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Chapter 1

Bayesian estimation in the
parametric setting

The goal of this chapter is to provide a short introduction to the Bayesian paradigm. For
this purpose, we consider the parametric setting.

1.1 Introduction

1.1.1 Recalls on the Bayesian paradigm

We assume that we are given a statistical model denoted (Ω,B,Pθ, θ ∈ T ). We recall
that if there exists d ∈ N∗ such that T ⊂ Rd then we speak about parametric statistics.
Otherwise, the framework is nonparametric statistics.

In the Bayesian setting, we endow T with a σ-algebra A and with a probability
distribution Π. This distribution is called the prior distribution on the parameter θ
which is viewed as the realization of a variable Θ. Briefly speaking, the Bayesian setting
offers several advantages.
- The first one is philosophical: As the observation, θ is random, whereas for frequentists,
θ is just assumed to be unknown.
- It allows the statistician to incorporate an a priori information on the parameter θ to
be estimated.
- it allows the statistician to enhance modeling.

In this course, we will often use the classical Bayesian abuse by not distinguishing
between the notation of a random variable and that of its realization.

In the Bayesian setting, Pθ is the distribution of a random variable X given θ. Given
a prior distribution Π on θ, we are interested in the posterior distribution of θ given X.
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For instance, in the discrete setting (i.e. Ω is a discrete set),

Pθ(x) := P (x|θ) = P (X = x|Θ = θ),

and, if T is also discrete, we can compute Π(θ|x) with the following formula:

Π(θ|x) =
Pθ(x)Π(θ)

P (x)
=

Pθ(x)Π(θ)∑
θ∈T Pθ(x)Π(θ)

.

It is said that Π(·|x) is the posterior distribution of θ conditionally on X = x.

In the general setting, we consider the following measured space (Ω × T , σ(B × A)),
where σ(B × A) is the σ-algebra generated by all sets B × A, with B ∈ B and A ∈ A.
We assume we are given:

- Π a probability measure on (T ,A), the prior distribution, and Θ a random vari-
able such that Θ ∼ Π.

- (Pθ)θ∈T a set of probability measures on (Ω,B), where for any θ ∈ T , Pθ is the
distribution of a random variable of X conditionally on Θ = θ.

We denote:

- P the joint distribution of (X,Θ):

P(B × A) :=

∫
A

Pθ(B) dΠ(θ), ∀B ∈ B, ∀A ∈ A

- m the marginal distribution of X:

m(B) :=

∫
T
Pθ(B) dΠ(θ) = P(B × T ), ∀B ∈ B

Definition 1.1. We say that

Π(·|·) : A× Ω 7−→ [0; 1]

is a posterior distribution given X if and only if

1. for any x ∈ Ω, Π(·|x) is a probability distribution on (T ,A),

2. for any A ∈ A, Π(A|·) is measurable on (Ω,B),

3. for any A ∈ A, for any B ∈ B,

P(B × A) =

∫
B

Π(A|x) dm(x).
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Using an old result established by Dudley (1989), we can prove that ”the” posterior
distribution always exists:

Theorem 1.1. If T and Ω are both complete and separable, (a version of) a posterior
distribution always exists.

Remark 1.1. We often use the notation Π(·|X).

When the Pθ’s are all dominated by a σ−finite measure µ, we can set:

fθ(x) =
dPθ(x)

dµ(x)
, ∀x ∈ Ω.

Then,

Π(A|X) =

∫
A
fθ(X) dΠ(θ)∫

T fθ(X) dΠ(θ)
, ∀A ∈ A. (1.1)

Indeed, for any A ∈ A, for any B ∈ B,

P(B × A) =

∫
A

Pθ(B) dΠ(θ)

=

∫
A

∫
B

fθ(x) dµ(x) dΠ(θ)

=

∫
B

[∫
A

fθ(x) dΠ(θ)

]
dµ(x).

This yields

m(B) =

∫
B

[∫
T
fθ(x) dΠ(θ)

]
dµ(x), ∀B ∈ B

and

dµ(x) =
dm(x)∫

T fθ(x) dΠ(θ)

and

P(B × A) =

∫
B

[∫
A
fθ(x) dΠ(θ)

]
dm(x)∫

T fθ(x) dΠ(θ)
,

providing the announced result (1.1). Observe that

dΠ(θ|X)

dΠ(θ)
=

fθ(X)∫
T fθ(X) dΠ(θ)

∀θ ∈ T .

Furthermore, if Π has a density p with respect to a measure λ, then Π(·|X) has also a
density with respect to λ which is:

p(θ|X) =
fθ(X)p(θ)∫
T fθ(X) dΠ(θ)

.
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Example 1.1. We observe an n-sample X = (X1, . . . , Xn) whose distribution is the
Bernoulli distribution with parameter θ ∈]0; 1[. In this case, X has a density with respect
to the counting measure on {0, 1}n and

fθ(x1, . . . , xn) =
n∏
i=1

[
θxi(1− θ)1−xi

]
, ∀(x1, . . . , xn) ∈ {0, 1}n.

We assume that Π is the uniform distribution on ]0; 1[, so

p(θ) :=
dΠ(θ)

dθ
= 1]0;1[(θ)

and

p(θ|X) =
θ
∑n
i=1Xi(1− θ)n−

∑n
i=1Xi1]0;1[(θ)∫ 1

0
θ
∑n
i=1Xi(1− θ)n−

∑n
i=1Xi dθ

,

meaning that

Θ|X ∼ Beta
( n∑
i=1

Xi + 1, n+ 1−
n∑
i=1

Xi

)
.

Remark 1.2. We recall that for α > 0 and β > 0, the density of the Beta(α, β)-
distribution is

f(x) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−11]0;1[(x),

with for α > 0,

Γ(α) =

∫ +∞

0

e−ttα−1 dt.

If Y ∼ Beta(α, β), we have

E[Y ] =
α

α + β
, var(Y ) =

αβ

(α + β)2(α + β + 1)
.

Exercice 1.1. We observe an n-sample X = (X1, . . . , Xn) whose distribution is the
Gaussian distribution N (θ, σ2) and we take Θ ∼ N (µ, s2). In this case,

Θ|X ∼ N

(
s2Xn + σ2

n
µ

s2 + σ2

n

,
s2 σ2

n

s2 + σ2

n

)
.

We can again enhance the modeling by considering hierarchical models:

x ∼ fθ, θ ∼ pµ, µ ∼ g,
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where fθ, pµ and g are densities (and we don’t use capital letters). We have (for instance):

- the density of (x, θ|µ) is proportional to fθ(x)pµ(θ)

- the density of (x, θ, µ) is proportional to fθ(x)pµ(θ)g(µ)

- the density of (µ|x, θ) is
fθ(x)pµ(θ)g(µ)∫
fθ(x)pµ(θ)g(µ) dµ

- the density of (µ|x) is

∫
fθ(x)pµ(θ)g(µ) dθ∫∫
fθ(x)pµ(θ)g(µ) dµ dθ

1.1.2 Bayesian risk and Bayesian rules

To introduce the notion of risk, we need to define a loss function which measures the cost
of an estimation error. The aim of the loss function is to measure the distance between
the estimate and the target. It does not depend on the Bayesian setting. For θ ∈ T , let
us assume that we aim at estimating g(θ) where g : T 7−→ D is a measurable function.
Typically, D = g(T ).

Definition 1.2. A loss function is a function L such that L : D × D 7−→ R+ that is
measurable.

Remark 1.3. Most of the time, L is symmetric.

Example 1.2. Classical examples of loss functions are:

L(·, ·) = ‖ · − · ‖2
2, L(·, ·) = ‖ · − · ‖1, L(·, ·) = 1{·6=·}.

Definition 1.3. The frequentist risk of an estimate T (X) of g(θ) associated with a
loss function L is the function

R(·, T ) : T −→ R+

θ 7−→ Eθ[L(T (X), g(θ))].

In particular, for any θ ∈ T ,

R(θ, T ) =

∫
Ω

L(T (x), g(θ)) dPθ(x).

In the Bayesian setting, once we are given a prior distribution Π, we can integrate the
risk R with respect to Π. It is natural since we do not assume that there is a true value
for the unknown parameter θ. We obtain the Bayesian risk.

Definition 1.4. The Bayesian risk (with respect to Π and T ) is

r(Π, T ) =

∫
T
R(θ, T ) dΠ(θ).
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Remark 1.4. We have

r(Π, T ) =

∫
T
R(θ, T ) dΠ(θ)

=

∫
T

∫
Ω

L(T (x), g(θ)) dPθ(x) dΠ(θ)

=

∫
T

∫
Ω

L(T (x), g(θ)) dΠ(θ|x) dm(x)

=

∫
Ω

dm(x)

∫
T
L(T (x), g(θ)) dΠ(θ|x).

Using r(Π, T ), we can define what is a good estimate given Π. It will be called a
Bayesian (or Bayes) estimate.

Definition 1.5. A Bayesian estimate associated with a prior distribution Π is an es-
timate that minimizes the function T 7−→ r(Π, T ) equivalently, the function T (x) 7−→∫
T L(T (x), g(θ)) dΠ(θ|x).

The Bayesian rule can be characterized for some specific loss functions.

Theorem 1.2. We assume that g(θ) ∈ R.

1. If E[g2(θ)|X] <∞ and L(T (X), g(θ)) = (T (X)−g(θ))2, then the Bayesian estimate
is the posterior mean E[g(θ)|X].

2. If E[|g(θ)||X] <∞ and L(T (X), g(θ)) = |T (X)− g(θ)|, then the Bayesian estimate
is any a ∈ R such that

Π(g(θ) ≤ a|X) ≥ 1

2
, Π(g(θ) ≥ a|X) ≥ 1

2
. (1.2)

Proof. We have to minimize the function

u 7−→ G(u) :=

∫
T
L(u, g(θ)) dΠ(θ|X).

1. For the first case, we have

G(u) =

∫
T

(u− g(θ))2 dΠ(θ|X)

= u2 − 2uE[g(θ)|X] + E[g2(θ)|X],

which is minimum for u = E[g(θ)|X].
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2. For the second case, we have

G(u) =

∫
T
|u− g(θ)| dΠ(θ|X) =: Eθ|X [|u− g(θ)|].

We take a ∈ R so that (1.2) is satisfied and we show that, given c ∈ R, G(a) ≤ G(c).
We first assume that c > a. We now have that (a+ c)/2 ∈ (a; c) and

|g(θ)− c| = |g(θ)− a|+ (c− a) on {g(θ) ≤ a}
|g(θ)− c| ≥ |g(θ)− a| on {a < g(θ) < (a+ c)/2}
|g(θ)− c| ≥ |g(θ)− a| − (c− a) on {g(θ) ≥ (a+ c)/2}.

Consequently,

|g(θ)− c| ≥ |g(θ)− a|+ (c− a)1{g(θ)≤a} − (c− a)1{g(θ)≥(a+c)/2}.

Therefore,

Eθ|X [|g(θ)− c|] ≥ Eθ|X [|g(θ)−a|]+(c−a)
(
Π(g(θ) ≤ a|X)−Π(g(θ) ≥ (a+ c)/2|X)

)
.

But
Π(g(θ) ≥ (a+ c)/2|X) ≤ Π(g(θ) > a|X) = 1− Π(g(θ) ≤ a|X),

which implies that

Eθ|X [|g(θ)− c|] ≥ Eθ|X [|g(θ)− a|] + (c− a)
(
2Π(g(θ) ≤ a|X)− 1

)
≥ Eθ|X [|g(θ)− a|]

and then G(a) ≤ G(c). The case c < a is similar except that we use Π(g(θ) ≥
a|X) ≥ 1

2
≥ 0.

Remark 1.5. We recall that if Fg,X is the c.d.f of g(θ) under the posterior distribution
Π(·|X), then, setting for any t ∈ (0; 1),

F
(−1)
g,X (t) := inf{θ : Fg,X(θ) ≥ t},

qg,X,0.5 := F
(−1)
g,X

(
1
2

)
satisfies

Π(g(θ) ≤ qg,X,0.5|X) ≥ 1

2
, Π(g(θ) ≥ qg,X,0.5|X) ≥ 1

2
.

Indeed, since Fg,X is right-continuous, we have that for any t ∈ (0; 1), Fg,X(F
(−1)
g,X (t)) ≥ t.

Then,

Π(g(θ) ≤ qg,X,0.5|X) = Fg,X(qg,X,0.5) = Fg,X

(
F

(−1)
g,X

(1

2

))
≥ 1

2
.
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And

1− Π(g(θ) ≥ qg,X,0.5|X) = Π(g(θ) < qg,X,0.5|X)

= lim
n→+∞

Π(g(θ) ≤ qg,X,0.5 − n−1|X)

≤ 1

2
.

This yields Π(g(θ) ≥ qg,X,0.5|X) ≥ 1
2
.

Theorem 1.2 and Remark 1.5 introduce two classical Bayes rules:
- the posterior mean (i.e. the mean of the posterior distribution): E[g(θ)|X]
- the posterior median (i.e. the median of the posterior distribution): qg,X,0.5.
We can also consider the posterior mode (i.e. the mode of the posterior distribution).
When g(θ) = θ it is defined by

θ̂mode ∈ arg max
θ∈T

Π(θ|X).

Example 1.3. We consider the setting of Example 1.1 and we estimate θ ∈ T = (0; 1).
The maximum likelihood estimate is

θ̂emv =
1

n

n∑
i=1

Xi.

With p(θ) = 1(0;1)(θ), the posterior mode is θ̂emv, the posterior mean for θ is

E[θ|Xn] =
1 +

∑n
i=1Xi

n+ 2

and note that

θ̂emv ≤ E[θ|Xn] ⇐⇒ 1

n

n∑
i=1

Xi ≤
1

2
.

Observe that with the improper prior Π such that its density with respect to the Lebesgue
measure is proportional to the function θ 7−→ θ−1(1− θ)−1 then,

E[θ|Xn] = θ̂emv.

Finally, if θ ∼ Beta(α, β),

E[θ|Xn] =
α +

∑n
i=1 Xi

α + β + n
.
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1.1.3 Admissible estimates

Definition 1.6. An estimate T (X) is non-admissible is there exists another estimate
T ′(X) such that

R(θ, T ) ≥ R(θ, T ′), ∀θ ∈ T
and there exists θ ∈ T such that

R(θ, T ) > R(θ, T ′).

An estimate is admissible if it is not non-admissible.

Proposition 1.1. If Π is absolutely continuous with respect to the Lebesgue measure and
if the density p of Π is positive on T and θ 7−→ R(θ, T ) is continuous for any estimate
T (X), then the Bayes rule is admissible.

Proof. We denote δΠ(X) the Bayes rule. If δΠ(X) is non-admissible then there exists an
estimate T (X) such that R(θ, T ) ≤ R(θ, δΠ) for any θ ∈ T and R(θ, T ) < R(θ, δΠ) for
any θ ∈ C, where C is an open set of T with positive Lebesgue measure (θ 7−→ R(θ, T )
and θ 7−→ R(θ, δΠ) are continuous). Then

r(Π, T ) = EΠ[R(θ, T )] =

∫
T
R(θ, T )p(θ) dθ

<

∫
T
R(θ, δΠ)p(θ) dθ = EΠ[R(θ, δΠ)] = r(Π, δΠ),

which cannot occur. So, δΠ(X) is admissible.

1.2 Consistency in the parametric setting

We keep the same notations. We consider the asymptotic setting, meaning that we assume
that the number of observations goes to +∞. In the sequel, we assume that we are given
Xn = (X1, . . . , Xn) where the Xi’s are i.i.d. We denote Pnθ the distribution of Xn and
P∞θ the distribution of X∞ = (X1, . . . , Xn, . . .). Before introducing the definition of
consistency, let us give some elementary recalls on convergence.

1.2.1 Recalls on convergence

Let S a metric space and B(S) the Borelian σ-algebra on S. We denote C(S) the set of
all R-valued bounded continuous functions on S.

Definition 1.7. A sequence (Pn)n of probability measures on S is said to converge weakly

to a probability measure P , written as Pn
n→+∞
; P if∫

f dPn
n→+∞−→

∫
f dP, ∀f ∈ C(S).
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Theorem 1.3 (Portmanteau theorem). The following facts are equivalent.

1. Pn
n→+∞
; P

2.
∫
f dPn

n→+∞−→
∫
f dP, ∀f ∈ C(S) uniformly continuous.

3. lim supn→+∞ Pn(F ) ≤ P (F ), ∀F closed.

4. lim infn→+∞ Pn(U) ≥ P (U), ∀U open.

5. limn→+∞ Pn(B) = P (B), ∀B such that P (δB) = 0.

Theorem 1.4 (Prohorov’s theorem). If S is a complete separable metric space, then every
subsequence of (Pn)n has a weakly convergent subsequence if and only if (Pn)n is tight (i.e.
∀ε > 0 ∃Kε a compact set such that ∀n, Pn(Kε) ≥ 1− ε).

Remark 1.6. Theorem 2.3 of Billingsley (1995) states that Pn
n→+∞
; P if and only if

every subsequence (Pn′)n′ of (Pn)n as a subsequence (Pn′′)n′′ such that Pn′′
n′′→+∞
; P . So,

the weak convergence on a complete separable metric space is proved by using tightness
and the unicity of the limit.

Remark 1.7. Remember that in a complete metric space, a subset is a relatively compact
set if and only if it is a precompact set (i.e. its closure is compact). Therefore, Prohorov’s
theorem is equivalent to the following statement: Let Γ ⊂ S; then, Γ is precompact if and
only if Γ is tight.

We refer the reader to Appendix A of Ghosal and van der Vaart (2017) and Billingsley
(1995, 1999) for further details.

1.2.2 Consistency properties

Consistency is one of the most elementary asymptotic properties that can be satisfied by
a sequence of posterior distributions. It expresses the fact that if θ0 is the true value of
the parameter, the posterior learns more and more from the data and puts more and more
mass close to 0.

Definition 1.8. For each n, let Π(·|Xn) be a posteriori distribution given Xn. The
sequence (Π(·|Xn))n is said to be consistent at θ0 ∈ T if there exists Ω0 ∈ B with P∞θ0(Ω0) =
1 such that if ω ∈ Ω0 then for each open set U containing θ0, we have

Π(U |Xn(w))
n→+∞−→ 1.

Most of the time, consistency can be characterized by using the following result.
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Theorem 1.5. If T is a separable metric space, then

(Π(·|Xn))n is consistent at θ0 ∈ T ⇐⇒ Π(·|Xn)
n→+∞
; δθ0 Pθ0 − a.e.

Proof. We denote d the distance that makes T metrizable. We denote Bd(θ0, r) the ball
of center θ0 with radius r > 0 (for the distance d). We first prove the following lemma.

Lemma 1.1. Assume that T is a metric space. Then,

(Π(·|Xn))n is consistent at θ0 ∈ T ⇐⇒ ∀p ∈ N∗ ∃Ωp ∈ B with P∞θ0(Ωp) = 1

such that if ω ∈ Ωp Π(Bd(θ0, p
−1)|Xn(ω))→ 1.

Proof of the lemma:

- ⇒ : Let p ∈ N∗. We take Ωp = Ω0 and U = Bd(θ0, p
−1).

- ⇐ : We take Ω0 = ∩p∈N∗Ωp, so that P∞θ0(Ω0) = 1. Furthermore, for each open set U
containing θ0, there exists p ∈ N∗ such that Bd(θ0, p

−1) ⊂ U and if we take ω ∈ Ω0

we have that ω ∈ Ωp and

Π(U |Xn(w)) ≥ Π(Bd(θ0, p
−1)|Xn(ω))→ 1.

In particular, the previous lemma shows that

(Π(·|Xn))n is consistent at θ0 ∈ T

⇐⇒ for any open set U containing θ0, Π(U |Xn)
n→+∞−→ 1 Pθ0 − a.e.

⇐⇒ for any open set U lim inf
n→+∞

Π(U |Xn) ≥ δθ0(U) Pθ0 − a.e.

⇐⇒ Π(·|Xn)
n→+∞
; δθ0 Pθ0 − a.e.

For the last equivalence, we use the Portmanteau Theorem 1.3 applied with Pn = Π(·|Xn).

As expressed by the previous result, consistency means that if θ0 is the true value
of the parameter, the posterior concentrates around θ0. This reconciliates Bayesian and
frequentist approaches.

Example 1.4. We consider Xn = (X1, . . . , Xn)
i.i.d.∼ Pθ = Ber(θ) and θ ∼ Beta(α, β),

with α > 0 and β > 0. Then, for all i, Pθ(Xi = 1) = θ and Pθ(Xi = 0) = 1 − θ and the
density of Π is

p(θ) =
Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−11(0;1)(θ).
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Then,

p(θ|Xn) =
Γ(α + β + n)

Γ(α + r)Γ(β + n+ r)
θα+r−1(1− θ)β+n−r−11(0;1)(θ),

where r =
∑n

i=1 1{Xi=1}. Then, computing the expectation and the variance of θ under
Π(·|Xn), we obtain

E[θ|Xn] =
α + r

α + β + n
=

α

α + β
× α + β

α + β + n
+

n

α + β + n
× r

n

n→+∞−→ θ0 Pθ0 − a.e.

and

var(θ|Xn) = E[θ2|Xn]− (E[θ|Xn])2

=
Γ(α + β + n)

Γ(α + r)Γ(β + n+ r)
× Γ(α + r + 2)Γ(β + n+ r)

Γ(α + β + 2 + n)
−
(

α + r

α + β + n

)2

=
(α + r)(β + n− r)

(α + β + n+ 1)(α + β + n)2

and
var(θ|Xn)

n→+∞−→ 0 Pθ0 − a.e.

Now, for any ε > 0,

Π(|θ − θ0| ≥ ε|Xn) ≤ Π
(
|θ − E[θ|Xn]| ≥ ε

2
|Xn

)
+ Π

(
|E[θ|Xn]− θ0| ≥

ε

2
|Xn

)
≤ 4

ε2
var(θ|Xn) + P

(
|E[θ|Xn]− θ0| ≥

ε

2
|Xn

)
.

Observe that |E[θ|Xn] − θ0| is not random under Π(·|Xn) and for n large enough, the
second term of the right hand side is equal to 0. Therefore, with U = {θ : |θ − θ0| < ε},

lim
n→+∞

Π(U |Xn) = 1 Pθ0 − a.e.

We now state Doob’s theorem whose proof is based on martingale convergence theo-
rems and sophisticated arguments of measure theory.

Theorem 1.6 (Doob’s theorem). Suppose that Ω and T are both complete separable spaces
and let us assume that θ → Pθ is injective. Let Π a prior. Then, there exists T0 ∈ A with
Π(T0) = 1 such that Π(·|Xn) is consistent at any θ0 ∈ T0.

Doob’s theorem is a very nice result but its proof is not constructive. So, we have no
idea about T0. Consequently, given θ0 ∈ T , we do not know if consistency holds at θ0.
See for instance Freedman (1963) for counter-examples.

The next theorem shows that posterior consistency is connected to posterior robustness.
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Theorem 1.7. Assume that the family {Pθ}θ∈T is dominated by a σ-finite measure µ.
Let fθ = dPθ

dµ
for any θ ∈ T . Let θ0 belonging to the interior of T and let p1 and p2 two

prior densities with respect to a σ-finite measure ν such that p1 and p2 are continuous
and positive at θ0. If the posterior densities p1(·|Xn) and p2(·|Xn) are both consistent at
θ0, then

lim
n→+∞

∫
T
|p1(θ|Xn)− p2(θ|Xn)| dν(θ) = 0 Pθ0 − a.e.

Proof. We want to show that with Pθ0−probability 1,

lim
n→+∞

∫
T

∣∣∣∣p2(θ|Xn)

(
1− p1(θ|Xn)

p2(θ|Xn)

)∣∣∣∣ dν(θ) = 0 Pθ0 − a.e.

Let δ > 0 fixed later. Since p1 and p2 are positive and continuous at θ0 there exists an
open set U ⊂ T such that for all θ ∈ U ,∣∣∣∣p1(θ)

p2(θ)
− p1(θ0)

p2(θ0)

∣∣∣∣ < δ, |p1(θ)− p1(θ0)| < δ, |p2(θ)− p2(θ0)| < δ.

There exists Ω0 with P∞θ0(Ω0) = 1 such that ∀ω ∈ Ω0, ∀j ∈ {1, 2}

Πj(U |Xn(ω)) :=

∫
U

∏n
i=1 fθ(Xi(ω))pj(θ) dν(θ)∫

T
∏n

i=1 fθ(Xi(ω))pj(θ) dν(θ)

n→+∞−→ 1.

Let η > 0 and ω ∈ Ω0 be fixed. Then, there exists n0 such that ∀n ≥ n0, ∀j ∈ {1, 2}

Πj(U |Xn(ω)) ≥ 1− η. (1.3)

We fix θ ∈ U . Since ∀j ∈ {1, 2},

pj(θ|Xn(ω)) =
pj(θ)

∏n
i=1 fθ(Xi(ω))∫

T pj(θ)
∏n

i=1 fθ(Xi(ω)) dν(θ)
,

then
p1(θ|Xn(ω))

p2(θ|Xn(ω))
=
p1(θ)

p2(θ)

∫
T p2(θ)

∏n
i=1 fθ(Xi(ω)) dν(θ)∫

T p1(θ)
∏n

i=1 fθ(Xi(ω)) dν(θ)

and
p1(θ|Xn(ω))

p2(θ|Xn(ω))
≤
(
p1(θ0)

p2(θ0)
+ δ

)
(1− η)−1

∫
U
p2(θ)

∏n
i=1 fθ(Xi(ω)) dν(θ)∫

U
p1(θ)

∏n
i=1 fθ(Xi(ω)) dν(θ)

p1(θ|Xn(ω))

p2(θ|Xn(ω))
≥
(
p1(θ0)

p2(θ0)
− δ
)

(1− η)

∫
U
p2(θ)

∏n
i=1 fθ(Xi(ω)) dν(θ)∫

U
p1(θ)

∏n
i=1 fθ(Xi(ω)) dν(θ)

.

By the choice of U , ∀j ∈ {1, 2}

(pj(θ0)− δ)
∫
U

n∏
i=1

fθ(Xi(ω)) dν(θ) ≤
∫
U

pj(θ)
n∏
i=1

fθ(Xi(ω)) dν(θ)
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and ∫
U

pj(θ)
n∏
i=1

fθ(Xi(ω)) dν(θ) ≤ (pj(θ0) + δ)

∫
U

n∏
i=1

fθ(Xi(ω)) dν(θ).

We obtain(
p1(θ0)

p2(θ0)
− δ
)
(1− η)

(
p2(θ0)− δ
p1(θ0) + δ

)
≤ p1(θ|Xn(ω))

p2(θ|Xn(ω))
≤
(
p1(θ0)

p2(θ0)
+ δ

)
(1− η)−1

(
p2(θ0) + δ

p1(θ0)− δ

)
.

Now, for any ε > 0 for δ and η small enough, ∀θ ∈ U ,∣∣∣∣p1(θ|Xn(ω))

p2(θ|Xn(ω))
− 1

∣∣∣∣ ≤ ε.

Finally, for n ≥ n0, using (1.3),∫
T
|p1(·|Xn)− p2(·|Xn)| dν(θ) =

∫
U

|p1(·|Xn)− p2(·|Xn)| dν(θ)

+

∫
Uc
|p1(·|Xn)− p2(·|Xn)| dν(θ)

≤ ε+ 2η.

This ends the proof of the theorem.

In view of previous results, posterior consistency can be viewed as:

1. a frequentist validation of the Bayes approach

2. merging of posteriors arising from different priors

3. an expression of ”data eventually swamps the prior.”



Chapter 2

Prior distributions in the
nonparametric setting - Dirichlet
processes

In this chapter, we denoteM(Ω) the set of all probability measures on Ω. We shall focus
on two cases: card(Ω) < ∞ and Ω = R. Before describing the most classical probability
distributions on M(Ω), we provide a short study of this space.

2.1 Short study of the space M(Ω)

In this section, Ω is a complete separable metric space (i.e. a Polish space); B is the
corresponding Borel σ-algebra on Ω. In this case, it was proved (also by Prohorov) that
M(Ω) is also metrizable, complete and separable under the weak convergence. Such prop-
erties are important to characterize the weak convergence through tightness properties
(see Prohorov’s Theorem 1.4) So, there is a metric ρ on M(Ω) such that ρ(Pn, P ) if and

only if Pn
n→+∞
; P . See Appendix A of Ghosal and van der Vaart (2017) or Billingsley

(1995, 1999) for further details. The set M(Ω) has also other natural metrics.

2.1.1 Metrics on the space M(Ω)

We describe the most classical metrics on the space M(Ω). In the sequel, we consider P
and Q two elements of M(Ω).

• The Total Variation metric:

‖P −Q‖TV := sup
B∈B
|P (B)−Q(B)|.

19
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• For the case Ω = R, the supremum metric:

dsup(P,Q) := sup
t∈R
|P (−∞; t]−Q(−∞; t]|.

We have the following proposition.

Proposition 2.1. The metric space (M(Ω), ‖ · ‖TV ) is not separable if Ω is not
countable. Furthermore, (M(R), dsup) is complete but not separable.

Proof. We only prove the first point. We recall that the space M(Ω) is separable
if and only if it contains a dense countable subspace. To prove that M(Ω) is not
separable if Ω is not countable, for any x ∈ Ω, we can characterize the open ball
centered at δx of radius ε > 0 defined by

U(x, ε) := {P : ‖P − δx‖TV < ε} .

It is easy to observe that

U(x, ε) := {P : P ({x}) > 1− ε} .

Therefore if ε < 1
2
, and if x 6= x′, U(x, ε)∩U(x′, ε) = ∅. Consequently, if there exists

a dense subset (Pn)n∈N∗ , for any x ∈ Ω, there exists nx ∈ N∗ such that Pnx ∈ U(x, ε)
and Pnx /∈ U(x′, ε) for x′ 6= x. Therefore, Ω is countable.

The previous proposition shows that it seems interesting to restrict to subsets of
M(Ω). We consider µ a σ-finite measure on Ω and we set

Lµ := {P ∈M(Ω) : P � µ} .

In the sequel, we consider P ∈ Lµ and Q ∈ Lµ and we define

p :=
dP

dµ
, q :=

dQ

dµ
.

We now introduce:

• The L1-metric:

‖P −Q‖1 :=

∫
Ω

|p(x)− q(x)| dµ(x).

• The Hellinger metric:

H(P,Q) :=

(∫
Ω

(√
p(x)−

√
q(x)

)2

dµ(x)

) 1
2

.
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Remark 2.1. Observe that L1 and Hellinger metrics do not depend on the reference
measure µ.

The space Lµ endowed with the L1-metric or the Hellinger metric is a Polish space.

• The Kullback-Leibler divergence:

K(P,Q) :=

{ ∫
Ω

log
(

dP
dQ

)
dP if P � Q

+∞ otherwise

Observe that KL(P,Q) 6= KL(Q,P ), so the Kullback-Leibler divergence is not
a distance. However, we have that K(P,Q) ≥ 0 and if P � µ and Q � µ,
K(P,Q) = 0 ⇐⇒ dP

dµ
= dQ

dµ
µ− a.e. (as proved later).

Exercice 2.1. If P = ⊗ni=1Pi and Q = ⊗ni=1Qi, then

K(P,Q) =
n∑
i=1

K(Pi, Qi).

2.1.2 Connections between metrics

Proposition 2.2. Let P and Q two elements of M(Ω). If p and q are respectively the
densities of P and Q with respect to a measure µ, then

‖P −Q‖TV =
1

2
‖P −Q‖1 =

1

2

∫
Ω

|p(x)− q(x)| dµ(x).

Proof. We denote for any y ∈ R, y+ = max(y, 0) and y− = max(−y, 0). So y = y+ − y−
and |y| = y+ + y−. Let B := {x ∈ Ω : p(x) ≥ q(x)} ∈ B. So, for any A ∈ B,

P (A)−Q(A) =

∫
A

(p(x)− q(x)) dµ(x)

≤
∫
A∩B

(p(x)− q(x)) dµ(x)

≤
∫
B

(p(x)− q(x)) dµ(x)

=

∫
Ω

(p(x)− q(x))+ dµ(x)

=
1

2

∫
Ω

|p(x)− q(x)| dµ(x).

We have used that
∫

Ω
(p(x)− q(x)) dµ(x) = 1− 1 = 0 so,∫

Ω

(p(x)− q(x))+ dµ(x) =

∫
Ω

(p(x)− q(x))− dµ(x) =
1

2

∫
Ω

|p(x)− q(x)| dµ(x).
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Taking the supremum with respect to A ∈ B, we obtain

‖P −Q‖TV ≤
1

2

∫
Ω

|p(x)− q(x)| dµ(x).

The equality is obtained with A = B.

Proposition 2.3. Let P and Q two elements of Lµ for µ a measure on Ω. Then,

H2(P,Q) ≤ K(P,Q)

and
1

4
‖P −Q‖2

1 ≤ H2(P,Q) ≤ ‖P −Q‖1.

Proof. We prove the first point. We only have to consider the case P � Q. We denote
p and q the densities of P and Q with respect to µ such that P � µ and Q � µ. Since
Q({q = 0}) = 0, then P ({q = 0}) = 0 and

∫
p(x)1{q(x)=0} dµ(x) = 0. This implies that

p(x)1{q(x)=0} = 0 µ− a.e.

And except on a µ-negligible set, if q(x) = 0 then p(x) = 0 or if p(x) > 0 then q(x) > 0.
Hence, by using − log(y + 1) ≥ −y for y > −1, we have:

K(P,Q) =

∫
Ω

log

(
p(x)

q(x)

)
p(x) dµ(x)

=

∫
{x: p(x)q(x)>0}

log

(
p(x)

q(x)

)
p(x) dµ(x)

= −2

∫
{x: p(x)q(x)>0}

log

(√
q(x)

p(x)
− 1 + 1

)
p(x) dµ(x)

≥ −2

∫
{x: p(x)q(x)>0}

(√
q(x)

p(x)
− 1

)
p(x) dµ(x)

= 2− 2

∫
{x: p(x)q(x)>0}

√
p(x)q(x) dµ(x).

Observing that

H2(P,Q) =

∫
Ω

(
√
p(x)−

√
q(x))2 dµ(x) = 2− 2

∫
{x: p(x)q(x)>0}

√
p(x)q(x) dµ(x),

we conclude that
H2(P,Q) ≤ K(P,Q).
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We prove the second point. We have

‖P −Q‖2
1 =

(∫
Ω

|p(x)− q(x)| dµ(x)

)2

=

(∫
Ω

|
√
p(x)−

√
q(x)||

√
p(x) +

√
q(x)| dµ(x)

)2

Applying the Cauchy-Schwarz inequality, we obtain

‖P −Q‖2
1 ≤

∫
Ω

|
√
p(x)−

√
q(x)|2 dµ(x)×

∫
Ω

|
√
p(x) +

√
q(x)|2 dµ(x)

≤ H2(P,Q)×
(

2 + 2

∫
Ω

√
p(x)q(x) dµ(x)

)
≤ 4H2(P,Q).

Since for any x ∈ Ω,

(
√
p(x)−

√
q(x))2 ≤ p(x) + q(x)− 2 min(p(x, q(x)) = |p(x)− q(x)|,

which provides the last upper bound of the proposition.

2.2 Probability measures on M(Ω) when Ω is finite

In this section, we assume that Ω is finite and without loss of generality, we assume that

Ω = {1, 2, . . . , k} .

In this case, denoting for any i ∈ {1, . . . , k}, pi the probability of i,M(Ω) can be identified
with the simplex

Sk :=

{
(p1, . . . , pk) : pi ≥ 0∀i ∈ {1, . . . , k} and

k∑
i=1

pi = 1

}
.

To define a probability measure on M(Ω), we just have to define a probability measure
on Sk.

2.2.1 Polya-tree construction

We assume that k = 2`. We build a dyadic partition of Ω = {1, . . . , 2`}. We set

B0 = {1, . . . , 2`−1}, B1 = {2`−1 + 1, . . . , 2`},

B00 = {1, . . . , 2`−2}, B01 = {2`−2 + 1, . . . , 2`−1},
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B10 = {2`−1 + 1, . . . , 2`−1 + 2`−2}, B11 = {2`−1 + 2`−2 + 1, 2`},
and so on. In this case, if x ∈ Ω, ∃!(ε1, . . . , ε`) ∈ {0, 1}` such that

Bε1...ε` = {x}.

Conversely, any sequence ε = (ε1, . . . , ε`) ∈ {0, 1}` corresponds to the point ∩`i=1Bε1...εi .
So, we have a correspondence between M(Ω) and M({0, 1}`). A way of building a prior
on M(Ω) is to define a prior on the random variables

Yε1...εi−1
:= P (εi = 0|ε1, . . . , εi−1)

for i = 2, . . . , ` and on
Y∅ = P (ε1 = 0).

Indeed, we have ∀(ε1, . . . , ε`) ∈ {0, 1}`

P (ε1, . . . , ε`) = P (ε`|ε1, . . . , ε`−1)P (ε1, . . . , ε`−1)

= Y
1{ε`=0}
ε1...ε`−1(1− Yε1...ε`−1

)1{ε`=1}P (ε1, . . . , ε`−1)

=
∏̀
i=1

(
Y

1{εi=0}
ε1...εi−1(1− Yε1...εi−1

)1{εi=1}
)
.

Actually, by using the correspondence ε1, . . . , εi ↔ P (Bε1...εi) a prior onM(Ω) is parametrized
as a prior on (P (B0), P (B00|B0), P (B10|B1), . . . ,P(Bε1...εi−10|Bε1...εi−1

), . . .). A special case
of interest is the case where the variables Yε = P (Bε0|Bε) are all independent. These
priors are called tail free priors. When they are independent Beta variables, they are
called Polya free priors.

2.2.2 Finite-dimensional Dirichlet distributions

Dirichlet processes were introduced by Ferguson (1973) to give a Bayesian interpretation
of nonparametric estimation problems. They have tractable distributions and nice consis-
tency properties. They are also easy to elicit and provide a natural interpretation. They
constitute starting points for more complex prior distributions. Dirichlet processes are a
natural extension of finite-dimensional Dirichlet priors.

1. Case Ω = {1, 2}.

In this case, we have

M(Ω) = {p = (p1, p2) : p1 ≥ 0, p2 ≥ 0, p1 + p2 = 1} .

For p = (p1, p2) ∈M(Ω), since p2 = 1− p1, we just have to define a prior on p1 to have a
prior on p.
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Definition 2.1. We say that p = (p1, p2) has a Beta(α1, α2)-prior for α1 > 0 and α2 > 0
if the density (with respect to the Lebesgue measure) of the prior distribution of p1 is

g(p1) =
Γ(α1 + α2)

Γ(α1)Γ(α2)
pα1−1

1 (1− p1)α2−11(0,1)(p1), p1 ∈ R.

We denote

p ∼ Beta(α1, α2) (or p1 ∼ Beta(α1, α2)).

Proposition 2.4. If p ∼ Beta(α1, α2), we have:

E[p1] =
α1

α1 + α2

, var(p1) =
α1α2

(α1 + α2)2(α1 + α2 + 1)
.

Remark 2.2. Observe that if p1n has a Beta(α1n, α2n)-distribution with α1n
n→+∞−→ 0 and

α2n
n→+∞−→ c > 0, then the Markov inequality implies that p1n

n→+∞−→ 0 in probability. So, we
adopt the following convention: if the prior distribution of p1 is Beta(0, α2) with α2 > 0,
then we force p1 ≡ 0 almost everywhere.

We now characterize the Beta-distributions by using Gamma-distributions.

Definition 2.2. We say that a random variable Z has a Gamma-distribution with
parameter α > 0 if its density (with respect to the Lebesgue measure) is

g(z) =
1

Γ(α)
zα−1e−z1(0;+∞)(z), z ∈ R.

We denote

Z ∼ Γ(α).

Proposition 2.5. Let α1 > 0 and α2 > 0. If Z1 ∼ Γ(α1), Z1 ∼ Γ(α2) with Z1 and Z2

independent, then Z1/(Z1 + Z2) and Z1 + Z2 are independent and

Z1

Z1 + Z2

∼ Beta(α1, α2), Z1 + Z2 ∼ Γ(α1 + α2).

Proof. The densities of Z1 and Z1 are respectively

f1(z) =
1

Γ(α1)
zα1−1e−z1(0;+∞)(z), z ∈ R,

and

f2(z) =
1

Γ(α2)
zα2−1e−z1(0;+∞)(z), z ∈ R.
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So, for any bounded Borelian functions φ and ψ,

E
[
φ
( Z1

Z1 + Z2

)
ψ(Z1 + Z2)

]
=

∫ +∞

0

∫ +∞

0

φ
( x

x+ y

)
ψ(x+ y)

xα1−1

Γ(α1)

yα2−1

Γ(α2)
e−(x+y) dx dy

=

∫ 1

0

dt

∫ +∞

0

φ(t)ψ(u)
(tu)α1−1

Γ(α1)

(u(1− t))α2−1

Γ(α2)
e−u × u du

=

∫
φ(t)

Γ(α1 + α2)

Γ(α1)Γ(α2)
tα1−1(1− t)α2−11(0;1)(t) dt

×
∫
ψ(u)

1

Γ(α1 + α2)
uα1+α2−1e−u1(0;+∞)(u) du,

where we have used the change of variables t = x/(x+ y) and u = x+ y.

We recall the following definition.

Definition 2.3. We say that the sequence of variables (Xi)i∈N∗ is exchangeable if for
any n ∈ N∗ and any permutation σ of the first n integers, we have

(X1, . . . , Xn) ∼ (Xσ(1), . . . , Xσ(n)).

Proposition 2.6. Assume that conditionally on p, (X1, . . . , Xn) is an n-sample of Ber(p)-
variables; assume also that p is distributed according to a Beta(α1, α2)-distribution with
α1 ≥ 0 and α2 ≥ 0 with α1 + α2 > 0. Then,

p|X1, . . . , Xn ∼ Beta
(
α1 +

n∑
i=1

δXi(1), α2 +
n∑
i=1

δXi(2)
)
.

This result means that the Beta distribution is a conjugate prior of the Bernoulli distri-
bution. Furthermore, (X1, . . . , Xn) are exchangeable and

m(i) := P (X1 = i) =
αi

α1 + α2

, i = 1, 2.

Proof. The density of the joint distribution of (X1, . . . , Xn, p1) is the function

(X1, . . . , Xn, p1) 7→ p
∑n
i=1 δXi (1)

1 (1− p1)
∑n
i=1 δXi (2) × Γ(α1 + α2)

Γ(α1)Γ(α2)
pα1−1

1 (1− p1)α2−11(0;1)(p1).

Therefore, the conditional distribution of p1|X1, . . . , Xn has a density proportional to the
function

p1 7−→
Γ(α1 + α2)

Γ(α1)Γ(α2)
p
∑n
i=1 δXi (1)+α1−1

1 (1− p1)
∑n
i=1 δXi (2)+α2−11(0;1)(p1),
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which proves the first point and the density of the marginal distribution of (X1, . . . , Xn)
is the function

(X1, . . . , Xn) 7−→
∫ 1

0

Γ(α1 + α2)

Γ(α1)Γ(α2)
p
∑n
i=1 δXi (1)+α1−1

1 (1− p1)
∑n
i=1 δXi (2)+α2−11(0;1)(p1) dp1.

In particular, with n = 1,

m(1) := P (X1 = 1) =
Γ(α1 + α2)

Γ(α1)Γ(α2)

∫ 1

0

pα1
1 (1− p1)α2−1 dp1

=
α1

α1 + α2

.

Similar computations can be done for m(2).

2. Case Ω = {1, 2, . . . , k}.

We have to specify a prior on the simplex

Sk :=

{
p = (p1, . . . , pk) : pi ≥ 0, ∀ i,

k∑
i=1

pi = 1

}
.

We set for all A ⊂ Ω, p(A) =
∑

i∈A pi. In particular p({i}) = pi for any i ∈ Ω. We have
the following definition.

Definition 2.4. Let α = (α1, . . . , αk) ∈ (R∗+)k. We say that p has a Dirichlet distribution
with parameter α if the density of p with respect to the Lebesgue measure is

g(p) =
Γ
(∑k

i=1 αi
)∏k

i=1 Γ(αi)
pα1−1

1 pα2−1
2 · · · pαk−1

k 1Sk(p).

We denote p ∼ D(α).

Remark 2.3. Observe that if k = 2, with α = (α1, α2), D(α) = Beta(α1, α2).

Remark 2.4. Exactly as before, we extend the previous definition to the case where αi ≥
0,∀ i and

∑k
i=1 αi > 0. In this case, if αi = 0 we force pi ≡ 0 almost everywhere and we

interpret the previous density as a density on a lower-dimensional set.

Remark 2.5. If for all i ∈ {1, . . . , k}, αi = 1, then g is constant on Sk and

g(p) = Γ(k)1Sk(p) = (k − 1)!1Sk(p).
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Proposition 2.7. Assume that we are given k independent variables Zi ∼ Γ(αi) with for
all i, αi > 0. Then, with α = (α1, . . . , αk),(

Z1∑k
i=1 Zi

, . . . ,
Zk∑k
i=1 Zi

)
∼ D(α)

and the previous vector is independent of
∑k

i=1 Zi.

Proof. The proof is tedious but similar to the one for the case k = 2.

Proposition 2.8. If p = (p1, . . . , pk) ∼ D(α1, . . . , αk), then for any partition A1, . . . , Am
of Ω we have

(p(A1), . . . , p(Am)) ∼ D

(∑
i∈A1

αi, . . . ,
∑
i∈Am

αi

)
.

Proof. We use the characterization of Dirichlet distributions based on Gamma-variables.
We take k independent variables Zi ∼ Γ(αi) so that

p ∼

(
Z1∑k
i=1 Zi

, . . . ,
Zk∑k
i=1 Zi

)
.

Then,

(p(A1), . . . , p(Am)) ∼
(∑
i∈A1

pi, . . . ,
∑
i∈Am

pi

)
∼

(∑
i∈A1

Zi∑k
i=1 Zi

, . . . ,

∑
i∈Am Zi∑k
i=1 Zi

)

and we observe that for all j ∈ {1, . . . ,m},∑
i∈Aj

Zi ∼ Γ
(∑
i∈Aj

αi

)
,

which is independent from
∑

i∈Aj′
Zi for any j′ 6= j.

Definition 2.5. Let α = (α1, . . . , αk) a vector of non-negative components. We define
the measure α on Ω by:

α(A) =
∑
i∈A

αi, A ⊂ Ω.

Observe that α({i}) = αi ∀ i ∈ {1, . . . , k}.

We now prove successively several useful results.
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Proposition 2.9. Let A1, . . . , Am be a partition of Ω. Let i ∈ {1, . . . , k}. If α(Ai) > 0
then we set:

p(j|Ai) :=
p({j})
p(Ai)

, j ∈ Ai

If α(Ai) = 0 then we set:

p(j|Ai) :=
1

|Ai|
, j ∈ Ai.

Now, if p ∼ D(α), then

1. For any i, if α(Ai) > 0, then p(·|Ai) ∼ D(α/Ai), where α/Ai is the measure α
restricted to Ai.

2. For any i 6= i′, for any j ∈ Ai, p(j|Ai) is independent from (p(Ai), p(Ai′)). There-
fore, for any i, for any ji ∈ Ai (p(A1), . . . , p(Am)), (p(ji|Ai))i are independent vec-
tors.

Proof. We prove the results for the case where α(Ai) > 0 for any i ∈ Ω. As before, we
use the characterization of Dirichlet distributions based on Gamma-variables. We take k
independent variables Zi ∼ Γ(αi) so that

p ∼

(
Z1∑k
i=1 Zi

, . . . ,
Zk∑k
i=1 Zi

)
.

We have for any j ∈ Ai,

p(j|Ai) =
p({j})
p(Ai)

∼
Zj∑k
i=1 Zi∑

j′∈Ai
Zj′∑k

i=1 Zi

=
Zj∑

j′∈Ai Zj′
,

which proves the first point. Furthermore, for i fixed and j ∈ Ai, Zj∑
j′∈Ai

Zj′
is independent

from
∑

j′∈Ai Zj′ and then independent from

∑
j′∈Ai

Zj′ +
∑
i′ 6=i

∑
j′∈Ai′

Zj′ =
k∑

j′=1

Zj′ .

This leads to the second point.

Proposition 2.10. Let α and α′ two measures on Ω. If p and q are two independent
k-dimensional Dirichlet random vectors with parameters α and α′ and if w is independent
of p and q and w ∼ Beta(α(Ω), α′(Ω)), then

wp+ (1− w)q ∼ D(α + α′).
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Proof. We take 2k independent variables Zi ∼ Γ(αi) and Zi+k ∼ Γ(α′i) so that

p ∼

(
Z1∑k
i=1 Zi

, . . . ,
Zk∑k
i=1 Zi

)
, q ∼

(
Z1+k∑2k
i=k+1 Zi

, . . . ,
Z2k∑2k
i=k+1 Zi

)

and

w ∼
∑k

i=1 Zi∑2k
i=1 Zi

.

Then,

wp+ (1− w)q ∼
∑k

i=1 Zi∑2k
i=1 Zi

×

(
Z1∑k
i=1 Zi

, . . . ,
Zk∑k
i=1 Zi

)

+

∑2k
i=k+1 Zi∑2k
i=1 Zi

×

(
Z1+k∑2k
i=k+1 Zi

, . . . ,
Z2k∑2k
i=k+1 Zi

)

∼

(
Z1 + Z1+k∑2k

i=1 Zi
, . . . ,

Zk + Z2k∑2k
i=1 Zi

)
∼ D(α + α′).

Proposition 2.11. Assume that p ∼ D(α) and conditionally on p, (X1, . . . , Xn) is an
n-sample distributed according to p. Then,

p|X1, . . . , Xn ∼ D
(
α +

n∑
j=1

δXj

)
.

This result means that the Dirichlet distribution is a conjugate prior of the multivariate
distribution.

Proof. the density of the joint distribution of (X1, . . . , Xn, p) is proportional, on Ωn×Sk,
to the function

(X1, . . . , Xn, p) 7→
k∏
i=1

pαi−1
i ×

k∏
i=1

p
∑n
j=1 1{Xj=i}

i =
k∏
i=1

p
αi+

∑n
j=1 1{Xj=i}−1

i .

Therefore,

p|X1, . . . , Xn ∼ D
(
α +

n∑
j=1

δXj

)
.
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Proposition 2.12. Assume that p ∼ D(α) and conditionally on p, (X1, . . . , Xn) is an
n-sample distributed according to p. Then, for any A ⊂ Ω,

m(A) =
α(A)

α(Ω)
.

Proof. The 2-dimensional vector (p(A), p(Ac)) is distributed according to Π = D(α(A), α(Ac)) =
Beta(α(A), α(Ac)). Then,

m(A) := P (X1 ∈ A) =

∫
p(A) dΠ(p) = E[p(A)] =

α(A)

α(A) + α(Ac)
=
α(A)

α(Ω)
.

Remark 2.6. The previous results imply that the predictive distribution is given for
all A ⊂ Ω by

P (Xn+1 ∈ A|X1, . . . , Xn) = E[p(A)|X1, . . . , Xn] =
α(A) +

∑n
j=1 1{Xj∈A}

α(Ω) + n
.

Observe that the Xi’s are not independent.

Remark 2.7. If we denote ᾱ the renormalized measure α/α(Ω), previous results say that
if p ∼ D(α) and conditionally on p, X1 ∼ p, then we have proved that

p|X1 ∼ D(α + δX1) and X1 ∼ ᾱ.

Therefore if p ∼ Π = D(α), with m = ᾱ the marginal distribution of X1, for any Borelian
function Φ,

EΠ[Φ(p)] =

∫
Φ(p)dD(α)(p) =

∫
Φ(p)

∫
x∈Ω

dD(α)
(
p|X1 = x

)
dᾱ(x)

=

∫
Φ(p)

k∑
i=1

ᾱ(i)dD(α + δi)(p).

Since the previous equality is true for any function Φ, it means that

D(α) ∼
k∑
i=1

ᾱ(i)D(α + δi). (2.1)
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2.2.3 Dirichlet distributions via Polya urn schemes

In this section, we still consider the finite case Ω = {1, 2, . . . , k} and we describe a scheme
corresponding to drawing samples from p ∼ D(α) even if p is not observable (since it is
a realization of D(α)). This is the so-called Polya urn scheme. To describe it, we first
assume that for any i ∈ Ω, α(i) is an integer.

We consider a (Polya) urn with α(Ω) balls. For any color i ∈ Ω, there are α(i) balls.
We draw balls randomly and we replace each drawn ball by two balls of the same color,
namely the color of the drawn ball. We denote Xi = j if the ith drawn ball is of color j.
Then, we have

P (X1 = j) =
α(j)

α(Ω)
,

P (X2 = j|X1) =
α(j) + δX1(j)

α(Ω) + 1

and so on, and at step n+ 1, we have:

P (Xn+1 = j|X1, . . . , Xn) =
α(j) +

∑n
i=1 δXi(j)

α(Ω) + n
,

which corresponds to the predictive distribution of Remark 2.6. We then have for all
(x1, . . . , xn) ∈ Ωn,

m(x1, . . . , xn) = P (X1 = x1, . . . , Xn = xn)

=
α(x1)

α(Ω)

n−1∏
i=1

(
α(xi+1) +

∑i
j=1 δxj(xi+1)

α(Ω) + i

)
.

If we denote for any i ∈ Ω, ni =
∑n

j=1 1{xj=i}, and for any β > 0 and n ∈ N,

[β][n] =

{
β × (β + 1)× · · · × (β + n− 1) if n ≥ 1,

1 if n = 0,

then

m(x1, . . . , xn) =
[α(1)][n1] × · · · × [α(k)][nk]

α(Ω)× (α(Ω) + 1)× · · · × (α(Ω) + n− 1)

=
[α(1)][n1] × · · · × [α(k)][nk]

[α(Ω)][n]
.

We have established that (Xj)j∈N∗ is exchangeable. We now state de Finetti’s theorem.

Theorem 2.1. A sequence of Ω-valued random variables is exchangeable if and only if
there is a unique measure Π on M(Ω) such that for all n, for all (x1, . . . , xn) ∈ Ωn,∫

M(Ω)

n∏
i=1

p(xi) dΠ(p) = P (X1 = x1, . . . , Xn = xn).



Vincent Rivoirard 33

The direct application of the previous result shows that there exists Π such that for
any n and any x1, . . . , xn,

m(x1, . . . , xn) = P (X1 = x1, . . . , Xn = xn) =

∫
M(Ω)

n∏
i=1

p(xi) dΠ(p).

This result establishes that the Polya urn scheme corresponds to a Bayesian procedure
and using Remark 2.6, we have Π = D(α).

We can generalize the Polya urn scheme to non-integers, by considering the following
(slightly) more sophisticated scheme. At the beginning, we have an empty urn and a k-set
of colors.
- At step 1, we pick a new color with probability distribution α(·)/α(Ω) from the set of
colors. We paint a new ball that color and add it to the urn.
- At step n + 1, with probability α(Ω)/(n + α(Ω)) we apply step 1, with probability
n/(n+ α(Ω)) we pick a ball out of the urn and put it back with another ball of the same
color.
In any case, after step n+ 1, the number of balls in the urn is n+ 1 and the color drawn
has one more representative in the urn. Note that when n → +∞, the urn has more
importance. The larger n, the higher the probability that it will grow. This is a ”rich-
gets-richer phenomenon”. Note that, if for any n ∈ N∗, Xn is the color of the ball put
into the urn at step n, for any j ∈ Ω,

P (Xn+1 = j|X1, . . . , Xn) =
α(Ω)

n+ α(Ω)
× α(j)

α(Ω)
+

n

n+ α(Ω)
× 1

n

n∑
i=1

δXi(j)

=
α(j) +

∑n
i=1 δXi(j)

n+ α(Ω)
.

We can interpret the previous setting in terms of Chinese restaurants. Indeed, let
us consider the meal j ∈ Ω = {1, . . . , k} of customers, in a Chinese restaurant, who sit
around tables of infinite capacity.
- The first customer enters the restaurant and sits at the first table.
- Let us assume that the first n clients are seated at tables 1, . . . , Kn, where Kn is the
number of occupied tables. The customer n+ 1 has the choice to have a seat between two
already present customers or to have a seat at table Kn+1. We decide each customer has
the weight 1 and the new table α(Ω). Since there are n available places between all seated
customers, the probability the customer n+ 1 sits at one of these places is (α(Ω) + n)−1,
the probability the customer n+ 1 sits at a new table is α(Ω)× (α(Ω) + n)−1.
- If he sits at a new table, he chooses his meal j ∈ Ω with probability α(j)/α(Ω). If he
sits at an already occupied table, he eats the same meal as the other customers of the
table.
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- With Xn+1 the meal of customer n+ 1, we have for any j ∈ Ω,

P (Xn+1 = j|X1, . . . , Xn) =
α(Ω)

n+ α(Ω)
× α(j)

α(Ω)
+

1

n+ α(Ω)
×

n∑
i=1

δXi(j)

=
α(j) +

∑n
i=1 δXi(j)

n+ α(Ω)
.

The last expression is the expression we obtained for Polya urn schemes.

2.3 Probability measures on M(R)

This section is devoted to the extension of the prior models built onM(Ω) for Ω finite to
the case where Ω = R. We consider the statistical model (R,B, P ∈ M(R)) with B the
Borelian σ-algebra. It is quite easy to extend the Polya-tree construction (see Ghosh and
Ramamoorthi (2003)). The construction of Dirichlet processes is much more involved.

2.3.1 Tail free priors

We extend to R the construction built for a finite set Ω. We denote

Ek = {0, 1}k, k ∈ N∗, E0 = ∅, E∗ =
⋃
k∈N

Ek.

We start with a partition of R, I0 = {B0, B1}. Then, we set

I1 = {B00, B01, B10, B11}, with B0 = B00 ∪B01 and B1 = B10 ∪B11

and then for any n ≥ 2,

In = {Bε0, Bε1 ε ∈ En}, with Bε0 ∪Bε1 partition of Bε.

We assume that σ(Bε, ε ∈ E∗) = B and we introduce tail free prior distributions.

Definition 2.6. We say that Π ∈ M(R) is tail free with respect to I = (In)n∈N∗ if the
following rows are independent:
- P (B0)
- P (B00|B0), P (B10|B1)
- P (B000|B00), P (B010|B01) P (B100|B10), P (B110|B11)
- · · ·
- P (Bε0|Bε), ε ∈ En
- · · ·
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We can now construct a tail free prior on M(R). Let Q = {qε, ε ∈ E∗} a dense
subset of R such that for any ε, qε0 < qε < qε1. We set B0 =] −∞, q0], B1 =]q0,+∞[.
Then, we set B00 =] −∞, q00], B01 =]q00, q0], B10 =]q0, q01], B11 =]q01,+∞[. Proceeding
this way, we build successive partitions of R, consisting in sets of the form Bε1···εn , with
(ε1 · · · εn) ∈ En. Note that {Bε0, Bε1} is a partition of Bε. Now, since Q is dense, it can
be proved that σ(Bε, ε ∈ E∗) = B and we obtain the following result.

Theorem 2.2. Let Y = P (B0) and Yε = P (Bε0|Bε) for any ε ∈ E∗. We assume that the
random variables (Yε)ε∈E∗ satisfy

1. Y⊥{Y0, Y1}⊥{Y00, Y01, Y10, Y11}⊥ · · · , where ⊥ means ”independent”

2. Yε0 × Yε00 × Yε000 × · · · = 0 and Y1 × Y11 × Y111 × · · · = 0

then there exists a tail free prior Π on M(R) such that under Π,

Yε = P (Bε0|Bε).

Observe that given the variables (Yε)ε∈E∗ , we obtain a joint distribution for (P (Bε))ε∈E∗ .
The next theorem gives conjugacy properties.

Theorem 2.3. Suppose Π is a tail free prior on M(R) with respect to the sequence of

partitions (In)n≥1. Given P , let X, . . . , Xn
i.i.d.∼ P . Then, the posterior is also tail free

with respect to (In)n≥1.

2.3.2 Dirichlet processes

Dirichlet process priors are a natural generalization to M(R) of the finite-dimensional
Dirichlet distributions.

Theorem 2.4. Let α a finite measure on (R,B). There exists a unique probability measure
Dα on M(R) called the Dirichlet process with parameter α satisfying, if P ∼ Dα, for any
partition (B1, B2, . . . , Bk) of R,

(P (B1), P (B2), . . . , P (Bk)) ∼ D(α(B1), α(B2), . . . , α(Bk)),

where the latter is the Dirichlet distribution with parameter (α(B1), α(B2), . . . , α(Bk)).

See Ghosh and Ramamoorthi (2003) for the proof. We now establish properties as-
sociated with Dirichlet processes. For α a finite measure on (R,B), we denote ᾱ the
probability measure defined by

ᾱ(·) =
α(·)
α(R)

.
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Proposition 2.13. If P ∼ Dα, then for any A ∈ B,

E[P (A)] = ᾱ(A), var(P (A)) =
ᾱ(A)(1− ᾱ(A))

α(R) + 1
.

Proof. We have (P (A), P (Ac)) ∼ D(α(A), α(Ac)) = Beta(α(A), α(Ac)). Then,

E[P (A)] =
α(A)

α(A) + α(Ac)
= ᾱ(A),

var(P (A)) =
α(A)(α(R)− α(A))

(α(A) + α(Ac))2(α(A) + α(Ac) + 1)
=
ᾱ(A)(1− ᾱ(A))

α(R) + 1
.

The following theorem shows that the Dirichlet process has conjugacy properties.

Theorem 2.5. For each P ∈ M(R), conditionally on P , let X1, . . . , Xn
i.i.d∼ P . Let us

assume that the prior Π on P is Dα, where α is a finite measure on (R,B). The posterior
distribution of P given X1, . . . , Xn is Dα+

∑n
i=1 δXi

.

Proof. Let (B1, B2, . . . , Bk) a partition of R. Under Π,

(P (B1), P (B2), . . . , P (Bk)) ∼ D(α(B1), α(B2), . . . , α(Bk)).

Therefore, introducing the discrete random variables X̃i = j ⇐⇒ Xi ∈ Bj, for any
i ∈ {1, . . . , n} and any j ∈ {1, . . . , k},

((P |X1, . . . , Xn)(B1), . . . , (P |X1, . . . , Xn)(Bk)) = (P (B1), . . . , P (Bk)|X1, . . . , Xn)

= (P (B1), . . . , P (Bk)|X̃1, . . . , X̃n)

∼ D

((
α +

n∑
i=1

δXi

)
(B1), . . . ,

(
α +

n∑
i=1

δXi

)
(Bk)

)
,

where we have used the ”discretization” of the set R. These computations show that

P |X1, . . . , Xn ∼ Dα+
∑n
i=1 δXi

.

Theorem 2.6. For each P ∈ M(R), conditionally on P , let X1, . . . , Xn
i.i.d∼ P . Let us

assume that the prior Π on P is Dα, where α is a finite measure on (R,B). We have the
following results.

1. The marginal distribution of X1 is ᾱ.
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2. The predictive distribution is as follows: for any A ∈ B,

P (Xn+1 ∈ A|X1, . . . , Xn) =
α(A) +

∑n
i=1 δXi(A)

α(R) + n
.

3. If α is absolutely continuous with respect to the Lebesgue measure, then

P (X2 = X1) =
1

α(R) + 1
.

Proof. The first point is an easy consequence of Proposition 2.13 combined with the
following result. For any A ∈ B, with Π = Dα,

m(A) :=

∫
P (A) dΠ(P ) = E[P (A)] = ᾱ(A).

For the second point, since Π(·|X1, . . . , Xn) = Dα+
∑n
i=1 δXi

, we have:

P (Xn+1 ∈ A|X1, . . . , Xn) = EΠ|X1,...,Xn [P (A)]

=
α(A) +

∑n
i=1 δXi(A)

α(R) + n
.

For the third point, we have:

P (X2 = X1) := E[P (X2 = X1|X1)]

=

∫
R
P (X2 = x|X1 = x) dm(x)

=

∫
α({x}) + δx(x)

α(R) + 1
dᾱ(x)

=
1

α(R) + 1
.

2.3.3 The stick-breaking representation

In this section, we provide a constructive way to build a Dirichlet process. As before, let
α be a finite measure on R and ᾱ(·) = α(·)/α(R). For this purpose, we define on R,

θ1, θ2, . . . , θn, . . .
i.i.d∼ Beta(1, α(R))

and, independently of the θi’s,

Y1, Y2, . . . , Yn, . . .
i.i.d∼ ᾱ.
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Then, we set p1 = θ1 and for any n ≥ 2,

pn = θn

n−1∏
i=1

(1− θi).

We first prove the following lemma.

Lemma 2.1. For any n ∈ N∗,

n∑
j=1

pj = 1−
n∏
j=1

(1− θj).

We deduce
+∞∑
j=1

pj = 1 almost everywhere.

Proof. The first point of the lemma is proved by induction.
- For n = 1, since p1 = 1− (1− θ1), the result if obvious.
- Let us assume that

n∑
j=1

pj = 1−
n∏
j=1

(1− θj).

Then,

n+1∑
j=1

pj =
n∑
j=1

pj + pn+1

= 1−
n∏
j=1

(1− θj) + θn+1

n∏
j=1

(1− θj)

= 1−
n∏
j=1

(1− θj)(1− θn+1)

= 1−
n+1∏
j=1

(1− θj),

which proves the first result for all n ∈ N∗. In particular, we deduce that n 7→
∑n

j=1 pj
is increasing and bounded by 1 almost everywhere. Then, this sequence converges when
n→ +∞ and

lim
n→+∞

1

n

n∑
j=1

log(1− θj) = E[log(1− θ1)]] almost everywhere
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and since α(R) > 0,

E[log(1− θ1)]] =
Γ(α(R) + 1)

Γ(α(R))Γ(1)

∫ 1

0

log(1− x)(1− x)α(R)−1 dx < 0.

This yields

lim
n→+∞

n∑
j=1

log(1− θj) = −∞ almost everywhere

and

lim
n→+∞

n∏
j=1

(1− θj) = 0 almost everywhere.

Finally, for any A ∈ B, we set for any w ∈ R,

(P (A))(w) =
+∞∑
n=1

pn(w)δYn(w)(A).

The previous lemma shows that P is, almost surely, a (random) probability measure.
It puts the weight pn to the variable Yn. We then obtain the following result due to
Sethuraman (1994).

Theorem 2.7. The process w 7−→ P (·)(w) is distributed according to Dα. Its marginal
distribution is ᾱ.

Proof. The second point holds since the Yn’s are i.i.d. and distributed according to α and
we have:

E[P (A)] = E[E[P (A)|p1, . . . , pn, . . .]]

= E

[
+∞∑
n=1

pnE[δYn(A)|p1, . . . , pn, . . .]

]

= E

[
+∞∑
n=1

pnᾱ(A)

]
= ᾱ(A),

by using Lemma 2.1. For the first point, let (B1, B2, . . . , Bk) a partition of R. We show
that

(P (B1), P (B2), . . . , P (Bk)) ∼ D(α(B1), α(B2), . . . , α(Bk)).

Let, for any i ∈ N∗
Uk
Yi

:= (δYi(B1), . . . , δYi(Bk)),
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where, in the last vector, all coordinates are 0 except 1, the jth coordinate equal to 1
(where j is the only set of the partition such that Yi ∈ Bj). We define

P1 = p1U
k
Y1

+ (1− p1)Q,

where Q is taken as follows: Q is independent from the Yi’s and the θi’s and

Q ∼ D(α(B1), . . . , α(Bk)).

Using Proposition 2.10, conditionally on Y1 ∈ Bj,

P1 ∼ D(α(B1), . . . , α(Bj) + 1, . . . , α(Bk)),

where j is defined as before. Since m(Bj) = P (Y1 ∈ Bj) = ᾱ(Bj), by definition, for any
Borelian set C ∈ A, we have

P (P1 ∈ C) =
k∑
j=1

P (P1 ∈ C|Y1 ∈ Bj)P (Y1 ∈ Bj)

=
k∑
j=1

D(α(B1), . . . , α(Bj) + 1, . . . , α(Bk))(C)ᾱ(Bj)

= D(α(B1), . . . , α(Bk))(C),

using Equation (2.1). It means that

P1 ∼ D(α(B1), . . . , α(Bk)). (2.2)

Now, for some N ∈ N∗, we assume that

N∑
n=1

pnU
k
Yn +

(
1−

N∑
n=1

pn

)
Q ∼ D(α(B1), . . . , α(Bk)). (2.3)

Since by Lemma 2.1,

pN+1 = θN+1

N∏
n=1

(1− θn) = θN+1

(
1−

N∑
n=1

pn

)
,
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we have

N+1∑
n=1

pnU
k
Yn +

(
1−

N+1∑
n=1

pn

)
Q =

N∑
n=1

pnU
k
Yn +

(
1−

N∑
n=1

pn

)
Q+ pN+1U

k
YN+1

− pN+1Q

=
N∑
n=1

pnU
k
Yn +

(
1−

N∑
n=1

pn

)(
Q+ θN+1U

k
YN+1

− θN+1Q
)

=
N∑
n=1

pnU
k
Yn +

(
1−

N∑
n=1

pn

)(
θN+1U

k
YN+1

+ (1− θN+1)Q
)

∼
N∑
n=1

pnU
k
Yn +

(
1−

N∑
n=1

pn

)
Q

∼ D(α(B1), . . . , α(Bk)).

where we have used (2.2) and (2.3). Consequently, (2.3) is true for any N ∈ N∗. By
letting N → +∞, we conclude

+∞∑
n=1

pnU
k
Yn ∼ D(α(B1), . . . , α(Bk)).

Since this is true for any partition (B1, B2, . . . , Bk) of R, we obtain

+∞∑
n=1

pnδYn ∼ Dα.

The construction justifies the stick-breaking terminology. Starting with a stick of
length 1, we break it at θ1, p1 is the length of the stick we just broke off. What remains
has length 1− θ1. We break a θ2-fraction of the remaining stick, that is p2 = θ2(1− θ1).
What is left after this step is (1− θ1)− θ2(1− θ1) = (1− θ1)(1− θ2). At the kth step, we
have a stick of length

∏k−1
i=1 (1−θi) remaining and to produce pk, we break off a θk-portion

of it, so pk = θk
∏k−1

i=1 (1− θi). The result is a sequence (pi)i=1,...,k.

The stick-breaking representation exhibits the Dirichlet distribution as a random dis-
crete measure and we obtain the following corollary.

Corollary 2.1. Almost every realization from Dα is a discrete measure: If Π = Dα,

Π(P : P is discrete) = 1.

A realization from the Dirichlet process is discrete with probability one, also when the
base measure α is absolute continuous. This is perhaps disappointing, especially if the
intention is to model absolutely continuous probabilty measures.
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2.3.4 Estimation of the cumulative distributive function by us-
ing Dirichlet processes

We wish to provide a Bayes estimate to infer the cumulative distributive function of an
n-sample X = (X1, . . . , Xn) of real variables, with the loss-function defined, for any F
and G two cumulative distributive functions, by

L(F,G) :=

∫
R
(F (t)−G(t)2 dt.

We denote F the cumulative distributive function of X and we have for any estimate F̂
of F ,

R(F, F̂ ) :=

∫
L(F, F̂ ) dPF = EF [L(F, F̂ )],

where PF is the probability distribution associated with X and for any prior Π on F ,

r(π, F̂ ) :=

∫
R(F, F̂ ) dΠ(F )

=

∫∫∫
(F (t)− F̂ (t))2 dt dPF dΠ(F )

=

∫ (∫∫
(F (t)− F̂ (t))2 dm(x) dΠ(F |x)

)
dt,

where m denotes the marginal distribution of X. We can perform estimation at fixed t,
which boils down to estimate the real F (t). Therefore, using Theorem 1.2, the Bayes rule
is for any t ∈ R

F̂Π(t) =

∫
F (t) dΠ(F |X).

If Π = Dα, then

Π(·|X) = Dα+
∑n
i=1 δXi

and since for any t ∈ R,

F (t) = P ((−∞; t]),

we have

F̂Π(t) =

∫
F (t) dΠ(F |X)

= EDα+∑n
i=1

δXi

[P ((−∞; t])]

=

(
α +

∑n
i=1 δXi

)
((−∞; t])

α(R) + n
.
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Observe that the Bayes rule can be written as a convex combination between the clas-
sical frequentist rule Fn(t) :=

∑n
i=1 δXi((−∞; t]) = 1

n

∑n
i=1 1Xi≤t} and the Bayes rule

ᾱ((−∞; t]):

F̂Π(t) =
α(R)

α(R) + n
ᾱ((−∞; t]) +

n

α(R) + n
Fn(t).

The weight α(R)
α(R)+n

goes to 0 when n→ +∞ whereas the weight n
α(R)+n

goes to 1. Dirichlet
processes lead to natural interpretations.
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Chapter 3

Asymptotic properties of
nonparametric posterior
distributions: consistency and
convergence rates

Our goal is to extend results of Chapter 1 to the nonparametric setting. Before studying
asymptotic properties of general nonparametric posterior distributions, let us first focus
on the case of posterior Dirichlet processes. We rely on notions introduced and results
proved in Section 1.2.1.

3.1 Consistency of posterior Dirichlet processes on R
We first recall the definition of the weak convergence onM(R). The σ-algebra A is such
that P ∈M(R) 7→ P (B) is A-measurable for any B ∈ B.

Definition 3.1. A sequence of probability measures (Πn)n on M(R) converges weakly
to a probability measure Π if and only if for any R-valued bounded continuous function φ
on M(R) ∫

M(R)

φ(P ) dΠn(P )
n→+∞−→

∫
M(R)

φ(P ) dΠ(P ).

Remark 3.1. The continuity on M(R) is defined through the weak convergence on R.
For instance, if f is bounded and continuous, the function φf defined by φf : P 7→

∫
f dP

is continuous on M(R). Unfortunately, we cannot explicit all bounded and continuous
functions of M(R).

We now characterize the tightness onM(R) by using the Bolzano-Weierstrass theorem.

45
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Theorem 3.1 (Bolzano-Weierstrass). A metrizable space X is compact if and only if each
sequence in X has a convergent subsequence in X.

For any probability measure Π on M(R), we set

EΠ(B) :=

∫
M(R)

P (B) dΠ(P ), ∀B ∈ B. (3.1)

We then have the following result.

Theorem 3.2. A sequence of probability measures (Πn)n on M(R) is tight for the weak
convergence of M(R) if and only if the sequence (EΠn)n is tight on R.

Proof. We first prove the sufficient condition, which is the crucial point for this course.
For any n, we set µn := EΠn . We assume that (µn)n is tight on R. Let δ > 0. We prove
that there exists a compact set M ⊂ M(R) such that for any n, Πn(M) ≥ 1 − δ. By
tightness of (µn)n, for any d ∈ N∗, there exists a compact set Kd such that for any n,

µn(Kd) ≥ 1− 6δ

d3π2
.

Now, we set

Md :=

{
P ∈M(R) : P (Kc

d) ≤
1

d

}
and

M = ∩d∈N∗Md.

We show now that M is compact (for the weak convergence). Let (Pn)n ∈ M . We show
that (Pn)n has a convergent subsequence in M . Let ε > 0 and d ∈ N∗ such that 1

d
≤ ε.

Let n be fixed. Since Pn ∈M , Pn ∈Md. Then

Pn(Kc
d) ≤

1

d
≤ ε⇒ Pn(Kd) ≥ 1− ε.

This shows that (Pn)n is tight. Prohorov’s theorem implies that there exists (Pn′)n′ a
subsequence of (Pn)n such that (Pn′)n′ converges (since R is a Polish space). Therefore,

there exists P ∈ M(R) such that Pn′
n′→+∞
; P . Now, observe that for any d ∈ N∗, Kc

d is
an open set of R. The Portmanteau theorem implies

P (Kc
d) ≤ lim inf

n′→+∞
Pn′(K

c
d) ≤

1

d

and P ∈ M . We have proved that (Pn)n has a convergent subsequence in M . The
Bolzano-Weierstrass theorem implies that M is compact. We now prove that for any n,
Πn(M c) ≤ δ. For this purpose, we use

Πn(M c) ≤
∑
d∈N∗

Πn(M c
d)
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and the Markov inequality:

Πn(M c
d) = Πn

(
P ∈M(R) : P (Kc

d) >
1

d

)
=

∫
1{P∈M(R): P (Kc

d)> 1
d
} dΠn(P )

≤ d

∫
M(R)

P (Kc
d) dΠn(P ) = dEΠn [Kc

d] = dµn(Kc
d)

≤ 6δ

d2π2
.

This gives Πn(M c) ≤ δ and then Πn(M) ≥ 1− δ. This yields the tightness of (Πn)n.
Now, assume that (Πn)n is tight for the weak convergence of M(R). It means that

for any ε > 0, there exists a compact set M for the weak convergence such that for
any n, Πn(M) ≥ 1− ε/2. So, M is a precompact set. Then, by Prohorov’s theorem (see
Remark 1.7), M is tight and there exists K, a compact set of R, such that for any P ∈M ,
P (K) ≥ 1− ε/2. Then, for all n,

EΠn [Kc] =

∫
M

P (Kc)dΠn(P ) +

∫
Mc

P (Kc)dΠn(P ) ≤ sup
P∈M

P (Kc) + Πn(M c) < ε.

We have proved that the sequence (EΠn)n is tight on R.

We now show the weak convergence of the posterior distribution.

Theorem 3.3. Let (αn)n a sequence of finite measures on R, such that αn(R)
n→+∞−→ +∞

and assume there exists a probability measure ᾱ such that ᾱn(·) := αn(·)
αn(R)

n→+∞
; ᾱ. If

Πn = Dαn, then

Πn
n→+∞
; δᾱ.

Proof. We show that (EΠn)n is tight on (R,B). For any B ∈ B, EΠn(B) = ᾱn(B). Since
ᾱn converges weakly and since R is a Polish space, (EΠn)n is tight. Using Theorem 3.2, we

have that (Πn)n is tight. Now, if for any subsequence (Πn′)n′ of (Πn)n, (Πn′)n′
n→+∞
; δᾱ,

unicity of the limit will provide the result of the theorem. We essentially admit the result
but observe that for any B ∈ B such that ᾱ(δB) = 0 and any ε > 0,

Πn(|P (B)− ᾱ(B)| > ε) ≤ Πn(|P (B)− EΠn(B)| > ε/2) + Πn(|EΠn(B)− ᾱ(B)| > ε/2)

≤ 4

ε2
varΠn(P (B)) + Πn(|ᾱn(B)− ᾱ(B)| > ε/2)

≤ 4

ε2

ᾱn(B)(1− ᾱn(B))

αn(R) + 1
+ Πn(|ᾱn(B)− ᾱ(B)| > ε/2).
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Using assumptions of the theorem, since ᾱ(δB) = 0 ᾱn(B)
n→+∞−→ ᾱ(B) and the second

term vanishes for n large enough. Therefore, under Πn, P (B)
n→+∞−→ ᾱ(B) in probability

and then in distribution. This explains why the limit is unique. See Theorem 2.5.2 of
Ghosh and R.V. Ramamoorthi (2003) for more details.

Corollary 3.1. Let α a finite measure on R. Then, for any P0 ∈ M(R), the posterior
distribution studied in the previous chapter is consistent at P0:

Dα+
∑n
i=1 δXi

n→+∞
; δP0 , P0 − a.e.

Proof. We apply Theorem 3.3 with

αn = α +
n∑
i=1

δXi .

We have
αn(R) = α(R) + n

n→+∞−→ +∞
and

ᾱn =
α +

∑n
i=1 δXi

α(R) + n
.

Let t such that F0, the cumulative distributive function of P0, is continuous at t, we have

ᾱn((−∞; t]) =
1

α(R) + n
×
(
α((−∞; t]) +

n∑
i=1

δXi((−∞; t])

=
1

α(R) + n
× α((−∞; t]) +

n

α(R) + n
× 1

n

n∑
i=1

1{Xi≤t}

and
ᾱn((−∞; t])

n→+∞−→ P0((−∞; t]), P0 − a.e.

Therefore,

ᾱn
n→+∞
; P0, P0 − a.e.

and, by Theorem 3.3,

Dα+
∑n
i=1 δXi

n→+∞
; δP0 , P0 − a.e.

3.2 Consistency for general nonparametric posterior

distributions

Now, we consider a general statistical model denoted (Ω,B, P ∈ T ) and conditionally

on P , X1, . . . , Xn
i.i.d∼ P . We denote Π a prior distribution on the general measured space

(T ,A). We first study strong consistency of the posterior distribution.
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3.2.1 Strong consistency

Definition 3.2. The posterior distribution Π(·|X1, . . . , Xn) is said to be strongly con-
sistent (i.e. L1-consistent) at P0 if there exists Ω0 with P0(Ω0) = 1 such that
∀w ∈ Ω0, ∀U an open set of T for the total variation norm containing P0,

Π(U |X1(w), . . . , Xn(w))
n→+∞−→ 1.

Remark 3.2. Since (T , ‖ · ‖TV ) is a metric space, for strong consistency, we can take U
of the form U = {P : ‖P − P0‖TV < ε} for ε > 0.

The following result shows that if the posterior distribution Π(·|X1, . . . , Xn) is strongly
consistent, then we can derive an estimate with nice properties.

Proposition 3.1. Let P̂n defined as

P̂n(A) :=

∫
P (A) dΠ(P |X1, . . . , Xn), ∀A ∈ B.

If Π(·|X1, . . . , Xn) is strongly consistent at P0, then P̂n satisfies

‖P̂n − P0‖TV
n→+∞−→ 0 P0 − a.e.

Proof. By assumption, there exists Ω0 with P0(Ω0) = 1 such that ∀w ∈ Ω0, ∀ε > 0, with
Uε = {P : ‖P − P0‖TV < ε},

Π(Uε|X1(w), . . . , Xn(w))
n→+∞−→ 1.

Now, on Ω0,

‖P̂n − P0‖TV =
∥∥∥∫ (P − P0) dΠ(P |X1, . . . , Xn)

∥∥∥
TV

≤
∫
‖P − P0‖TV dΠ(P |X1, . . . , Xn)

≤
∫
Uε

‖P − P0‖TV dΠ(P |X1, . . . , Xn) +

∫
Ucε

‖P − P0‖TV dΠ(P |X1, . . . , Xn)

≤ ε+ Π(U c
ε |X1, . . . , Xn),

since the TV-norm is bounded by 1. Finally, on Ω0, ∀ε > 0,

lim sup
ε→0

‖P̂n − P0‖TV ≤ ε

and
‖P̂n − P0‖TV

n→+∞−→ 0 P0 − a.e.
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3.2.2 Weak consistency and Schwartz theorem

Most of the time, strong consistency is too demanding and we can only prove weak
consistency.

Definition 3.3. The posterior distribution Π(·|X1, . . . , Xn) is said to be weakly consis-
tent at P0 if there exists Ω0 with P0(Ω0) = 1 such that ∀w ∈ Ω0, ∀U an open set of T
for the weak convergence containing P0,

Π(U |X1(w), . . . , Xn(w))
n→+∞−→ 1.

Remember that it is not a good idea to consider consistency under the total variation
norm. For this reason, we consider posterior consistency on densities and for µ a σ-finite
measure on Ω, we set

Lµ := {P ∈ T : P � µ} .
If for (P,Q) ∈ L2

µ, we set

f =
dP

dµ
, g =

dQ

dµ
,

we have
‖f − g‖1 = 2‖P −Q‖TV .

In the sequel, without loss of generality, we assume that µ is the Lebesgue measure. Let
U be a set containing f0 = dP0

dµ
. To obtain the convergence of the posterior probability

of U given X1, . . . , Xn to 1, f0 and U c need to be separated. This idea of separation is
conveniently formalized through the existence of appropriate tests for testing H0 : f = f0

versus H1 : f ∈ U c, where f is the density of the Xi’s, expressed by following results. We
first introduce test functions with specific properties.

Definition 3.4. Let f0 be a density and U a set containing f0. Assume we are given
Xn = (X1, . . . , Xn) an n-sample. We denote f the density of the Xi’s.
The test φ(Xn) is strictly unbiased for testing H0: f = f0 versus H1 : f ∈ U c if

Ef0 [φ(Xn)] < inf
f∈Uc

Ef [φ(Xn)].

Now let (φn(Xn))n be a sequence of test functions.

• The sequence (φn(Xn))n is uniformly consistent for testing H0: f = f0 versus
H1 : f ∈ U c if, as n→ +∞,

Ef0 [φn(Xn)]→ 0, inf
f∈Uc

Ef [φn(Xn)]→ 1.

• The sequence (φn(Xn))n is uniformly exponentially consistent for testing H0:
f = f0 versus H1 : f ∈ U c if there exist C and β positive constants such that for
any n,

Ef0 [φn(Xn)] ≤ Ce−nβ, inf
f∈Uc

Ef [φn(Xn)] ≥ 1− Ce−nβ.
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Remark 3.3. In the previous definition, we consider randomized tests, namely test taking
values in [0; 1].

Proposition 3.2. Let f0 be a density and U a set containing f0. Let X = (Xn)n∈N∗ a
sequence of iid variables. We denote f the density of the Xi’s. The following facts are
equivalent.

(i) There exists a uniformly exponentially consistent sequence of tests for testing H0:
f = f0 versus H1 : f ∈ U c.

(ii) There exists a uniformly consistent sequence of tests for testing H0: f = f0 versus
H1 : f ∈ U c.

(iii) There exist n ∈ N∗ and a strictly unbiased test φ(Xn) for testing H0: f = f0 versus
H1 : f ∈ U c.

Proof. Of course (i)⇒(ii)⇒(iii). We now assume that there exist φ and m ∈ N∗ such that

α := Ef0 [φ(Xm)] < β := inf
f∈Uc

Ef [φ(Xm)].

First assume m = 1: Let

Ak =

{
1

k

k∑
i=1

φ(Xi) >
1

2
(α + β)

}
.

Lemma 3.1 (Hoeffding). Let (Y1, . . . , Yn) be a sequence of independent variables such
that E[Yi] = 0 and for all i, ai ≤ Yi ≤ bi almost everywhere, then

∀ λ > 0, P

(
n∑
i=1

Yi ≥ λ

)
≤ exp

(
− 2λ2∑n

i=1(bi − ai)2

)
.

By using the Hoeffding lemma, we have:

Pf0(Ak) = Pf0

(
k∑
i=1

(φ(Xi)− Ef0 [φ(Xi)]) >
k

2
(β − α)

)

≤ exp

(
−2k2(β − α)2

4k

)
≤ exp

(
−k(β − α)2

2

)
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and for f ∈ U c

Pf (Ak) ≥ Pf

(
k∑
i=1

(φ(Xi)− Ef [φ(Xi)]) >
k

2
(α− β)

)

= 1− Pf

(
k∑
i=1

(φ(Xi)− Ef [φ(Xi)]) ≤
k

2
(α− β)

)

= 1− Pf

(
k∑
i=1

(Ef [φ(Xi)]− φ(Xi)) ≥
k

2
(β − α)

)

≥ 1− exp

(
−k(β − α)2

2

)
.

So, φk(X
k) = 1Ak provides a uniformly exponentially consistent sequence of tests for

testing H0: f = f0 versus H1 : f ∈ U c.

Now, let m ∈ N∗. We apply the previous construction with ` = km and we use X` =
(X1, . . . , X`). We have:

I := Pf0

(
k∑
i=1

φ(X1+(i−1)m, . . . , Xm+(i−1)m)− Ef0 [φ(X1+(i−1)m, . . . , Xm+(i−1)m)] >
k

2
(β − α)

)

≤ exp

(
−k(β − α)

2

2

)
= exp

(
−`(β − α)

2

2m

)
.

So, for n such that km ≤ n < (k + 1)m, we set

φn(Xn) := 1A`

with

A` =

{
k∑
i=1

φ(X1+(i−1)m, . . . , Xm+(i−1)m)− Ef0 [φ(X1+(i−1)m, . . . , Xm+(i−1)m) >
k

2
(β − α)

}
.

With C = exp((β − α)2/2), we have:

Ef0 [φn(Xn)] ≤ C exp
(
−(`+m)(β − α)2/(2m)

)
≤ C exp

(
−n(β − α)2/(2m)

)
.

Similarly, we obtain for f ∈ U c

Pf (A`) ≥ 1− C exp
(
−n(β − α)2/(2m)

)
.

So, φn(Xn) = 1A` provides a uniformly exponentially consistent sequence of tests for
testing H0: f = f0 versus H1 : f ∈ U c.
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Weak consistency results are based on the Schwartz theorem that has an interest in
its own right. We need following definitions.

Definition 3.5. We set

L1(µ) :=

{
f : f ≥ 0, measurable and

∫
f(x) dµ(x) = 1

}
and for any f0 ∈ L1(µ), for any ε > 0,

Kε(f0) := {g ∈ L1(µ) : K(f0, g) < ε},

with

K(f0, g) =

{ ∫
log
(
f0(x)
g(x)

)
f0(x) dµ(x) if f0 dµ� g dµ,

+∞ otherwise.

Let f0 ∈ L1(µ). If Π is a prior on L1(µ), f0 is said to be in the support of Π if for
any ε > 0,

Π(Kε(f0)) > 0.

Theorem 3.4 (Schwartz theorem (1965)). Let Π a prior on L1(µ). Let f0 ∈ L1(µ) such
that f0 is in the support of Π. We take U ⊂ L1(µ) such that there exists a strictly unbiased
test for testing

H0 : f = f0 versus H1 : f ∈ U c.

Then,

Π(U |X1, . . . , Xn)
n→+∞−→ 1 Pf0 − a.e.

Proof. Denoting Xn = (X1, . . . , Xn), we write

Π(U c|Xn) =

∫
Uc

∏n
i=1 f(Xi) dΠ(f)∫

L1(µ)

∏n
i=1 f(Xi) dΠ(f)

=

∫
Uc

∏n
i=1

f(Xi)
f0(Xi)

dΠ(f)∫
L1(µ)

∏n
i=1

f(Xi)
f0(Xi)

dΠ(f)
=:

Nn(Xn)

Dn(Xn)
.

We prove the following useful lemma.

Lemma 3.2. There exists a constant ρ > 0 such that

An := {Nn(Xn) ≤ exp(−ρn)}

satisfies
∑

n Pf0(Acn) <∞.
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Proof. Using Proposition 3.2, we know that for any n, there exist φn(Xn) a test and C
and β two positive constants such that

Ef0 [φn(Xn)] ≤ Ce−nβ, inf
f∈Uc

Ef [φn(Xn)] ≥ 1− Ce−nβ.

In particular, for any f ∈ U c,

Ef [1− φn(Xn)] ≤ Ce−nβ.

We have

Pf0(Acn) = Ef0 [1Acnφn(Xn)] + Ef0 [1Acn(1− φn(Xn))]

≤ Ce−nβ + Ef0 [1{Nn(Xn)>exp(−ρn)}(1− φn(Xn))].

We bound the second term of the right hand side as follows.

Ef0 [1{Nn(Xn)>exp(−ρn)}(1− φn(Xn))] =

∫
(1− φn(xn))1{Nn(xn)>exp(−ρn)}

n∏
i=1

[f0(xi) dxi]

=

∫
(1− φn(xn))Nn(xn) exp(ρn)

n∏
i=1

[f0(xi) dxi]

=

∫
(1− φn(xn))

∫
Uc

dΠ(f) exp(ρn)
n∏
i=1

[f(xi) dxi]

= exp(ρn)

∫
Uc

Ef [1− φn(Xn)] dΠ(f)

≤ C exp((ρ− β)n).

By taking 0 < ρ < β, we have
∑

n Pf0(Acn) <∞ and the lemma is proved.

Combining the result of the previous lemma and Borel Cantelli Lemma, we obtain

Pf0
( ⋂
n0∈N∗

⋃
n≥n0

Acn

)
= 0

and with Ω0 =
⋃
n0∈N∗

⋂
n≥n0

An, we have Pf0(Ω0) = 1. Therefore, for any w ∈ Ω0, there
exists n0(w) such that for any n ≥ n0(w), Nn(Xn(w)) ≤ exp(−ρn). Before dealing with
the denominator Dn(Xn), we prove the following lemma.

Lemma 3.3. There exists B ∈ B such that Pf0(B) = 1 and for any w ∈ B, there exists
Gw ∈ A such that Π(Gw) = 1 and for any f ∈ Gw,

lim
n→+∞

1

n

n∑
i=1

log

(
f0(Xi(w))

f(Xi(w))

)
= K(f0, f).
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Proof. We denote

kn(w, f) :=
1

n

n∑
i=1

log

(
f0(Xi(w))

f(Xi(w))

)
and

G :=

{
(w, f) : lim

n→+∞
kn(w, f) = K(f0, f)

}
and its sections

Gf = {w : (w, f) ∈ G} , Gw = {f : (w, f) ∈ G} .

We admit that all these spaces are measurable. The strong law of large numbers implies
that Pf0(Gf ) = 1 for all f ∈ L1(µ). Then, Fubini’s theorem gives

1 :=

∫
L1(µ)

Pf0(Gf ) dΠ(f)

=

∫
L1(µ)

∫
Ω

1G(w, f) dPf0(w) dΠ(f)

=

∫
Ω

[∫
L1(µ)

1G(w, f) dΠ(f)

]
dPf0(w)

=

∫
Ω

Π(Gw) dPf0(w).

The previous equality implies that Π(Gw) = 1 Pf0-a..e. There exists B ∈ B such that
Pf0(B) = 1 and for any w ∈ B, Π(Gw) = 1.

Now, we deal with Dn(Xn).

Lemma 3.4. For any ε > 0, we have on B:

lim
n→+∞

exp(nε)Dn(Xn) = +∞.

Proof. For any w ∈ B,

Dn(Xn(w)) =

∫
L1(µ)

n∏
i=1

f(Xi(w))

f0(Xi(w))
dΠ(f)

≥
∫
Kε(f0)∩Gw

exp

(
−

n∑
i=1

log

(
f0(Xi(w))

f(Xi(w))

))
dΠ(f),

with

Kε(f0) = {g ∈ L1(µ) : K(f0, g) < ε}.
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Therefore, by Fatou’s lemma,

lim inf
n→+∞

exp(2nε)Dn(Xn(w)) ≥
∫
Kε(f0)∩Gw

lim inf
n→+∞

exp

(
2nε−

n∑
i=1

log

(
f0(Xi(w))

f(Xi(w))

))
dΠ(f)

= +∞,

since on Kε(f0) ∩Gw,

lim
n→+∞

1

n

n∑
i=1

log

(
f0(Xi(w))

f(Xi(w))

)
= K(f0, f) ≤ ε

and Π(Kε(f0) ∩Gw) > 0.

The previous lemma gives that for any w ∈ B, there exists n1(w) such that for any
n ≥ n1(w),

Dn(Xn(w)) ≥ exp(−nε).

This shows that for any n ≥ max(n0(w), n1(w)),

Π(U c|Xn(w)) =
Nn(Xn(w))

Dn(Xn(w))
≤ exp((ε− ρ)n).

Taking ε < ρ, we obtain for w ∈ B,

lim
n→+∞

Π(U c|Xn(w)) = 0.

Theorem 3.4 is proved.

Theorem 3.5. Let Π a prior on L1(µ). If f0 is in the support of Π, then the posterior
distribution is weakly consistent at f0. It means that for any open set U for the topology
of weak convergence containing f0, we have:

Π(U |X1, . . . , Xn)
n→+∞−→ 1 Pf0 − a.e.

Proof. We can show that it is enough to take U as follows:

U =
⋂
i∈I

{
f :

∣∣∣∣∫ hi(x)f(x) dx−
∫
hi(x)f0(x) dx

∣∣∣∣ < ε

}
,

where I is a finite set, (hi)i∈I are continuous bounded functions and ε > 0. Therefore, it
is enough to show the result for

U(h, ε) =

{
f :

∣∣∣∣∫ h(x)f(x) dx−
∫
h(x)f0(x) dx

∣∣∣∣ < ε

}
,
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with h bounded continuous and ε > 0. We set

φ =
h+ ‖h‖∞

2‖h‖∞
∈ [0; 1].

We have

f ∈ U(h, ε) ⇐⇒
∫
h(x)(f(x)− f0(x)) dx < ε and

∫
h(x)(f(x)− f0(x)) dx > −ε.

and we observe that∫
φ(x)(f(x)− f0(x)) dx =

∫
h(x)

2‖h‖∞
(f(x)− f0(x)) dx∫

(1− φ(x))(f(x)− f0(x)) dx =

∫
h(x)

2‖h‖∞
(f0(x)− f(x)) dx.

Then,

f ∈ U(h, ε) ⇐⇒
∫
φ(x)(f(x)− f0(x)) dx <

ε

2‖h‖∞

and

∫
(1− φ(x))(f(x)− f0(x)) dx <

ε

2‖h‖∞
.

So, it is enough to show that for any φ bounded, continuous and taking values in [0; 1]
and any ε > 0,

Π(V (φ, ε)|X1, . . . , Xn)
n→+∞−→ 1 Pf0 − a.e.

with

V (φ, ε) =

{
f :

∫
φ(x)(f(x)− f0(x)) dx < ε

}
.

Let φ a bounded and continuous function such that φ takes values in [0; 1]. We build a
strictly unbiased test for testing H0: f = f0 versus H1 : f ∈ V (φ, ε)c. For this purpose,
we consider φ(X1). If f ∈ V (φ, ε)c, we have

Ef [φ(X1)] =

∫
φ(x)f(x) dx

≥
∫
φ(x)f0(x) dx+ ε

≥ Ef0 [φ(X1)] + ε.

This shows that
Ef0 [φ(X1)] < inf

f∈V (φ,ε)c
Ef [φ(X1)]

and φ(X1) is strictly unbiased for testing H0: f = f0 versus H1 : f ∈ V (φ, ε)c. Theo-
rem 3.4 provides the conclusion of the proof.
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3.3 Posterior contraction rates of convergence

3.3.1 General result

Let Xn = (X1, . . . , X
n)

i.i.d.∼ P0. We consider (Πn)n a sequence of prior probability mea-
sures supported on a set P ⊂ L1(µ), where, here, L1(µ) is the set of all probability
measures absolutely continuous with respect to µ. We denote d either the Hellinger dis-
tance or the total variation metric on P . We denote

f0 =
dP0

dµ
, f =

dP

dµ
,

for any P ∈ L1(µ). At some places, we refer to P (respectively P0) and at others to
f (respectively f0), which is equivalent. We introduce D(ε,P , d) the ε-packing number
of P :

Definition 3.6. For any ε > 0, D(ε,P , d) is the maximal number of points in P such
that the distance between every pair of points is at least ε.

We have the following result due to Ghosal, Ghosh and van der Vaart (2000) and
Ghosal and van der Vaart (2007).

Theorem 3.6. Suppose that for a sequence (εn)n with εn → 0 and nε2
n → +∞, for a

constant C > 0 and sets Pn ⊂ P, we have for n large enough:

(a) logD(εn,Pn, d) ≤ nε2
n,

(b) Πn(P \ Pn) ≤ exp(−(C + 3)nε2
n),

(c) Πn(P : K(f0, f) ≤ ε2
n, V (f0, f) ≤ ε2

n) ≥ exp(−Cnε2
n),

where

K(f0, f) =

{ ∫
log
(
f0(x)
f(x)

)
f0(x) dµ(x) if f0 dµ� f dµ,

+∞ otherwise,

V (f0, f) =

{ ∫
log2

(
f0(x)
f(x)

)
f0(x) dµ(x) if f0 dµ� f dµ,

+∞ otherwise.

Then, for a constant M large enough, we have:

Πn(P : d(P, P0) ≥Mεn|Xn)
n→+∞−→ 0 in P0 − probability.

We say that (εn)n is the posterior contraction rate of convergence (or posterior
concentration rate of convergence) of Πn(·|Xn) on P associated with d.

Proof. We prove the following lemma.
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Lemma 3.5. Assume that d is either the Hellinger distance or the total variation metric.
If for any n, logD(εn,Pn, d) ≤ nε2

n, then there exists an absolute constant K > 0 such
that for any M a positive constant larger than 2, there exists (φn(Xn))n a sequence of
tests such that for any n,

Ef0 [φn(Xn)] ≤ exp((1−KM2)nε2
n)

sup
P∈Pn: d(P,P0)>Mεn

Ef [1− φn(Xn)] ≤ exp(−KnM2ε2
n).

Proof. We admit the following lemma (see Birgé (1983)).

Lemma 3.6. We assume that d is either the Hellinger distance or the total variation
distance. Then, for any probability measures P0 and P1, there exists a test ψn such that,
for K a universal constant,

Ef0 [ψn(Xn)] ≤ exp(−Knd2(P0, P1)), (3.2)

sup
P : d(P,P1)<d(P0,P1)/2

Ef [1− ψn(Xn)] ≤ exp(−Knd2(P0, P1)). (3.3)

Let M ≥ 2. We set SM = {P ∈ Pn : d(P0, P ) > Mεn}. We build a maximal net
NM ⊂ SM such that the distance between any probability distributions of NM , QM and
Q′M with QM 6= Q′M , satisfies d(QM , Q

′
M) ≥ Mεn/2. Since M ≥ 2, d(QM , Q

′
M) ≥ εn

and then |NM |, the cardinal of NM , is smaller than D(εn,Pn, d) and then smaller than
exp(nε2

n). For any P ∈ SM , there exists QM ∈ NM such that d(P,QM) ≤ Mεn/2
(otherwise SM is not a maximal net) and

d(P,QM) ≤Mεn/2 < d(P0, QM)/2.

We apply Lemma 3.6 with P0 and all QM ∈ NM and we denote ψn,QM the associated tests
satisfying (3.2) and (3.3). We set

φn(Xn) = max
QM∈NM

ψn,QM (Xn).

We have

Ef0 [φn(Xn)] ≤
∑

QM∈NM

Ef0 [ψn,QM (Xn)]

≤ exp(nε2
n) exp(−Knd2(P0, QM))

≤ exp((1−KM2)nε2
n)
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and

sup
P∈Pn: d(P,P0)>Mεn

Ef [1− φn(Xn)] = sup
P∈SM

Ef [1− φn(Xn)]

≤ sup
P∈SM

min
QM∈NM

Ef [1− ψn,QM (Xn)]

≤ min
QM∈NM

exp(−Knd2(P0, QM))

≤ exp(−KnM2ε2
n).

Let α > 0. We have

P0(Πn(P : d(P, P0) ≥Mεn|Xn) ≥ α) ≤ α−1Ef0 [Πn(P : d(P, P0) ≥Mεn|Xn)].

We denote

Bn :=
{
f : K(f0, f) ≤ ε2

n, V (f0, f) ≤ ε2
n

}
and

An :=

{∫ n∏
i=1

f(Xi)

f0(Xi)
dΠBn(f) > exp(−2nε2

n)

}
with

dΠBn(f) =
1Bn(f) dΠn(f)

Πn(Bn)
.

We prove the following lemma.

Lemma 3.7. We have

lim
n→+∞

P0(An) = 1.

Proof. We consider Acn. Observe that∫ n∏
i=1

f(Xi)

f0(Xi)
dΠBn(f) ≤ exp(−2nε2

n) ⇐⇒ log

(∫ n∏
i=1

f(Xi)

f0(Xi)
dΠBn(f)

)
≤ −2nε2

n.

But,

log

(∫ n∏
i=1

f(Xi)

f0(Xi)
dΠBn(f)

)
≥
∫

log

(
n∏
i=1

f(Xi)

f0(Xi)

)
dΠBn(f)

=
n∑
i=1

∫
log

(
f(Xi)

f0(Xi)

)
dΠBn(f)



Vincent Rivoirard 61

and the right hand side is less that −2nε2
n if and only if

√
n

(
1

n

n∑
i=1

∫
log

(
f(Xi)

f0(Xi)

)
dΠBn(f)− Ef0

[∫
log

(
f(Xi)

f0(Xi)

)
dΠBn(f)

])

=
√
n

(
1

n

n∑
i=1

∫
log

(
f(Xi)

f0(Xi)

)
dΠBn(f) +

∫
K(f0, f) dΠBn(f)

)
≤ −2

√
nε2

n +
√
n

∫
K(f0, f) dΠBn(f)

and the last term is smaller than −
√
nε2

n. We obtain that, by denoting

Un =
1

n

n∑
i=1

∫
log

(
f(Xi)

f0(Xi)

)
dΠBn(f)

and by using the Bienaymé-Chebyshev inequality,

P0(Acn) ≤ P0

(√
n |Un − Ef0 [Un]| ≥

√
nε2

n

)
≤ varf0(

√
nUn)

nε4
n

≤
varf0

(∫
log
(
f(X1)
f0(X1)

)
dΠBn(f)

)
nε4

n

≤
Ef0
[(∫

log
(
f(X1)
f0(X1)

)
dΠBn(f)

)2
]

nε4
n

≤
Ef0
[∫

log2
(
f(X1)
f0(X1)

)
dΠBn(f)

]
nε4

n

=

∫
V (f0, f)1Bn(f) dΠn(f)

nε4
nΠn(Bn)

≤ 1

nε2
n

and we obtain that

lim
n→+∞

P0(Acn) = 0,

which proves the lemma.

We denote

Vn = {P : d(P, P0) ≥Mεn}

and we prove that

Ef0 [Πn(P : d(P, P0) ≥Mεn|Xn)] = Ef0 [Πn(Vn|Xn)]→ 0.
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We have

Ef0 [Πn(Vn|Xn)] = Ef0 [1AnΠn(Vn|Xn)] + Ef0 [1AcnΠn(Vn|Xn)]

≤ Ef0 [1AnΠn(Vn|Xn)φn(Xn)] + Ef0 [1AnΠn(Vn|Xn)(1− φn(Xn))] + P0(Acn)

≤ Ef0 [φn(Xn)] + Ef0 [1AnΠn(Vn|Xn)(1− φn(Xn))] + P0(Acn). (3.4)

By using Lemma 3.5, for n large enough,

Ef0 [φn(Xn)] ≤ exp(nε2
n)× exp(−KnM2ε2

n)

1− exp(−Knε2
n)

≤ 2 exp(−(KM2 − 1)nε2
n)

≤ 2 exp(−Knε2
n),

for M >
√

K+1
K
. Now,

Ef0 [1AnΠn(Vn|Xn)(1− φn(Xn))]

= Ef0
[
1An(1− φn(Xn))

∫
1{P : d(P,P0)>Mεn}

∏n
i=1 f(Xi) dΠn(f)∫ ∏n

i=1 f(Xi) dΠn(f)

]
= Ef0

[
1An(1− φn(Xn))

∫
1{P : d(P,P0)>Mεn}

∏n
i=1

f(Xi)
f0(Xi)

dΠn(f)∫ ∏n
i=1

f(Xi)
f0(Xi)

dΠn(f)

]

= Ef0
[
1An(1− φn(Xn))

Nn(Xn)

Dn(Xn)

]
,

with

Nn(Xn) =

∫
P

1{P : d(P,P0)>Mεn}

n∏
i=1

f(Xi)

f0(Xi)
dΠn(f), Dn(Xn) =

∫
P

n∏
i=1

f(Xi)

f0(Xi)
dΠn(f).

We lower bound Dn(Xn) on An:

Dn(Xn) ≥ Πn(Bn)

∫ n∏
i=1

f(Xi)

f0(Xi)

1Bn(f) dΠn(f)

Πn(Bn)

= Πn(Bn)

∫ n∏
i=1

f(Xi)

f0(Xi)
dΠBn(f)

≥ Πn(Bn) exp(−2nε2
n).

We finally upper bound

Ñn := Ef0 [1An(1− φn(Xn))Nn(Xn)] .
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We have

Ñn = Ef0

[
1An(1− φn(Xn))

∫
1{P : d(P,P0)>Mεn}

n∏
i=1

f(Xi)

f0(Xi)
dΠn(f)

]

≤ Ef0

[∫
P\Pn

n∏
i=1

f(Xi)

f0(Xi)
dΠn(f)

]

+ Ef0

[
1An(1− φn(Xn))

∫
Pn

1{P : d(P,P0)>Mεn}

n∏
i=1

f(Xi)

f0(Xi)
dΠn(f)

]
≤
∫
P\Pn

dΠn(f) +

∫
Pn

Ef [(1− φn(Xn))] 1{P : d(P,P0)>Mεn} dΠn(f)

≤ Πn(P \ Pn) + exp(−KnM2ε2
n)

≤ 2 exp(−nε2
n(C + 3)),

if M >
√

C+3
K
. Finally,

Ef0 [1AnΠn(Vn|Xn)(1− φn(Xn))] ≤ 2 exp(−nε2
n(C + 3))×

(
Πn(Bn) exp(−2nε2

n)
)−1

≤ 2 exp(−nε2
n).

Each term of (3.4) goes to 0 when n goes to +∞. This ends the proof of Theorem 3.6

Remark 3.4. Conditions (a) and (c) are the essential ones. Condition (a) requires that
the model Pn is not too big. It ensures the existence of certain tests and can be replaced
by a testing condition (see Lemma 3.5). Condition (c) requires that the prior measures
put a sufficient amount of mass near the true measure P0. Here ”near” means that the
closeness is measured through a combination of the Kullback-Leibler divergence of f0 and

f and the L2(f0)-norm of log
(
f0(·)
f(·)

)
. Condition (b) says that Pn is almost the support of

the prior.

Remark 3.5. The proof of Theorem 3.6 shows that for condition (b), we can replace the
term C + 3 by any constant larger than C + 2.

Example 3.1. Suppose that P consists of all measures with densities whose square-root√
f belongs to a ball of the Hölder class Cα[0; 1] for some α > 0. It is well-known that for

all ε > 0, logD(ε,P , d) ≈ ε−1/α. We take εn proportional to n−α/(1+2α). Therefore

nε2
n ≈ n1/(1+2α) ≈ ε−1/α

n .

Then (a) is satisfied since
logD(εn,P , d) ≤ nε2

n.

By taking Pn = P, (b) is satisfied. It remains to choose Πn so that (c) is satisfied. Observe
that εn = n−α/(1+2α) is the optimal rate of convergence on Cα[0; 1].
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3.3.2 Applications: rates of convergence for frequentist estima-
tors

We now consider P̂n, the posterior mean estimator of Proposition 3.1, defined as

P̂n(A) :=

∫
P (A) dΠn(P |X1, . . . , Xn), ∀A ∈ B,

that achieves the following rate of convergence.

Theorem 3.7. Under assumptions of Theorem 3.6,

H2(P̂n, P0) ≤M2ε2
n + Πn(P : H(P, P0) ≥Mεn|Xn)

and
‖P̂n − P0‖TV ≤Mεn + Πn(P : H(P, P0) ≥Mεn|Xn).

Proof. We recall that Hellinger and total variation metrics are bounded metrics with
bound 1. Since for any probability measures P and Q,

H2(P,Q) = 2− 2

∫ √
dP

dµ

dQ

dµ
dµ

and the function x 7−→
√
x is concave on R+, the function P 7−→ H2(P,Q) is convex and,

with
BMεn = {P : H(P, P0) ≤Mεn},

we obtain

H2(P̂n, P0) = H2

(∫
P (·) dΠn(P |X1, . . . , Xn), P0

)
≤
∫
H2(P, P0) dΠn(P |X1, . . . , Xn)

≤
∫
BMεn

H2(P, P0) dΠn(P |X1, . . . , Xn) +

∫
BcMεn

H2(P, P0) dΠn(P |X1, . . . , Xn)

≤M2ε2
n + Πn(P : H(P, P0) ≥Mεn|Xn).

We use similar arguments for the total variation metric combined with the convexity of
P 7−→ ‖P −Q‖TV .

Thus the rate of posterior contraction is transferred to the posterior mean provided
the posterior probability of the complement of the Mεn-ball around P0 converges to zero
sufficiently fast. This is usually the case; in fact, the contraction of the posterior is
typically exponentially fast (see the proof of Theorem 3.6).

However, we can construct an estimate which achieves the rate εn without previous
or further assumptions, still by using d being either the Hellinger or the total variation
metric.
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Theorem 3.8. We consider assumptions of Theorem 3.6. Let (δn)n∈N∗ a sequence of
positive real numbers such that δn → 0 when n → +∞. We set for any P ∈ P and any
r > 0,

B(P, r) = {Q ∈ P : d(P,Q) ≤ r} .
Then, for any n ∈ N∗, we set P̂n such that

r̂n(P̂n) ≤ inf
P∈P

r̂n(P ) + δn

with

r̂n(P ) := inf

{
r > 0 : Πn(B(P, r)|X1, . . . , Xn) ≥ 1

2

}
.

Then,

P0

(
d(P̂n, P0) ≤ 2Mεn + δn

)
n→+∞−→ 1.

Remark 3.6. We introduce (δn)n∈N∗ since infP∈P r̂n(P ) may be non achieved. Of course,
we can take δn = Mεn.

Proof. Let n and P be fixed. Using the definition of r̂n(P ), there exists a decreasing
sequence (rq)q∈N∗ such that limq→+∞ rq = r̂n(P ) and Πn(B(P, rq)|X1, . . . , Xn) ≥ 1

2
. Since

B(P, r̂n(P )) =
⋂
q∈N∗

B(P, rq),

then

Πn(B(P, r̂n(P ))|X1, . . . , Xn) = lim
q→+∞

Πn(B(P, rq)|X1, . . . , Xn) ≥ 1

2
. (3.5)

We now consider P̂n. We have

r̂n(P̂n) ≤ inf
P∈P

r̂n(P ) + δn ≤ r̂n(P0) + δn.

But Theorem 3.6 gives

P0

(
Πn(B(P0,Mεn)|X1, . . . , Xn)

n→+∞−→ 1)
n→+∞−→ 1, (3.6)

which yields

P0

(
Πn(B(P0,Mεn)|X1, . . . , Xn) ≥ 1/2)

n→+∞−→ 1

and
P0

(
r̂n(P0) ≤Mεn

)
n→+∞−→ 1.

Finally

P0

(
r̂n(P̂n) ≤Mεn + δn

)
n→+∞−→ 1.
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By using (3.5) and (3.6), we have

P0

({
Πn(B(P̂n, r̂n(P̂n))|X1, . . . , Xn) ≥ 1

2

}
∩
{

Πn(B(P0,Mεn)|X1, . . . , Xn)
n→+∞−→ 1

})
n→+∞−→ 1.

It implies that

P0

(
∃P ∈ B(P̂n, r̂n(P̂n)) ∩B(P0,Mεn)

)
n→+∞−→ 1.

Since
d(P̂n, P0) ≤ d(P̂n, P ) + d(P, P0),

we finally obtain

P0

(
d(P̂n, P0) ≤ r̂n(P̂n) +Mεn

)
n→+∞−→ 1

and

P0

(
d(P̂n, P0) ≤ 2Mεn + δn

)
n→+∞−→ 1.
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