ∥θ̂(m)−θ∥pp+
[
(1+α)Vp(m̂)−pen(m̂)

]
−
[
(1+α)Vp(m)−pen(m)

]
+J(m̂)−J(m)

and it is sufficient to control J(m̂) − J(m). Let us denote

Sλ = wλ
(
|θλ|p + αεp|ξλ|p − |Yλ|p

)
so that, with mc = Λ(N) \m and m̂c = Λ(N) \ m̂,

J(m̂) − J(m) =
∑
λ∈m̂c

Sλ −
∑
λ∈mc

Sλ

=

( ∑
λ∈m̂c∩m

Sλ +
∑

λ∈m̂c∩mc

Sλ

)
−

( ∑
λ∈mc∩m̂c

Sλ +
∑

λ∈mc∩m̂
Sλ

)
=

∑
λ∈m̂c∩m

Sλ −
∑

λ∈mc∩m̂
Sλ.

Case p > 1. We first deal with the second term. We have:

−
∑

λ∈mc∩m̂
Sλ =

∑
λ∈mc∩m̂

wλ

[
|Yλ|p − |θλ|p − αεp|ξλ|p

]
=

∑
λ∈mc∩m̂

wλ

[
|θλ + εξλ|p − |θλ|p − αεp|ξλ|p

]
≤

∑
λ∈mc∩m̂

wλ

[(
1 +

α

2

)
|εξλ|p + C(α/2, p)|θλ|p − |θλ|p − αεp|ξλ|p

]
,
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by using notations of Lemma 5.2. Finally,

−
∑

λ∈mc∩m̂
Sλ ≤

(
1 − α

2

)∑
λ∈m̂

wλ|εξλ|p +
(
C(α/2, p) − 1

) ∑
λ∈mc

wλ|θλ|p

≤
(

1 − α

2

)
Vp(m̂) +

(
C(α/2, p) − 1

)
Bp(m).

We now deal with the first term, namely
∑

λ∈m̂c∩m Sλ. Let K > 0.

1. We assume that |θλ| ≥ Kε|ξλ|. Then, applying Lemma 5.1, we have

|Sλ| = wλ

∣∣∣|θλ|p + αεp|ξλ|p − |Yλ|p
∣∣∣

≤ C1p(α,K)wλ|θλ|p

≤
(

1 − α

2

)
wλ|θλ|p,

choosing K ≡ Kp,α large enough.

2. We assume that |θλ| < Kε|ξλ|. Then

|Sλ| ≤ wλ

∣∣∣|θλ|p + αεp|ξλ|p − |Yλ|p
∣∣∣

≤ C2p(α,K
−1)wλ|εξλ|p.

using again Lemma 5.1 with |εξλ| ≥ K−1|θλ|.

Finally, ∑
λ∈m̂c∩m

Sλ ≤
(

1 − α

2

) ∑
λ∈m̂c

wλ|θλ|p + C2p(α,K
−1
p,α)

∑
λ∈m

wλ|εξλ|p

≤
(

1 − α

2

)
Bp(m̂) + C2p(α,K

−1
p,α)Vp(m).

We obtain

J(m̂) − J(m) ≤
(

1 − α

2

)
∥θ̂(m̂) − θ∥pp + C ′(α, p)∥θ̂(m) − θ∥pp

with C ′(α, p) = max
(
C
(
α
2 , p
)
− 1, C2p(α,K

−1
p,α)
)
. Thus

α

2
∥θ̂(m̂)−θ∥pp ≤ (1+C ′(α, p))∥θ̂(m)−θ∥pp+[(1 + α)Vp(m̂) − pen(m̂)]−[(1 + α)Vp(m) − pen(m)]

and

∥θ̂(m̂)−θ∥pp ≤
2

α
(1+C ′(α, p))∥θ̂(m)−θ∥pp+

2

α
[(1 + α)Vp(m̂) − pen(m̂)]− 2

α
[(1 + α)Vp(m) − pen(m)] .
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Thus the result is proved with

Mp,α =
2

α

(
1 + max

(
C
(α

2
, p
)
− 1, C2p(α,K

−1
p,α)
))

(31)

where Kp,α is such that C1p(α,Kp,α) ≤ 1 − α/2 and where C1p, C2p, C(., p) are defined in
Lemmas 5.1 and 5.2.

Case p = 1. In this case

Sλ = wλ
(
|θλ| + αε|ξλ| − |Yλ|

)
≥ (α− 1)εwλ|ξλ|.

Note also that

Sλ = wλ
(
|θλ| + αε|ξλ| − |θλ + εξλ|

)
≤ wλ(α+ 1)ε|ξλ|.

Then, if α ≥ 1,

J(m̂) − J(m) =
∑
λ∈m̂c

Sλ −
∑
λ∈mc

Sλ ≤
∑

λ∈Λ(N)

Sλ −
∑
λ∈mc

Sλ =
∑
λ∈m

Sλ

≤
∑
λ∈m

(α+ 1)wλε|ξλ| ≤ (α+ 1)∥θ̂(m) − θ∥1

and then

∥θ̃ − θ∥pp ≤ (2 + α)∥θ̂(m) − θ∥pp +
[
(1 + α)Vp(m̂) − pen(m̂)

]
−
[
(1 + α)Vp(m) − pen(m)

]
.

Now, if 0 < α < 1,

J(m̂) − J(m) =
∑

λ∈m̂c∩m
Sλ −

∑
λ∈mc∩m̂

Sλ

≤
∑

λ∈m̂c∩m
(α+ 1)wλε|ξλ| +

∑
λ∈mc∩m̂

(1 − α)wλε|ξλ|

≤ (α+ 1)∥θ̂(m) − θ∥1 + (1 − α)∥θ̂(m̂) − θ∥1

and then

α∥θ̃ − θ∥pp ≤ (2 + α)∥θ̂(m) − θ∥pp +
[
(1 + α)Vp(m̂) − pen(m̂)

]
−
[
(1 + α)Vp(m) − pen(m)

]
.

Here Mp,α = M1,α = max(2 + α, 1 + 2/α).
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5.1.3 Proof of Theorem 2.5

We only consider the case p > 1, the case p = 1 is similar.
Starting from Theorem 2.1, we have:

∥θ̃ − θ∥pp ≤Mp∥θ̂(m) − θ∥pp + 2
[
2Vp(m̂) − pen(m̂)

]
− 2
[
2Vp(m) − pen(m)

]
≤Mp∥θ̂(m) − θ∥pp + 2pen(m) + 2

[
2Vp(m̂) − pen(m̂)

]
≤Mp∥θ̂(m) − θ∥pp + 2pen(m) + 4εp

∑
j∈J

ωj
∑

mj∈Mj

[
Z(mj) − pj(mj)

]
+
,

where Z(mj) =
∑

λ∈mj
|ξλ|p, and

pj(mj) =
3

2
|mj |σpp + κp2

(p−2)+
2 |mj |

(
1− p

2

)
+xp/2mj

.

Note that [Z(∅) − pj(∅)]+ = [−pj(∅)]+ = 0, so we have:

∥θ̃ − θ∥pp ≤Mp∥θ̂(m) − θ∥pp + 2pen(m) + 4εp
∑
j∈J

ωj
∑

mj∈Mj ,mj ̸=∅

[
Z(mj) − pj(mj)

]
+
.

Taking the expectation yields

E∥θ̃ − θ∥pp ≤MpE∥θ̂(m) − θ∥pp + 2pen(m) + 4εpR,

with

R =
∑
j∈J

ωj
∑

mj∈Mj

mj ̸=∅

E
[
Z(mj) − pj(mj)

]
+

=
∑
j∈J

ωj
∑

mj∈Mj

mj ̸=∅

∫ ∞

0
P
(
Z(mj) − pj(mj) > u

)
du.

It remains to control the term R. For the next computation, we denote Cj = κp|mj |(1−p/2)+ .

Using the change of variable u = Cj2
(p−2)+

2 vp/2, we have:∫ ∞

0
P
(
Z(mj) − pj(mj) > u

)
du

=

∫ ∞

0
P
(
Z(mj) −

3

2
σpp|mj | − Cj2

(p−2)+
2 x

p
2
mj > u

)
du

=

∫ ∞

0
P
(
Z(mj) −

3

2
σpp|mj | − Cj2

(p−2)+
2 x

p
2
mj > Cj2

(p−2)+
2 v

p
2

)[
Cj2

(p−2)+
2

p

2
v

p
2
−1

]
dv

≤
∫ ∞

0
P
(
Z(mj) >

3

2
σpp|mj | + Cj(xmj + v)

p
2

)[
Cj2

(p−2)+
2

p

2
v

p
2
−1

]
dv
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since 2
(p−2)+

2 (ap/2 + bp/2) ≥ (a+ b)p/2. Corollary 2.4 gives∫ ∞

0
P
(
Z(mj) − pj(mj) > u

)
du ≤2

∫ ∞

0
e−(xmj+v)

[
Cj2

(p−2)+
2

p

2
v

p
2
−1

]
dv

≤C(p)Cje
−xmj = C(p)κp|mj |(1−p/2)+e−xmj ,

for C(p) a constant only depending on p. Finally,

R ≤ C(p)κp
∑
j∈J

ωj
∑

mj∈Mj ,mj ̸=∅

|mj |(1−p/2)+e−xmj .

5.1.4 Proof of Theorem 2.7

We only consider the case p > 1, the case p = 1 is similar.
We denote for q > 1,

Ω(N, q) :=
⋂

λ∈Λ(N)

{
|ξλ| ≤

√
2q logN

}
.

Recall that we assume P(|ξλ| > t) ≤ 2e−t
2/2 so we have P(Ω(N, q)) ≥ 1 − 2N1−q. Now,

E
[
∥θ̃ − θ∥pp

]
= E

[
∥θ̃ − θ∥pp1Ω(N,q)

]
+ E

[
∥θ̃ − θ∥pp1Ω(N,q)c

]
.

First,

E
[
∥θ̃ − θ∥pp1Ω(N,q)c

]
= E

[∑
λ/∈m̂

wλ|θλ|p1Ω(N,q)c

]
+ εpE

[∑
λ∈m̂

wλ|ξλ|p1Ω(N,q)c

]
≤ 2N1−q∥θ∥pp + εp

√
2N (1−q)/2σp2p

∑
λ∈Λ

wλ.

Then, starting from Theorem 2.1, we first have on Ω(N, q), for any m ∈ M,

∥θ̃ − θ∥pp ≤Mp∥θ̂(m) − θ∥pp + 2
[
2Vp(m̂) − pen(m̂)

]
− 2
[
2Vp(m) − pen(m)

]
≤Mp∥θ̂(m) − θ∥pp + 2pen(m) + 2

[
2Vp(m̂) − pen(m̂)

]
≤Mp∥θ̂(m) − θ∥pp + 2pen(m) + 4εp

∑
j∈J

ωj
∑

mj∈Mj

[
Z(mj) − Pj(mj)

]
+
,

where Z(mj) =
∑

λ∈mj
|ξλ|p, and

Pj(mj) = min
(

p1
j (mj); p2

j (mj)
)
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with
p1
j (mj) = pj(mj), p2

j (mj) = (2q logN)
p
2
−1p#

j (mj).

Then, taking the expectation

E
[
∥θ̃ − θ∥pp1Ω(N,q)

]
≤MpE

[
∥θ̂(m) − θ∥pp1Ω(N,q)

]
+ 2pen(m) + 4εpR

with
R =

∑
j∈J

ωj
∑

mj∈Mj

mj ̸=∅

E
[(
Z(mj) − Pj(mj)

)
+
1Ω(N,q)

]
.

It remains to control the term R. We have:

R =
∑
j∈J

ωj
∑

mj∈Mj

mj ̸=∅

∫ ∞

0
P
(
Z(mj)1Ω(N,q) − min

(
p1
j (mj); p2

j (mj)
)
1Ω(N,q) > u

)
du

≤
∑
j∈J

ωj
∑

mj∈Mj

mj ̸=∅

[∫ ∞

0
P
(
Z(mj) − p1

j (mj) > u
)
du

+

∫ ∞

0
P
({
Z(mj) − p2

j (mj) > u
}
∩ Ω(N, q)

)
du

]
.

With the same computation as in the proof of Theorem 2.5, we have∫ ∞

0
P
(
Z(mj) − p1

j (mj) > u
)
du ≤C(p)|mj |(1−p/2)+e−xmj .

On Ω(N, q), for p ≥ 2,

Z(mj) − p2
j (mj) =

∑
λ∈mj

|ξλ|p − (2q logN)
p
2
−1p#

j (mj)

≤
(√

2q logN
)p−2

∑
λ∈mj

ξ2λ − (2q logN)
p
2
−1
(3

2
σ22|mj | + κ2xmj

)
≤ (2q logN)

p
2
−1
( ∑
λ∈mj

ξ2λ −
(3

2
σ22|mj | + κ2xmj

))
.

Therefore,∫ ∞

0
P
({
Z(mj) − p2

j (mj) > u
}
∩ Ω(N, q)

)
du ≤(2q logN)

p
2
−1C(2)e−xmj .
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We obtain, for p ≥ 2,

R ≤ max
(
C(p);C(2)

)∑
j∈J

ωj
∑

mj∈Mj

mj ̸=∅

[
1 + (2q logN)

p
2
−1
]
e−xmj .

Finally, for M̆p,q a constant only depending on p and q, we have:

E
[
∥θ̃ − θ∥pp

]
≤MpE

[
∥θ̂(m) − θ∥pp

]
+ 2pen(m) + M̆p,q

(
N1−q∥θ∥pp + εpR(M)

)
,

with
R(M) = N (1−q)/2

∑
λ∈Λ

wλ + (logN)
p
2
−1
∑
j∈J

ωj
∑

mj∈Mj

mj ̸=∅

e−xmj .

5.2 Proof of Theorem 3.2

We first prove that ∥θ∥p <∞.

Lemma 5.3. Assume that θ ∈ Bsr,∞(R) with s > 1
r . Then, there exists C, only depending

on s, r and p, such that
∥θ∥pp ≤ CRp.

Proof. Let j ≥ −1 be fixed. Assume first that p ≥ r. Then( ∑
k∈Kj

|θjk|p
) 1

p

≤

( ∑
k∈Kj

|θjk|r
) 1

r

≤ R2−j(s+
1
2
− 1

r
).

Therefore,

2j(
p
2
−1)

∑
k∈Kj

|θjk|p ≤ Rp2j(
p
2
−1−ps− p

2
+ p

r
) ≤ Rp2j(−1−ps+ p

r
) ≤ Rp2−j ,

since s > 1
r . Now, assume that p < r. Hölder’s inequality implies that

∑
k∈Kj

|θjk|p ≤

( ∑
k∈Kj

|θjk|r
) p

r

2j(1−
p
r )

and

2j(
p
2
−1)

∑
k∈Kj

|θjk|p ≤ Rp2j(
p
2
−1−ps− p

2
+ p

r
+1− p

r
) ≤ Rp2−jsp.
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Finally, in both cases,

∥θ∥pp =

+∞∑
j=−1

2j(
p
2
−1)

∑
k∈Kj

|θjk|p ≤ CRp,

with C only depending on s, r and p.

We distinguish the cases p ≤ 2 and p > 2. When p ≤ 2, we apply Theorem 2.5 to the
collection M and penalty pen and we obtain

E∥θ̂(m̂â) − θ∥pp ≤ M̃p inf
(m,a)∈M

{
E∥θ̂(m) − θ∥pp + pen(m, a)

}
+ M̆pε

pR(M). (32)

When p > 2, we apply Theorem 2.7 to the collection M and penalty pen. This gives

E∥θ̂(m̂â) − θ∥pp ≤ M̃p inf
(m,a)∈M

{
E∥θ̂(m) − θ∥pp + pen(m, a)

}
+ M̆p,q

(
N1−q∥θ∥pp + εpR#(M)

)
,

with R#(M) = N (1−q)/2∑
λ∈Λwλ + (logN)

p
2
−1R(M).

Let us first analyse the remaining term N1−q∥θ∥pp + εpR#(M). In both cases observe
that

R(M) =
J∑

j=−1

ωj
∑

(mj ,a)∈Mj×{H,I,S}
mj ̸=∅

|mj |(
1− p

2 )
+e

−xamj = R(MH) +R(MI) +R(MS).

We will prove in the following Sections 5.2.1, 5.2.2 , 5.2.3 that for each a ∈ {H, I, S},
R(Ma) is bounded by a constant, except in the intermediate case for p < 2 where the
bound is logN up to a constant. Note that

∑
λ

wλ =
J∑

j=−1

ωj2
j ≲ 2Jp/2 ≲ Np/2

and, using Lemma 5.3, the remaining term is bounded as follows (for q ≥ p+ 1):

N1−q∥θ∥pp + εpR#(M) ≲ N1−qRp +N
1+p−q

2 εp + εp(logN)
p
2
−1R(M)

≲

(
R

ε

)2(1−q)
Rp +

(
R

ε

)1+p−q
εp + εp(logN)

p
2
−1R(M)

≲

(
R

ε

)2−2q+p

εp +

(
R

ε

)1+p−q
εp + εp(logN)

p
2
−1R(M).
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Since R ≥ ε, taking q = p+ 1 allows to show that this term is negligible. Indeed, we have
that

εp(logN)
p
2 ≲ R

p
2s+1 ε

2ps
2s+1 ⇐⇒ (logN)

p
2 ≲

(
R

ε

) p
2s+1

,

which is true. Thus the remaining term is negligible compared to the faster rate given in
Theorem 3.2, and a fortiori to the other rates.

Now, we consider the main term, i.e.

inf
(m,a)∈M

{
E∥θ̂(m) − θ∥pp + pen(m, a)

}
= min

a∈{H,I,S}
inf

m∈Ma

{
E∥θ̂(m) − θ∥pp + pena(m)

}
.

In the following Sections 5.2.1 (homogeneous case), 5.2.2 (intermediate case), 5.2.3 (sparse
and frontier cases), we bound for each a ∈ {H, I, S} the quantities R(Ma) and we prove
that

inf
m∈Ma

{
E∥θ̂(m) − θ∥pp + pena(m)

}
≤


vH(ε) if a = H and r ≥ p

vI(ε) if a = I and p
2s+1 < r < p

vS(ε) if a = S and r ≤ p
2s+1

where the va(ε)’s are the rates given in Theorem 3.2. This completes the proof. As each
subsection deals with a different case, from now we drop the upperscript a for ease of
notation.

5.2.1 Proof of Theorem 3.2: homogeneous case

In this section we assume that r ≥ p. Let us recall our sub-collection of models. A model
m = ∪Jj=−1mj ∈ M = MH if for some 0 ≤ L ≤ J

∀j ≤ L, mj = Λj = {j} ×Kj ,

∀j > L, mj = ∅.

Note that for any m ∈ M,

E[Vp(m)] = εpσpp
∑
j≥−1

ωj |mj | = εpσpp

L∑
j=−1

ωj2
j ≤ C(p, σp)ε

p2Lp/2,

with C(p, σp) a constant only depending on p and σp. If θ belongs to Bsr,∞(R) we can prove

that Bp(m) ≲ Rp2−Lps. Indeed the bias verifies

Bp(m) =
∑

(j,k)/∈m

ωj |θjk|p =
∑

j>L,k∈Kj

2j(
p
2
−1)|θjk|p.
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Since r ≥ p, Hölder’s inequality gives for any set E,

∑
k∈E

|θjk|p ≤ |E|(1−p/r)
(∑

k

|θjk|r
)p/r

.

When θ ∈ Bsr,∞(R), that yields
∑

k∈E |θjk|p ≤ |E|(1−p/r)Rp2−pj(s+
1
2
− 1

r
). Then, if E = Kj

with cardinal 2j , it gives
∑

k∈Kj
|θjk|p ≤ Rp2j(−ps+1− p

2
), and

Bp(m) =
∑
j>L

2j(
p
2
−1)

∑
k∈Kj

|θjk|p ≤ C(p, s)Rp2−pLs,

with C(p, s) a constant only depending on p and s. For our PCO procedure we have chosen
xmj = K log |mj | (with log 0 = 0 and K = p/2) so that

penH(m) = pen(m) =

{
2εp
∑J

j=−1 ωjpj(mj) if p ≤ 2

2εp
∑J

j=−1 ωj min
(

pj(mj), (2q logN)
p
2
−1p#

j (mj)
)

if p > 2

with

pj(mj) =
3

2
σpp|mj | + κp2

(p−2)+
2 |mj |

(
1− p

2

)
+(K log |mj |)

p
2

and

p#
j (mj) =

3

2
σ22|mj | + κ2K log |mj |.

Thus, pj(mj) = 0 if j > L ; and for j ≤ L:

pj(mj) =
3

2
σpp2

j + κp2
(p−2)+

2 (2j)

(
1− p

2

)
+(Kj log 2)

p
2 ≤ C(p, σp)2

j ,

with C(p, σp) a constant only depending on p and σp. Then

E∥θ̂(m) − θ∥pp + pen(m) ≤ E[Vp(m)] +Bp(m) + εp
L∑

j=−1

ωjC(p, σp)2
j

≲ εp2Lp/2 +Rp2−Lps + εp
L∑

j=−1

2j
p
2

≲ εp2Lp/2 +Rp2−Lps

which provides

inf
m∈M

{
E∥θ̂(m) − θ∥pp + pen(m)

}
≤ CR

p
2s+1 ε

2sp
2s+1 ,
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for C a constant, choosing L such that 2L ≈ (R/ε)2/(2s+1) (possible since 2J = N/2 ≳
(R/ε)2). Moreover, we compute

R(M) =
J∑

j=−1

ωj
∑

mj∈Mj ,mj ̸=∅

|mj |(1−p/2)+e−K log |mj |

=
J∑

j=−1

2j(
p
2
−1)

∑
mj∈Mj

1j≤L2
j(1− p

2 )
+2−jK

≤
∑
j≥−1

2j(
p
2
−1)2

j[(1− p
2 )

+
−K]

=
∑
j≥−1

2
j[( p

2
−1)

+
−K]

<∞

as soon as K > (p2 − 1)+.

5.2.2 Proof of Theorem 3.2: intermediate case

In this section, we assume that p
2s+1 < r < p. Let us now consider the following model,

inspired from [Mas07]: m belongs to M(L) if

mj =

{
Λj if − 1 ≤ j ≤ L− 1

mL+l ⊂ ΛL+l if l = j − L ≥ 0 with |mL+l| = ⌊2L+lA(l)⌋

with A(l) := 2−lp/2(l + 1)−3. At the end M =
⋃J
L=0M(L).

Note that the cardinal ⌊2L+lA(l)⌋ is equal to 0 when 2l(p/2−1)(l + 1)3 > 2L. Then if
p ≥ 2, mj = ∅ as soon as j > L+ lmax, with lmax such that

2L2−lmax(p/2−1)(lmax + 1)−3 ≈ 1.

Therefore, lmax is of order L/(p/2− 1) when p > 2 and of order 2L/3 if p = 2. When p < 2,
we only have l ≤ J − L.

To apply our model selection strategy, we set

xmj := K|mj |
(

1 + log
( 2j

|mj |

))
(33)

with K large enough (see later). Observe that at each level j, we consider two types of
models. Either the model mj is the whole slice {j}×Kj , or it is a strict subset of this slice
and in this case, it means that there exists L ≤ j such that

|mj | = ⌊2jA(j − L)⌋ = ⌊2j2−(j−L)p/2(j − L+ 1)−3⌋.
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Our choice of the factor xmj automatically adapts to both types of models: xmj = K|mj | for the first type,

xmj ≈ K|mj |
(

1 − logA(j − L)

)
for the second type.

(34)

In particular, for the first type xmj = K2j and for the second type xmj is of the same order
as K ′|mj | × (j − L).

As explained in Section 5.2, we have to bound R(M), that is to show that the term∑J
j=−1 ωj

∑
mj∈Mj ,mj ̸=∅ |mj |(

1− p
2 )

+e−xmj is bounded. In the sequel, for the sake of sim-
plicity, we set

b :=
p

2
− 1.

Considering the two types of models, we have, with Mj(L) =
{
mj : m ∈ M(L)

}
,

R(M) ≤
J∑

j=−1

ωj(2
j)(−b)+e−K2j +

J∑
L=0

J∑
j=−1

ωj |Mj(L)||mj |(−b)+e−K|mj |
(
1+log

(
2(j−L)p/2(j−L+1)3

))
1j≥L

=: T1 + T2.

Since ωj = 2j(
p
2
−1) = 2jb,

T1 ≤
+∞∑
j=−1

2jb(2j)(−b)+e−K2j <∞,

for K > 0. Furthermore,

T2 ≤
J∑

L=0

J∑
j=L

2jb|Mj(L)|(2j)(−b)+e−K|mj |
(
1+log

(
2(j−L)p/2(j−L+1)3

))

≤
J∑

L=0

J−L∑
l=0

2(L+l)b+ |ML+l(L)|e−K2L2−lb(l+1)−3
(
1+log

(
2lp/2(l+1)3

))
.

For j ≥ L, the complexity of the collection at level j = L+ l is

log |Mj(L)| ≤ log

(
2L+l

|mL+l|

)
≤ |mL+l| log

(
e2L+l

|mL+l|

)
where we have used the bound log

(
c
d

)
≤ d log

(
ec
d

)
. Then

log |Mj(L)| ≤ 2L2−lb(l + 1)−3 log
(
e2L+l⌊2L+lA(l)⌋−1

)
≤ 2L2−lb(l + 1)−3 log

(
e

2−lp/2(l + 1)−3 − 2−(L+l)

)
≤ C2L2−lb(l + 1)−2,
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with C a constant only depending on p. Then we have

T2 ≤
J∑

L=0

J−L∑
l=0

2(L+l)b+ exp
(

(C −Kp log(2)/2)2L2−lb(l + 1)−2
)
.

Here we distinguish two cases.

Case p ≥ 2: Recall that, if l ≥ 0 and p ≥ 2, mL+l = ∅ if l > lmax. Then we have, for K
large enough such that C −Kp log(2)/2 < 0,

T2 ≤
J∑

L=0

lmax∑
l=0

2(L+l)b exp
(

(C −Kp log(2)/2)2L2−lb(l + 1)−2
)

≤
J∑

L=0

lmax∑
l=0

2(L+l)b exp
(

(C −Kp log(2)/2)2L2−lmaxb(lmax + 1)−2
)

≤
J∑

L=0

lmax∑
l=0

2(L+l)b exp
(

(C −Kp log(2)/2)(lmax + 1)
)
.

We have used that
2L2−lmaxb(lmax + 1)−3 ≈ 1.

For p > 2, lmax ≈ L/b, and for K constant large enough

T2 ≤
J∑

L=0

2Lb exp(−K̃L)

with K̃ as large as desired and T2 <∞.
For p = 2, lmax ≈ 2L/3, and for K constant large enough T2 <∞.

Case p < 2: The function l 7→ 2−l(p/2−1)(l+1)−2 is increasing except on a compact interval.
Therefore, for K constant large enough,

T2 ≤
J∑

L=0

J−L∑
l=0

exp
(

(C −Kp log(2)/2)2L2−lb(l + 1)−2
)

≤
J∑

L=0

J−L∑
l=0

exp(−K ′2L) ≲ J = log2(N/2),

with K ′ a positive constant. Finally, we have proved that that R(M) is bounded by logN
up to a constant. It means that in (32), the last term M̆pε

pR(M) is bounded by εp| log(ε)|,
which is negligible when compared to the rate.
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It remains to bound infm∈M

{
E∥θ̂(m) − θ∥pp + pen(m)

}
, with pen(m) = 2εp

∑
j ωjpj(mj)

and, with a slight abuse of notation,

pj(mj) =

{
3
2σ

p
p|mj | + κp|mj |1−

p
2x

p
2
mj if p ≤ 2

(2q logN)
p
2
−1
(
3
2σ

2
2|mj | + κ2xmj

)
if p > 2

where q = p+ 1. Since M =
⋃J
L=0M(L), we can write

inf
m∈M

{
E∥θ̂(m)−θ∥pp+pen(m)

}
≤ inf

L

{
sup

m∈M(L)
E[Vp(m)] + inf

m∈M(L)
Bp(m) + sup

m∈M(L)
pen(m)

}
.

(35)
Let us study the three terms in the right hand side. Since ωj = 2j(p/2−1), we have for any
m ∈ M(L),

E[Vp(m)] ≤ εpσpp

∑
j<L

2j(p/2−1)2j +
∑
l≥0

2(L+l)(
p
2
−1)2L2−l(p/2−1)(l + 1)−3


≲ εpσpp

(
2Lp/2 + 2L(p/2−1+1)

)
≲ εpσpp2

Lp/2

Therefore
sup

m∈M(L)
E[Vp(m)] ≲ εpσpp2

Lp/2.

Moreover we can prove the following lemma (see Section 5.2.4)

Lemma 5.4. If θ ∈ Bsr,∞(R) and p
2s+1 < r

inf
m∈M(L)

Bp(m) ≲ Rp2−spL.

For the last term supm∈M(L) pen(m), we distinguish two cases.

case p > 2: We have

pj(mj) ≤ (2q logN)
p
2
−1
(3

2
σ22|mj | + κ2xmj

)
and

∑J
j=1 ωjpj(mj) is bounded by (up to a constant):

(logN)
p
2
−1

∑
j<L

2jb|mj | +
∑
j≥L

2jb2(1+b)L2−jb(j − L+ 1)−3
(
(j − L+ 1) + log(j − L+ 1)

)
≲ (logN)

p
2
−12Lp/2.
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Finally equation (35) provides in the case p > 2

inf
m∈M

{
E∥θ̂(m) − θ∥pp + pen(m)

}
≲ inf

L

{
εp2Lp/2 +Rp2−spL + εp(logN)

p
2
−12Lp/2

}
Using that log(N) ≲ | log(ε)|, and considering an L such that 2L ≈

(
R2ε−2| log(ε)|

2
p
−1
) 1

2s+1

(possible since 2J ≳ R2ε−2), we obtain

inf
m∈M

{
E∥θ̂(m) − θ∥pp + pen(m)

}
≲ R

p
2s+1 (ε2p| log(ε)|p−2)

s
2s+1 .

case p ≤ 2: We have

pj(mj) =
3

2
σpp|mj | + κp|mj |

(
1− p

2

)
x

p
2
mj .

We just have to deal with the following term:

J∑
j=1

ωj |mj |
(
1− p

2

)
x

p
2
mj ≲

∑
j<L

2jb|mj | +
∑
j≥L

wj |mj |
(
(j − L+ 1) + log(j − L+ 1)

)p/2
≲ 2Lp/2 +

∑
j≥L

2jb2(1+b)L2−jb(j − L+ 1)−3
(
(j − L+ 1) + log(j − L+ 1)

)p/2
≲ 2Lp/2,

since 3 − p/2 > 1. Finally equation(35) provides in the case p ≤ 2

inf
m∈M

{
E∥θ̂(m) − θ∥pp + pen(m)

}
≲ inf

L

{
εp2Lp/2 +Rp2−spL + εp2Lp/2

}
≲ R

p
2s+1 ε

2sp
2s+1 .

5.2.3 Proof of Theorem 3.2: sparse and frontier case

In this section we assume that r ≤ p
2s+1 . Since s > 1/r, it only occurs when p > 2 (since

p ≥ r(2s+ 1) ⇒ p > 2 + r > 2).
Recall that our model collection is defined by Mj = {{j} × E, E ∈ P(Kj)} for any

j ≥ −1. For this collection we choose xmj = K|mj |j with K = p+ 1 > 2 + (p2 − 1) log(2).

As required in Section 5.2 let us bound R(M) =
∑J

j=−1 ωj
∑

mj∈Mj ,mj ̸=∅ e
−xmj . We can

write

R(M) =

J∑
j=−1

ωj

2j∑
d=1

∑
mj∈Mj ,|mj |=d

e−xmj

=

J∑
j=−1

ωj

2j∑
d=1

card{mj ∈ Mj , |mj | = d}e−Kdj .
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Now we use that

log

(
2j

d

)
≤ d

(
1 + log

(
2j

d

))
≤ 2dj

to state

R(M) ≤
J∑

j=−1

ωj

2j∑
d=1

e2dje−Kdj ≤
J∑

j=−1

2j(
p
2
−1)

∞∑
d=1

e(2−K)dj

≤
J∑

j=−1

ωj
e(2−K)j

1 − e(2−K)j
≲

J∑
j=−1

e(2+( p
2
−1) log(2)−K)j <∞.

The following remark will be useful in Section 5.3.4.

Remark 5.5. We also have:

R
2/p
2 :=

J∑
j=−1

ωj ∑
mj∈Mj ,mj ̸=∅

e−xmj

2/p

=
J∑

j=−1

ωj 2j∑
d=1

∑
mj∈Mj ,|mj |=d

e−Kdj

2/p

≲
J∑

j=−1

(
e(2+( p

2
−1) log(2)−K)j

)2/p
<∞

It remains to control the term infm∈M

{
E∥θ̂(m) − θ∥pp + pen(m)

}
. Taking inspiration

from the various works of Donoho, Johnstone, Kerkyacharian and Picard, we now define

m̌j =


{j} ×Kj if j < j1

{j} ×
{
k ∈ Kj , |θjk| > ε

√
j
}

if j1 ≤ j ≤ j0

∅ if j > j0

where j1 = j1(ε) and j0 = j0(ε) are defined by

2j1 ≈ (R−1ε| log ε|
1
2 )4β−2, 2j0 ≈ (R−1ε| log ε|

1
2 )−2β/s′

with

s′ = s− 1

r
+

1

p
, β =

s′

2s+ 1 − 2
r

so that

p− r +
2β

s′
r

(
s+

1

2
− p

2r

)
= 2pβ.
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Observe that, since p > 2 and s > 1/r,

0 < β < min
(1

2
, s′
)
.

Moreover, since Rε−1 ≥ 1,

2j0 ≪ (R−1ε)−2β/s′ = (Rε−1)2β/s
′ ≤ (Rε−1)2 ≲ N/2 = 2J .

Then, the model m̌ = ∪jm̌j belongs to M (even if m̌ depends on θ). It satisfies the
following property, proved in Section 5.2.5.

Proposition 5.6. Assume that r < p/(2s + 1). There exists a positive constant C (de-
pending on s, r, p) such that

sup
θ∈Bs

r,∞(R)
E∥θ̂(m̌) − θ∥pp ≤ CRp(1−2β)| log ε|pβ ε2pβ

Moreover, if r = p/(2s+ 1),

sup
θ∈Bs

r,∞(R)
E∥θ̂(m̌) − θ∥pp ≤ CRp(1−2β)| log ε|pβ+1 ε2pβ.

The following remark will be useful in Section 5.3.4.

Remark 5.7. We also have, for r < p/(2s+ 1),

sup
θ∈Bs

r,∞(R)

∑
j

(
2j(

p
2
−1)
∑
k

E|(θ̂(m̌) − θ)jk|p
) 2

p

≤ CR2(1−2β)| log ε|2β ε4β,

and for r = p/(2s+ 1), the right hand side is replaced by CR2(1−2β)| log ε|2β+1 ε4β.

Let us now bound, for m = m̌, the term

pen(m) = 2εp
J∑

j=−1

ωj min
(

pj(mj), (2q logN)
p
2
−1p#

j (mj)
)

with {
pj(mj) = 3

2σ
p
p|mj | + κp2

(p−2)
2 (Kj|mj |)

p
2

p#
j (mj) = 3

2σ
2
2|mj | + κ2Kj|mj |.

Note that for j > j0, |mj | = 0 so that pen(m) ≤ 2εp(2q logN)
p
2
−1∑j0

j=−1 ωjp
#
j (mj). For

j < j1, |mj | = 2j so that, since | log(R−1ε)| ≤ 2| log ε|,

εp
j1−1∑
j=−1

ωjp
#
j (m̌j) ≲ εp

j1−1∑
j=−1

ωj |m̌j |j ≤ εp
j1−1∑
j=−1

j2jp/2 ≲ εp2j1p/2j1 ≲ Rp(1−2β)ε2βp| log ε|pβ−p/2+1.

41



Then, since log(N) ≲ | log(ε)|,

(logN)
p
2
−1εp

j1−1∑
j=−1

ωjp
#
j (m̌j) ≲ Rp(1−2β)ε2βp| log ε|pβ.

For j1 ≤ j ≤ j0, we write |m̌j | =
∑

k∈Kj
1|θjk|>ε

√
j , thus

εp
j0∑
j=j1

ωj |m̌j |j = εp
j0∑
j=j1

ωjj
∑
k∈Kj

1|θjk|>ε
√
j

To control this term we use the same method and bounds as used for term A31 in the proof
of Proposition 5.6. This gives

εp
j0∑
j=j1

ωj |m̌j |j ≲ Rrεp−rj
1−r/2
0 2−j0r(s+

1
2
− p

2r
)

≲ Rrεp−r| log ε|1−r/2(R−1ε| log ε|
1
2 )

2β
s′ r(s+

1
2
− p

2r
)

≲ Rp−2pβ| log ε|1−
r
2
+ β

s′ r(s+
1
2
− p

2r
)ε2pβ

Then, with log(N) ≲ | log(ε)|,

(logN)
p
2
−1εp

j0∑
j=j1

ωjp
#
j (m̌j) ≲ Rp−2pβε2βp| log ε|

p
2
− r

2
+ β

s′ r(s+
1
2
− p

2r
) ≲ Rp(1−2β)ε2βp| log ε|pβ.

(In the frontier case r = p/(2s+ 1), we obtain the bound

(logN)
p
2
−1εp

j0∑
j=j1

ωjp
#
j (m̌j) ≲ Rp(1−2β)ε2βp| log ε|p/2−1+2−r/2.

) Finally, reminding Proposition 5.6, we obtain

inf
m∈M

{
E∥θ̂(m) − θ∥pp + pen(m)

}
≤ E∥θ̂(m̌) − θ∥pp + pen(m̌) ≲ Rp(1−2β)(ε

√
| log ε|)2βp.

(In the frontier case r = p/(2s+ 1), we obtain the bound Rp(1−2β)ε2βp| log ε|1+pβ.)

5.2.4 Proof of Lemma 5.4

We sort the θjk’s in the following way: for any j we denote

|θj,(1)| ≥ |θj,(2)| ≥ · · · ≥
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Then

inf
m∈M(L)

Bp(m) = inf
m∈M(L)

∑
(j,k)/∈m

ωj |θjk|p =
∑
l≥0

2(L+l)(
p
2
−1)

∑
k>⌊2L+lA(l)⌋

|θL+l,(k)|p.

To bound the last term we use the following lemma.

Lemma 5.8. If a(1) ≥ · · · ≥ a(N) ≥ 0, then for any 0 < r ≤ p and any 0 ≤ n ≤ N − 1, we
have

N∑
k=n+1

ap(k) ≤

(
N∑
i=1

ari

)p/r
(n+ 1)1−p/r.

Proof. Let a = a(n+1). Then a ≤ a(j) for any j ≤ n + 1 and then (n + 1)ar ≤
∑

i a
r
i .

Therefore,

N∑
k=n+1

ap(k) =

N∑
k=n+1

ap−r(k) a
r
(k) ≤ ap−r

N∑
k=n+1

ar(k) ≤

(∑N
i=1 a

r
i

n+ 1

)p/r−1 N∑
i=1

ari .

Using Lemma 5.8, we can write

inf
m∈M(L)

Bp(m) ≤
∑
l≥0

2(L+l)(
p
2
−1)(

∑
k

|θL+l,k|r)
p
r (⌊2L+lA(l)⌋ + 1)1−

p
r

≤
∑
l≥0

2(L+l)(
p
2
−1)(

∑
k

|θL+l,k|r)
p
r
(
2L+l2−lp/2(l + 1)−3

)1− p
r

≤ 2L(
p
2
− p

r
)
∑
l≥0

2l(
p
2
−1)(

∑
k

|θL+l,k|r)
p
r
(
2l(1−p/2)(l + 1)−3

)1− p
r

Since θ ∈ Bsr,∞(R), for all l(∑
k

|θL+l,k|r
)1/r

≤ R2−(s+ 1
2
− 1

r
)(L+l) ⇒

(∑
k

|θL+l,k|r
)p/r

≤ Rp2−(sp+ p
2
− p

r
)(L+l).

Finally

inf
m∈M(L)

Bp(m) ≤ Rp2−spL
∑
l≥0

2lp(
p
2r

− 1
2
−s)(l + 1)3

p
r
−3 ≤ CRp2−spL.

The series converges because p
2r −

1
2 − s < 0 ⇔ p

2s+1 < r. Lemma 5.4 is proved.
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5.2.5 Proof of Proposition 5.6

We denote by θ̂ the estimator θ̂(m̌). First observe that

∥θ̂ − θ∥pp =
∑
j

∑
k∈Kj

ωj |θ̂jk − θjk|p = A1 +A2 +A3,

with

A1 :=
∑
j>j0

∑
k∈Kj

ωj |θ̂jk − θjk|p, A2 :=
∑
j<j1

∑
k∈Kj

ωj |θ̂jk − θjk|p A3 :=

j0∑
j=j1

∑
k∈Kj

ωj |θ̂jk − θjk|p.

We bound each sum.

Since θ̂jk = 0 for j > j0,

A1 =
∑
j>j0

∑
k∈Kj

ωj |θ̂jk − θjk|p =
∑
j>j0

ωj
∑
k∈Kj

|θjk|p.

Since r ≤ p, we have
∑

k |θjk|p ≤ (
∑

k |θjk|r)
p/r . Then, if θ ∈ Bsr,∞(R)

A1 ≤ Rp
∑
j>j0

2j(
p
2
−1)2−jp(s+

1
2
− 1

r
) ≤ Rp

∑
j>j0

2
−jp(s+ 1

p
− 1

r
) ≤ Rp2−j0ps

′
.

With the value of j0 this gives

A1 ≤ Rp(1−2β)(ε| log ε|
1
2 )2pβ.

Let us compute

A2 =
∑
j<j1

∑
k∈Kj

ωj |θ̂jk − θjk|p =
∑
j<j1

ωj
∑
k∈Kj

|Yjk − θjk|p = εp
∑
j<j1

2j(p/2−1)
∑
k

|ξjk|p

Then E
[
A2

]
= εp

∑
j<j1

2jp/2σpp ≲ εp2j1p/2. With the value of j1 this gives, since β < 1/2,

E
[
A2

]
≲ Rp(1−2β)ε2pβ| log ε|pβ−p/2 ≲ Rp(1−2β)ε2pβ.

We can split the last term in the following way:

A3 =

j0∑
j=j1

∑
k∈Kj

ωj |θ̂jk − θjk|p

=

j0∑
j=j1

∑
k

ωj |Yjk − θjk|p1|θjk|>ε
√
j︸ ︷︷ ︸

A31

+

j0∑
j=j1

∑
k

ωj |θjk|p1|θjk|≤ε
√
j︸ ︷︷ ︸

A32

44



Let us bound the expectation of the term A31:

E
[
A31

]
=

j0∑
j=j1

∑
k

ωjE|Yjk − θjk|p1|θjk|>ε
√
j

=

j0∑
j=j1

∑
k

ωjε
pσpp1|θjk|>ε

√
j

≤ εpσpp

j0∑
j=j1

∑
k

ωj(ε
√
j)−r|θjk|r

using that 1|θjk|>ε
√
j ≤ (|θjk|/ε

√
j)r. Now recall that θ belongs to Bsr,∞(R). Then

E
[
A31

]
≤ σppε

p−r
j0∑
j=j1

ωjj
−r/2

∑
k

|θjk|r

≤ Rrσppε
p−r

j0∑
j=j1

2j(p/2−1)j−r/22−jr(s+
1
2
− 1

r
)

≲ Rrεp−rj
−r/2
1

j0∑
j=j1

2−jr(s+
1
2
− p

2r
).

In the sparse case, we have s+ 1
2 − p

2r < 0. Thus, with the definition of j0:

E
[
A31

]
≲ Rrεp−rj

−r/2
1 2−j0r(s+

1
2
− p

2r
)

≲ Rrεp−r| log ε|−r/2
(
R−1ε| log ε|

1
2
) 2β

s′ r(s+
1
2
− p

2r
)
.

Note that in the frontier case s+ 1
2 − p

2r = 0, we obtain

E
[
A31

]
≲ Rrεp−rj

−r/2
1 j0 ≲ Rrεp−r| log(ε)|1−r/2.

It remains to control the term A32, which is deterministic. Since p− r > 0

A32 :=

j0∑
j=j1

∑
k

ωj |θjk|p1|θjk|≤ε
√
j

≤
j0∑
j=j1

∑
k

ωj |θjk|p(ε
√
j/|θjk|)p−r.
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Now recall that θ belongs to Bsr,∞(R). Then

A32 ≲ εp−r
j0∑
j=j1

j(p−r)/2ωj
∑
k

|θjk|r

≲ Rrεp−rj
(p−r)/2
0

j0∑
j=j1

2−jr(s+
1
2
− p

2r
).

In the sparse case, we have s+ 1
2 − p

2r < 0. Thus, with the definition of j0:

A32 ≲ Rrεp−rj
(p−r)/2
0 2−j0r(s+

1
2
− p

2r
)

≲ Rrεp−r| log ε|
p−r
2 (R−1ε| log ε|

1
2 )

2β
s′ r(s+

1
2
− p

2r
).

But remember that

p− r +
2β

s′
r

(
s+

1

2
− p

2r

)
= 2pβ.

Then
E
[
A31 +A32

]
≲ Rp−2pβ(ε| log ε|

1
2 )2βp,

which concludes the proof for r < p/(2s+ 1).
In the frontier case s+ 1

2 − p
2r = 0, we obtain

A32 ≲ Rrεp−rj
(p−r)/2
0 j0 ≲ Rrεp−r| log(ε)|1+(p−r)/2

and then, using p− r = 2pβ,

E
[
A31 +A32

]
≲ Rp−2pβε2βp| log ε|1+βp.

5.3 Proofs of results of Section 4

This section is devoted to the proofs of results of Section 4 and in particular to the proof of
Theorem 4.1. We first give the proof of intermediary technical results stated in Section 4.

5.3.1 Proof of Proposition 4.2

The proof of Proposition 4.2 needs following lemmas. The first one recalls classical facts
about Orlicz norms.

Lemma 5.9. Let ξ be a sub-Gaussian random variable.

1. (E|ξ|p)1/p ≤ 2
√
p∥ξ∥ψ2 .
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2. ∥|ξ|p∥ψ2/p
= ∥ξ∥pψ2

.

3. Let X = |ξ|p − E|ξ|p. There exists C1 a positive constant only depending on p such
that ∥X∥ψ2/p

≤ C1∥ξ∥pψ2
.

Proof of Lemma 5.9. 1. See [Ver18] Proposition 2.5.2 (sub-Gaussian properties) and its
proof, as well as Definition 2.5.5.

2. This comes directly from the definitions of the Orlicz norms.

3. We can prove that for any variable Y we have ∥Y − EY ∥ψ2/p
≤ C1∥Y ∥ψ2/p

similarly
as Lemma 2.6.6 in [Ver18] (it uses the triangular inequality and the fact that E|Y | ≤
C(p)∥Y ∥ψ2/p

). Then we take Y = |ξ|p and we use the previous point.

In Section 4, we are faced with non identically distributed variables. In this case, we
use the following result, derived from Theorem 2.3.

Lemma 5.10. Let p ≥ 1. Assume that the ξλ’s are centered independent sub-Gaussian vari-
ables. We assume that there exists a positive constant τ such that for any λ ∈ I, ∥ξλ∥ψ2 ≤
τ . Then, for all λ ∈ I, (E|ξλ|p)1/p ≤ 2

√
pτ . Moreover, denoting

Z :=
∑
λ∈I

|ξλ|p,

we have
E(Z) ≤ σppD,

with σp := 2
√
pτ and D = card(I). Furthermore, for any x ≥ 1, with probability larger

than 1 − 2 exp(−x), ∑
λ∈I

|ξλ|p <
3

2
σppD + κpD

(
1− p

2

)
+x

p
2 ,

where κp is a positive constant only depending on p and σp.

Proof of Lemma 5.10. Using the first point of Lemma 5.9 and our assumption on uniform
subgaussianity, we have:

E(Z) =
∑
λ∈I

E(|ξλ|p) ≤
∑
k∈I

(2
√
p∥ξλ∥ψ2)p ≤ (2

√
pτ)p|I| = σppD.

Now we apply Theorem 2.3. Recall that bλ = ∥Xλ∥ψ2/p
with Xλ = |ξλ|p−E|ξλ|p. The third

point of Lemma 5.9 gives:

∥b∥qℓq =
∑
λ∈I

∥Xλ∥qψ2/p
≤
∑
λ∈I

(C1∥ξλ∥pψ2
)q ≤ (C1τ

p)q|I|
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so that ∥b∥ℓq ≤ C1τ
pD1/q. Theorem 2.3 gives that with probability larger than 1 − 2e−x,

|Z − E(Z)| ≤ d1,p∥b∥ℓ2
√
x+ d2,p∥b∥ℓ1/(1−p/2)+

xp/2

≤ d1,pC1τ
p
√
Dx+ d2,pC1τ

pD(1−p/2)+xp/2

≤ d′1,pσ
p
p

√
Dx+ d′2,pσ

p
pD

(1−p/2)+xp/2

with d′ip = dipC1/(2
√
p)p. Recalling that E(Z) ≤ σppD, we can obtain with probability

larger than 1 − 2 exp(−x),

Z ≤ 3

2
σppD + κpD

(
1− p

2

)
+x

p
2 ,

with the same proof as the one of Corollary 2.4.

We now prove Proposition 4.2. Let us fix j ≥ −1 and k ∈ Kj . Remember that

ξjk =
1√
n

n∑
i=1

ηiφjk(ti).

The ξjk’s are centered sub-Gaussian random variables. Indeed, since the ηi’s are i.i.d.
centered sub-Gaussian random variables, there exists a constant c such that for any t ∈ R,

E[exp(tηi)] ≤ exp(ct2), i = 1, . . . , n

(see Proposition 2.5.2 of [Ver18], actually c = 2∥η1∥ψ2) and

E[exp(tξjk)] ≤ exp

(
ct2
∑n

i=1 φ
2
jk(ti)

n

)
, t ∈ R.

It remains to prove that
∑n

i=1 φ
2
jk(ti)

n is bounded by a constant independent of n and (j, k).
In the sequel, we assume that j ≥ 0 so that φjk = ψjk. Remember that the father

and mother wavelets ϕ and ψ are assumed to be supported by the compact interval [A,B].
Therefore, if ψjk(ti) ̸= 0 then

A ≤ 2j
i

n
− k ≤ B

and the size of the set of i’s such that ψjk(ti) ̸= 0 is not larger than n2−j up to a contant
only depending on ψ. This yields that

n∑
i=1

ψ2
jk(ti)

n
=

2j

n

n∑
i=1

ψ2
(

2j
i

n
− k
)
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is bounded by a constant only depending on ψ. The proof for the case j = −1 is similar.
This shows that the ξjk’s are sub-Gaussian variables. Moreover, using property 4 of Propo-
sition 2.5.2 of [Ver18], this ensures the existence of a positive constant τ only depending on
ϕ, ψ and ∥η1∥ψ2 such that for all j ≥ −1 and for all k ∈ Kj , ∥ξjk∥ψ2 ≤ τ .

We wish to apply Theorem 2.3. However, the ξjk’s are not independent. But, still
assuming that j ≥ 0, we have:

ξj,k =
1√
n

n∑
i=1

ηiψj,k(ti) =
1√
n

∑
i∈Mjk

ηi2
j/2ψ(2jti − k),

where
Mjk =

{
i : A ≤ 2jti − k ≤ B

}
=
{
i : 2jti −B ≤ k ≤ 2jti −A

}
.

Finally, if ξj,k depends on (ti, ηi), it means that i ∈ Mjk. Now, we take k′ > k + B − A.
If i ∈ Mjk then k ≥ 2jti − B, which yields that k′ > 2jti − A meaning that i ̸∈ Mjk′ .
Therefore ξj,k′ does not depend on (ti, ηi). We conclude that if k′ > k + B − A then ξj,k
and ξj,k′ are independent. Now, we build a deterministic partition of Ij

Ij = Ij1 ∪ · · · ∪ IjK ,

where the set (Ijℓ)ℓ’s are built so that if for some given ℓ, if we take two distinct elements k
and k′ of Ijℓ, then |k−k′| > B−A. Therefore ξj,k and ξj,k′ are independent. In particular,
we can take K, the size of the partition, of order B − A and the size of Ijℓ is smaller
than |Ij |.
Now, we apply Lemma 5.10, with τ = supjk ∥ξjk∥ψ2 . Let x ≥ 1. For any 1 ≤ ℓ ≤ K

P

∑
k∈Ijℓ

|ξjk|p ≥
3

2
σpp|Ijℓ| + κp|Ijℓ|

(
1− p

2

)
+x

p
2

 ≤ 2e−x.

Then, with probability larger that 1 − 2Ke−x∑
k∈Ij

|ξjk|p =
K∑
ℓ=1

∑
k∈Ijℓ

|ξjk|p <
3

2
σpp

K∑
ℓ=1

|Ijℓ| + κp

K∑
ℓ=1

|Ijℓ|
(
1− p

2

)
+x

p
2

<
3

2
σpp|Ij | + κpK

1−
(
1− p

2

)
+

(
K∑
ℓ=1

|Ijℓ|

)(1− p
2

)
+

x
p
2

using the concavity of x 7→ x

(
1− p

2

)
+ . This gives

P

∑
k∈Ij

|ξjk|p ≥
3

2
σpp|Ij | + κpK

1−
(
1− p

2

)
+ |Ij |

(
1− p

2

)
+x

p
2

 ≤ 2Ke−x.

The proof for the case j = −1 is similar.
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5.3.2 Proof of Lemma 4.3

Observe that, since ϕ and ψ are assumed to be CM+1 and compactly supported, then
Corollary 5.5.2 of [Dau92] ensures that ψ is orthogonal to polynomials of degree less or
equal to M . Therefore Assumption 1 of [DJ97] is satisfied. We then use the following
result.

Proposition 5.11 (Proposition 2 of [DJ97]). We assume that ϕ and ψ are CM+1 and that
f ∈ Bsr,∞(R), with 1/r < s < M + 1. Then, if p ≥ r,∥∥∥ ∑

λ∈Λ(N)

θjkφjk − f
∥∥∥
Lp

≲ RN−(s−1/r+1/p),

where N is the cardinal of Λ(N).

Now we consider the three cases:
- If r < p

2s+1 , since s > 1/r,∥∥∥ ∑
λ∈Λ(N)

θjkφjk − f
∥∥∥p
Lp

≲ RpN
−p(s− 1

r
+ 1

p
)

≲ Rp
(
| log(ε)|ε2

)p(s− 1
r
+ 1

p
)

≲ Rp
(
| log(ε)|ε2

)p s− 1
r+1

p

2s+1− 2
r .

- If p
2s+1 ≤ r ≤ p, observe that

r ≥ p

2s+ 1
⇐⇒ p ≤ r(1 + 2s) ⇐⇒ −1/p ≤ −1/(r(1 + 2s))

⇐⇒ 1/r − 1/p ≤ 1/r(1 − 1/(1 + 2s))

⇐⇒ 1/r − 1/p ≤ 1/r × 2s/(1 + 2s).

Therefore, using s > 1/r, we have:

1/r − 1/p < 2s2/(1 + 2s),

which means that
s− 1/r + 1/p > s/(1 + 2s)

and ∥∥∥ ∑
λ∈Λ(N)

θjkφjk − f
∥∥∥p
Lp

≲ Rp
(
| log(ε)|ε2

)p(s− 1
r
+ 1

p
)

≲ Rpε
2ps
1+2s . (36)
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- If r ≥ p, we have, since functions are compactly supported,∥∥∥ ∑
λ∈Λ(N)

θjkφjk − f
∥∥∥
Lp

≲
∥∥∥ ∑
λ∈Λ(N)

θjkφjk − f
∥∥∥
Lr

≲ Rε
2s

1+2s ,

using (36).

5.3.3 Proof of Lemma 4.4

In the sequel, we assume that ∥g∥p∧2B0
p,p∧2

<∞.

Section 9.2 of Daubechies (1992) shows that for 1 < p <∞

g ∈ Lp ⇐⇒
[ ∑
j≥−1

∑
k∈Kj

∣∣⟨g, φjk⟩∣∣2φ2
jk(·)

] 1
2 ∈ Lp (37)

⇐⇒
[ ∑
j≥−1

∑
k∈Kj

∣∣⟨g, φjk⟩∣∣22j1[2−jk,2−j(k+1)](·)
] 1

2 ∈ Lp (38)

Case 1 < p ≤ 2. We use (37). Since ∥ · ∥ℓ2 ≤ ∥ · ∥ℓp ,[ ∑
j≥−1

∑
k∈Kj

∣∣⟨g, φjk⟩∣∣2φ2
jk

] p
2 ≤

∑
j≥−1

∑
k∈Kj

∣∣⟨g, φjk⟩∣∣p∣∣φjk∣∣p
and

∥g∥pLp
≲
∫ [ ∑

j≥−1

∑
k∈Kj

∣∣⟨g, φjk⟩∣∣2φ2
jk(x)

] p
2
dx

≤
∑
j≥−1

∑
k∈Kj

∣∣⟨g, φjk⟩∣∣p ∫ ∣∣φjk(x)
∣∣pdx

≲
∑
j≥−1

2j(
p
2
−1)

∑
k∈Kj

∣∣⟨g, φjk⟩∣∣p = ∥g∥pB0
p,p
<∞.

This shows that ∥g∥Lp ≲ ∥g∥B0
p,p∧2

<∞.

Case p ≥ 2. We use (38) We recall the generalized Minkowski inequality: Let (X,A, µ)
and (Y,B, ν) two σ-finite measure spaces and F a measurable function. Then, for any
q ∈ [1,+∞),(∫

X

(∫
Y
|F (x, y)|dν(y)

)q
dµ(x)

) 1
q

≤
∫
Y

(∫
X
|F (x, y)|qdµ(x)

) 1
q
dν(y).
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We apply this inequality with µ the Lebesgue measure and ν the counting measure. We
take q = p/2 and F =

∑
k∈Kj

∣∣⟨g, φjk⟩∣∣22j1[2−jk,2−j(k+1)]. We have

∥g∥2Lp
≲

(∫ ( ∑
j≥−1

∑
k∈Kj

∣∣⟨g, φjk⟩∣∣22j1[2−jk,2−j(k+1)](x)
) p

2
dx

) 2
p

≤
∑
j≥−1

(∫ ( ∑
k∈Kj

∣∣⟨g, φjk⟩∣∣22j1[2−jk,2−j(k+1)](x)
) p

2
dx

) 2
p

=
∑
j≥−1

(∫ ∑
k∈Kj

∣∣⟨g, φjk⟩∣∣p2j p2 1[2−jk,2−j(k+1)](x)dx

) 2
p

≤
∑
j≥−1

( ∑
k∈Kj

∣∣⟨g, φjk⟩∣∣p2j( p2−1)

) 2
p

≤
∑
j≥−1

2
j2( 1

2
− 1

p
)

( ∑
k∈Kj

∣∣⟨g, φjk⟩∣∣p
) 2

p

= ∥g∥2B0
p,2
<∞.

This shows that ∥g∥Lp ≲ ∥g∥B0
p,p∧2

<∞.

Case p = 1. Finally, we deal with the case p = 1. We have

∥g∥p∧2B0
p,p∧2

=
∑
j≥−1

2−j/2
∑
k∈Kj

∣∣⟨g, φjk⟩∣∣
and, with g =

∑
j≥−1

∑
k∈Kj

⟨g, φjk⟩φjk,

∥g∥L1 =

∫ ∣∣∣ ∑
j≥−1

∑
k∈Kj

⟨g, φjk⟩φjk(x)
∣∣∣dx

≤
∑
j≥−1

∑
k∈Kj

∣∣⟨g, φjk⟩∣∣ ∫ ∣∣φjk(x)
∣∣dx

≲
∑
j≥−1

2−j/2
∑
k∈Kj

∣∣⟨g, φjk⟩∣∣ = ∥g∥B0
1,1
<∞.

This shows that ∥g∥L1 ≲ ∥g∥B0
1,1
<∞.

5.3.4 End of the proof of Theorem 4.1

The proof of Theorem 4.1 uses the following lemma which is a consequence of Proposition 2
of [DJ97] and the assumption f ∈ Bsr,∞(R). It uses that log2(n) is an integer.
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Lemma 5.12. If f belongs to the Besov set Bsr,∞(R), then we have∑
k∈Kj

|θjk|r ≤ CRr2−jr(s+1/2−1/r), (39)

for C a constant only depending on ϕ, ψ, s and r.

Now, when p ≤ 2, the proof of Theorem 4.1 follows from (28) combined with Proposi-
tion 4.2, Theorem 3.2, Lemmas 5.12 and 4.3 and Inequality (29).

When p > 2, Inequality (29) does not hold, but Inequality (30) shows that we only have
to bound  J∑

j=−1

(
E
[
2j(

p
2
−1)

∑
k∈Kj

∣∣θ̂(m̂)
jk − θjk

∣∣p]) 2
p


p
2

(40)

to conclude.
Remember that m̂ = arg minm∈MCrit(m) with

Crit(m) = −
∑
λ∈m

wλ|Yλ|p + pen(m)

and pen(m) has the form pen(m) = 2εp
∑J

j=1 ωjPj(mj) (see (20)). This can be rewritten

Crit(m) = −
∑
j≥−1

2j(
p
2
−1)
[ ∑
k∈Kj

|Yjk|p − 2εpPj(mj)
]
,

so that m̂ is the union of disjoint sets m̂j obtained by maximizing

mj 7−→ Critj(mj) :=
∑
k∈Kj

|Yjk|p − 2εpPj(mj).

Let mj be some model in Mj . Replacing for j′ ̸= j, wj′ by 0 we obtain directly from
Theorem 2.1, for any model mj ,

∥θ̃j. − θj.∥pp ≤Mp∥θ̂(mj) − θj.∥pp + 2
[
2Vp(m̂j) − pen(m̂j)

]
− 2
[
2Vp(mj) − pen(mj)

]
,

which means∑
k∈Kj

∣∣θ̃jk − θjk
∣∣p ≤Mp

∑
k∈Kj

∣∣θ̂(mj)
k − θjk

∣∣p + 4εp
[ ∑
k∈m̂j

|ξjk|p −Pj(m̂j)
]
− 4εp

[ ∑
k∈mj

|ξjk|p −Pj(mj)
]
.

53



With Z(mj) =
∑

k∈mj
|ξjk|p, mimicking the proof of Theorem 2.7, by taking q large enough,

J∑
j=−1

(
2j(

p
2
−1)

∑
k∈Kj

E
[∣∣θ̃jk − θjk

∣∣p]) 2
p
≲
∑
j≥−1

(
2j(

p
2
−1)

∑
k∈Kj

E
[∣∣θ̂(mj)

k − θjk
∣∣p]+ εp2j(

p
2
−1)Pj(mj)

) 2
p

+ (logN)
1− 2

p ε2
J∑

j=−1

(
2j(

p
2
−1)

∑
mj∈Mj

mj ̸=∅

e−xmj

) 2
p

+O(ε2).

We have

2j(
p
2
−1)

∑
k∈Kj

∣∣θ̂(mj)
k − θjk

∣∣p = 2j(
p
2
−1)

∑
k∈mj

|Yjk − θjk|p + 2j(
p
2
−1)

∑
k/∈mj

|0 − θjk|p

=: Vp(mj) +Bp(mj),

with
Bp(mj) := 2j(

p
2
−1)

∑
k/∈mj

|θjk|p and Vp(mj) := εp
∑
k∈mj

2j(
p
2
−1)|ξjk|p. (41)

This gives
E[Vp(mj)] ≤ εpσpp2

j( p
2
−1)|mj |

and

A(m) :=
J∑

j=−1

(
2j(

p
2
−1)

∑
k∈Kj

E
[∣∣θ̂(mj)

k − θjk
∣∣p]+ εp2j(

p
2
−1)Pj(mj)

) 2
p

≲
J∑

j=−1

(
Bp(mj) + εpσpp2

j( p
2
−1)|mj | + εp2j(

p
2
−1)Pj(mj)

) 2
p

≲
J∑

j=−1

B
2
p
p (mj) +

J∑
j=−1

(
εpσpp2

j( p
2
−1)|mj |

) 2
p

+

J∑
j=−1

(
εp2j(

p
2
−1)Pj(mj)

) 2
p

=: B̃p(m) + Ṽp(m) + P̃p(m).

Then we have to control for each collection M (Homogeneous, Intermediate, Sparse) the
terms B̃p(m), Ṽp(m), P̃p(m) for m ∈ M, as well as

R̃(M) := (logN)
1− 2

p ε2
J∑

j=−1

(
2j(

p
2
−1)

∑
mj∈Mj

mj ̸=∅

e−xmj

) 2
p
.
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Thus, the proof is similar to that of Theorem 3.2, but with the sum in j in a different

position, i.e. terms of type
∑

j zj are replaced by (
∑

j z
2/p
j )p/2.

• In the Homogeneous case, recall that a model m = ∪Jj=−1mj belongs to M if for some
L ≤ J

∀j ≤ L, mj = {j} ×Kj , ∀j > L, mj = ∅.

Then we can prove that Ṽp(m) ≲ ε22L, B̃p(m) ≲ R22−Ls for θ ∈ Bsr,∞(R) and P̃p(m) ≤
ε22L. Moreover R̃(M) ≲ (logN)

1− 2
p ε2. This allows us to conclude.

• We now deal with the Intermediate case ( p
2s+1 < r < p). For this case, we slightly

modify the previous collection of models: we still have M =
⋃J
L=0M(L) and m belongs to

M(L) if

mj =

{
Λj if − 1 ≤ j ≤ L− 1

mL+l ⊂ ΛL+l if l = j − L ≥ 0 with |mL+l| = ⌊2L+lÃ(l)⌋

but this time Ã(l) := 2−lp/2(l + 1)−3p/2. We follow Section 5.2.2 step by step, keeping in

mind that p > 2 and b = p
2 − 1. We have R̃(M) = (logN)

1− 2
p ε2(T1 + T2) with T1 =∑J

j=−1

[
2jb|mj |(−b)+e−K|mj |

] 2
p
<∞ and

T2 ≤
J∑

L=0

J∑
j=L

[
2jb|Mj(L)|e−K|mj |

(
1+log

(
2(j−L)p/2(j−L+1)3p/2

))] 2
p

≤
J∑

L=0

J−L∑
l=0

[
2(L+l)b|ML+l(L)|e−K2L2−lb(l+1)−3p/2

(
1+log

(
2lp/2(l+1)3p/2

))] 2
p

,

with log |Mj(L)| ≤ C2L2−lb(l + 1)−p for j ≥ L. Then, for K large enough

T2 ≤
J∑

L=0

lmax∑
l=0

[
2(L+l)b exp

(
(C −Kp log(2)/2)2L2−lb(l + 1)−p

)] 2
p

≤
J∑

L=0

lmax∑
l=0

22(L+l)b/p exp
(2

p
(C −Kp log(2)/2)2L2−lmaxb(lmax + 1)−p

)
≤

J∑
L=0

lmax∑
l=0

22(L+l)b/p exp
(2

p
(C −Kp log(2)/2)(lmax + 1)p/2

)
≲

J∑
L=0

22Lb/p exp(−K̃L) <∞
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where we have used that 2L2−lmaxb(lmax + 1)−3p/2 ≈ 1 and lmax ≈ L/b. Thus R̃(M) ≲

(logN)
1− 2

p ε2. We now deal with Ṽp(m): for any m ∈ M(L),

Ṽp(m) =
J∑

j=−1

(
εpσpp2

j( p
2
−1)|mj |

) 2
p

≤ ε2σ2p

∑
j<L

(
2j(p/2−1)2j

) 2
p

+
∑
l≥0

(
2(L+l)(

p
2
−1)2L2−l(p/2−1)(l + 1)−3p/2

) 2
p


≲ ε22L.

For the study of B̃p(m), we follow the proof of Lemma 5.4 mutatis mutandis:

inf
m∈M(L)

B̃p(m) =
∑
l≥0

(
2(L+l)(

p
2
−1)

∑
k>⌊2L+lÃ(l)⌋

|θL+l,(k)|p
) 2

p

≤
∑
l≥0

(
2(L+l)(

p
2
−1)(

∑
k

|θL+l,k|r)
p
r (⌊2L+lÃ(l)⌋ + 1)1−

p
r

) 2
p

≤
∑
l≥0

(
2(L+l)(

p
2
−1)(

∑
k

|θL+l,k|r)
p
r (2L2−l(

p
2
−1)(l + 1)−3p/2)1−

p
r

) 2
p

≤
(

2L(
p
2
− p

r
)
) 2

p
∑
l≥0

(
2l(

p
2
−1) p

r (l + 1)
3p
2
( p
r
−1)(

∑
k

|θL+l,k|r)p/r
) 2

p
.

Since θ ∈ Bsr,∞(R), for all l: (
∑

k |θL+l,k|r)
p/r ≤ Rp2−(sp+ p

2
− p

r
)(L+l). Finally

inf
m∈M(L)

B̃p(m) ≤ R22L(1−
2
r
)
∑
l≥0

2l(
p
2
−1) 2

r (l + 1)3(
p
r
−1)2−(2s+1− 2

r
)(L+l)

≤ R22−2sL
∑
l≥0

22l(
p
2r

− 1
2
−s)(l + 1)3(

p
r
−1) ≲ R22−2sL

since the series converges because p
2r −

1
2 − s < 0 ⇔ p

2s+1 < r.

It remains to control P̃p(m) =
∑J

j=−1

(
εp2jbPj(mj)

)2/p
with Pj given through (20). We

have

Pj(mj) ≤ (2q logN)
p
2
−1
(3

2
σ22|mj | + κ2xmj

)
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so that, for any m ∈ M(L),

P̃p(m) ≲ ε2(logN)
1− 2

p

[∑
j<L

(
2jb|mj |

) 2
p

+
∑
j≥L

(
2jb2(1+b)L2−jb(j − L+ 1)−

3p
2
(
(j − L+ 1) + log(j − L+ 1)

)) 2
p

]

≲ ε2(logN)
1− 2

p

[
2L + 2L

∑
l≥0

(l + 1)−3
(
l + 1 + log(l + 1)

) 2
p

]
≲ ε2(logN)

1− 2
p 2L.

We conclude

inf
m∈M

A(m) ≤ inf
L

{
inf

m∈M(L)
B̃p(m) + sup

m∈M(L)
Ṽp(m) + sup

m∈M(L)
P̃p(m)

}
≲ inf

L

{
R22−2sL + ε2(logN)

1− 2
p 2L
}

≲ R
2

1+2s ε
4s

1+2s | log ε|
2s(p−2)
p(1+2s) ,

by taking L such that

2L ≈ (ε−1R)
2

1+2s | log ε|−
(p−2)

p(1+2s) .

• In the Sparse case, Remark 5.5 gives R̃(M) ≲ (logN)
1− 2

p ε2 and Remark 5.7 provides

sup
θ∈Bs

r,∞(R)

(
B̃p(m) + Ṽp(m)

)
≲ R2(1−2β)| log ε|2β ε4β.

Finally, following the outlines of the end of Section 5.2.3, we can prove

P̃p(m) ≲
(
Rp(1−2β)ε2βp| log ε|pβ

)2/p
.

In the frontier case, r = p/(2s+ 1), we obtain

sup
θ∈Bs

r,∞(R)

(
B̃p(m) + Ṽp(m)

)
+ P̃p(m) ≲ R2(1−2β)| log ε|2β+1 ε4β.

This ends the proof.
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[BM07] Lucien Birgé and Pascal Massart. Minimal penalties for Gaussian model selec-
tion. Probab. Theory Related Fields, 138(1-2):33–73, 2007.

[CDV93] Albert Cohen, Ingrid Daubechies, and Pierre Vial. Wavelets on the interval and
fast wavelet transforms. Appl. Comput. Harmon. Anal., 1(1):54–81, 1993.

[Dau92] Ingrid Daubechies. Ten lectures on wavelets, volume 61 of CBMS-NSF Regional
Conference Series in Applied Mathematics. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 1992.

[DJ97] Bernard Delyon and Anatoli Juditsky. On the computation of wavelet coeffi-
cients. J. Approx. Theory, 88(1):47–79, 1997.

[DJ98] David L Donoho and Iain M Johnstone. Minimax estimation via wavelet shrink-
age. Ann. Statist., 26(3):879–921, 1998.

[DJKP95] David L Donoho, Iain M Johnstone, Gérard Kerkyacharian, and Dominique
Picard. Wavelet shrinkage: asymptopia? Journal of the Royal Statistical
Society: Series B (Methodological), 57(2):301–337, 1995.

[DJKP96] David L Donoho, Iain M Johnstone, Gérard Kerkyacharian, and Dominique
Picard. Density estimation by wavelet thresholding. Ann. Statist., 24(2):508–
539, 1996.

58



[DJKP97] David L Donoho, Iain M Johnstone, G Kerkyacharian, and Dominique Picard.
Universal near minimaxity of wavelet shrinkage. In Festschrift for Lucien Le
Cam: Research Papers in Probability and Statistics, pages 183–218. Springer,
1997.
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