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Chapter 1

Wavelets and statistics

1.1 Continuous wavelet transform

We consider a function ψ : R 7→ R such that ψ ∈ L1(R) ∩ L2(R),∫
R
ψ(t)dt = 0 and ∥ψ∥2 = 1. (1.1)

In the sequel, the function ψ will be calledmother wavelet or justwavelet or analyzing
function. We build a family of time-frequency atoms by translating ψ at positions u and
by dilating it as scale s, for any u ∈ R and s > 0. We set

ψu,s(t) =
1√
s
ψ

(
t− u

s

)
, t ∈ R.

We can easily check that ∫
R
ψu,s(t)dt = 0 and ∥ψu,s∥2 = 1.

We set:

Definition 1.1. The continuous wavelet transform of a signal f ∈ L2(R) at time
u ∈ R and s > 0 is defined by

W [f ](u, s) =

∫
R
f(t)ψu,s(t)dt.

The function W [f ] : R2 7→ R is called the continuous wavelet transform of f .

In the sequel, we denote for any f ∈ L2(R), f̂ the Fourier transform of f :

f̂(ξ) :=

∫
R
e−itξf(t)dt, ξ ∈ R.

5



6 High-dimensional statistics

Then, observe that (1.1) implies ψ̂(0) = 0. Next remarks show basic elements for time
and frequency analysis of a signal f .

Remark 1.1. If ψ is well-localized around 0, it will be also the case for ψu,s around u
and

W [f ](u, s) ̸= 0 ⇒ f ̸= 0 in the neighborhood of u.

Remark 1.2. If we set for any t ∈ R, ψ̃(t) = ψ(−t) and ψ̃u,s(t) = ψu,s(−t), then

W [f ](u, s) = [f ⋆ ψ̃0,s](u),

where ⋆ denotes the standard convolution product. Then

Ŵ [f ](ξ, s) :=

∫
R
W [f ](u, s)e−iuξdu = f̂(ξ)

√
sψ̂(−sξ).

Therefore,

Ŵ [f ](ξ, s) ̸= 0 ⇒ f̂(ξ) ̸= 0.

We can reconstruct a signal from the knowledge of its continuous wavelet transform.

Theorem 1.1. We assume that ψ satisfies

Cψ :=

∫ +∞

0

|ψ̂(w)|2

w
dw <∞.

Then, any function f ∈ L2(R) satisfies

f(t) =
1

Cψ

∫ +∞

0

∫
R
W [f ](u, s)

1√
s
ψ

(
t− u

s

)
du
ds

s2
.

Proof. We denote

b(t) :=
1

Cψ

∫ +∞

0

∫
R
W [f ](u, s)

1√
s
ψ

(
t− u

s

)
du
ds

s2
=

1

Cψ

∫ +∞

0

[f ⋆ ψ̃0,s ⋆ ψ0,s](t)
ds

s2

and we show that for any ξ ∈ R,
f̂(ξ) = b̂(ξ).

Remark 1.3. The condition Cψ < ∞ implies
∫
ψ(t)dt = ψ̂(0) = 0. So, (1.1) is a

necessary condition for Theorem 1.1.

Example 1.1. If for t ∈ R, ψ(t) = 1√
2π
(1− t2)e−t

2/2, then

ψ̂(0) = 0 and ψ̂(ξ) = ξ2e−ξ
2/2.
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1.2 Orthogonal wavelets

The continuous wavelet transform is redundant since we can show that we don’t need
all (W [f ](u, s))u∈R,s>0 to reconstruct f . In this paragraph, we explain how to subsample
this redundant transformation in an optimal way. More precisely, we wish to keep the
minimal number of wavelet coefficients to ensure the reconstruction of the signal. The
idea is to determine ψ such that the family of functions (ψk2j ,2j)j∈Z,k∈Z is an orthonormal
basis of L2(R).

Change of notation: From now on, for j ∈ Z and k ∈ Z, we denote

ψjk(t) :=
1√
2j
ψ

(
t− k2j

2j

)
= 2−j/2ψ(2−jt− k).

The goal is to determine conditions on ψ such that (ψjk)j∈Z,k∈Z is an orthonormal basis
of L2(R), ie

- ∀ (j, k) ∈ Z2, ∀ (j′, k′) ∈ Z2,

⟨ψjk, ψj′,k′⟩ =
{

1 if (j, k) = (j′, k′)
0 if (j, k) ̸= (j′, k′)

- ∀ f ∈ L2(R),
f =

∑
j∈Z

∑
k∈Z

⟨f, ψjk⟩ψjk.

We have denoted ⟨·, ·⟩ the scalar product associated with the L2-norm. We shall need the
notion of multiresolution analysis.

1.2.1 Multiresolution analysis

We start with the definition of a multiresolution analysis.

Definition 1.2. A multiresolution analysis is a sequence of nested vector spaces

{0} ⊂ · · · ⊂ Vj+1 ⊂ Vj ⊂ Vj−1 ⊂ · · · ⊂ L2(R)

such that, for any j ∈ Z, if PVj is the orthogonal projection on Vj, for any f ∈ L2(R),

1. ∥PVjf − f∥2
j→−∞−→ 0

2. ∥PVjf∥2
j→+∞−→ 0

3. f ∈ Vj ⇐⇒ x 7→ f(x/2) ∈ Vj+1 for any j ∈ Z
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4. f ∈ Vj ⇐⇒ x 7→ f(x+ 2jk) ∈ Vj for any k ∈ Z

5. ∃ϕ such that (ϕk)k∈Z is an orthonormal basis of V0 with for any x ∈ R, ϕk(x) =
ϕ(x− k).

The previous definition can be interpreted as follows. In our setting, the resolution
means the quantity of information which can be used to represent a signal. In some sense,
the resolution is the inverse of the scale which describes the sharpness of visible details
of a function for a given resolution. So, the space V−j represents the set of functions of
maximal resolution equal to 2j (equivalently at the scale 2−j). The larger j, the sharper
the details for representing a signal.
The dilation of a function by the factor 2 allows to increase details by a factor 2, which
can be expressed by the fact that we can represent it in a space of weaker resolution.
Finally, in the previous definition, ϕ is the scaling function (or father wavelet), which
is the main brick to build a multiresolution analysis.

Example 1.2. The first example is provided by piecewise constant functions, where for
any j ∈ Z,

Vj =
{
f ∈ L2(R) : f(t) = f(2jk) for t ∈ [2jk, 2j(k + 1))

}
.

If we take ϕ = 1[0,1), V = (Vj)j∈Z is a multiresolution analysis.

Example 1.3. The second example is provided by

Vj =
{
f ∈ L2(R) : supp(f̂) ⊂ [−2−jπ, 2−jπ)

}
.

If we take for t ∈ R, ϕ(t) = sin(πt)/(πt), V = (Vj)j∈Z is a multiresolution analysis. See
Exam 2020-2021.

1.2.2 Study of the scaling function

Definition 1.3. Let ϕ ∈ L1(R) a scaling function associated with a multiresolution anal-
ysis V = (Vj)j∈Z. We set ∀ j ∈ Z and ∀ k ∈ Z,

ϕjk(t) =
1√
2j
ϕ

(
t− k2j

2j

)
= 2−j/2ϕ(2−jt− k), t ∈ R.

Remark 1.4. For any k ∈ Z, ϕk = ϕ0k.

We then prove the following proposition.

Proposition 1.1. Let j ∈ Z be fixed. Then, (ϕjk)k∈Z is an orthonormal basis of Vj. The
orthogonal projection on Vj is

PVjf =
∑
k∈Z

⟨f, ϕjk⟩ϕjk.
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Proof. We successively prove:

1. ⟨ϕjk, ϕjk′⟩ = 1{k=k′}, for any (k, k′) ∈ Z2

2. For any f ∈ Vj, ∃ (ak)k∈Z such that

f(x) =
∑
k∈Z

akϕjk(x), x ∈ R.

Remark 1.5. Remember that PVjf = argming∈Vj ∥f − g∥2.
Using orthonormality of the ϕjk’s, we prove the following result.

Proposition 1.2. If ϕ ∈ L1(R) is a scaling function then its Fourier transform satisfies

- |ϕ̂(0)| = 1

-
∑

k∈Z |ϕ̂(w + 2kπ)|2 = 1, w ∈ R
Proof. For f a function chosen later, we set

gj(t) :=
√
2jf(2jt), t ∈ R.

Then, with ϕ̃(t) = ϕ(−t) for t ∈ R,
⟨f, ϕjk⟩ = [gj ⋆ ϕ̃](k)

and for ξ ∈ R,
P̂Vjf(ξ) =

√
2jϕ̂(ξ2j)

∑
k∈Z

[gj ⋆ ϕ̃](k)e
−iξk2j .

We then use the Poisson formula: If h ∈ L1(R) and ĥ is compactly supported,∑
k∈Z

h(k)e−ikw =
∑
k∈Z

ĥ(w + 2kπ).

This implies

P̂Vjf(ξ) =
√
2jϕ̂(ξ2j)

∑
k∈Z

ĝj(ξ2
j + 2kπ)̂̃ϕ(ξ2j + 2kπ).

Now, we take f̂(w) = 1[−π,π](w). So, if j < 0 and ξ ∈ [−π, π],

P̂Vjf(ξ) = |ϕ̂(ξ2j)|2.

Using ∥PVjf − f∥2
j→−∞−→ 0, we obtain∫ π

−π

∣∣∣1− |ϕ̂(ξ2j)|2
∣∣∣2 dξ j→−∞−→ 0

and finally |ϕ̂(0)| = 1.

For the second point, we apply the Poisson formula to h = ϕ⋆ϕ̃ and use the orthonormality
property of the functions ϕk’s.
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1.2.3 Conjugate mirror filter

We first express the decomposition of x 7→ ϕ(x/2) on the ϕk’s. Indeed, we have x 7→
ϕ(x/2) ∈ V1 ⊂ V0. So, for any x ∈ R,

ϕ(x/2) =
∑
k∈Z

⟨ϕ(·/2), ϕk⟩ϕk(x) =
√
2
∑
k∈Z

hkϕ(x− k),

by setting

hk =
1√
2

∫
R
ϕ
(x
2

)
ϕ(x− k)dx. (1.2)

Definition 1.4. The function k ∈ Z 7→ hk is called the conjugate mirror filter asso-
ciated with the function ϕ. The transfer function associated with h is

m0 : w 7−→ 1√
2

∑
k∈Z

hke
−ikw.

The following proposition provides the connections between ϕ and m0.

Proposition 1.3. We have

1. ϕ̂(2w) = ϕ̂(w)m0(w), w ∈ R

2. m0(0) = 1

3. |m0(w)|2 + |m0(w + π)|2 = 1, w ∈ R

Proof. The first point is obtained by computing the Fourier transform of

ϕ
(x
2

)
=

√
2
∑
k∈Z

hkϕ(x− k).

The second point is an easy consequence of the first one (since ϕ̂(0) ̸= 0). The third point
is proved by using∑

k∈Z

|ϕ̂(w/2 + kπ)|2|m0(w/2 + kπ)|2 =
∑
k∈Z

|ϕ̂(w + 2kπ)|2 = 1.

The previous introduced notions are very important for the building of wavelets and
for algorithmic aspects associated with wavelets.
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1.2.4 Wavelets

In this paragraph, we describe a construction of wavelets ψ starting from ϕ. We first
define Wj as the orthogonal complement of Vj in Vj−1:

Vj ⊕Wj = Vj−1.

We have the following theorem:

Theorem 1.2. Let h the conjugate mirror filter associated with a function ϕ. Let m0 is
the transfer function associated with h. We define the function g as

ĝ(w) = e−iwm0(w + π), w ∈ R.

We set

ψ̂(w) = ĝ
(w
2

)
ϕ̂
(w
2

)
w ∈ R.

We set for any j ∈ Z and any k ∈ Z

ψjk(t) =
1√
2j
ψ

(
t− k2j

2j

)
= 2−j/2ψ(2−jt− k), t ∈ R.

Then, for any j ∈ Z, (ψjk)k∈Z is an orthonormal basis of Wj. Furthermore, (ψjk)j∈Z,k∈Z
is an orthonormal basis of L2(R).

Proof. The proof is quite technical and very long. See Exam 2018-2019.

This result shows that the goal specified at the beginning of this section is achieved.

Remark 1.6. Observe that∫
ψ(t)dt = ψ̂(0) = ĝ(0)ϕ̂(0) = m0(π)ϕ̂(0) = 0.

Remark 1.7. The function x 7→ ψ(x/2) ∈ W1 ⊂ V0, so there exists (λk)k∈Z such that we
can write for any x ∈ R,

ψ(x/2) =
√
2
∑
k∈Z

λkϕ(x− k).

It can be proved that for any k ∈ Z,

λk = (−1)k+1h1−k.

See Exercise 1 of Exam 2022-2023. The sequence (λk)k∈Z is the conjugate mirror filter
associated with ψ.
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1.2.5 Representation of a signal on a wavelet basis

We have built Wj such that Vj = Vj+1 ⊕Wj+1. So, for any j0 > j,

Vj = Vj0 ⊕
j0
j′=j+1 Wj′ .

Therefore, for any f ∈ L2(R),

PVjf = PVj0f +

j0∑
j′=j+1

PWj′
f

=
∑
k∈Z

⟨ϕj0k, f⟩ϕj0k +
j0∑

j′=j+1

∑
k∈Z

⟨ψj′k, f⟩ψj′k.

We denote
αj0k = ⟨ϕj0k, f⟩ and βj′k = ⟨ψj′k, f⟩.

Then, with j → −∞, since PVjf → f , we have:

f =
∑
k∈Z

αj0kϕj0k +

j0∑
j′=−∞

∑
k∈Z

βj′kψj′k.

This representation is the wavelet decomposition of f . The spaces Vj are called approx-
imation spaces. The spaces Wj are called detail spaces.

Daubechies’ theory allows to take ϕ and ψ with some nice properties:

- regular (i.e. belonging to some Hölder spaces Hs, s > 0)

- compactly supported

- with vanishing moments: for some N ∈ N∗,

-
∫
ϕ(t)tℓdt = 0, ℓ = 1, . . . , N

-
∫
ψ(t)tℓdt = 0, ℓ = 0, . . . , N

The size of the support, s and N are connected.

Observe that once ϕ is fixed, the theory is complete. The building of ϕ relies on the
relations satisfied for any w ∈ R :

ϕ̂(2w) = ϕ̂(w)m0(w), m0(w) =
1√
2

∑
k∈Z

hke
−ikw.

By iterating,

ϕ̂(w) = ϕ̂(0)
+∞∏
ℓ=1

m0

(w
2ℓ

)
=

+∞∏
ℓ=1

m0

(w
2ℓ

)
.

So, once the conjugate mirror filter is fixed, the theory is complete. Figure 1.1 provides
some very famous examples of father and mother wavelets with their associated filters.
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Figure 1.1: Examples of father and mother wavelets with their associated filters.



14 High-dimensional statistics

1.2.6 Fast wavelet transform

We now present an algorithm that allows to compute all wavelet coefficients once we
have the approximation wavelets at a given level j0, namely the (αj0,k)k’s. We use the
discrete convolution, denoted ⋆d, between two sequence of real number a = (ak)k∈Z and
b = (bk)k∈Z:

[a ⋆d b](k) :=
∑
ℓ∈Z

aℓbk−ℓ, k ∈ Z.

We have the following result.

Theorem 1.3. We consider h the conjugate mirror filter associated with ϕ and we set
for k ∈ Z, h̃k = h−k. We then have for any j ∈ Z and any k ∈ Z,

αj+1k = [αj· ⋆d h̃](2k).

Similarly,
βj+1k = [αj· ⋆d λ̃](2k),

where λ̃k = λ−k and (λk)k is defined in Remark 1.7.

Proof. Let j ∈ Z. Since for any k ∈ Z, ϕj+1k ∈ Vj+1 ⊂ Vj, we can decompose ϕj+1k on
the ϕjℓ’s:

ϕj+1k =
∑
ℓ∈Z

⟨ϕj+1k, ϕjℓ⟩ϕjℓ

with

⟨ϕj+1k, ϕjℓ⟩ :=
∫
R

1√
2j+1

ϕ(2−(j+1)t− k)
1√
2j
ϕ(2−jt− ℓ)dt

=
1√
2

∫
R
ϕ

(
t− 2k

2

)
ϕ(t− ℓ)dt

=
1√
2

∫
R
ϕ

(
t

2

)
ϕ(t− (ℓ− 2k))dt

= hℓ−2k,

see (1.2). Therefore,

ϕj+1k =
∑
ℓ∈Z

hℓ−2kϕjℓ

and
αj+1k = ⟨f, ϕj+1k⟩ =

∑
ℓ∈Z

hℓ−2k⟨f, ϕjℓ⟩ =
∑
ℓ∈Z

hℓ−2kαjℓ = [αj· ⋆d h̃](2k).

The second point is proved by using similar arguments and by replacing ϕj+1k with ψj+1k.
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We obtain a converse result.

Theorem 1.4. We use the same notations as for Theorem 1.3. Then, we have for any
j ∈ Z and any k ∈ Z,

αjk =
∑
ℓ∈Z

hk−2ℓαj+1ℓ +
∑
ℓ∈Z

λk−2ℓβj+1ℓ.

Proof. To prove the result, we decompose ϕjk ∈ Vj = Vj+1 ⊕Wj+1 and we obtain

ϕjk =
∑
ℓ∈Z

⟨ϕjk, ϕj+1ℓ⟩ϕj+1ℓ +
∑
ℓ∈Z

⟨ϕjk, ψj+1ℓ⟩ψj+1ℓ

=
∑
ℓ∈Z

hk−2ℓϕj+1ℓ +
∑
ℓ∈Z

λk−2ℓψj+1ℓ,

see the proof of Theorem 1.3. Then, taking the scalar product with f , we obtain the
result.

Discrete convolutions can be computed very quickly. This is another reason for the
popularity of wavelets.

1.3 Numerical illustrations of wavelets

Some illustrations of what wavelets can offer in practice can be found on
https://www.ceremade.dauphine.fr/~rivoirar/Cours-Ondelettes.pdf

1.4 Estimation of a signal decomposed on a wavelet

basis

In the sequel, we modify the notation and replace j with −j.

1.4.1 Nonparametric regression model

We assume that we observe y = (Y1, . . . , Yn)
T such that

Yi = f(ti) + εi, i = 1, . . . , n, (1.3)

where f is the signal to be estimated, the εi’s are i.i.d. such that E[ε1] = 0, var(ε1) = σ2,
with σ2 > 0 assumed to be known. We assume that f is compactly supported and, without
loss of generality, we assume that supp(f) ⊂ [0, 1]. In the previous nonparametric

https://www.ceremade.dauphine.fr/~rivoirar/Cours-Ondelettes.pdf
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regression model, we assume that ti = i/n, meaning that observations are equispaced.
We decompose f on a wavelet basis (we have set j0 = 0):

f =
∑
k∈Z

αkϕk +
+∞∑
j=0

∑
k∈Z

βjkψjk,

with
αk = ⟨f, ϕk⟩, βjk = ⟨f, ψjk⟩.

With the change of notation, for any x ∈ R,

ϕk(x) = ϕ(x− k), ψjk(x) = 2
j
2ψ(2jx− k).

Estimating f is equivalent to estimating the αk’s and the βjk’s.

Remark 1.8. If ϕ and ψ are compactly supported with support included into [−A;A],
with A > 0, then ϕk is supported by [k − A; k + A] and ψjk is supported by Ijk :=
[2−j(k − A); 2−j(k + A)]. Therefore if k < −A or k > 2j + A, then βjk = 0. We have no
more than 2j + 2A+ 1 non-zero wavelet coefficients to estimate.

The regression model is ”equivalent” to a white noise model where we observe{
X−1k = αk +

σ√
n
z−1k k ∈ Z

Xjk = βjk +
σ√
n
zjk j ≥ 0, k ∈ Z (1.4)

where the zjk’s are i.i.d. N (0, 1). Indeed, if n = 2J+1 one may construct an n-by-n
orthogonal matrix W , the discrete wavelet transform matrix. This matrix yields a vector
w of the discrete wavelet coefficients of y via

w = Wy

and because the matrix is orthogonal we have the inversion formula y = WTw. The
vector w has n = 2J+1 elements. It is convenient to index dyadically the rows of W . By
denoting Wjk(i) the element of row (j, k) and column i of W , we can prove the following
approximation:

√
n×Wjk(i) ≈ 2

j
2ψ(2jti − k), ti =

i

n
.

Since ε := (ε1, . . . , εn)
T ∼ N (0, σ2In) and W is orthogonal,

z := σ−1Wε ∼ N (0, In).

We finally use

1√
n

n∑
i=1

f(ti)Wjk(i) ≈
1

n

n∑
i=1

f(ti)2
j
2ψ(2jti − k) ≈

∫
f(t)2

j
2ψ(2jt− k)dt = ⟨f, ψjk⟩.
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Setting

Xjk :=
1√
n

n∑
i=1

YiWjk(i),

using (1.3), we obtain

Xjk ≈ ⟨f, ψjk⟩+
σ√
n
zjk,

which approximately justifies (1.4).

1.4.2 Thresholding

We denote

Kj := {k : Ijk ∩ [0, 1] ̸= ∅} .

We only have to deal with the coefficients (αk)k∈K0 and (βjk)j≥0,k∈Kj
. We work with the

model

Xjk = βjk +
σ√
n
zjk, j ≥ −1, k ∈ Kj,

with β−1k = αk and K−1 = K0. For practical reasons, we only estimate a finite set of
wavelet coefficients. This set will have the form

Γ = {(j, k) : −1 ≤ j ≤ J, k ∈ Kj}

with J to be chosen. Considering that most of signals are sparse (ie. most of wavelet
coefficients are zero or negligible), the procedure is the following:

- If |Xjk| is small (namely |Xjk| smaller than a threshold), we estimate βjk by 0.

- If |Xjk| is large (namely |Xjk| larger than the threshold), we estimate βjk by Xjk.

From the mathematical point of view, we use the following procedure. We consider ηjk a
threshold (to be chosen later) and we set for any j and any k,

β̂jk = Xjk1{|Xjk|>ηjk}.

The estimate of f is then

f̂ =
J∑

j=−1

∑
k∈Kj

β̂jkψjk.

We set η−1k = 0. So, it remains to choose J and the ηjk’s for 0 ≤ j ≤ J and k ∈ Kj. To

study the theoretical performance of f̂ , we shall use the oracle approach. We set

β̃0
jk = cjkXjk, cjk ∈ {0, 1}
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and cjk non-random. The oracle approach will give us the ideal value for cjk. It may
depend on the signal. The ideal value for cjk will be the value that minimizes the ℓ2-risk
of β̃0

jk. The latter can be computed and we obtain

E
[
(β̃0

jk − βjk)
2
]
= c2jk

σ2

n
+ (1− cjk)

2β2
jk.

The ideal value for cjk ∈ {0, 1} is then

cjk = 1{
β2
jk≥

σ2

n

}.
Indeed, with this value, the risk of β̃0

jk, called the oracle risk of βjk, is minimum and

equal to min
(
σ2

n
, β2

jk

)
. The ”oracle estimator” is then

f̃ o =
∑
k∈K−1

X−1kϕk +
J∑
j=0

∑
k∈Kj

β̃ojkψjk

and the oracle risk is

E
[
∥f̃ o − f∥2

]
=
σ2

n
card(K−1) +

J∑
j=0

∑
k∈Kj

min

(
σ2

n
, β2

jk

)
+
∑
j>J

∑
k∈Kj

β2
jk.

The goal is to find ηjk such that the true estimate f̂ has (almost) the same risk. This is
given by the next theorem.

Theorem 1.5. We choose

ηjk = σ

√
2γ log n

n
,

with γ a constant larger than 1 and such that

card(Γ) ≤ n
γ
8 .

In this case,

E
[
∥f̂ − f∥2

]
≤ σ2

n
card(K−1) + C1

J∑
j=−1

∑
k∈Kj

min

(
σ2 log n

n
, β2

jk

)
+
∑
j>J

∑
k∈Kj

β2
jk +

C2

n
,

where C1 and C2 are two constants.

Proof. We start with the following lemma.
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Lemma 1.1. If Z ∼ N (0, 1), then for any x > 0,

P(|Z| > x) ≤ 2

x
√
2π

exp

(
−x

2

2

)
.

Proof. We just use:

P(|Z| > x) =
2√
2π

∫ +∞

x

exp

(
−t

2

2

)
dt

≤ 2√
2π

∫ +∞

x

t

x
exp

(
−t

2

2

)
dt =

2

x
√
2π

exp

(
−x

2

2

)
.

We can now prove the theorem:

E
[
∥f̂ − f∥2

]
=
∑
k∈K−1

E
[
(X−1k − β−1k)

2
]
+

J∑
j=0

∑
k∈Kj

E
[
(β̂jk − βjk)

2
]
+
∑
j>J

∑
k∈Kj

β2
jk

=
σ2

n
card(K−1) +

J∑
j=0

∑
k∈Kj

E
[
(β̂jk − βjk)

2
]
+
∑
j>J

∑
k∈Kj

β2
jk.

So, it remains to study E
[
(β̂jk − βjk)

2
]
. We can prove that

E
[
(β̂jk − βjk)

2
]
≤ min

(
σ2 log n

n
, β2

jk

)
.

See Exam 2019-2020.
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Chapter 2

Variable selection

We study the problem of variable selection in the linear regression setting.

2.1 Introduction

Why linear regression?

1. It models various concrete situations

2. Is is simple to use from the mathematical point of view

3. It allows to introduce and to present new methodologies

Definition 2.1. Let Y = (Y1, . . . , Yn)
T ∈ Rn a vector of observations. We say that Y

obeys a linear regression model when

Y = Xβ∗ + ε,

where

- X is a known n× p-matrix

- ε ∈ Rn such that its components εi are centered and i.i.d.

- β∗ ∈ Rp is unknown

We say that the linear model is gaussian when Y ∼ N (Xβ∗, σ2In), where σ
2 := var(ε1).

The terminology is the following:

- Xj, the jth column of X, is an explanatory variable or a predictor

- Y is the response variable

21
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- ε is the error vector

We can consider 3 statistical problems:

- the estimation problem: Estimate β∗

- the prediction problem: Estimate Xβ∗

- Selection problem: Determine non-zero coordinates of β∗

2.2 Classical estimation

We still denote ∥ ·∥ the classical euclidian norm. We denote PX the orthogonal projection
on Im(X).

Definition 2.2. We denote β̂ the ordinary least squares estimate of β∗: β̂ is the vector
of Rp such that

β̂ := arg min
β∈Rp

∥Y −Xβ∥2.

Proposition 2.1. If X is one to one (injective) then we have

β̂ = (XTX)−1XTY.

Proof. Since X is one to one, XTX is invertible. When β describes Rp, Xβ describes
Im(X). So, Xβ̂ is the orthogonal projection of Y on Im(X) and

Xβ̂ = PXY = X(XTX)−1XTY.

Since X is one to one, we get the result.

Remark 2.1. Since E[ε] = 0, E[β̂] = β∗ and since var(ε) = σ2In, var(β̂) = σ2(XTX)−1.

Definition 2.3. The vector of residuals is given by

ε̂ = Y − Ŷ , Ŷ = Xβ̂ = PXY.

If PX⊥ = In − PX is the projection matrix on Im(X)⊥, then ε̂ = PX⊥Y .

Remark 2.2. If X is one to one, E[ε̂] = 0 and

var(ε̂) = σ2PX⊥ , cov(ε̂, Ŷ ) = 0.

Indeed,
cov(ε̂, Ŷ ) = E[(PX⊥(Y − E[Y ]))T (PX(Y − E[Y ])]

and we use (In − PX)PX = 0
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We shall use the following lemma.

Lemma 2.1. For any deterministic matrix A with n columns,

E[∥Aε∥2] = σ2Tr(AAT ).

Proof.

E[∥Aε∥2] = E[(Aε)T (Aε)] = E[Tr((Aε)T (Aε))] = E[Tr((Aε)(Aε)T )] = σ2Tr(AAT ).

Definition 2.4. The natural estimate of σ2 is

σ̂2 =
∥ε̂∥2

n− p
=

∥Y − PXY ∥2

n− p
.

Proposition 2.2. If rank(X) = p, then E[σ̂2] = σ2.

Proof. We have
E[∥ε̂∥2] = σ2Tr(PX⊥) = σ2(n− p).

2.3 Inference in the Gaussian case

In this section, we still assume that rank(X) = p, E[ε] = 0 and var(ε) = σ2In but we
further assume that ε ∼ N (0, σ2In). The likelihood of the observations is then available.
We then obtain the following proposition.

Proposition 2.3. The maximum likelihood estimate of (β∗, σ2) is (β̂, (n− p)/n× σ̂2).

Proof. The proof is very classical.

Note that most of the time, we prefer to use, in practice, σ̂2, which is unbiased, to
estimate σ2. Of course, asymptotically, there is no difference between σ̂2 and (n− p)/n×
σ̂2). To establish the properties of (β̂, (n− p)/n× σ̂2), we now recall Cochran’s theorem.

Theorem 2.1. Let W ∼ N (m, Id) a Gaussian vector of Rd and E⊕E⊥ = Rd a decompo-
sition of Rd in two orthogonal vector spaces. Then, the vectors WE and WE⊥, orthogonal
projections of W on E and E⊥ respectively, are independent. Furthermore, the random
variables ∥WE∥2 and ∥WE⊥∥2 are independent and

∥WE∥2 ∼ χ2(dim(E), ∥mE∥2), ∥WE⊥∥2 ∼ χ2(d− dim(E), ∥mE⊥∥2).

where mE and mE⊥ are projections of m on E and E⊥ respectively.
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Remark 2.3. Cochran’s theorem can be extended to decompositions in more than 2 spaces.

From this theorem, we deduce:

Proposition 2.4. We have:

1. β̂ ∼ N (β∗, σ2(XTX)−1)

2. (n−p)σ̂2

σ2 ∼ χ2(n− p)

3. β̂ and σ̂2 are independent

Proof. The first point is obvious. For the second point, we write

(n− p)σ̂2

σ2
=

∥PX⊥Y ∥2

σ2
=
∥∥PX⊥(σ−1ε)

∥∥2 .
Finally, for the last point, we show:

β̂ = β∗ + (XTX)−1XTPXε.

Theorem 2.2. We fix two vector spaces V and W where W is a vector subspace of V.
We assume q = dim(W ) < p = dim(V ). We set

F =
∥PWY − PV Y ∥2/(p− q)

∥Y − PV Y ∥2/(n− p)

where PV Y is the orthogonal projection of Y on V and PWY is the orthogonal projection
of Y on W . When Xβ∗ ∈ W ⊂ V , then

F ∼ F(p− q, n− p).

We deduce the following corollary.

Corollary 2.1. We fix two vector spaces V and W where W is a vector subspace of V.
We assume q = dim(W ) < p = dim(V ). We set

F =
∥PWY − PV Y ∥2/(p− q)

∥Y − PV Y ∥2/(n− p)

where PV Y is the orthogonal projection of Y on V and PWY is the orthogonal projection
of Y on W . Then

ϕ(Y ) = 1{F>fp−q,n−p,1−α},

where fp−q,n−p,1−α is the quantile of order 1−α of the Fisher distribution with (p−q, n−p)
degrees of freedom, is a test of size α for

H0 : Xβ
∗ ∈ W versus H1 : Xβ

∗ ∈ V \W.
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2.4 Choosing a good model

We still consider the linear regression model

Y = Xβ∗ + ε.

We wish to select a good model, namely a good set of predictors to explain and predict
the response variable. We assume that p < n with n and p large. However, we are not
sure that all predictors Xj are necessary to predict Y . We wish to select only relevant
predictors. We assume that the first column of X is the vector with only 1 in each row
(i.e. X1 is the intercept).

Remark 2.4. Sometimes, predictors are called variables.

In the sequel, we describe several methods to select a set of variables, called model.

Definition 2.5. A model m will denote in the sequel a subset of the set {1, . . . , p}. With
a slight abuse of notations, a model m may also denote the variables Xj for j ∈ m.

It is often easy to choose between two given models, but the general question of
choosing a model is more intricate because, most of the time there is no natural order
between variables. Furthermore, when p is large the number of models is huge (2p in full
generality).

Notation: For any model m, we denote Pm the projection matrix on span(Xj, j ∈ m).
We also denote

RSS(m) = ∥Y − PmY ∥2

the residual sum of squares associated with the model m.
Observe that if Xm is the matrix with the columns (Xj)j∈m, then

Pm = Xm(X
T
mXm)

−1XT
m.

If X is one to one, Xm is also one to one. We now describe main methodologies to choose
a model. In the sequel, all models will contain the first column of X (ie the intercept),
which represents the mean response value when all predictors are set to 0.

2.4.1 Tests between models

We assume that ε ∼ N (0, σ2In). Let m0 a model, which contains the predictor I, with

I = (1, . . . , 1) ∈ Rp.

Let m1 such that m0 ⊂ m1 and card(m1) = card(m0) + 1. We denote k = card(m0).
Therefore, card(m1) = k + 1. We use the Fisher test to choose between m0 and m1. We
can use

F =
RSS(m0)− RSS(m1)

RSS(m1)
× (n− k − 1)
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or

F̃ =
RSS(m0)− RSS(m1)

σ̂2
,

with σ̂2, which is independent of the numerator. Observe that

∥Y − Pm0Y ∥2 = ∥Pm1Y − Pm0Y ∥2 + ∥Y − Pm1Y ∥2,

which is equivalent to

RSS(m0) = ∥Pm1Y − Pm0Y ∥2 +RSS(m1).

Using Corollary 2.1, we have:

Corollary 2.2. Since ε ∼ N (0, σ2In), statistics F and F̃ allow to test

H0 : m0 = true model vs H1 : m1 = true model.

• If F > f1,n−k−1,1−α then m1 is chosen with respect to m0 at risk α.

• If F̃ > f1,n−p,1−α then m1 is chosen with respect to m0 at risk α.

It’s hard to choose between F and F̃ . Mose of the time, we use F . Note that
assumption m0 ⊂ m1 is crucial.

2.4.2 R squared (R2)

We recall that the R2 (the R squared), or the coefficient of determination, is defined by

R2 =
∥Ŷ − Ȳ I∥2

∥Y − Ȳ I∥2
, Ŷ = PXY = Xβ̂, Ȳ =

1

n

n∑
i=1

Yi.

Definition 2.6. For any model m, we define

R2(m) =
∥PmY − Ȳ I∥2

∥Y − Ȳ I∥2
= 1− ∥Y − PmY ∥2

∥Y − Ȳ I∥2
= 1− RSS(m)

RSSp
,

with
RSSp = ∥Y − Ȳ I∥2.

We observe that, if m0 ⊂ m1,

R2(m1)−R2(m0) =
∥Pm0Y − Pm1Y ∥2

RSSp
≥ 0

and
R2(m1) ≥ R2(m0).

Most of the time, we don’t use the R2 as criterion since it will always increase with the
size of the model. However, when the R2 does not increase any longer, it can be useful.
It can be used for two different models with the same number of variables.
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2.4.3 The adjusted R2

To take into account the number of variables, we use the adjusted R2 defined by

Ra(m) := 1− RSS(m)

(n− |m|)
× (n− 1)

RSSp
,

where we have denoted |m| the cardinal of m. The selected model is the model which
maximizes m 7−→ Ra(m).

2.4.4 Mallows’ Cp

In this paragraph, we denote for any model m, Ŷm = PmY. We’re going to use Ŷm to
estimate Xβ∗ for some model m which has to be selected. For this purpose, we use the
Mallows’ Cp criterion.

Remark 2.5. In Section 3.1, we provide more arguments for the use of Ŷm, in particular
in the Gaussian setting.

Definition 2.7. For any model m, the Mallows’ Cp associated with m is defined by

Cp(m) =
RSS(m)

σ̂2
− n+ 2|m|,

where |m| still denotes the cardinal of m.

The selected model is the model which minimizes m 7−→ Cp(m). We have:

Theorem 2.3. An unbiased estimate of the risk of Ŷm for estimating Xβ∗ is given by
Cp(m)× σ̂2. Indeed, we have:

E[Cp(m)× σ̂2] = E[∥Ŷm −Xβ∗∥2].

Proof. First observe that
E[∥Pmε∥2] = σ2|m|.

Then,

σ̂2Cp(m) = RSS(m) + (2|m| − n)σ̂2

= ∥Y − Ŷm∥2 + (2|m| − n)σ̂2.

And on the one hand, we have

E[Cp(m)× σ̂2] = E[∥(In − Pm)(Xβ
∗ + ε)∥2] + (2|m| − n)E[σ̂2]

= ∥(In − Pm)Xβ
∗∥2 + σ2(n− |m|) + σ2(2|m| − n)

= ∥(In − Pm)Xβ
∗∥2 + |m|σ2.
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and on the other hand,

E[∥Ŷm −Xβ∗∥2] = E[∥PmY −Xβ∗∥2]
= E[∥Pmε+ (Pm − In)Xβ

∗∥2

= ∥(In − Pm)Xβ
∗∥2 + E[∥Pmε∥2]

= ∥(In − Pm)Xβ
∗∥2 + |m|σ2

The previous result shows that when m is fixed, Cp(m) × σ̂2 is an unbiased estimate

of the mean squared error of Ŷm. So, if we wish to minimize

m 7−→ E[∥Ŷm −Xβ∗∥2],

then it is natural to minimize
m 7−→ Cp(m)× σ̂2,

which is equivalent to minimize
m 7−→ Cp(m).

This justifies the introduction of the Mallows’ Cp criterion. When we studied the classical
R2, we observed that when we add variables the RSS decreases. Therefore, adding the
term 2|m|σ̂2 is an alternative to the adjusted R2 to face with this problem.

Remark 2.6. The proof shows that for any m,

E[RSS(m)] = (n− |m|)σ2 + ∥(In − Pm)Xβ
∗∥2.

So, if the true model is included into m0, we have

Xβ∗ = Pm0Xβ
∗.

and
RSS(m0) ≈ E[RSS(m0)] = (n− |m0|)σ2 ≈ (n− |m0|)σ̂2.

And in this case,
Cp(m0) ≈ |m0|.

So, if we add useless variables to m0, Cp(m0) will increase. Furthermore, if we have
forgotten important variables

RSS(m0) ≈ E[RSS(m0)] = (n− |m0|)σ2 + C ≈ (n− |m0|)σ̂2 + C

with C > 0 and
Cp(m0) > |m0|.

So, we are naturally interested in models m0 such that Cp(m0) ≤ |m0|.
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2.4.5 AIC and BIC criteria

In the previous paragraph, we have only assumed that

rank(X) = p, E[ε] = 0, var(ε) = σ2In.

In addition, we assume now that ε ∼ N (0, σ2In). Therefore, we can compute the likeli-
hood. The log-likelihood is equal to

L(β, σ2) = −n
2
log(σ2)− n

2
log(2π)− 1

2σ2
∥Y −Xβ∥2.

Given a model m, the estimate β̂(m) maximizing L(β, σ2) such that β̂
(m)
j = 0 if j /∈ m is

such that ∥Y −Xβ∥2 is minimum. Therefore,

Xβ̂(m) = PmY

and

L(β̂(m), σ2) = −n
2
log(σ2)− n

2
log(2π)− 1

2σ2
RSS(m).

To maximize σ2 7−→ L(β̂(m), σ2), we derive the last expression and σ2 = 1
n
RSS(m) is the

maximizer. Then, the maximum of L given a model m is

L(m) := max
σ2∈R∗

+

L(β̂(m), σ2) = −n
2
log

(
RSS(m)

n

)
− n

2
log(2π)− n

2
.

Therefore, maximizing the likelihood is equivalent to minimizing the RSS. But minimizing
m 7−→ RSS(m) is not a good idea. So, we add a penalty and we minimize

m 7−→ −L(m) + penalty(m) =
n

2
log

(
RSS(m)

n

)
+ penalty(m) + Const.

For AIC, we take penalty(m) = |m|. For BIC, we take penalty(m) = log(n)
2

|m|.
Finally, the AIC procedure consists in minimizing

m 7−→ n

2
log(RSS(m)) + |m|.

The BIC procedure consists in minimizing

m 7−→ n log(RSS(m)) + log(n)|m|.

Note that if n > 7, then log(n) > 2. Therefore, models selected by BIC are smaller than
for AIC.
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2.4.6 Comparisons between criteria

We compare criteria in the case m0 ⊂ m1 with |m1| = |m0|+1. We study the case where
m0 is chosen instead of m1.

1. With the F -statistics (F̃ is less used), we approximate f1,n−|m0|−1,1−α by 4, which is
valid if α = 0.05 and n− |m0| − 1 ≥ 16. Therefore, m0 is chosen if

RSS(m0)− RSS(m1)

RSS(m1)
× (n− |m0| − 1) ≤ 4.

2. With the R2, m0 is never chosen.

3. With the adjusted R2,

R2
a(m0) ≥ R2

a(m1) ⇐⇒ RSS(m0)

n− |m0|
≤ RSS(m1)

n− |m0| − 1

⇐⇒ RSS(m0)− RSS(m1)

RSS(m1)
× (n− |m0| − 1) ≤ 1.

4. With the Mallows’ Cp,

Cp(m0) ≤ Cp(m1) ⇐⇒ RSS(m0)

σ̂2
≤ RSS(m1)

σ̂2
+ 2

⇐⇒ RSS(m0)− RSS(m1)

σ̂2
≤ 2

⇐⇒ RSS(m0)− RSS(m1)

RSS(m1)
× (n− |m0| − 1) ≤ 2,

if we can replace σ̂2 with RSS(m1)/(n− |m1|).

5. With AIC and BIC, then, setting f(n) = 2/n for AIC f(n) = log(n)/n for BIC, m0

will be selected

⇐⇒ log(RSS(m0))− log(RSS(m1)) ≤ f(n)

⇐⇒ RSS(m0)− RSS(m1)

RSS(m1)
× (n− |m0| − 1) ≤ (exp(f(n))− 1)× (n− |m0| − 1)

Asymptotically, it gives for AIC

RSS(m0)− RSS(m1)

RSS(m1)
× (n− |m0| − 1) ≤ 2

n
× (n− |m0| − 1)

and for BIC

RSS(m0)− RSS(m1)

RSS(m1)
× (n− |m0| − 1) ≤ log n

n
× (n− |m0| − 1).
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So, roughly speaking, each criterion is equivalent to

RSS(m0)− RSS(m1)

RSS(m1)
× (n− |m0| − 1) ≤ q,

with

1. q = 4 for the Fisher test

2. q = −∞ for the R2

3. q = 1 for the adjusted R2

4. q = 2 for the Mallows’ Cp

5. q = 2
n
× (n− |m0| − 1) for AIC

6. q = log(n)
n

× (n− |m0| − 1) for BIC

Then, BIC is the most favorable for m0 and the R2 is the most favorable for m1.

2.5 Step by step procedures

Minimizing or maximizing a criterion may be a difficult task when the number of variables
is large. Indeed, if we have p variables, we have 2p−1 different models (if each model
contains the intercept). When the exhaustive research is not possible (either because we
wish to use the Fisher test or because p is too large), we can use a step by step procedure
combined with one of the 6 previous procedures. The drawback is that we don’t test all
possible combinations. So, we are not sure to obtain a global extremum. We can use one
of the following methods.

1. Forward selection: At each step, a variable is added (the variable which has the
strongest impact (if we use a test, it corresponds to the smallest p-value)).

2. Backward selection: At each step, a variable is removed (the variable which has the
strongest impact (if we use a test, it corresponds to the largest p-value)).

3. Stepwise selection: Similar to forward selection, but at each step, we can question
each variable of the model according to the backward selection.

The intercept is always one of the variables. For each of these algorithms, we stop at a
p-value previously given or when the impact is not significative.
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Figure 2.1: 31 types of cars with their price (prix), their engine capacity (cylindrée), their
power (puissance), their weight (poids) and their consumption (consommation)

2.6 Illustrative example with R

We use the data file provided in Table 2.1.

2.6.1 Exhaustive selection of models

In this paragraph, we consider the problem of the model choice by using one of the
following methodologies: The R2, the adjusted R2, the Mallows’ Cp and the BIC. We use
the following lines.

# Model choice (exhaustive method)

library(leaps)

choix_modele=regsubsets(Consommation~Prix+Cylindree+Puissance+Poids,int=T,

nbest=1,nvmax=4,method="exhaustive",data=conso_voit)

resume=summary(choix_modele)
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print(resume)

quartz()

par(mfrow=c(2,2))

plot(choix_modele,scale="r2")

plot(choix_modele,scale="adjr2")

plot(choix_modele,scale="Cp")

plot(choix_modele,scale="bic")

par(mfrow=c(1,1))

We specify that nbest gives the number of models selected by dimension, nvmax the
maximum number of the selected variables (without intercept). Imposing int=T allows
to ensure that the intercept will be selected. We obtain following outputs.

Subset selection object

Call: regsubsets.formula(Consommation ~ Prix + Cylindree + Puissance +

Poids, int = T, nbest = 1, nvmax = 4, method = "exhaustive",

data = conso_voit)

4 Variables (and intercept)

Forced in Forced out

Prix FALSE FALSE

Cylindree FALSE FALSE

Puissance FALSE FALSE

Poids FALSE FALSE

1 subsets of each size up to 4

Selection Algorithm: exhaustive

Prix Cylindree Puissance Poids

1 ( 1 ) " " " " "*" " "

2 ( 1 ) " " " " "*" "*"

3 ( 1 ) "*" " " "*" "*"

4 ( 1 ) "*" "*" "*" "*"

We also obtain Figure 2.2 : All the methodologies, except R2, select a model with 3
variables (plus the intercept): Prix, Puissance and Poids. Note that except for Mallows’
Cp, the variable Prix is not strictly excluded from the best model.

2.6.2 Step by step approaches

We now illustrate the step by step approaches with the AIC criterion. We start with
stepwise selection.

# Model selection (step by step)

library(MASS)
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Figure 2.2: Models choice with R2, adjusted R2, Mallows’ Cp and BIC criterion for
Example 2.1.

step(lm(Consommation~1,data=conso_voit), Consommation~Prix+Cylindree+Puissance+Poids,

data=conso_voit, direction="both")

We obtain the following output.

Start: AIC=79.87

Consommation ~ 1

Df Sum of Sq RSS AIC

+ Puissance 1 346.79 35.35 8.071

+ Cylindree 1 338.37 43.77 14.692

+ Prix 1 303.45 78.69 32.878
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+ Poids 1 285.17 96.96 39.351

<none> 382.14 79.866

Step: AIC=8.07

Consommation ~ Puissance

Df Sum of Sq RSS AIC

+ Poids 1 14.27 21.08 -5.961

+ Cylindree 1 3.01 32.34 7.310

<none> 35.35 8.071

+ Prix 1 0.00 35.35 10.070

- Puissance 1 346.79 382.14 79.866

Step: AIC=-5.96

Consommation ~ Puissance + Poids

Df Sum of Sq RSS AIC

+ Prix 1 3.205 17.871 -9.074

<none> 21.077 -5.961

+ Cylindree 1 0.058 21.019 -4.046

- Poids 1 14.273 35.350 8.071

- Puissance 1 75.888 96.964 39.351

Step: AIC=-9.07

Consommation ~ Puissance + Poids + Prix

Df Sum of Sq RSS AIC

<none> 17.871 -9.0744

+ Cylindree 1 0.5065 17.365 -7.9657

- Prix 1 3.2053 21.077 -5.9605

- Puissance 1 3.9434 21.815 -4.8934

- Poids 1 17.4783 35.350 10.0704

Call:

lm(formula = Consommation ~ Puissance + Poids + Prix, data = conso_voit)

Coefficients:

(Intercept) Puissance Poids Prix

2.499e+00 2.013e-02 3.735e-03 1.852e-05

The alternative based on forward selection is the following.
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step(lm(Consommation~1,data=conso_voit), Consommation~Prix+Cylindree+Puissance+Poids,

data=conso_voit, direction="forward")

The output is then:

Start: AIC=79.87

Consommation ~ 1

Df Sum of Sq RSS AIC

+ Puissance 1 346.79 35.35 8.071

+ Cylindree 1 338.37 43.77 14.692

+ Prix 1 303.45 78.69 32.878

+ Poids 1 285.17 96.96 39.351

<none> 382.14 79.866

Step: AIC=8.07

Consommation ~ Puissance

Df Sum of Sq RSS AIC

+ Poids 1 14.2733 21.077 -5.9605

+ Cylindree 1 3.0114 32.339 7.3104

<none> 35.350 8.0706

+ Prix 1 0.0002 35.350 10.0704

Step: AIC=-5.96

Consommation ~ Puissance + Poids

Df Sum of Sq RSS AIC

+ Prix 1 3.2053 17.871 -9.0744

<none> 21.077 -5.9605

+ Cylindree 1 0.0580 21.019 -4.0460

Step: AIC=-9.07

Consommation ~ Puissance + Poids + Prix

Df Sum of Sq RSS AIC

<none> 17.871 -9.0744

+ Cylindree 1 0.50652 17.365 -7.9657

Call:

lm(formula = Consommation ~ Puissance + Poids + Prix, data = conso_voit)
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Coefficients:

(Intercept) Puissance Poids Prix

2.499e+00 2.013e-02 3.735e-03 1.852e-05

The alternative based on backward selection is the following.

step(reg,direction=’backward’)

The output is then:

Start: AIC=-7.97

Consommation ~ Prix + Cylindree + Puissance + Poids

Df Sum of Sq RSS AIC

- Cylindree 1 0.5065 17.871 -9.0744

<none> 17.365 -7.9657

- Prix 1 3.6537 21.019 -4.0460

- Puissance 1 4.1792 21.544 -3.2805

- Poids 1 14.9706 32.335 9.3075

Step: AIC=-9.07

Consommation ~ Prix + Puissance + Poids

Df Sum of Sq RSS AIC

<none> 17.871 -9.0744

- Prix 1 3.2053 21.077 -5.9605

- Puissance 1 3.9434 21.815 -4.8934

- Poids 1 17.4783 35.350 10.0704

Call:

lm(formula = Consommation ~ Prix + Puissance + Poids, data = conso_voit)

Coefficients:

(Intercept) Prix Puissance Poids

2.499e+00 1.852e-05 2.013e-02 3.735e-03

For backward selection we can also use the function drop1. All the step by step approaches
give the same results, which is coherent with the exhaustive approach. We conclude that
3 variables have to be considered to explain the variable Consommation: Prix, Puissance
and Poids.
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Chapter 3

Model selection

3.1 Models and oracle

We still consider the problem of linear regression

Y = Xβ∗ + ε,

with Y = (Y1, . . . , Yn)
T , X = [X1, . . . , Xp]. We denote f ∗ = Xβ∗ and we assume that

ε ∼ N (0, σ2In), with σ
2 assumed to be known. We also assume that there exists a (small)

subset m∗ of {1, 2, . . . , p} such that ∀ j /∈ m∗, β∗
j = 0. If m∗ were known, then we

would estimate Xβ∗ by f̂m∗ where f̂m∗ = PS∗Y , and PS∗ : Rn 7−→ Rn is the orthogonal
projection on S∗ = span(Xj, j ∈ m∗). Indeed, the log-likelihood with respect to an

estimate candidate f̂ is given by

f̂ 7−→ n

2
log(2πσ2)− 1

2σ2
∥Y − f̂∥2,

where ∥ · ∥ denotes the ℓ2-norm. But the space S∗ (or the subset m∗) is unknown, so f̂m∗

cannot be used. So, given M a collection of models m (m ⊂ {1, . . . , p}), we wish to

1. Consider a collection (Sm)m∈M of linear subspaces of Rn, also denoted (with a slight
abuse of notations) models.

2. Associate to each subspace Sm the constrained maximum likelihood estimates f̂m =
PSmY .

3. Finally select the best estimate among the collection (f̂m)m∈M.

To give a meaning to the terminology ”best estimate”, we need a criterion to quantify the
quality of an estimator. In the sequel, we will measure the quality of an estimate f̂ of f ∗

by its ℓ2-risk, defined as follows.

R(f̂) := E[∥f̂ − f ∗∥2].

39
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We also set
rm := R(f̂m) = E[∥f̂m − f ∗∥2].

Now, the best estimate in terms of the ℓ2-risk is f̂m0 with

m0 := arg min
m∈M

rm

and f̂m0 is called the oracle estimate.

Remark 3.1. f ∗ may not belong to Sm0. It may even not belong to ∪m∈MSm.

Remark 3.2. Even if Xβ∗ ∈ Sm with m = {1, . . . , p}, this last model may be far from
the oracle model which is our benchmark for comparison.

We cannot use f̂m0 since it depends on the unknown true vector β∗ (via the expecta-
tion). A natural idea to circumvent this issue is to replace rm by some estimate r̂m. Then
we estimate f ∗ by f̂m̂ with

m̂ := arg min
m∈M

r̂m.

The goal of this chapter is to provide some suitable r̂m for which we can guarantee that
the selected estimate f̂m̂ performs almost as well as the oracle f̂m0 .

Collections of models. For this purpose, we denote

Sm := span(Xj, j ∈ m).

- We set M = P({1, . . . , p}) where P({1, . . . , p}) denotes the set of all the subsets of
{1, . . . , p}. We have card(M) = 2p and

Sm := {Xβ : β ∈ Rp with βj = 0 if j /∈ m} .

- We set M = {{1, . . . , J}, 1 ≤ J ≤ p} . In this case, card(M) = p.

3.2 Model selection procedures

We first compute rm = R(f̂m). We denote dm the dimension of Sm:

dm := dim(Sm).

Remark 3.3. If X is one-to-one, by using the rank-nullity theorem, dm = |m|.

Lemma 3.1. We have
rm = ∥(In − PSm)f

∗∥2 + σ2dm.

Proof. The proof of the lemma is similar to the proof of Theorem 2.3.
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The risk involves two terms. The first one decreases when m increases whereas the
second one increases. The first term is an approximation term. The second one is a
variance term. The oracle model Sm0 is the model which achieves the best trade-off
between these two terms. The Mallows’ procedure studied in Section 2.4.4 is based on
unbiased estimate of the risk and if we set

r̂m := ∥Y − f̂m∥2 + σ2(2dm − n)

then r̂m is an unbiased estimate of the risk (see Theorem 2.3). The Mallows’ procedure
can produce very poor results since it does not take into account the variability of r̂m
around rm. This is a problem when the number of models per dimension is large. Indeed,
we have many estimators r̂m and some of them deviate seriously from their expected value
rm. In particular, some r̂m are very small, much smaller than r̂m0 . This leads to select
a model Sm̂ much bigger than Sm0 (overfitting). See Problem 1 of Exam 2016-2017 for
more details.

Penalized estimator of the risk: To avoid the previous problem, we replace the term 2σ2dm
with something larger. We focus on a selection criterion of the form

m̂ := arg min
m∈M

{
∥Y − f̂m∥2 + σ2pen(m)

}
, (3.1)

where pen : M 7→ R+ is called the penalty function. To define pen(m), we associate to
the collection of models (Sm)m∈M a probability distribution Π = (Πm)m∈M. Then, we
set:

Definition 3.1. Let

pen(m) = K
(√

dm +
√

2 log(1/Πm)
)2
,

with K > 1. Then, we estimate f ∗ with f̂ := f̂m̂ such that m̂ is defined in (3.1).

We have the following risk bound on R(f̂).

Theorem 3.1. There exists a constant CK > 1 depending only on K > 1 such that

E
[
∥f̂ − f ∗∥2

]
≤ CK min

m∈M

{
E
[
∥f̂m − f ∗∥2

]
+ σ2 log(Π−1

m ) + σ2
}

≤ CK min
m∈M

{
∥(In − PSm)f

∗∥2 + σ2dm + σ2 log(Π−1
m ) + σ2

}
.

Remark 3.4. Remember that our benchmark is f̂m0 whose risk is

R(f̂m0) = rm0 = ∥(In − PSm0
)f ∗∥2 + σ2dm0 .
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Observe that if for some constant L(p) > 0 (that may depend on p but not on n),
log(Π−1

m ) ≤ L(p)dm, then f̂ achieves the same risk as f̂m0 up to a constant depending
on L(p). Indeed, in this case,

log(Π−1
m ) ≤ L(p)dm ≤ σ−2L(p)rm,

and for C a constant

E
[
∥f̂ − f ∗∥2

]
≤ CK

((
1 + L(p)

)
min
m∈M

rm + σ2
)

and minm∈M rm = rm0.

Remark 3.5. The upper bound of Theorem 3.1 can be proved to be optimal. We can also
prove that we cannot take K < 1.

Choice of Π = (Πm)m∈M: Π has to be a probability measure and in view of Theorem 3.1,
The Πm’s have to be as small as possible. In the sequel, for the sake of simplicity, X is
assumed to be one-to-one.

1. M = P({1, . . . , p}): We take, with |m| = dm,

Πm = C ×
(
p
|m|

)−1

× e−|m|, C =
e− 1

1− e−p
.

We have

∑
m∈M

Πm = C
∑
m∈M

(
p
|m|

)−1

× e−|m|

= C

p∑
d=1

∑
m∈M |m|=d

(
p
|m|

)−1

× e−|m|

= C

p∑
d=1

e−d = 1.

Lemma 3.2. For 1 ≤ d ≤ p, we have the upper bound

log

(
p
d

)
≤ d

(
1 + log

(p
d

))
.
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Proof. We prove the result by induction. The result of the lemma is obvious for
d = 1. For d ≥ 2, we use(

p
d

)
=

(
p

d− 1

)
× p− d+ 1

d

≤ exp

(
(d− 1)

(
1 + log

(
p

d− 1

)))
× p

d

≤
(

ep

d− 1

)d−1

× p

d

≤
(ep
d

)d−1

×
(
1 +

1

d− 1

)d−1

× p

d
≤
(ep
d

)d
.

We have used for x > 0, (1 + x−1)x ≤ e.

So, we have

log(Π−1
m ) = |m|+ log

(
p
|m|

)
+ log(C−1)

≤ 2|m|+ |m| log
(

p

|m|

)
+ log(C−1)

≲ |m| log(p),

and in this case, we can take L(p), introduced in Remark 3.4, proportional to log(p).
Therefore, applying Theorem 3.1,

R(f̂) ≲ log p×R(f̂m0).

it can be proved that term log p is unavoidable.

2. M = {{1, . . . , J}, 1 ≤ J ≤ p}: We take

Πm = |m|−2 ×

(
p∑
d=1

d−2

)−1

.

So, we have
log(Π−1

m ) ≤ 2 log(|m|) + const

and applying Theorem 3.1,
R(f̂) ≲ R(f̂m0).

meaning that the Mallows heuristics works. Indeed, in this case, L(p), the constant
introduced in Remark 3.4, does not depend on p. An alternative consists in taking
Πm proportional to e−|m|.
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Proof of Theorem 3.1: By definition, for any m ∈ M,

∥Y − f̂m̂∥2 + σ2pen(m̂) ≤ ∥Y − f̂m∥2 + σ2pen(m).

Since Y = f ∗ + ε, we obtain

∥f ∗ − f̂∥2 ≤ ∥f ∗ − f̂m∥2 + 2⟨ε, f̂ − f ∗⟩+ 2⟨ε, f ∗ − f̂m⟩+ σ2(pen(m)− pen(m̂)).

We have

E
[
⟨ε, f ∗ − f̂m⟩

]
= E [⟨ε, f ∗ − PSm(f

∗ + ε)⟩]

= 0− E
∥∥PSmε∥2

]
= −σ2dm ≤ 0

and

σ2pen(m) ≤ 2Kσ2
(
dm + 2 log(Π−1

m )
)

≤ 2Krm + 4Kσ2 log(Π−1
m )

≤ 2KE[∥f ∗ − f̂m∥2] + 4Kσ2 log(Π−1
m ).

Finally,

E[∥f ∗ − f̂∥2] ≤ (1 + 2K)E[∥f ∗ − f̂m∥2] + 4Kσ2 log(Π−1
m )

+ E
[
2⟨ε, f̂ − f ∗⟩ − σ2pen(m̂)

]
.

Lemma 3.3. There exists a random variable Z such that

2⟨ε, f̂ − f ∗⟩ − σ2pen(m̂) ≤ a−1∥f̂ − f ∗∥2 + Z,

with E[Z] ≤ cσ2 for some constants a > 1 and c ≥ 0 depending on K.

Using the lemma, we have

E
[
2⟨ε, f̂ − f ∗⟩ − σ2pen(m̂)

]
≤ a−1E[∥f̂ − f ∗∥2] + E[Z]

≤ a−1E[∥f̂ − f ∗∥2] + cσ2.

We obtain

(1− a−1)E[∥f ∗ − f̂∥2] ≤ (1 + 2K)E[∥f ∗ − f̂m∥2] + 4Kσ2 log(Π−1
m ) + cσ2.

The theorem is proved.
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3.3 Appendix: Proof of Lemma 3.3

We have, with S̄m̂ = span(Sm̂, f
∗) and with PS̄m̂

the projection on S̄m̂

2⟨ε, f̂ − f ∗⟩ = 2⟨PS̄m̂
ε, f̂ − f ∗⟩

≤ a∥PS̄m̂
ε∥2 + a−1∥f̂ − f ∗∥2

≤ aσ2(N2 + Um̂) + a−1∥f̂ − f ∗∥2,

where N2 = ∥Pspan(f∗)ε∥2/σ2 ∼ χ2(1) and for any m ∈ M, we define Um and S̃m such
that

Um =
∥PS̃m

ε∥2

σ2
, S̃m ⊕ span(f ∗) = S̄m.

We have Um ∼ χ2(dm) if f
∗ /∈ Sm and Um ∼ χ2(dm − 1) if f ∗ ∈ Sm. So, we take

Z = aσ2(N2 + Um̂)− σ2pen(m̂).

Note that m̂ depends on the data so Um̂ is not a χ2-variable. We set

a =
K + 1

2
> 1.

To prove the lemma, we just have to prove that E[aUm̂ − pen(m̂)] is bounded. Then,

E[aUm̂ − pen(m̂)] ≤ K + 1

2
E
[
max
m∈M

(
Um − 2

K + 1
pen(m)

)]
≤ K + 1

2

∑
m∈M

E
[(
Um − 2

K + 1
pen(m)

)
+

]
≤ K + 1

2

∑
m∈M

E
[(
Um − 2K

K + 1

(√
dm +

√
2 log(Π−1

m )
)2)

+

]
The following lemma is used, the proof of which is accepted.

Lemma 3.4. Assume that F : Rd 7−→ R is 1-Lipschitz and Z has a Gaussian N (0, σ2Id)-
distribution. Then, there exists a variable ζ ∼ exp(1) such that

F (Z) ≤ E[F (Z)] + σ
√

2ζ.

Now, observe that ε 7−→ ∥PS̃m
ε∥ is 1-Lipschitz. Therefore, there exists a variable

ζm ∼ exp(1) such that

∥PS̃m
ε∥ ≤ E[∥PS̃m

ε∥] + σ
√
2ζm.
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It implies

Um =
∥PS̃m

ε∥2

σ2

≤
(
E[∥PS̃m

σ−1ε∥] +
√

2ζm

)2
≤
(
(E[∥PS̃m

σ−1ε∥2])1/2 +
√
2ζm

)2
.

Since
∥PS̃m

ε∥2

σ2 ∼ χ2(dm) or
∥PS̃m

ε∥2

σ2 ∼ χ2(dm − 1), we have

Um ≤
(√

dm +
√

2ζm

)2
≤
(√

dm +
√

2 log(Π−1
m ) +

√
2(ζm − log(Π−1

m ))+

)2
≤ (1 + α)

(√
dm +

√
2 log(Π−1

m )
)2

+ (1 + α−1)× 2(ζm − log(Π−1
m ))+,

with α = K−1
K+1

. Then 1 + α = 2K
K+1

and 2(1 + α−1) = 4K
K−1

. Finally,

E
[(
Um − 2K

K + 1

(√
dm +

√
2 log(Π−1

m )
)2)

+

]
≤ 4K

K − 1
E[(ζm− log(Π−1

m ))+] =
4K

K − 1
Πm

and

E[aUm̂ − pen(m̂)] ≤ K + 1

2

∑
m∈M

4K

K − 1
Πm =

2K(K + 1)

K − 1
.



Chapter 4

From Bridge estimates to Lasso
estimates

The methodological material of this chapter can be found on
https://www.ceremade.dauphine.fr/~rivoirar/Cours-HD2023.pdf

4.1 Characterization of the Lasso estimate

We still consider the regression model

Y = Xβ∗ + ε,

where

- X is a known n× p-matrix

- ε ∈ Rn such that its components εi are centered and i.i.d.

- β∗ ∈ Rp is unknown.

The Lasso estimate of β∗, proposed by Tibshirani (1996), is the bridge estimate with
γ = 1:

β̂lassoλ := argmin
β∈Rp

{
∥Y −Xβ∥2 + λ∥β∥1

}
This estimate has no closed form in full generality but we can characterize it by using the
following result.

Theorem 4.1 (Characterization of the Lasso). A vector β̂ ∈ Rp is a global minimizer of
the criterion Cλ,1 defined for β ∈ Rp, by

Cλ,1(β) := ∥Y −Xβ∥2 + λ∥β∥1

if and only if β̂ satisfies following conditions: For any j ∈ {1, . . . , p},

47

https://www.ceremade.dauphine.fr/~rivoirar/Cours-HD2023.pdf


48 High-dimensional statistics

• if β̂j ̸= 0, 2XT
j (Y −Xβ̂) = λsign(β̂j)

• if β̂j = 0, |2XT
j (Y −Xβ̂)| ≤ λ

Furthermore, β̂ is the unique minimizer if XE is one to one with

E :=
{
j : |2XT

j (Y −Xβ̂)| = λ
}

Proof. Let f : Rp 7−→ R a convex function. We define the subdifferential of f at x ∈ Rp

by
∂f(x) :=

{
w ∈ Rp : f(y) ≥ f(x) + wT (y − x), ∀ y ∈ Rp

}
.

A vector w ∈ ∂f(x) is called a subgradient of f in x. We recall the following classical
facts:

1. If f is differentiable at x ∈ Rp, ∂f(x) = {∇f(x)}

2. If f and g are two convex functions on Rp with f differentiable on Rp then

∂(f + g)(x) = ∇f(x) + ∂g(x), x ∈ Rp

3. For a convex function f , β̂ is a minimizer of f if and only if 0 ∈ ∂f(β̂).

The next lemma determines the subdifferential of the ℓ1-norm.

Lemma 4.1. We define f : Rp 7−→ R by f(x) = ∥x∥1 =
∑p

j=1 |xj| for any x ∈ Rp. In
this case, we have, for x ∈ Rp:

∂f(x) :=
{
w ∈ Rp : ∥w∥∞ ≤ 1, wTx = ∥x∥1

}
.

Remark 4.1. Let x ∈ Rp. If w is such ∥w∥∞ ≤ 1 then wTx = ∥x∥1 if and only if for
j ∈ {1, . . . , p} such that xj ̸= 0, we have wj = sign(xj).

Proof of the lemma. Let w ∈ ∂f(x). By taking successively y = 0 and y = 2x, we obtain

0 ≥ ∥x∥1 + wT (0− x), 2∥x∥1 ≥ ∥x∥1 + wT (2x− x).

It yields wTx = ∥x∥1. We take a vector s ∈ Rp such that ∥s∥1 ≤ 1 and ∥w∥∞ = sTw. We
have:

∥x∥1 + 1 ≥ ∥x∥1 + ∥s∥1 ≥ ∥x+ s∥1 ≥ ∥x∥1 + sTw = ∥x∥1 + ∥w∥∞.

We obtain ∥w∥∞ ≤ 1.
Conversely, we take w ∈ Rp such that ∥w∥∞ ≤ 1 and wTx = ∥x∥1. For any y ∈ Rp, we
have:

∥x∥1 + wT (y − x) = wTy ≤ ∥y∥1
and w ∈ ∂f(x).
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We now prove the theorem. The criterion Cλ,1 is convex. Therefore, a vector β̂ ∈ Rp is

a global minimizer of the criterion Cλ,1 if and only if 0 ∈ ∂Cλ,1(β̂). Using previous facts,

it means that there exists w ∈ Rp such that ∥w∥∞ ≤ 1 and wT β̂ = ∥β̂∥1 such that

0 = −2XT (Y −Xβ̂) + λw ⇐⇒ 2XT (Y −Xβ̂) = λw.

This gives the result.

4.2 Theoretical properties of the Lasso estimate for

linear regression

We still consider the regression model

Y = Xβ∗ + ε,

where

- X is a known n× p-matrix

- ε ∈ Rn such that its components εi are centered and i.i.d.

- β∗ ∈ Rp is unknown

and we estimate β∗ by using the Lasso estimate

β̂ ∈ arg min
β∈Rp

{
∥Y −Xβ∥2 + λ∥β∥1

}
,

for λ > 0. We have the following result.

Theorem 4.2. We assume that

∥XT ε∥∞ := max
j∈{1,...,p}

|XT
j ε| ≤

λ

4
.

Then,
∥Xβ̂ −Xβ∗∥2 ≤ 2λ∥β∗∥1.

If we further assume that all eigenvalues of the symmetric matrix XTX are larger than a
constant κ assumed to be positive, then, by denoting for any β ∈ Rp,

S(β) := {j : βj ̸= 0}

and |S(β)| the cardinal of S(β), we have

∥Xβ̂ −Xβ∗∥2 ≤ min
β∈Rp

{
3∥Xβ −Xβ∗∥2 + 8λ2

κ
|S(β)|

}
(4.1)

and

∥β̂ − β∗∥1 ≤
4λ

κ
|S(β∗)|.
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Proof. Let β ∈ Rp. We have

∥Y −Xβ̂∥2 + λ∥β̂∥1 ≤ ∥Y −Xβ∥2 + λ∥β∥1,

which is equivalent to

∥Xβ̂ −Xβ∗∥2 ≤ ∥Xβ −Xβ∗∥2 + 2εT (Xβ̂ −Xβ) + λ

p∑
j=1

(
|βj| − |β̂j|

)
≤ ∥Xβ −Xβ∗∥2 + 2(XT ε)T (β̂ − β) + λ

p∑
j=1

(
|βj| − |β̂j|

)
.

Since ∥XT ε∥∞ ≤ λ
4
,

∥Xβ̂ −Xβ∗∥2 ≤ ∥Xβ −Xβ∗∥2 + λ

2
∥β̂ − β∥1 + λ

p∑
j=1

(
|βj| − |β̂j|

)
and

∥Xβ̂ −Xβ∗∥2 + λ

2
∥β̂ − β∥1 ≤ ∥Xβ −Xβ∗∥2 + λ∥β̂ − β∥1 + λ

p∑
j=1

(
|βj| − |β̂j|

)
.

Now, we study the right hand side. We have

λ∥β̂ − β∥1 + λ

p∑
j=1

(
|βj| − |β̂j|

)
= λ

∑
j∈S(β)

(
|βj − β̂j|+ |βj| − |β̂j|

)
+ λ

∑
j /∈S(β)

(
|β̂j| − |β̂j|

)
≤ λ

∑
j∈S(β)

min
(
2|βj|; 2|βj − β̂j|

)

≤ 2λmin

 ∑
j∈S(β)

|βj|;
∑
j∈S(β)

|β̂j − βj|

 .

Finally,

∥Xβ̂ −Xβ∗∥2 + λ

2
∥β̂ − β∥1 ≤ ∥Xβ −Xβ∗∥2 + 2λmin

 ∑
j∈S(β)

|βj|;
∑
j∈S(β)

|β̂j − βj|

 .

By taking β = β∗, we obtain the first inequality:

∥Xβ̂ −Xβ∗∥2 ≤ 2λ∥β∗∥1.
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Now, we further assume that all eigenvalues of the symmetric matrix XTX are larger
than a constant κ assumed to be positive. Then, by diagonalizing the matrix XTX, we
have

∥Xβ̂ −Xβ∥2 ≥ κ∥β̂ − β∥2.

Then, for any α > 0,

2λ
∑
j∈S(β)

|β̂j − βj| ≤ 2λ×
√

|S(β)| × ∥β̂ − β∥

≤ 2× κ−1/2λ
√
|S(β)| × ∥Xβ̂ −Xβ∥

≤ α−1κ−1λ2|S(β)|+ α∥Xβ̂ −Xβ∥2.

This yields, for 0 < α < 1/2,

∥Xβ̂ −Xβ∗∥2 + λ

2
∥β̂ − β∥1 ≤ ∥Xβ −Xβ∗∥2 + α−1κ−1λ2|S(β)|+ α∥Xβ̂ −Xβ∥2

≤ (1 + 2α)∥Xβ −Xβ∗∥2 + α−1κ−1λ2|S(β)|
+2α∥Xβ̂ −Xβ∗∥2.

Therefore,

(1− 2α)∥Xβ̂ −Xβ∗∥2 + λ

2
∥β̂ − β∥1 ≤ (1 + 2α)∥Xβ −Xβ∗∥2 + α−1κ−1λ2|S(β)|.

Now, we take α = 1/4 and

∥Xβ̂ −Xβ∗∥2 ≤ 3∥Xβ −Xβ∗∥2 + 8λ2

κ
|S(β)|,

which yields the second inequality 4.1. We also obtain with α = 1/2,

λ

2
∥β̂ − β∥1 ≤ 2∥Xβ −Xβ∗∥2 + 2λ2

κ
|S(β)|

and taking β = β∗ gives the third inequality.

Remark 4.2. Inequality (4.1) of Theorem 4.2 is an oracle inequality. The assumption
on eigenvalues of XTX are quite strong. These assumptions can be relaxed by considering
Restricted Eigenvalues Conditions (see slides).

Remark 4.3. By taking β = β∗ of Inequality (4.1) of Theorem 4.2, we obtain, under the
assumptions of the theorem,

∥Xβ̂ −Xβ∗∥2 ≤ 8λ2

κ
|S(β∗)|.
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Under assumptions on ε, we can prove oracle inequalities in the same spirit as Theo-
rem 3.1.

Proposition 4.1. Assume that for any j ∈ {1, . . . , p}, ∥Xj∥ = 1 and ε ∼ N (0, σ2In).
Then, for any β > 0, by taking

λ = 4σ
√

2 log p+ 2β,

we have

P
(
∥XT ε∥∞ ≤ λ

4

)
≥ 1− e−β.

Proof. We have

P
(
∥XT ε∥∞ >

λ

4

)
≤

p∑
j=1

P
(
|XT

j ε| >
λ

4

)

=

p∑
j=1

P
(
|XT

j ε| > σ
√
2 log p+ 2β

)
.

But, for any j,
XT
j ε ∼ N (0, XT

j σ
2InXj) ∼ N (0, σ2).

If Z ∼ N (0, 1), for any t ≥ 0,

P (|Z| > t) ≤ exp(−t2/2),

where the inequality is obtained by studying the function

Φ(t) =
2√
2π

∫ +∞

t

e−x
2/2dx− exp(−t2/2).

Therefore,

P
(
∥XT ε∥∞ >

λ

4

)
≤ p exp

(
−1

2
× (2 log p+ 2β)

)
≤ exp(−β).

This yields the result.

Using the result of the proposition, by taking λ = cσ
√
log p (i.e. β proportional to

log p) for c large enough, we have that inequalities of Theorem 4.2 hold with large probabil-
ity. For instance, with β = γ log p, taking λ = 4σ

√
2 log p+ 2γ log p = 4σ

√
2(1 + γ) log p,

we obtain, with probability larger than 1− p−γ,

∥Xβ̂ −Xβ∗∥2 ≤ 8σ
√

2(1 + γ) log p∥β∗∥1.
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If all eigenvalues of XTX are larger than κ

∥Xβ̂ −Xβ∗∥2 ≤ min
β∈Rp

{
3∥Xβ −Xβ∗∥2 + 256σ2(1 + γ) log p

κ
|S(β)|

}
,

∥β̂ − β∗∥1 ≤
16σ
√
2(1 + γ) log p

κ
|S(β∗)|.
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Chapter 5

Multiple testing

We explain some possible ways to handle the impact of high-dimensionality for testing.
More precisely, we focus on the problem of performing simultaneously a large number of
tests.

5.1 Introduction

Assume that we have n measurements for the expression of a gene g in two different
conditions A and B (corresponding, for instance, to some normal cells and some cancerous
cells). We want to know if there is a difference in the expression of this gene between
these two conditions A and B. We can formulate the problem as follows. We denote:
- XA

1 , . . . , X
A
n : measurements under condition A,

- XB
1 , . . . , X

B
n : measurements under condition B.

We assume that the XA
i ’s are i.i.d. and that the XB

i ’s are i.i.d. with respective mean µA

and µB. We want to test

H0 : µ
A = µB vs H1 : µ

A ̸= µB.

The classical test statistic associated with this problem is the following. We set Zi =
XA
i −XB

i . We reject H0 when Ŝ ≥ s, where

Ŝ :=
|Z̄|√
σ̂2

n

,

where

Z̄ :=
1

n

n∑
i=1

Zi, σ̂2 :=
1

n

n∑
i=1

(Zi − Z̄)2

and s is a threshold. Give α > 0, we choose s := sα such that the probability to wrongly
reject H0 is not larger than α. It is common in the scientific literature to display the
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p-palue of a test rather than the outcome of the test. In our case, the p-value of the test
is simply the value α̂ such that Ŝ = sα̂. Since the function α 7→ sα is decreasing, we have:
- If α̂ > α, then sα > Ŝ and H0 is not rejected.
- If α̂ < α, then sα < Ŝ and H0 is rejected.
DNA microarrays and NGS technologies allow us to measure the expression level of thou-
sands of genes simultaneously. Our statistical objective is then to test simultaneously for
all genes g ∈ {1, . . . , p}:

H0g : ”the mean expression levels of the gene g in conditions A and B are the same”

versus

H1g : ”the mean expression levels of the gene g in conditions A and B are different”.

Assume that we are given a test Tg := 1{Ŝg≥sα} for any g of size α. If we consider the

p genes simultaneously, the number of hypotheses H0g wrongly rejected (false positives)
can be high. The mean number of false positives is:

E[number of False Positives] =
∑

g: H0g true

P(Ŝg ≥ sα) = card{g : H0g true} × α.

For instance, if card{g : H0g true} = 10000 and α = 5%, then

E[number of False Positives] = 500.

To study 500 genes may be expensive. The biologists ask for powerful tests but with as
few false positives as possible.

5.2 Statistical setting

We assume that we have m families of probability distribution {Pθ : θ ∈ Θi} with i ∈
{1, . . . ,m} and we consider simultaneously the m tests

H0i : θ ∈ Θ0i vs H1i : θ ∈ Θ1i

for i ∈ {1, . . . ,m}, where Θ0i and Θ1i are 2 disjoint subsets of Θi. We assume that for
each i ∈ {1, . . . ,m}, we have a test of the form 1{Ŝi≥si}, where Ŝi is some observed statistic

and si some threshold value. For θ ∈ Θi, we denote Tθ(s) = Pθ(Ŝi ≥ s). The p-value
associated to the statistic Ŝi for the test i is

p̂i = sup
θ∈Θ0i

Tθ(Ŝi).

The p-values are distributed as follows.
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Proposition 5.1. The p-values p̂i fulfill the distributional property

sup
θ∈Θ0i

Pθ(p̂i ≤ u) ≤ u, ∀u ∈ [0, 1].

We say that the p-values are stochastically larger than a uniform random variable.

Proof. For any θ ∈ Θ0i and u ∈ [0, 1], we have

Pθ(p̂i ≤ u) = Pθ
(

sup
θ′∈Θ0i

Tθ′(Ŝi) ≤ u
)

≤ Pθ(Tθ(Ŝi) ≤ u).

For u ∈ [0, 1], we define

T−1
θ (u) := inf {s ∈ R : Tθ(s) ≤ u} .

Since Tθ is decreasing, we have:

(T−1
θ (u),+∞) ⊂ {s ∈ R : Tθ(s) ≤ u} ⊂ [T−1

θ (u),+∞).

- If Tθ(T
−1
θ (u)) ≤ u, we have

{s ∈ R : Tθ(s) ≤ u} = [T−1
θ (u),+∞)

and
Pθ(Tθ(Ŝi) ≤ u) = Pθ(Ŝi ≥ T−1

θ (u)) = Tθ(T
−1
θ (u)) ≤ u.

- If Tθ(T
−1
θ (u)) > u, we have

(T−1
θ (u),+∞) = {s ∈ R : Tθ(s) ≤ u}

and therefore,

Pθ(Tθ(Ŝi) ≤ u) = Pθ(Ŝi > T−1
θ (u))

= 1− Pθ(Ŝi ≤ T−1
θ (u)).

Since x 7→ Pθ(Ŝi ≤ x) is right-continuous,

Pθ(Tθ(Ŝi) ≤ u) = 1− lim
ε↘0

Pθ(Ŝi ≤ T−1
θ (u) + ε)

= lim
ε↘0

Pθ(Ŝi > T−1
θ (u) + ε)

≤ lim
ε↘0

Tθ(T
−1
θ (u) + ε)

≤ u.

In both cases, Pθ(p̂i ≤ u) ≤ u.
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5.3 Multiple testing setting

A multiple testing procedure is a procedure that takes as imput the vector of p-values
(p̂1, . . . , p̂m) corresponding to the m tests and returns a set of indices

R̂ ⊂ I = {1, . . . ,m}

which gives the set of the null hypotheses {H0i, i ∈ R̂} that are rejected. Writing I0 for
the set

I0 := {i ∈ I : H0i is true} ,

we call:
- R̂ : indices of positives
- R̂ ∩ I0 : indices of false positives
-R̂ \ I0 : indices of true positives.
We denote:

FP = card(R̂ ∩ I0), TP = card(R̂ \ I0).

Ideally, we would like a procedure that selects R̂ in such a way that
- FP is small
- TP is large.
The tradeoff between these two goals is sensitive.

Bonferroni correction: The Bonferroni correction provides a severe control of FP . It
is designed to control P(FP > 0). Its rejection region is defined by

R̂bonf :=
{
i : p̂i ≤

α

m

}
.

We set m0 = card(I0). We have:

P(FP > 0) = P
(
∃ i ∈ I0 : p̂i ≤

α

m

)
≤
∑
i∈I0

sup
θ∈Θ0i

Pθ
(
p̂i ≤

α

m

)
≤
∑
i∈I0

α

m
= α

m0

m
≤ α.

The Bonferroni correction avoids false positives but produces only a few true positives in
general (when m is large).
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5.4 False Discovery Rate

The False Discovery Proportion (FDP) corresponds to

FDP =
FP

FP + TP
,

with the convention 0/0 = 0. The False Discovery Rate (FDR) is defined as the mean
of the False Discovery Proportion:

FDR = E
[

FP

FP + TP
1{FP+TP≥1}

]
.

Let β : I := {1, . . . ,m} 7−→ R+ and let us set

R̂ =

{
i ∈ I : p̂i ≤

αβ(k̂)

m

}
, (5.1)

with

k̂ = max

{
k ∈ I : p̂(k) ≤

αβ(k)

m

}
,

and
p̂(1) ≤ p(2) ≤ · · · ≤ p(m)

are the p-values ranked in non-decreasing order. When
{
k ∈ I : p̂(k) ≤ αβ(k)

m

}
= ∅, we

set R̂ = ∅.

Theorem 5.1. Let β : I := {1, . . . ,m} 7−→ R+ be a non-decreasing function and for
α > 0, we define R̂ as in (5.1). Then,

FDR(R̂) ≤ αm0

m

+∞∑
j=1

β(j ∧m)

j(j + 1)
.

Proof. We first prove that card(R̂) = k̂.

- If k > k̂, then p̂(k) >
αβ(k)
m

, by definition of k̂. And since β is non-decreasing, p̂(k) >
αβ(k̂)
m

.

- If k ≤ k̂, then, by definition of k̂,

p̂(k) ≤ p̂(k̂) ≤
αβ(k̂)

m
.

We have exactly k̂ indices i such that

p̂i ≤
αβ(k̂)

m
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and card(R̂) = k̂. Now,

FDR(R̂) = E

card
{
i ∈ I0 : p̂i ≤ αβ(k̂)

m

}
k̂

1{k̂≥1}


=
∑
i∈I0

E
[
1{

p̂i≤αβ(k̂)
m

} 1
k̂
1{k̂≥1}

]
.

For k̂ ≥ 1, we have

1

k̂
=

+∞∑
j=1

1{j≥k̂}
j(j + 1)

.

So,

FDR(R̂) =
∑
i∈I0

E

[
1{

p̂i≤αβ(k̂)
m

} +∞∑
j=1

1{j≥k̂}
j(j + 1)

1{k̂≥1}

]

=
+∞∑
j=1

1

j(j + 1)

∑
i∈I0

E
[
1{

p̂i≤αβ(k̂)
m

}1{j≥k̂}1{k̂≥1}

]

≤
+∞∑
j=1

1

j(j + 1)

∑
i∈I0

P
(
p̂i ≤

αβ(j ∧m)

m

)

≤ αm0

m

+∞∑
j=1

β(j ∧m)

j(j + 1)
,

where we have used Proposition 5.1 for the last inequality.

Remark 5.1. It can be proved that the upper bound of the theorem cannot be improved.

Now, we choose β non-decreasing and such that

+∞∑
j=1

β(j ∧m)

j(j + 1)
≤ 1.

In this case FDR(R̂) ≤ α. We set

β(k) =
k

Hm

, Hm = 1 +
1

2
+

1

3
+ · · ·+ 1

m

m→+∞∼ log(m).
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We have

+∞∑
j=1

β(j ∧m)

j(j + 1)
=

m−1∑
j=1

β(j)

j(j + 1)
+

+∞∑
j=m

β(m)

j(j + 1)

=
1

Hm

m−1∑
j=1

1

j + 1
+

m

Hm

+∞∑
j=m

(
1

j
− 1

j + 1

)

=
1

Hm

(
m−1∑
j=1

1

j + 1
+ 1

)
= 1.

It yields the Benjamini-Yekuteli procedure which is associated with the following rejection
region:

R̂ =

{
i ∈ I : p̂i ≤

αk̂

mHm

}
.

5.5 Benjamini-Hochberg procedure

We would like to enlarge the rejection region provided by the Benjamini-Yekuteli pro-
cedure. Most of the time, it is not possible. However, in the case where we have some
independence properties, we can remove the term Hm of R̂.

Definition 5.1. The distribution of the p-values (p̂1, . . . , p̂m) is said to fulfill the Weak
Positive Regression Dependence Property (WPRDP) if for any measurable bounded non-
decreasing function g : [0; 1]m 7−→ R+ and for all i ∈ I0, the function

u 7−→ E[g(p̂1, . . . , p̂m) | p̂i ≤ u]

is non-decreasing on the interval Ji := {u ∈ [0; 1] : P(p̂i ≤ u) > 0} .

The set of distributions fulfilling the WPRDP includes the independent distributions.

Lemma 5.1. Assume that the (p̂i)i∈I0’s are independent random variables and that the
(p̂i)i∈I\I0’s are independent from the (p̂i)i∈I0’s. The distribution of (p̂1, . . . , p̂m) fulfills the
WPRDP.

Proof. We consider g a measurable non-negative bounded non-decreasing function. We
consider i ∈ I0. Without loss of generality, we take i = 1. The variable p̂1 is independent
of (p̂2, . . . , p̂m). So, for u ∈ [0; 1] such that P(p̂1 ≤ u) > 0, we have:

E[g(p̂1, . . . , p̂m) | p̂1 ≤ u] =

∫
(x2,...,xm)∈[0;1]m−1

E[g(p̂1, x2, . . . , xm) | p̂1 ≤ u]

× P(p̂2 ∈ dx2, . . . , p̂m ∈ dxm).
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Since g is non-decreasing, then the function g1 : x1 7−→ g(x1, x2, . . . , xm) is also non-
decreasing. We denote for t ∈ R+,

g
(−1)
1 (t) := inf {x ∈ [0; 1] : g1(x) ≥ t} .

Let t ∈ R+ and x ∈ [0; 1].

- If g1(x) ≥ t then g
(−1)
1 (t) ≤ x.

- If g
(−1)
1 (t) ≤ x, then g1(g

(−1)
1 (t)) ≤ g1(x) and if g1 is continuous at g

(−1)
1 (t), then by

considering a decreasing sequence (un)n belonging to {x ∈ [0; 1] : g1(x) ≥ t} and going to

g
(−1)
1 (t), we have g1(g

(−1)
1 (t)) ≥ t. Therefore g1(x) ≥ t.

We have proved that g1(x) ≥ t ⇐⇒ g
(−1)
1 (t) ≤ x as soon as g1 is continuous at g

(−1)
1 (t).

Since g1 is non-decreasing, there exists at most a countable set of discontinuities for g1.
So there exists at most a countable set of reals numbers t such that g1 is not continuous
at g

(−1)
1 (t). The Lebesgue measure of this set of points, denoted N , is null. Now, using

that g1 is non-negative, we can write

E[g(p̂1, x2 . . . , xm) | p̂1 ≤ u] = E[g1(p̂1) | p̂1 ≤ u]

=

∫ +∞

0

P(g1(p̂1) ≥ t | p̂1 ≤ u)dt∫
R+\N

P(p̂1 ≥ g
(−1)
1 (t) | p̂1 ≤ u)dt

To conclude, we simply notice that

u 7−→ P(p̂1 ≥ g
(−1)
1 (t) | p̂1 ≤ u) = max

(
0, 1− P(p̂1 < g

(−1)
1 (t))

P(p̂1 ≤ u)

)
is non-decreasing for all t ∈ R+.

Under theWeak Positive Regression Dependence Property, we can enlarge the rejection
region R̂ and we obtain the Benjamini-Hochberg procedure.

Theorem 5.2. We denote

S :=

{
k ∈ I : p̂(k) ≤

αk

m

}
.

When the distribution of the p-values fulfills the WPRDP, the Benjamini-Hochberg proce-
dure defined by R̂ = ∅ if

S = ∅
and

R̂ :=

{
i ∈ I : p̂i ≤

αk̂

m

}
with k̂ := maxS has a FDR bounded by α.
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Proof. When R̂ = ∅, k̂ = 0. We now assume that R̂ ̸= ∅. Using the same arguments as
in the proof of Theorem 5.1, we prove that k̂ = card(R̂). Then,

FDR(R̂) = E

[∑
i∈I0

I{
p̂i≤αk̂

m

} 1
k̂
1{k̂≥1}

]

=
∑
i∈I0

m∑
k=1

1

k
P
(
k̂ = k, p̂i ≤

αk

m

)

=
∑
i∈I0

m∑
k=k∗i

1

k
P
(
k̂ = k

∣∣∣ p̂i ≤ αk

m

)
P
(
p̂i ≤

αk

m

)
,

where k∗i = inf
{
k ∈ N : P

(
p̂i ≤ αk

m

)
> 0
}
. Then,

FDR(R̂) =
∑
i∈I0

m∑
k=k∗i

1

k
P
(
k̂ = k

∣∣∣ p̂i ≤ αk

m

)
αk

m

≤ α

m

∑
i∈I0

m∑
k=k∗i

[
P
(
k̂ ≤ k

∣∣∣ p̂i ≤ αk

m

)
− P

(
k̂ ≤ k − 1

∣∣∣ p̂i ≤ αk

m

)]
.

The function
g(p̂1, . . . , p̂m) := 1{k̂≤k} = 1{max{j∈I: p̂(j)≤αj

m }≤k}
is non-decreasing with respect to (p̂1, . . . , p̂m). So, the WPRDP ensures that

P
(
k̂ ≤ k

∣∣∣ p̂i ≤ αk

m

)
≤ P

(
k̂ ≤ k

∣∣∣ p̂i ≤ α(k + 1)

m

)
and

FDR(R̂) ≤ α

m

∑
i∈I0

[
P
(
k̂ ≤ m

∣∣∣ p̂i ≤ α(m+ 1)

m

)
− P

(
k̂ ≤ k∗i − 1

∣∣∣ p̂i ≤ αk∗i
m

)]
≤ αm0

m
≤ α.
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A.1 Exam 2016-2017

High-dimensional statistics

Correction of the EXAM (duration 2h30)

Documents, calculators, phones and smartphones are forbidden

Problem 1: Selection bias of the Mallows criterion.

We consider the multivariate linear regression model :

Y = Xβ + ε

with Y = (Y1, . . . , Yn)
T the vector of observations. The matrix X of size n× p is assumed to be

known. The rank of X is p (with p < n) and β ∈ Rp is the vector to be estimated. Finally, the
error vector is ε = (ε1, . . . , εn)

T and satisfies ε ∼ N (0, σ2In) with σ
2 > 0 unknown. We denote

(X1, . . . , Xp) the columns of X. The classical ℓ2-norm is denoted ∥ · ∥2. We denote for all m, a
subset of indexes of {1, . . . , p},

RSS(m) = ∥Y − PmY ∥22,

where Pm is the projection on span(Xj : j ∈ m). We shall denote PmY = 0 if the model m is
empty. Let m be some model, we recall that the Mallows criterion associated to m is defined
by:

Cp(m) =
RSS(m)

σ̂2
− n+ 2|m|,

where |m| is the cardinality of m and σ̂2 is the estimator of σ2 studied in course. We suppose
that the columns of the matrix X are orthogonal and of unit norm (consequently XTX = Ip).

1. Recall the expression of β̂, the ordinary least squares estimator of β, and give its distri-
bution.
Correction : We have:

β̂ = (XTX)−1XTY.

Since

Y ∼ N (Xβ, σ2In),

then

β̂ ∼ N (β, σ2(XTX)−1) = N (β, σ2Ip)

2. We denote PX the projection matrix on the image of X.
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a) Prove that for all model m,

RSS(m) = ∥Y − PXY ∥22 + ∥PXY − PmY ∥22.

Correction : We have:

Y − PXY ⊥ Im(X), PXY − PmY ∈ Im(X).

So, Y − PXY ⊥ PXY − PmY and

RSS(m) = ∥Y −PmY ∥22 = ∥Y −PXY +PXY −PmY ∥22 = ∥Y −PXY ∥22+∥PXY −PmY ∥22

b) After having given for all j ∈ {1, . . . , p} the expression of β̂j in function of Xj et Y ,
deduce that

RSS(m) = (n− p)σ̂2 +
∑
j /∈m

β̂2j .

Correction : We recall that

σ̂2 =
∥Y − PXY ∥22

n− p

so

∥Y − PXY ∥22 = (n− p)σ̂2.

If we denote U the matrix whose columns are the columns of X without columns
corresponding to the indices of m,

PXY − PmY = U(UTU)−1UTY.

But, UTU = Ip−|m| and PXY − PmY = UUTY and

∥PXY − PmY ∥22 = (UUTY )TUUTY

= Y TUUTUUTY

= Y TUUTY

= ∥UTY ∥22
= ∥((Xj)j /∈m)

TY ∥22 =
∑
j /∈m

β̂2j

c) Conclude that we have the following expression

σ̂2Cp(m) =

p∑
j=1

(β̂2j − σ̂2)−
∑
j∈m

(β̂2j − 2σ̂2).
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Correction : We have:

σ̂2Cp(m) = RSS(m)− nσ̂2 + 2|m|σ̂2

= (n− p)σ̂2 +
∑
j /∈m

β̂2j − nσ̂2 + 2|m|σ̂2

=

p∑
j=1

β̂2j − pσ̂2 −
∑
j∈m

β̂2j + 2|m|σ̂2

=

p∑
j=1

(β̂2j − σ̂2)−
∑
j∈m

(β̂2j − 2σ̂2)

3. Using the last expression above, what is the one-variable-model which minimizes the
Mallows criterion ?
Correction : The Mallows criterion selects the model m which minimizes m 7→ Cp(m).

Using the previous question, if we force |m| = 1, we’re going to choose m = {j}, with β̂2j
as large as possible.

4. Let k be a fixed non null and non random integer. According to the Mallows criterion,
what is the model with k variables which will be chosen?
Correction : Using the same arguments, the selected model m will be the model with the k
indices j corresponding to the k largest β̂2j .

5. By now, we do not suppose anymore that the number of selected variables is fixed in
advance and we denote m̂ the selected model by the Mallows criterion. Prove that j ∈ m̂
if and only if σ̂−1|β̂j | >

√
2.

Correction : Obvious

6. Compute for all j ∈ {1, . . . , p} the expectation of β̂2j − σ̂2.

Correction : E[β̂2j − σ̂2] = var(β̂j) + (E[β̂j ])2 − E[σ̂2] = σ2 + β2j − σ2 = β2j

7. By now, we suppose that for all j ∈ {1, . . . , p}, βj = 0.

a) Determine E[|m̂|] the expectation of the cardinality of m̂ in function of p and the
cumulative distribution function of the Student distribution with n − p degrees of
freedom.
Correction : We have: m̂ = {j : β̂2j > 2σ̂2}.

E[|m̂|] =

p∑
j=1

E[1{j: β̂2
j>2σ̂2}]

=

p∑
j=1

P
(
|β̂j |/σ̂ >

√
2
)
.
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If we suppose that for all j ∈ {1, . . . , p}, βj = 0 then

β̂ ∼ N (0, σ2Ip)

and β̂j/σ̂ ∼ t(n − p). With Tn,p ∼ t(n − p) and αn,p the value of the cumulative
distribution function of Tn,p at

√
2, then

E[|m̂|] = p× P(|Tn,p| >
√
2) = 2p(1− αn,p).

b) By using the fact that on ]0,+∞[ the cumulative distribution function of the Student
distribution with n−p degrees of freedom is smaller than the cumulative distribution
function of the standard normal distribution, what is the limit of E[|m̂|] when p tends
to +∞ with n > p ?
Correction : If Z ∼ N (0, 1)

E[|m̂|] = 2p(1− αn,p)

≥ 2p(1− P(Z ≤
√
2))

≥ 2pP(Z >
√
2)

and
lim

p→+∞
E[|m̂|] = +∞.

c) What is your conclusion ?
Correction : The size of the selected model is too large in expectation.

8. We still denote m̂ the selected model by the Mallows criterion. For any model m, we
define C̃p(m) by

C̃p(m) =
RSS(m)

σ̂2
− n+ 3|m|.

If m̃ minimizes m 7→ C̃p(m), prove that |m̃| ≤ |m̂|.
Correction : We take m such that |m| > |m̂|. Then,

C̃p(m̂) =
RSS(m̂)

σ̂2
− n+ 3|m̂|

=
RSS(m̂)

σ̂2
− n+ 2|m̂|+ |m̂|

= Cp(m̂) + |m̂|
≤ Cp(m) + |m̂|
< Cp(m) + |m|
< C̃p(m)
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Problem 2: Support properties of the Lasso estimator

We consider the following model of nonparametric regression :

Yi = f(xi) + εi, i = 1, . . . , n,

where f : [0, 1] −→ R is a function to be estimated thanks to observations (Yi)i=1,...,n. Points
(xi)i=1,...,n are known and non random. Finally, variables (εi)i=1,...,n are independent with
common distribution a standard normal distribution of variance σ2 supposed to be known. To
estimate f , we rely on functions of a given dictionary (ϕj)j=1,...,p (p ≥ 2) and we denote for all
β = (βj)j=1,...,p ∈ Rp,

fβ =

p∑
j=1

βjϕj .

We define for every function g,

||g||n =

√√√√ 1

n

n∑
i=1

g2(xi).

If for any functions g and g′, we denote

⟨g, g′⟩n =
1

n

n∑
i=1

g(xi)g
′(xi)

we have
||g + g′||2n = ||g||2n + ||g′||2n + 2⟨g, g′⟩n.

For all j ∈ {1, . . . , p}, one is given rn,j > 0. The Lasso estimator of f is then fβ̂ where β̂ is a
minimizer of the function crit where for all u ∈ Rp

crit(u) =
1

n

n∑
i=1

(Yi − fu(xi))
2 + 2

p∑
j=1

rn,j |uj |.

We suppose that f can be developed on the dictionary. Hence there exists β∗ such that f = fβ∗ .
One studies the properties of the Lasso estimator to estimate S∗, the support of β∗ :

S∗ =
{
j : β∗j ̸= 0

}
.

One denotes for all x ∈ R,

sign(x) =


1 if x > 0,
0 if x = 0,

−1 if x < 0.

One admits that u is a minimizer of the function crit if and only if for all j ∈ {1, . . . , p},
1
n

∑n
i=1 Yiϕj(xi)−

∑p
k=1 uk⟨ϕj , ϕk⟩n = rn,jsign(uj) if uj ̸= 0∣∣ 1

n

∑n
i=1 Yiϕj(xi)−

∑p
k=1 uk⟨ϕj , ϕk⟩n

∣∣ ≤ rn,j if uj = 0.

The goal is to give the conditions insuring that the support of β∗ actually contains the support
of β̂.
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1. Prove that for all u ∈ Rp,

crit(β̂+u)−crit(β̂) = ||fu||2n+2

p∑
j=1

rn,j

(
|β̂j + uj | − |β̂j |

)
+
2

n

n∑
i=1

p∑
k=1

ukϕk(xi)

 p∑
j=1

β̂jϕj(xi)− Yi

 .

Correction :

crit(β̂ + u)− crit(β̂) =
1

n

n∑
i=1

(
Yi − fβ̂+u(xi)

)2
− 1

n

n∑
i=1

(
Yi − fβ̂(xi)

)2
+ 2

p∑
j=1

rn,j(|uj + β̂j | − |β̂j |)

= − 2

n

n∑
i=1

(
Yi − fβ̂(xi)

)
fu(xi) +

1

n

n∑
i=1

f2u(xi) + 2

p∑
j=1

rn,j(|uj + β̂j | − |β̂j |)

= ∥fu∥2n + 2

p∑
j=1

rn,j(|uj + β̂j | − |β̂j |) +
2

n

n∑
i=1

p∑
k=1

ukϕk(xi)

 p∑
j=1

β̂jϕj(xi)− Yi



2. Deduce that

crit(β̂ + u)− crit(β̂) = ||fu||2n + 2

p∑
j=1

rn,j

(
|β̂j + uj | − |β̂j | − ujsj

)
,

with |sj | ≤ 1 and sj = sign(β̂j) if β̂j ̸= 0.
Correction :

1

n

n∑
i=1

ϕk(xi)

 p∑
j=1

β̂jϕj(xi)− Yi

 =

p∑
j=1

β̂j⟨ϕj , ϕk⟩n −
1

n

n∑
i=1

ϕk(xi)Yi.

Since β̂ is a minimizer of crit,∣∣∣∣∣∣
p∑
j=1

β̂j⟨ϕj , ϕk⟩n −
1

n

n∑
i=1

ϕk(xi)Yi

∣∣∣∣∣∣ ≤ rn,k.

We set

sk = r−1
n,k

 1

n

n∑
i=1

ϕk(xi)Yi −
p∑
j=1

β̂j⟨ϕj , ϕk⟩n


therefore sk = sign(β̂k) if β̂k ̸= 0 and |sk| ≤ 1 if β̂k = 0 and

crit(β̂ + u)− crit(β̂) = ||fu||2n + 2

p∑
j=1

rn,j

(
|β̂j + uj | − |β̂j | − ujsj

)
.
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3. Then prove that
crit(β̂ + u)− crit(β̂) ≥ ||fu||2n. (A.1)

Correction : We have:

• If β̂j > 0, |β̂j + uj | − |β̂j | − ujsj = |β̂j + uj | − β̂j − uj ≥ 0.

• If β̂j < 0, |β̂j + uj | − |β̂j | − ujsj = |β̂j + uj |+ β̂j + uj ≥ 0.

• If β̂j = 0, |β̂j + uj | − |β̂j | − ujsj = |uj | − ujsj ≥ 0.

Then, crit(β̂ + u)− crit(β̂) ≥ ||fu||2n.

If k∗ = card(S∗), we now denote for all u = (uj)j∈S∗ ∈ Rk∗ :

critS∗(u) =
1

n

n∑
i=1

Yi − ∑
j∈S∗

ujϕj(xi)

2

+ 2
∑
j∈S∗

rn,j |uj |,

with µ̃ a minimizer of critS∗ and we finally denote

T =
⋂
j /∈S∗

{∣∣∣∣∣ 1n
n∑
i=1

Yiϕj(xi)−
∑
k∈S∗

µ̃k⟨ϕj , ϕk⟩n

∣∣∣∣∣ < rn,j

}
.

One can show that the probability of the event T is asymptotically close to 1.

4. Prove that on T , the vector µ̂ = (µ̂j)j=1,...,p such that µ̂j = µ̃j if j ∈ S∗ and µ̂j = 0 if
j ∈ {1, . . . , p} \ S∗, is also a minimizer of the function crit.
Correction : On T , we have:

1

n

n∑
i=1

Yiϕj(xi)−
∑
k∈S∗

µ̃k⟨ϕj , ϕk⟩n = rn,jsign(µ̃j) if j ∈ S∗, µ̃j ̸= 0

∣∣∣∣∣ 1n
n∑
i=1

Yiϕj(xi)−
∑
k∈S∗

µ̃k⟨ϕj , ϕk⟩n

∣∣∣∣∣ ≤ rn,j if j ∈ S∗, µ̃j = 0

∣∣∣∣∣ 1n
n∑
i=1

Yiϕj(xi)−
∑
k∈S∗

µ̃k⟨ϕj , ϕk⟩n

∣∣∣∣∣ ≤ rn,j if j /∈ S∗

Therefore, we have µ̂ that satifies (µ̂j ̸= 0 ⇐⇒ j ∈ S∗ and µ̃j ̸= 0)

1

n

n∑
i=1

Yiϕj(xi)−
p∑

k=1

µ̂k⟨ϕj , ϕk⟩n = rn,jsign(µ̂j) if µ̂j ̸= 0

∣∣∣∣∣ 1n
n∑
i=1

Yiϕj(xi)−
p∑

k=1

µ̂k⟨ϕj , ϕk⟩n

∣∣∣∣∣ ≤ rn,j if µ̂j = 0
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5. Using (A.1), prove that on T , for all 1 ≤ i ≤ n,

p∑
k=1

(β̂k − µ̂k)ϕk(xi) = 0.

Correction :
0 = crit(µ̂)− crit(β̂) = ∥fµ̂−β̂∥

2
n.

Therefore

1

n

n∑
i=1

f2
µ̂−β̂(xi) = 0

and for any i ∈ {1, . . . , n}
fµ̂−β̂(xi) = 0

which means that for any i ∈ {1, . . . , n}
p∑

k=1

(µ̂k − β̂k)ϕk(xi) = 0.

6. Deduce that on T , for j /∈ S∗,∣∣∣∣∣ 1n
n∑
i=1

Yiϕj(xi)−
p∑

k=1

β̂k⟨ϕj , ϕk⟩n

∣∣∣∣∣ < rn,j .

Correction : For j /∈ S∗,∣∣∣∣∣ 1n
n∑
i=1

Yiϕj(xi)−
∑
k∈S∗

µ̃k⟨ϕj , ϕk⟩n

∣∣∣∣∣ < rn,j

⇒

∣∣∣∣∣ 1n
n∑
i=1

Yiϕj(xi)−
p∑

k=1

µ̂k⟨ϕj , ϕk⟩n

∣∣∣∣∣ < rn,j

⇒

∣∣∣∣∣ 1n
n∑
i=1

Yiϕj(xi)−
p∑

k=1

µ̂k
1

n

n∑
i=1

ϕj(xi)ϕk(xi)

∣∣∣∣∣ < rn,j

⇒

∣∣∣∣∣ 1n
n∑
i=1

Yiϕj(xi)−
1

n

n∑
i=1

ϕj(xi)

p∑
k=1

µ̂kϕk(xi)

∣∣∣∣∣ < rn,j

⇒

∣∣∣∣∣ 1n
n∑
i=1

Yiϕj(xi)−
1

n

n∑
i=1

ϕj(xi)

p∑
k=1

β̂kϕk(xi)

∣∣∣∣∣ < rn,j

⇒

∣∣∣∣∣ 1n
n∑
i=1

Yiϕj(xi)−
p∑

k=1

β̂k⟨ϕj , ϕk⟩n

∣∣∣∣∣ < rn,j
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7. Conclude that on T , the support of β̂ is included in the support of β∗:{
j : β̂j ̸= 0

}
⊂
{
j : β∗j ̸= 0

}
.

Correction : If j /∈ S∗ and if β̂j ̸= 0, then∣∣∣∣∣ 1n
n∑
i=1

Yiϕj(xi)−
p∑

k=1

β̂k⟨ϕj , ϕk⟩n

∣∣∣∣∣ < rn,j ,

which is excluded. So, if j /∈ S∗ β̂j = 0. Therefore{
j : β̂j ̸= 0

}
⊂
{
j : β∗j ̸= 0

}
.
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A.2 Exam 2017-2018

High-dimensional statistics

Correction of the EXAM (duration 2h30)

Documents, calculators, phones and smartphones are forbidden

Problem 1: Lasso for density estimation.

The goal of this problem is to estimate the unknown density f∗ of a real variable X. For
this purpose, we assume we are given an n-sample Xn := (Xi)1≤i≤n with density f∗. We assume
that f∗ ∈ L2(R) and assume we are given a dictionary of known functions Φ = (ϕj)1≤j≤p such
that for any j, ∥ϕj∥ = 1, where ∥ · ∥ denotes the L2-norm. We also assume that the functions
ϕj are all bounded by a finite positive constant L: Denoting ∥ · ∥∞ the sup-norm, we have

max
1≤j≤p

∥ϕj∥∞ ≤ L.

We set for any vector β = (βj)1≤j≤p ∈ Rp

fβ =

p∑
j=1

βjϕj .

The goal is to select a vector β̂ ∈ Rp such that fβ̂ is close to f∗. For this purpose, we set:

β̂ := arg min
β∈Rp

1

2
C(β) + λ

p∑
j=1

|βj |

 ,

where λ := 2L

√
2
n log

(
2p
δ

)
, with δ > 0 and

C(β) := ∥fβ∥2 −
2

n

n∑
i=1

fβ(Xi).

1. Show that
E[C(β)] = ∥fβ − f∗∥2 − ∥f∗∥2.

Explain why this equality justifies the use of fβ̂ to estimate f∗.

Correction : The equality is obvious since E[fβ(Xi)] = ⟨fβ, f∗⟩. Minimizing E[C(β)] with
respect to β is equivalent to minimizing β 7→ ∥fβ − f∗∥. But E[C(β)] is unknown, which
is not the case of C(β) that should be close to its expectation.
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2. We recall the Hoeffding inequality: If we consider n independent variables Y1, . . . , Yn, such
that for any i,

ai ≤ Yi ≤ bi,

where the ai’s and the bi’s are non-random, then for any t ≥ 0,

P

(∣∣∣∣∣
n∑
i=1

(Yi − E[Yi])

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− 2t2∑n

i=1(bi − ai)2

)
.

We set

Ω :=

p⋂
j=1

{
2

n

∣∣∣∣∣
n∑
i=1

(ϕj(Xi)− E[ϕj(Xi)])

∣∣∣∣∣ ≤ λ

}
.

Show that

P(Ω) ≥ 1− δ.

Correction : We take Yi = ϕj(Xi), ai = −L, bi = L and t = nλ/2. Then,

P(Ω) ≥ 1− 2p exp

(
− 2t2

n(2L)2

)
≥ 1− 2p exp

(
−nλ

2

8L2

)
= 1− δ.

3. We fix β ∈ Rp.

(a) Show that

∥fβ̂∥
2 − 2

n

n∑
i=1

fβ̂(Xi) + 2λ

p∑
j=1

|β̂j | ≤ ∥fβ∥2 −
2

n

n∑
i=1

fβ(Xi) + 2λ

p∑
j=1

|βj |.

Correction : We have:

1

2
C(β̂) + λ

p∑
j=1

|β̂j | ≤
1

2
C(β) + λ

p∑
j=1

|βj |,

which is equivalent to

∥fβ̂∥
2 − 2

n

n∑
i=1

fβ̂(Xi) + 2λ

p∑
j=1

|β̂j | ≤ ∥fβ∥2 −
2

n

n∑
i=1

fβ(Xi) + 2λ

p∑
j=1

|βj |.
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(b) Deduce then

∥fβ̂−f
∗∥2 ≤ ∥fβ−f∗∥2+

p∑
j=1

(β̂j−βj)
2

n

n∑
i=1

(ϕj(Xi)−E[ϕj(Xi)])+2λ

p∑
j=1

(|βj |−|β̂j |).

Correction : We have:

∥fβ̂ − f∗∥2 = ∥fβ̂∥+ ∥f∗∥2 − 2⟨fβ̂, f
∗⟩

≤ ∥f∗∥2 − 2⟨fβ̂, f
∗⟩+ 2

n

n∑
i=1

fβ̂(Xi)− 2λ

p∑
j=1

|β̂j |+ ∥fβ∥2 −
2

n

n∑
i=1

fβ(Xi) + 2λ

p∑
j=1

|βj |

≤ ∥fβ − f∗∥2 − 2⟨fβ̂ − fβ, f
∗⟩+ 2

n

n∑
i=1

fβ̂(Xi)−
2

n

n∑
i=1

fβ(Xi) + 2λ

p∑
j=1

(|βj | − |β̂j |)

≤ ∥fβ − f∗∥2 + 2

n

p∑
j=1

(β̂j − βj)

n∑
i=1

ϕj(Xi)− 2

p∑
j=1

(β̂j − βj)⟨ϕj , f∗⟩+ 2λ

p∑
j=1

(|βj | − |β̂j |)

≤ ∥fβ − f∗∥2 + 2

n

p∑
j=1

(β̂j − βj)

n∑
i=1

(ϕj(Xi)− E[ϕj(Xi)]) + 2λ

p∑
j=1

(|βj | − |β̂j |).

(c) Finally, conclude that on Ω,

∥fβ̂ − f∗∥2 + λ

p∑
j=1

|βj − β̂j | ≤ ∥fβ − f∗∥2 + 4λ
∑

j∈S(β)

|βj − β̂j |, (A.2)

where S(β) is the support of β:

S(β) := {j ∈ {1, . . . , p} : βj ̸= 0} .

Correction : We have on Ω:

∥fβ̂ − f∗∥2 ≤ ∥fβ − f∗∥2 + λ

p∑
j=1

|β̂j − βj |+ 2λ

p∑
j=1

(|βj | − |β̂j |).

Therefore,

∥fβ̂ − f∗∥2 + λ

p∑
j=1

|β̂j − βj | ≤ ∥fβ − f∗∥2 + 2λ

p∑
j=1

|β̂j − βj |+ 2λ

p∑
j=1

(|βj | − |β̂j |)

≤ ∥fβ − f∗∥2 + 4λ
∑

j∈S(β)

|β̂j − βj |,

since |βj − β̂j |+ (|βj | − |β̂j |) = 0 if j ̸∈ S(β) and |βj | − |β̂j | ≤ |βj − β̂j |.
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4. We now wish to bound the last term of (A.2). We introduce the symmetric matrix G
whose elements are given by

Gjk :=

∫
R
ϕj(x)ϕk(x)dx

and assume that rp, the smallest eigenvalue of G, satisfies rp > 0.

(a) Prove that for any β ∈ Rp,

∥fβ̂ − fβ∥2 ≥ rp

p∑
j=1

(β̂j − βj)
2.

Correction : We have for any β ∈ Rp,

∥fβ∥2 = ∥
p∑
j=1

βjϕj∥2 = β∗Gβ ≥ rp∥β∥22.

Therefore,

∥fβ̂ − fβ∥2 ≥ rp

p∑
j=1

(β̂j − βj)
2.

(b) Deduce ∑
j∈S(β)

|βj − β̂j | ≤

√
card(S(β))

rp

(
∥fβ̂ − f∗∥+ ∥fβ − f∗∥

)
.

Correction : We have:∑
j∈S(β)

|βj − β̂j | ≤
√

card(S(β))

√ ∑
j∈S(β)

(βj − β̂j)2

≤

√
card(S(β))

rp
∥fβ̂ − fβ∥

≤

√
card(S(β))

rp

(
∥fβ̂ − f∗∥+ ∥fβ − f∗∥

)
.

(c) Show that for any constant α,

4λ
∑

j∈S(β)

|βj − β̂j | ≤
4λ2card(S(β))

αrp
+ 2α

(
∥fβ̂ − f∗∥2 + ∥fβ − f∗∥2

)
.
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Correction : Since 2ab ≤ α−1a2 + αb2,

4λ
∑

j∈S(β)

|βj − β̂j | ≤ 2× 2λ

√
card(S(β))

rp
×
(
∥fβ̂ − f∗∥+ ∥fβ − f∗∥

)

≤ α−1

(
2λ

√
card(S(β))

rp

)2

+ α
(
∥fβ̂ − f∗∥+ ∥fβ − f∗∥

)2
≤ 4λ2card(S(β))

αrp
+ 2α

(
∥fβ̂ − f∗∥2 + ∥fβ − f∗∥2

)
.

(d) Finally, prove that on Ω,

∥fβ̂ − f∗∥2 ≤ inf
β∈Rp

{
3∥fβ − f∗∥2 + 32λ2card(S(β))

rp

}
.

Give an interpretation of this result.

Correction : We take α = 1/4. Then,

4λ
∑

j∈S(β)

|βj − β̂j | ≤
16λ2card(S(β))

rp
+

1

2
∥fβ̂ − f∗∥2 + 1

2
∥fβ − f∗∥2.

Using (A.2),

∥fβ̂ − f∗∥2 ≤ 3∥fβ − f∗∥2 + 32λ2card(S(β))

rp
.

Problem 2: Gauss-Markov property and
regularization via elastic-net.

We consider the multivariate linear regression model :

Y = Xβ∗ + ε

with Y = (Y1, . . . , Yn)
T the vector of observations. The matrix X of size n × p is assumed

to be known. The vector β∗ ∈ Rp is the vector to be estimated. Finally, the error vector is
ε = (ε1, . . . , εn)

T and satisfies ε ∼ N (0, σ2In) with σ2 > 0 unknown. We denote (X1, . . . , Xp)
the columns of X. The ℓ2-norm is denoted ∥ · ∥2, whereas the ℓ1-norm is denoted ∥ · ∥1. For
any matrix A, we denote AT its transpose matrix and for any estimate β̂, var(β̂) denotes its
variance-covariance matrix. For the first two questions, we assume that the rank of X is p (with
p < n) and

1. We consider β̂ols the ordinary least-squares estimate.
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(a) Recall the expression of β̂ols in function of X and Y .

Correction :
β̂ols = (XTX)−1XTY

(b) Show that
E[β̂ols] = β∗ and var(β̂ols) = σ2(XTX)−1.

Correction : We have:

E[β̂ols] = (XTX)−1XTE[Y ] = (XTX)−1XTXβ∗ = β∗

var(β̂ols) = (XTX)−1XT var(Y )((XTX)−1XT )T = σ2(XTX)−1.

2. We consider β̂ a linear estimate of β∗: β̂ = CY , where C is a (non-random) p×n-matrix.
We assume that β̂ is non-biased.

(a) Prove that CX = Ip.

Correction : We have for any β∗,

β∗ = E[β̂] = E[CY ] = CXβ∗.

Since this is true for any vector β∗, we have CX = Ip.

(b) Show that

var(β̂) = σ2CCT = σ2(C − (XTX)−1XT )(C − (XTX)−1XT )T + σ2(XTX)−1.

Correction : We have:

var(β̂) = var(CY ) = Cvar(Y )CT = σ2CCT .

Furthermore

CCT = (C − (XTX)−1XT + (XTX)−1XT )(C − (XTX)−1XT + (XTX)−1XT )T

= (C − (XTX)−1XT )(C − (XTX)−1XT )T + (XTX)−1

+ 2(C − (XTX)−1XT )X(XTX)−1

= (C − (XTX)−1XT )(C − (XTX)−1XT )T + (XTX)−1.

(c) Show that for any vector x ∈ Rp,

xTvar(β̂)x ≥ xTvar(β̂ols)x.

The last inequality shows that among unbiased linear estimates, β̂ols is the estimate
with minimal variance-covariance matrix (the Gauss-Markov property).

Correction : Since (C − (XTX)−1XT )(C − (XTX)−1XT )T is a non-negative sym-
metric matrix, the inequality is obvious.
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3. From now on, we do not consider that the rank of X is p. We now consider for λ1 ≥ 0
and λ2 ≥ 0,

β̃ = arg min
β∈Rp

{
∥Y −Xβ∥22 + λ1∥β∥1 + λ2∥β∥22

}
.

(a) What’s the name of this procedure? Correction : Elastic netWhat does it correspond
when λ1 > 0 and λ2 = 0 ? Correction : Lasso What does it correspond when λ2 > 0
and λ1 = 0? Correction : Ridge

(b) We assume λ2 > 0. Show that β̃ exists and is the unique minimizer of C, with

C(β) := ∥Y −Xβ∥22 + λ1∥β∥1 + λ2∥β∥22.

Correction : C is a continuous function. Since λ2 > 0, C is strictly convex.

(c) Give a condition under which β̃ may have some zero coordinates.

Correction : λ1 > 0

(d) We now consider j and k such that β̃j × β̃k > 0. Prove that

−2XT
j (Y −Xβ̃) + λ1sign(β̃j) + 2λ2β̃j = 0

and
−2XT

k (Y −Xβ̃) + λ1sign(β̃k) + 2λ2β̃k = 0,

where for any x ∈ R∗, sign(x) denotes the sign of x.

Correction : Since β̂j and β̂k are different from 0, it’s just a consequence of compu-
tations of the partial derivatives of the criterion C with respect to βj and βk.

(e) Under assumptions of the previous question, deduce

|β̃j − β̃k| ≤
∥Y ∥2∥Xj −Xk∥2

λ2
.

Correction : Since sign(β̃k) = sign(β̃j), we have:

λ2|β̃j − β̃k| = |(Xj −Xk)
T (Y −Xβ̃)|

≤ ∥Xj −Xk∥2 × ∥Y −Xβ̃∥2
≤ ∥Y ∥2∥Xj −Xk∥2,

since C(β̃) ≤ C(0), so

∥Y −Xβ̃∥22 ≤ ∥Y −Xβ̃∥22 + λ1∥β̃∥1 + λ2∥β̃∥22 ≤ ∥Y ∥22.

(f) We estimate β∗ by β̂ = (1 + λ2)β̃. Show that

β̂ = arg min
β∈Rp

{
βT
(
XTX + λ2Ip

1 + λ2

)
β − 2Y TXβ + λ1∥β∥1

}
.
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Correction : We use: for any fonctions f and g, if there exists α such that for any
x, g(x) = f(αx), then

argmin
x
f(x) = α× argmin

x
g(x).

Then,

β̃ = arg min
β∈Rp

{
∥Y −Xβ∥22 + λ1∥β∥1 + λ2∥β∥22

}
= arg min

β∈Rp

{
βT (XTX + λ2Ip)β − 2Y TXβ + λ1∥β∥1

}
= arg min

β∈Rp

{
(1 + λ2)

(
βT (XTX + λ2Ip)β − 2Y TXβ + λ1∥β∥1

)}
= arg min

β∈Rp

{
((1 + λ2)β)

T

(
XTX + λ2Ip

1 + λ2

)
((1 + λ2)β)− 2Y TX(1 + λ2)β + λ1∥(1 + λ2)β∥1

}
.

and

(1 + λ2)β̃ = arg min
u∈Rp

{
uT
(
XTX + λ2Ip

1 + λ2

)
u− 2Y TXu+ λ1∥u∥1

}
.

Therefore,

β̂ = arg min
β∈Rp

{
βT
(
XTX + λ2Ip

1 + λ2

)
β − 2Y TXβ + λ1∥β∥1.

}
.

(g) By expressing β̂ as the Lasso estimate for a special regression problem, show that β̂
can be viewed as a stabilized version of the Lasso estimate.

Correction : We set

Ỹ :=

(
Y
0p

)
X̃ :=

1√
1 + λ2

(
X√
λ2Ip

)
So,

X̃T X̃ =
1

1 + λ2
(XTX + λ2Ip)

and

β̂ = arg min
β∈Rp

{
βT X̃T X̃β − 2Ỹ T X̃β + λ1∥β∥1

}
= arg min

β∈Rp

{
∥Ỹ − X̃β∥22 + λ1∥β∥1

}
Eigenvalues of X̃T X̃ are larger than λ2/(1 + λ2)

(h) We assume that the matrix X satisfies XTX = Ip. For any j ∈ {1, . . . , p}, give the

expression of β̂j with respect to β̂olsj .
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Correction : We have:

β̂ = arg min
β∈Rp

{
∥β∥22 − 2Y TXβ + λ1∥β∥1

}
= arg min

β∈Rp


p∑
j=1

(
β2j + βjX

T
j Y + λ1|βj |

)
Therefore,

β̂j = sign(β̂olsj )(|β̂olsj | − λ1/2)+
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A.3 Exam 2018-2019

High-dimensional statistics

Correction of the EXAM (duration 2h30)

Documents, calculators, phones and smartphones are forbidden

Exercise 1

Given a collection of models M, we study two model selection procedures based on the mini-
mization of two criteria defined for any m ∈ M by

C1(m) = C(m) + α1 × card(m), C2(m) = C(m) + α2 × card(m),

where m 7→ C(m) is a non-negative function defined on M and 0 < α1 < α2 < ∞. If m̂1

minimizes m 7→ C1(m) and m̂2 minimizes m 7→ C2(m), prove that card(m̂2) ≤ card(m̂1).
Correction : Let m a model such that card(m) > card(m̂1). We show that C2(m) > C2(m̂1).

Indeed,

C2(m) = C(m) + α2 × card(m)

= C(m) + α1 × card(m) + (α2 − α1)× card(m)

= C1(m) + (α2 − α1)× card(m)

≥ C1(m̂1) + (α2 − α1)× card(m)

> C1(m̂1) + (α2 − α1)× card(m̂1)

= C(m̂1) + α1 × card(m̂1) + (α2 − α1)× card(m̂1)

= C2(m̂1).

Exercise 2

We consider the multivariate linear regression model :

Y = Xβ∗ + ε

with Y = (Y1, . . . , Yn)
T the vector of observations. The matrix X is assumed to be known and

of size n×2. The rank of X is 2 (with 2 < n) and β∗ ∈ R2 is the vector to be estimated. Finally,
the error vector is ε = (ε1, . . . , εn)

T and satisfies E[ε] = 0, var(ε) = σ2In, with σ
2 > 0 unknown.

We denote (X1, X2) the columns of X. The ℓ2-norm is denoted ∥ · ∥. For any matrix A, we
denote AT its transpose matrix and for any estimate β̂, var(β̂) denotes its variance-covariance
matrix.
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1. Prove that for any estimator β̂ of β∗, we have

E[∥β̂ − β∗∥2] =
2∑
j=1

(var(β̂j) + (E[β̂j ]− β∗j )
2).

Correction : Obvious

2. We consider β̂ols the ordinary least-squares estimate. Prove that

E[∥β̂ols − β∗∥2] = σ2
(
((XTX)−1)11 + ((XTX)−1)22

)
.

Correction : We know that E[β̂ols] = β∗ and var(β̂ols) = σ2(XTX)−1. This leads to the
result, using Question 1.

3. We consider the estimate β̃ = (β̃1, 0)
T , with β̃1 the ordinary least-squares estimate com-

puted in the wrong model

Y = β∗1X1 + ε.

Give the expression of β̃1 and show that

E[(β̃1 − β∗1)
2] = σ2(XT

1 X1)
−1 + [(XT

1 X1)
−1XT

1 X2β
∗
2 ]

2

and

E[∥β̃ − β∗∥2] = σ2(XT
1 X1)

−1 + [(XT
1 X1)

−1XT
1 X2β

∗
2 ]

2 + (β∗2)
2.

Correction : The expression of β̃1 is

β̃1 = (XT
1 X1)

−1XT
1 Y,

which leads to

E[β̃1] = (XT
1 X1)

−1XT
1 E[Y ]

= (XT
1 X1)

−1XT
1 (β

∗
1X1 + β∗2X2)

= β∗1 + β∗2(X
T
1 X1)

−1XT
1 X2

and

(E[β̃1]− β∗1)
2 = (β∗2)

2((XT
1 X1)

−1XT
1 X2)

2.

Furthermore,

var(β̃1) = (XT
1 X1)

−1XT
1 × var(Y )×X1(X

T
1 X1)

−1 = σ2(XT
1 X1)

−1.
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4. Prove that when |β∗2 | ≠ 0 but small enough, then

E[∥β̃ − β∗∥2] < E[∥β̂ols − β∗∥2].

Indication: You can use the inequality ((XTX)−1)11 > (XT
1 X1)

−1.

Correction : If β∗2 is such that

0 < (β∗2)
2 ≤ σ2(((XTX)−1)11 − (XT

1 X1)
−1)

2(1 + ((XT
1 X1)−1XT

1 X2)2)
,

then

E[∥β̃ − β∗∥2] = σ2(XT
1 X1)

−1 + [(XT
1 X1)

−1XT
1 X2β

∗
2 ]

2 + (β∗2)
2

≤ σ2(XT
1 X1)

−1 +
σ2(((XTX)−1)11 − (XT

1 X1)
−1)

2

< σ2((XTX)−1)11

≤ E[∥β̂ols − β∗∥2].

5. Even if β∗2 ̸= 0 is estimated by 0 and β̃1 is computed in a wrong model, explain why the
previous result is not so surprising.

Correction : A sparse estimate may be better that a non-biased estimate since it has some
zero coordinates whose variance is equal to zero.

Problem

We recall the definition of a multiresolution analysis:

Definition A.1. A multiresolution analysis is a sequence of nested vector spaces

{0} ⊂ · · · ⊂ Vj+1 ⊂ Vj ⊂ Vj−1 ⊂ · · · ⊂ L2(R)

such that, for any j ∈ Z, if PVj is the orthogonal projection on Vj, for any f ∈ L2(R),

1. ∥PVjf − f∥2
j→−∞−→ 0

2. ∥PVjf∥2
j→+∞−→ 0

3. f ∈ Vj ⇐⇒ x 7→ f(x/2) ∈ Vj+1 for any j ∈ Z

4. f ∈ Vj ⇐⇒ x 7→ f(x+ 2jk) ∈ Vj for any k ∈ Z

5. ∃ϕ such that (ϕk)k∈Z is an orthonormal basis of V0 with for any x ∈ R, ϕk(x) = ϕ(x−k).
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Furthermore, setting

ϕjk(t) =
1√
2j
ϕ

(
t− k2j

2j

)
, t ∈ R,

for any j ∈ Z, (ϕjk)k∈Z is an orthonormal basis of Vj.

For any j ∈ Z, the detail space Wj is defined as the orthogonal complement of Vj in Vj−1:

Vj ⊕Wj = Vj−1.

The goal of this problem is to prove the following theorem (providing the definition of a wavelet
ψ in function of its associated scaling function ϕ).

Theorem A.1. Let h a conjugate mirror filter. We define the function g as

ĝ(w) = e−iwm0(w + π),

where m0 is the transfer function associated with h. We define the real-valued function ψ such
that

ψ̂(w) = ĝ
(w
2

)
ϕ̂
(w
2

)
.

We set for any j ∈ Z and any k ∈ Z

ψjk(t) =
1√
2j
ψ

(
t− k2j

2j

)
, t ∈ R.

Then, for any j ∈ Z, (ψjk)k∈Z is an orthonormal basis of Wj. Furthermore, (ψjk)j∈Z,k∈Z is an
orthonormal basis of L2(R).

To prove this theorem, you can use the following proposition established in the course.

Proposition A.1. We have

1. ϕ̂(2w) = ϕ̂(w)m0(w), w ∈ R

2. m0 is 2π-periodic and m0(0) = 1

3. |m0(w)|2 + |m0(w + π)|2 = 1, w ∈ R

We denote ⟨·, ·⟩ the scalar product associated with the L2-norm and ⋆ the standard convo-
lution product between two functions.

1. The goal of this question is to prove that functions of V0 are orthogonal to the functions
(ψ0k)k∈Z. We often use ψ(· − k) = ψ0k and ϕ(· − k) = ϕ0k.
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(a) Denoting for any t ∈ R, ψ̃(t) = ψ(−t), first prove that∑
k∈Z

(ϕ ⋆ ψ̃)(k)e−ikw =
∑
k∈Z

ϕ̂(w + 2kπ)ψ̂(w + 2kπ).

Indication: Use that ψ is a real-valued function and the Poisson formula: for any
function h, ∑

k∈Z
h(k)e−ikw =

∑
k∈Z

ĥ(w + 2kπ).

Correction : We have:∑
k∈Z

(ϕ ⋆ ψ̃)(k)e−ikw =
∑
k∈Z

(ϕ̂ ⋆ ψ̃)(w + 2kπ) =
∑
k∈Z

ϕ̂(w + 2kπ)
ˆ̃
ψ(w + 2kπ)

and, since ψ is a real-valued function

ˆ̃
ψ(w) =

∫
e−itwψ̃(t)dt =

∫
eitwψ(t)dt = ψ̂(w).

(b) Deduce that for any n ∈ Z and any p ∈ Z, ⟨ϕ(· − n), ψ(· − p)⟩ = 0 if and only if∑
k∈Z

ϕ̂(w + 2kπ)ψ̂(w + 2kπ) = 0. (A.3)

Correction :

⟨ϕ(· − n), ψ(· − p)⟩ =
∫
ϕ(t− n)ψ(t− p)dt

=

∫
ϕ(u)ψ(u+ n− p)du

= (ϕ ⋆ ψ̃)(p− n).

Therefore, for any n ∈ Z and any p ∈ Z, ⟨ϕ(· − n), ψ(· − p)⟩ = 0 if and only if for
any k ∈ Z, (ϕ ⋆ ψ̃)(k) = 0, which leads to the result.

(c) Establish that for any w ∈ R,

m0(w)ĝ(w) +m0(w + π)ĝ(w + π) = 0.

Correction : We have:

m0(w)ĝ(w) +m0(w+ π)ĝ(w + π) = m0(w)e
iwm0(w+ π)−m0(w+ π)eiwm0(w) = 0.
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(d) Prove that the previous equality yields∑
k∈Z

m0

(w
2
+ kπ

)
ĝ
(w
2
+ kπ

) ∣∣∣ϕ̂(w
2
+ kπ

)∣∣∣2 = 0.

Indication: Use that for any w ∈ R,
∑

k∈Z

∣∣∣ϕ̂ (w + 2kπ)
∣∣∣2 = 1.

Correction : We have

A :=
∑
k∈Z

m0

(w
2
+ kπ

)
ĝ
(w
2
+ kπ

) ∣∣∣ϕ̂(w
2
+ kπ

)∣∣∣2
=
∑
p∈Z

m0

(w
2
+ (2p+ 1)π

)
ĝ
(w
2
+ (2p+ 1)π

) ∣∣∣ϕ̂(w
2
+ (2p+ 1)π

)∣∣∣2
+
∑
p∈Z

m0

(w
2
+ 2pπ

)
ĝ
(w
2
+ 2pπ

) ∣∣∣ϕ̂(w
2
+ 2pπ

)∣∣∣2
= m0

(w
2
+ π

)
ĝ
(w
2
+ π

)∑
p∈Z

∣∣∣ϕ̂(w
2
+ (2p+ 1)π

)∣∣∣2
+m0

(w
2

)
ĝ
(w
2

)∑
p∈Z

∣∣∣ϕ̂(w
2
+ 2pπ

)∣∣∣2
= m0

(w
2
+ π

)
ĝ
(w
2
+ π

)
+m0

(w
2

)
ĝ
(w
2

)
= 0

(e) Using Proposition A.1, prove that (A.3) is satisfied.

Correction :∑
k∈Z

ϕ̂(w + 2kπ)ψ̂(w + 2kπ) =
∑
k∈Z

ϕ̂
(w
2
+ kπ

)
m0

(w
2
+ kπ

)
ψ̂ (w + 2kπ)

=
∑
k∈Z

m0

(w
2
+ kπ

)
ĝ
(w
2
+ kπ

) ∣∣∣ϕ̂(w
2
+ kπ

)∣∣∣2
= 0.

(f) Conclude that functions of V0 are orthogonal to the functions (ψ0k)k∈Z.

Correction : Using Questions 1)(b) and 1)(e), since functions (ϕk)k∈Z span V0, func-
tions of V0 are orthogonal to the functions (ψ0k)k∈Z.

2. We now study the functions (ψ0k)k∈Z.

(a) Show that ∑
k∈Z

|ψ̂(w + 2kπ)|2 = 1, w ∈ R.
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Indication: Use that for any w ∈ R,
∑

k∈Z

∣∣∣ϕ̂ (w + 2kπ)
∣∣∣2 = 1.

Correction :∑
k∈Z

|ψ̂(w + 2kπ)|2 =
∑
k∈Z

∣∣∣ĝ (w
2
+ kπ

)∣∣∣2 ∣∣∣ϕ̂(w
2
+ kπ

)∣∣∣2
=
∑
k∈Z

∣∣∣m0

(w
2
+ (k + 1)π

)∣∣∣2 ∣∣∣ϕ̂(w
2
+ kπ

)∣∣∣2
=
∑
p∈Z

∣∣∣m0

(w
2
+ (2p+ 2)π

)∣∣∣2 ∣∣∣ϕ̂(w
2
+ (2p+ 1)π

)∣∣∣2
+
∑
p∈Z

∣∣∣m0

(w
2
+ (2p+ 1)π

)∣∣∣2 ∣∣∣ϕ̂(w
2
+ 2pπ

)∣∣∣2
=
∣∣∣m0

(w
2

)∣∣∣2∑
p∈Z

∣∣∣ϕ̂(w
2
+ (2p+ 1)π

)∣∣∣2
+
∣∣∣m0

(w
2
+ π

)∣∣∣2∑
p∈Z

∣∣∣ϕ̂(w
2
+ 2pπ

)∣∣∣2
=
∣∣∣m0

(w
2

)∣∣∣2 + ∣∣∣m0

(w
2
+ π

)∣∣∣2 = 1

(b) Prove that for any n ∈ Z and any p ∈ Z,

⟨ψ(· − n), ψ(· − p)⟩ = 1{n=p}.

Indication: The arguments are similar to those of the Question 1.

Correction : For any n ∈ Z and any p ∈ Z

⟨ψ(· − n), ψ(· − p)⟩ =
∫
ψ(t− n)ψ(t− p)dt

=

∫
ψ(u)ψ(u+ n− p)du

= (ψ ⋆ ψ̃)(p− n).

The Poisson formula and Question 2)(a) give:∑
k∈Z

(ψ ⋆ ψ̃)(k)e−ikw =
∑
k∈Z

|ψ̂(w + 2kπ)|2 = 1,

which is a constant function. By identification, (ψ ⋆ ψ̃)(k) = 0 for k ̸= 0 and
(ψ ⋆ ψ̃)(0) = 1. This implies

⟨ψ(· − n), ψ(· − p)⟩ = 1{n=p}.
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(c) Deduce that functions (ψ0k)k∈Z are orthonormal.

Correction : Obvious

3. In this question, we show that V−1 = V0 ⊕ W̃0, where W̃0 is the space spanned by the
functions (ψ0k)k∈Z.

(a) Show that the inclusion V−1 ⊂ V0 ⊕ W̃0 is equivalent to the property:

∀ (ak)k∈Z ∈ ℓ2(Z), ∃ (bk)k∈Z ∈ ℓ2(Z) and (ck)k∈Z ∈ ℓ2(Z) such that∑
k∈Z

ak
√
2ϕ(2t− k) =

∑
k∈Z

bkϕ(t− k) +
∑
k∈Z

ckψ(t− k), t ∈ R. (A.4)

Correction : The space V−1 is spanned by functions ϕ−1k : t 7→
√
2ϕ(2t − k). The

space V0 is spanned by functions ϕ0k : t 7→ ϕ(t−k). These arguments give the result.

(b) By setting for any w ∈ R,

â(w) =
∑
k∈Z

ake
−ikw, b̂(w) =

∑
k∈Z

bke
−ikw, ĉ(w) =

∑
k∈Z

cke
−ikw,

show that (A.4) is satisfied if

â
(w
2

)
=

√
2
(
b̂(w)m0

(w
2

)
+ ĉ(w)ĝ

(w
2

))
, w ∈ R. (A.5)

Correction : We have

(A.4) ⇐⇒
∫
e−itw

∑
k∈Z

ak
√
2ϕ(2t− k)dt =

∫
e−itw

∑
k∈Z

bkϕ(t− k)dt+

∫
e−itw

∑
k∈Z

ckψ(t− k)dt,∀w ∈ R

⇐⇒
∑
k∈Z

ake
−ikw/2

∫
ϕ(u)e−iwu/2

du√
2
=
∑
k∈Z

bke
−ikw

∫
ϕ(u)e−iwudu+

∑
k∈Z

cke
−ikw

∫
ψ(u)e−iwudu,∀w ∈ R

⇐⇒ â
(w
2

)
ϕ̂
(w
2

)
=

√
2
(
b̂(w)ϕ̂(w) + ψ̂(w)ĉ(w)

)
, ∀w ∈ R

⇐⇒ â
(w
2

)
ϕ̂
(w
2

)
=

√
2
(
b̂(w)ϕ̂

(w
2

)
m0

(w
2

)
+ ĉ(w)ĝ

(w
2

)
ϕ̂
(w
2

))
,∀w ∈ R

Therefore, (A.5) implies (A.4).

(c) By setting

b̂(w) =
1√
2

(
â
(w
2

)
m0

(w
2

)
+ â

(w
2
+ π

)
m0

(w
2
+ π

))
,

ĉ(w) =
1√
2

(
â
(w
2

)
ĝ
(w
2

)
+ â

(w
2
+ π

)
ĝ
(w
2
+ π

))
,

show that (A.5) is satisfied.
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Correction : We have for w ∈ R,

√
2
(
b̂(w)m0

(w
2

)
+ ĉ(w)ĝ

(w
2

))
= â

(w
2

) ∣∣∣m0

(w
2

)∣∣∣2 + â
(w
2
+ π

)
m0

(w
2
+ π

)
m0

(w
2

)
+ â

(w
2

) ∣∣∣g (w
2

)∣∣∣2 + â
(w
2
+ π

)
g
(w
2
+ π

)
g
(w
2

)
= â

(w
2

) ∣∣∣m0

(w
2

)∣∣∣2 + â
(w
2
+ π

)
m0

(w
2
+ π

)
m0

(w
2

)
+ â

(w
2

) ∣∣∣m0

(w
2
+ π

)∣∣∣2 − â
(w
2
+ π

)
m0

(w
2

)
m0

(w
2
+ π

)
= â

(w
2

)
.

(d) Prove that V0 ⊕ W̃0 ⊂ V−1 and deduce that W0 = W̃0.

Correction : We already know that V0 ⊂ V−1. To show that W̃0 ⊂ V−1, we just have
to show that

∀ (ck)k∈Z ∈ ℓ2(Z), ∃ (ak)k∈Z ∈ ℓ2(Z) such that∑
k∈Z

ckψ(t− k) =
∑
k∈Z

ak
√
2ϕ(2t− k), t ∈ R,

which is equivalent to

â
(w
2

)
ϕ̂
(w
2

)
=

√
2ĉ(w)ĝ

(w
2

)
ϕ̂
(w
2

)
, ∀w ∈ R.

So, we have to set â so that ∀w ∈ R,

â
(w
2

)
=

√
2ĉ(w)ĝ

(w
2

)
to obtain the result.
These results imply V0 ⊕ W̃0 = V−1 = V0 ⊕W0. This yields W̃0 =W0.

4. Show that for any j ∈ Z, (ψjk)k∈Z constitutes an orthonormal system of functions. Show
also that for any j ∈ Z and for any function f ∈ Vj , ⟨f, ψjk⟩ = 0 for any k ∈ Z.

Correction : We have

⟨ψjk, ψjk′⟩ =
1

2j

∫
ψ(2−jt− k)ψ(2−jt− k′)dt

=

∫
ψ(u− k)ψ(u− k′)du = 1{k=k′},

which proves the first point. For the second one, we just have to prove that for any k
and any k′, ⟨ϕjk, ψjk′⟩ = 0. By using similar computations and Question 1), the result is
satisfied.
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5. Prove that for any j ∈ Z, (ψjk)k∈Z is an orthonormal basis of Wj . Deduce that the spaces
(Wj)j∈Z are orthogonal and for any L < J ,

VL =
[
⊕J
j=L+1Wj

]
⊕ VJ .

Correction : f ∈ Vj−1 = Vj ⊕Wj ⇐⇒ f(2j ·) ∈ V−1 = V0 ⊕W0. Therefore, there exist
(ak)k∈Z and (bk)k∈Z such that for any x ∈ R,

f(2jx) =
∑
k∈Z

akϕ(x− k) +
∑
k∈Z

bkψ(x− k).

Therefore, for any x ∈ R,

f(x) =
∑
k∈Z

akϕ(2
−jx− k) +

∑
k∈Z

bkψ(2
−jx− k).

We obtain that {(ϕjk)k∈Z, (ψjk)k∈Z} is an orthonormal basis of Vj−1 = Vj ⊕ Wj and
(ψjk)k∈Z is an orthonormal basis of Wj.
We have for any j ∈ Z that Wj+1 ⊂ Vj ⊥Wj. Therefore, the spaces Wj are orthogonal.
Finally,

VL = VL+1 ⊕WL+1

= VL+2 ⊕WL+2 ⊕WL+1

. . .

= VJ ⊕WJ ⊕ · · · ⊕WL+2 ⊕WL+1

=
[
⊕J
j=L+1Wj

]
⊕ VJ .

6. Finally, prove that (ψjk)j∈Z,k∈Z is an orthonormal basis of L2(R).
Correction : We start from

VL =
[
⊕J
j=L+1Wj

]
⊕ VJ

with L < J . Now take L→ −∞ and J → +∞, we obtain

L2(R) = ⊕+∞
j=−∞Wj .

Since for any j, (ψjk)k∈Z is an orthonormal basis of Wj and the spaces Wj are orthogonal,
(ψjk)j∈Z,k∈Z is an orthonormal basis of L2(R).
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A.4 Exam 2019-2020

High-dimensional statistics

EXAM: duration 2h30

Documents, calculators, phones and smartphones are forbidden

Exercise 1

Given β∗ ∈ Rp and a matrix X of size n× p, and whose lines are denoted xT1 , . . . , x
T
n , so

that

X =


xT1
xT2
...
xTn

 ,

we consider the regression model

Yi = xTi β
∗ + εi, εi

iid∼ N (0, σ2), i = 1, . . . , n, (A.6)

with σ2 > 0. We denote

Y = (Y1, . . . , Yn)
T , ε = (ε1, . . . , εn)

T

and we define the degree of freedom of a function g : Rn 7→ Rn with coordinates gi by

df(g) =
1

σ2

n∑
i=1

cov(gi(Y ), Yi).

Model (A.15) can be rewritten
Y = Xβ∗ + ε

and we assume that rank(X) = p. In the sequel, we denote ∥ · ∥ the ℓ2-norm on Rn.

1. We consider β̂ ∈ Rp any estimate of β∗ and we set g(Y ) = Xβ̂, so that gi(Y ) is the
ith coordinate of Xβ̂:

gi(Y ) = (Xβ̂)i.

We denote
Cp := ∥Y −Xβ̂∥2 − nσ2 + 2σ2df(Xβ̂).
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(a) Establish that E[∥ε∥2] = nσ2.

Correction : Obvious since

∥ε∥2 =
n∑
i=1

ε2i .

(b) Prove that for any i ∈ {1, . . . , n},

E[(Yi − E[Yi])(E[Yi]− (Xβ̂)i)] = E[(Yi − E[Yi])(E[(Xβ̂)i]− (Xβ̂)i)].

Correction : We observe that for any i ∈ {1, . . . , n},

E[(Yi − E[Yi])(E[Yi]− (Xβ̂)i)] = E[(Yi − E[Yi])(E[Yi]− E[(Xβ̂)i] + E[(Xβ̂)i]− (Xβ̂)i)]

= 0 + E[(Yi − E[Yi])(E[(Xβ̂)i]− (Xβ̂)i)].

(c) Prove that
E[Cp] = E[∥Xβ̂ −Xβ∗∥2].

Indication: We recall that

cov(gi(Y ), Yi) = E[(gi(Y )− E[gi(Y )])(Yi − E[Yi])].

Correction : We have:

E[∥Xβ̂ −Xβ∗∥2] = E[∥Xβ̂ − Y + Y −Xβ∗∥2]

= E[∥Xβ̂ − Y ∥2] + E[∥Y −Xβ∗∥2]− 2E

[
n∑
i=1

(Y −Xβ∗)i(Y −Xβ̂)i

]
= E[∥Xβ̂ − Y ∥2] + E[∥ε∥2]

− 2E

[
n∑
i=1

(Yi − E[Yi])(Yi − E[Yi] + E[Yi]− (Xβ̂)i)

]

= E[∥Xβ̂ − Y ∥2]− E[∥ε∥2]− 2E

[
n∑
i=1

(Yi − E[Yi])(E[Yi]− (Xβ̂)i)

]
.

So, since E[∥ε∥2] = nσ2 and using the result of the previous question,

E[∥Xβ̂ −Xβ∗∥2] = E[∥Xβ̂ − Y ∥2]− nσ2 − 2
n∑
i=1

E[(Yi − E[Yi])(E[(Xβ̂)i]− (Xβ̂)i)]

= E[∥Xβ̂ − Y ∥2]− nσ2 + 2σ2df(Xβ̂)

= E[Cp].
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2. We now estimate Xβ∗ with

g(Y ) = X(XTX)−1XTY.

(a) Prove that

df(g) =
n∑
i=1

xTi (X
TX)−1xi.

Correction : For this case, gi(Y ) = xTi (X
TX)−1XTY . We denote 1i the vector

whose components are all equal to 0 except the ith component equal to 1. Since
XT × 1i = xi

df(g) = σ−2

n∑
i=1

E[xTi (XTX)−1XT ε× εi]

=
n∑
i=1

xTi (X
TX)−1XTσ−2E[εiε]

=
n∑
i=1

xTi (X
TX)−1XT × 1i

=
n∑
i=1

xTi (X
TX)−1xi.

(b) Deduce that
df(g) = Trace(X(XTX)−1XT ).

Correction : Obvious.

(c) Finally, prove that
df(g) = p.

Correction : The matrix X(XTX)−1XT is the projection matrix on Im(X),
so, since rank(X) = p, df(g) = Trace(X(XTX)−1XT ) = p.

Exercise 2

We consider the model of Exercise 1 written

Y = Xβ∗ + ε.

We use notations of Exercise 1. We consider the ridge estimate: for λ > 0,

β̂λ := (XTX + λIp)
−1XTY.
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We denote (µ1, . . . , µp) the eigenvalues of the matrix XTX and (U1, . . . , Up) the associated
orthonormal basis of eigenvectors. So, we can write

XTX = UDUT ,

with U an orthogonal matrix whose columns are given by the Uj’s and D the diagonal
matrix with the µj’s on the diagonal:

U = [U1, . . . , UP ], D =


µ1

µ2

. . .

µp

 .

1. Establish the following bias-variance decomposition:

E[∥β̂λ − β∗∥2] = ∥E[β̂λ]− β∗∥2 + E
[
∥β̂λ − E[β̂λ]∥2

]
.

Correction : Obvious.

2. Prove that
E[β̂λ] = (XTX + λIp)

−1XTXβ∗.

Correction : Obvious.

3. Deduce that
E[β̂λ]− β∗ = −λ(XTX + λIp)

−1β∗.

Correction : We have:

E[β̂λ]− β∗ = (XTX + λIp)
−1XTXβ∗ − β∗

= (XTX + λIp)
−1(XTX −XTX − λIp)β

∗

= −λ(XTX + λIp)
−1β∗.

4. Finally, establish that

∥E[β̂λ]− β∗∥2 = λ2β∗T (XTX + λIp)
−2β∗.

Correction : Obvious.

5. Prove that
β̂λ − E[β̂λ] = (XTX + λIp)

−1XT ε.

Correction : Obvious.
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6. Establish the decomposition

(XTX + λIp)
−1XTX(XTX + λIp)

−1 = UD̃UT ,

where

D̃ =


µ1

(µ1+λ)2
µ2

(µ2+λ)2

. . .
µp

(µp+λ)2

 .

Correction : The eigenvalues of XTX are (µ1, . . . , µp) and (U1, . . . , Up) is the associ-
ated orthonormal basis of eigenvectors. So, in this basis, the eigenvalues of XTX +
λIp are (µ1+λ, . . . , µp+λ) and the eigenvalues of (XTX+λIp)

−1XTX(XTX+λIp)
−1

in this basis are the diagonal elements of D̃.

7. Finally, establish

E
[
∥β̂λ − E[β̂λ]∥2

]
= σ2

p∑
j=1

µj
(µj + λ)2

.

Correction : We simply use the following result: For any deterministic matrix A
with n columns,

E[∥Aε∥2] = σ2Tr(AAT ).

Problem

We wish to estimate a function f ∈ L2(R) decomposed on a wavelet basis denoted (ψjk)jk:

f =
+∞∑
j=−1

∑
k∈Kj

βjkψjk,

where for any j ≥ −1, Kj is the set of integers k such that

∀ k /∈ Kj, βjk = 0.

In the previous decomposition, the coefficients (β−1k)k correspond to the approximation
coefficients. We assume that we observe a noisy version of wavelet coefficients βjk. The
noise is assumed to be Gaussian and we consider the following model:

Xjk = βjk +
σ√
n
zjk, j ≥ −1, k ∈ Kj,
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where the zjk’s are i.i.d. N (0, 1). The noise level σ√
n
is assumed to be known. For practical

reasons, we only estimate a finite set of wavelet coefficients. This set will have the form

Γ = {(j, k) : −1 ≤ j ≤ J, k ∈ Kj}

with J an integer. We consider ηjk a threshold (defined below) and we set for any j and
any k,

β̂jk = Xjk1{|Xjk|>ηjk}.

The estimate of f is then

f̂ =
J∑

j=−1

∑
k∈Kj

β̂jkψjk.

For any k ∈ K−1, we set η−1k = 0 and for 0 ≤ j ≤ J and k ∈ Kj,

ηjk = σ

√
2γ log n

n
.

We take γ a constant larger than 1 and such that

card(Γ) ≤ n
γ
8 .

The goal of the problem is to study the L2-risk of the estimate f̂ . In the sequel, we denote
∥ · ∥ the L2-norm.

1. Prove that if Z ∼ N (0, 1), then for any x > 0,

P(|Z| ≥ x) ≤ 2

x
√
2π

exp

(
−x

2

2

)
.

Correction : We just use:

P(|Z| ≥ x) =
2√
2π

∫ +∞

x

exp

(
−t

2

2

)
dt

≤ 2√
2π

∫ +∞

x

t

x
exp

(
−t

2

2

)
dt =

2

x
√
2π

exp

(
−x

2

2

)
.

2. Establish the following equality:

E
[
(X−1k − β−1k)

2
]
=
σ2

n
.

Correction : It’s obvious since the zjk’s are i.i.d. N (0, 1).
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3. Then prove

E
[
∥f̂ − f∥2

]
=
σ2

n
card(K−1) +

J∑
j=0

∑
k∈Kj

E
[
(β̂jk − βjk)

2
]
+
∑
j>J

∑
k∈Kj

β2
jk. (A.7)

Correction : We have:

E
[
∥f̂ − f∥2

]
= E

∥∥∥∥∥∥
+∞∑
j=−1

∑
k∈Kj

βjkψjk −
J∑

j=−1

∑
k∈Kj

β̂jkψjk

∥∥∥∥∥∥
2

= E

∥∥∥∥∥∥
J∑

j=−1

∑
k∈Kj

(βjk − β̂jk)ψjk +
∑
j>J

∑
k∈Kj

βjkψjk

∥∥∥∥∥∥
2 .

By using Parseval’s identity,

E
[
∥f̂ − f∥2

]
=
∑
k∈K−1

E
[
(X−1k − β−1k)

2
]
+

J∑
j=0

∑
k∈Kj

E
[
(β̂jk − βjk)

2
]
+
∑
j>J

∑
k∈Kj

β2
jk

=
σ2

n
card(K−1) +

J∑
j=0

∑
k∈Kj

E
[
(β̂jk − βjk)

2
]
+
∑
j>J

∑
k∈Kj

β2
jk.

4. In the sequel, we fix j ∈ {0, . . . , J} and k ∈ Kj. We wish to provide a control of

E
[
(β̂jk − βjk)

2
]
.

(a) For this purpose, first prove that

E
[
(β̂jk − βjk)

2
]
≤ A+B + C +D,

with

A := E
[
(Xjk − βjk)

21{|Xjk−βjk|>
ηjk
2 }
]
, B := β2

jk1{|βjk|≤2ηjk},

C := E
[
(Xjk − βjk)

21{|βjk|> ηjk
2 }
]
, D := E

[
β2
jk1{|Xjk−βjk|>ηjk}

]
.

Indication: Distinguish cases according to whether |Xjk| is larger than ηjk or
not, and whether |βjk| is large or not.
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Correction :

E
[
(β̂jk − βjk)

2
]
= E

[
(Xjk − βjk)

21{|Xjk|>ηjk}
]
+ E

[
β2
jk1{|Xjk|≤ηjk}

]
= E

[
(Xjk − βjk)

21{|Xjk|>ηjk}1{|βjk|≤ ηjk
2 }
]
+ E

[
β2
jk1{|Xjk|≤ηjk}1{|βjk|≤2ηjk}

]
+ E

[
(Xjk − βjk)

21{|Xjk|>ηjk}1{|βjk|> ηjk
2 }
]
+ E

[
β2
jk1{|Xjk|≤ηjk}1{|βjk|>2ηjk}

]
≤ A+B + C +D.

(b) By using the definition of ηjk, establish that

D ≤ β2
jk ×

1√
π
√
γ log n

n−γ.

Correction : We use for any x > 0,

P(|zjk| ≥ x) ≤ 2

x
√
2π

exp

(
−x

2

2

)
.

We have:

D = β2
jk × P(|Xjk − βjk| > ηjk)

≤ β2
jk × P(|zjk| >

√
2γ log n)

≤ β2
jk ×

2√
2π

√
2γ log n

n−γ

= β2
jk ×

1√
π
√
γ log n

n−γ.

(c) By using E[z4jk] = 3, prove that

A ≤ CAσ
2

n
(γ log n)−

1
4n− γ

8 ,

with CA a numerical constant.

Correction : Since

A = E
[
(Xjk − βjk)

21{|Xjk−βjk|>
ηjk
2 }
]
,

the Cauchy-Schwarz inequality gives

A2 ≤ E
[
(Xjk − βjk)

4
]
× P

(
|Xjk − βjk| >

ηjk
2

)
≤ 3σ4

n2
× P(|zjk| >

√
2−1γ log n)

≤ 3σ4

n2
× 2

√
2π
√
2−1γ log n

n− γ
4
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and

A ≤ CAσ
2

n
(γ log n)−

1
4n− γ

8 ,

with

C2
A =

6√
π
.

(d) Prove that for n large enough

B ≤ 8γmin

(
σ2 log n

n
, β2

jk

)
.

Correction : We have that

B = β2
jk1{|βjk|≤2ηjk}

and

ηjk = σ

√
2γ log n

n
.

If σ
2 logn
n

≥ β2
jk, the inequality is obvious since 8γ > 1. Otherwise, σ

2 logn
n

< β2
jk,

but

B ≤ β2
jk ×

4η2jk
β2
jk

= 8γ × σ2 log n

n
.

(e) Prove that

C =
σ2

n
1{|βjk|> ηjk

2 }
and that for n large enough

C ≤ min

(
σ2 log n

n
, β2

jk

)
.

Correction : The first point is obvious. So,

C =
σ2

n
1{|βjk|> ηjk

2 }
and

ηjk = σ

√
2γ log n

n
.

If σ2 logn
n

≤ β2
jk, the inequality is obvious when log n ≥ 1. Otherwise, σ2 logn

n
>

β2
jk, but

C ≤ σ2

n
×

4β2
jk

η2jk
=

2β2
jk

γ log n
≤ β2

jk,

when n is large enough so that γ log n ≥ 2.
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5. Finally, conclude that for n large enough,

E
[
∥f̂ − f∥2

]
≤ σ2

n
card(K−1) + C1

J∑
j=0

∑
k∈Kj

min

(
σ2 log n

n
, β2

jk

)
+
∑
j>J

∑
k∈Kj

β2
jk +

C2

n
,

where C1 and C2 are two constants depending on ∥f∥, γ and σ2.

Correction : Using previous inequalities, for n large enough,

E
[
(β̂jk − βjk)

2
]
≤ β2

jk ×
1√

π
√
γ log n

n−γ +
CAσ

2

n
(γ log n)−

1
4n− γ

8 + (8γ + 1)min

(
σ2 log n

n
, β2

jk

)
.

We have
J∑
j=0

∑
k∈Kj

β2
jk ×

1√
π
√
γ log n

n−γ ≤ ∥f∥2√
π
√
γ log n

n−γ

and

J∑
j=0

∑
k∈Kj

CAσ
2

n
(γ log n)−

1
4n− γ

8 ≤ CAσ
2

n
(γ log n)−

1
4 card(Γ)n− γ

8 ≤ CAσ
2

n
(γ log n)−

1
4 .

Since γ is larger than 1, we obtain the result.
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A.5 Exam 2020-2021

High-dimensional statistics

EXAM: duration 2h30

Documents, calculators, phones and smartphones are forbidden

Exercise 1

For n ∈ N∗ and σ > 0, we consider the following statistical model

X = β∗ + σZ,

with X = (X1, . . . , Xn)
T ∈ Rn and Z = (Z1, . . . , Zn)

T ∈ Rn so that the Zi’s are i.i.d with
common distribution N (0, 1). The goal is to estimate β∗ = (β∗

1 , . . . , β
∗
n)
T ∈ Rn by using

the observation X. We denote ∥ · ∥ the classical ℓ2-norm.

1. (a) We consider β̂1 the penalized estimate defined by

β̂1 ∈ arg min
β∈Rn

{
∥X − β∥2 + 2λpen(β)

}
with λ > 0 and where the penalty pen : Rn 7→ R+ is a function depending only
on β. Write the penalty pen corresponding to the Lasso estimate.

Correction : pen(β) = ∥β∥1 =
∑n

i=1 |βi|.

(b) Establish that for any i ∈ {1, . . . , n}, β̂1
i , the ith coordinate of β̂1, is obtained

by minimizing the function

Θ : t ∈ R 7→ t2 − 2tXi + 2λ|t|.

Correction : We have:

∥X − β∥2 + 2λpen(β) =
n∑
i=1

[
β2
i − 2βiXi +X2

i + 2λ|βi|
]

and minimization is obtained coordinatewise.
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(c) Prove that for any i ∈ {1, . . . , n},

β̂1
i = sign(Xi)(|Xi| − λ)+,

where sign(Xi) ∈ {+1,−1} denotes the sign ofXi and (|Xi|−λ)+ = max(|Xi|−
λ; 0).

Correction : On R+, Θ(t) = t2 − 2tXi + 2λt and

arg min
t∈R+

Θ(t) = max(Xi − λ; 0)

On R−, Θ(t) = t2 − 2tXi − 2λt and

arg min
t∈R−

Θ(t) = min(Xi + λ; 0)

- If Xi ≥ λ,

Θ(Xi−λ) = X2
i +λ

2−2λXi−2(Xi−λ)Xi+2λ(Xi−λ) = −X2
i−λ2+2λXi = −(Xi−λ)2 ≤ 0.

- If Xi ∈ [−λ;λ], Θ(0) = 0.
- If Xi ≤ −λ,

Θ(Xi+λ) = X2
i +λ

2+2λXi−2(Xi+λ)Xi−2λ(Xi+λ) = −X2
i−λ2−2λXi = −(Xi+λ)

2 ≤ 0.

Finally,

β̂1
i =


Xi − λ if Xi ≥ λ

0 if Xi ∈ [−λ;λ]
Xi + λ if Xi ≤ −λ

 = sign(Xi)(|Xi| − λ)+.

2. In the sequel, for F : Rn 7→ Rn a measurable function, we denote β̂ = F (X) an
estimate of β∗. We denote (F1, . . . , Fn) the R-valued components of F that are
assumed to be C1, so that F (X) = (F1(X), . . . , Fn(X)). We consider g : R 7→ R
assumed to be C1 such that E[|g′(Z1)|] <∞. We denote ϕ the density of Z1.

(a) Prove that for any t ∈ R,
ϕ′(t) = −tϕ(t).

Correction : The density of Z1 is ϕ(t) = 1√
2π

exp(−t2/2). Therefore

ϕ′(t) = −t× 1√
2π

exp(−t2/2) = −tϕ(t).
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(b) Establish that

E[g′(Z1)] =

∫ +∞

0

g′(x)

(∫ +∞

x

tϕ(t)dt

)
dx−

∫ 0

−∞
g′(x)

(∫ x

−∞
tϕ(t)dt

)
dx.

Indication : Use E[g′(Z1)] = E[g′(Z1)1{Z1>0}] + E[g′(Z1)1{Z1<0}].

Correction :

E[g′(Z1)] = E[g′(Z1)1{Z1>0}] + E[g′(Z1)1{Z1<0}]

=

∫ +∞

0

g′(x)ϕ(x)dx+

∫ 0

−∞
g′(x)ϕ(x)dx

=

∫ +∞

0

g′(x)

(∫ +∞

x

(−ϕ′(t))dt

)
dx+

∫ 0

−∞
g′(x)

(∫ x

−∞
ϕ′(t)dt

)
dx

=

∫ +∞

0

g′(x)

(∫ +∞

x

tϕ(t)dt

)
dx−

∫ 0

−∞
g′(x)

(∫ x

−∞
tϕ(t)dt

)
dx.

(c) Conclude that
E[g′(Z1)] = E[Z1g(Z1)]. (A.8)

Correction : Fubini’s theorem holds since∫ +∞

0

|g′(x)|
∫ +∞

0

tϕ(t)1{t>x}dtdx = −
∫ +∞

0

|g′(x)|
∫ +∞

0

ϕ′(t)1{t>x}dtdx

≤ E[|g′(Z1)|] <∞.

Similarly,∫ 0

−∞
|g′(x)|

(∫ 0

−∞
|t|ϕ(t)1{t<x}dt

)
dx =

∫ 0

−∞
|g′(x)|

∫ 0

−∞
ϕ′(t)1{t<x}dtdx

≤ E[|g′(Z1)|] <∞.

Therefore, since ∫ +∞

−∞
tϕ(t)dt = E[Z1] = 0,

we have

E[g′(Z1)] =

∫ +∞

0

tϕ(t)

(∫ t

0

g′(x)dx

)
dt−

∫ 0

−∞
tϕ(t)

(∫ 0

t

g′(x)dx

)
dt

=

∫ +∞

0

tϕ(t)(g(t)− g(0))dt−
∫ 0

−∞
tϕ(t)(g(0)− g(t))dt (A.9)

=

∫ +∞

−∞
tϕ(t)g(t)dt = E[Z1g(Z1)].
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3. In the sequel, we fix i ∈ {1, . . . , n} and introduce Gi : Rn 7→ R such that for any
u ∈ Rn,

Gi(u) = Fi(β
∗ + σu)

and X(−i) the vector of Rn−1 built from X by removing its ith component:

X(−i) = (X1, . . . , Xi−1, Xi+1, . . . , Xn).

(a) Prove that the ith partial derivative of Fi satisfies

∂Fi
∂xi

(X) =
1

σ

∂Gi

∂xi
(Z).

Correction : We have, with u = (u1, . . . , un)
T ,

Fi(u) = Gi

(
u1 − β∗

1

σ
, . . . ,

un − β∗
n

σ

)
,

which implies

∂Fi
∂xi

(u) =
1

σ

∂Gi

∂xi

(
u1 − β∗

1

σ
, . . . ,

un − β∗
n

σ

)
.

With u = X, we obtain:

∂Fi
∂xi

(X) =
1

σ

∂Gi

∂xi
(Z).

(b) By using (A.8), deduce that

E
[
∂Fi
∂xi

(X) | X(−i)
]
=

1

σ
E
[
ZiGi(Z) |X(−i)].

Correction : We have X(−i) = β∗(−i) + σZ(−i). So, by using (A.8),

E
[
∂Fi
∂xi

(X) | X(−i)
]
=

1

σ
E
[
∂Gi

∂xi
(Z) | Z(−i)

]
=

1

σ
E
[
ZiGi(Z1, . . . , Zi−1, Zi, Zi+1, . . . , Zn) |Z(−i)]

=
1

σ
E
[
ZiGi(Z) |X(−i)].
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(c) Conclude that

E
[
∂Fi
∂xi

(X)

]
=

1

σ2
E
[
(Xi − β∗

i )Fi(X)
]
.

Correction : Finally,

E
[
∂Fi
∂xi

(X)

]
= E

[
E
[
∂Fi
∂xi

(X) | X(−i)
]]

= E
[
1

σ
E
[
ZiGi(Z1, . . . , Zi−1, Zi, Zi+1, . . . , Zn) | (X(−i)]]

=
1

σ2
E
[
E
[
(Xi − β∗

i )Fi(X) | (X(−i)]]
=

1

σ2
E
[
(Xi − β∗

i )Fi(X)
]
.

4. Let

C = ∥X − F (X)∥2 + 2σ2

n∑
i=1

∂Fi
∂xi

(X)− nσ2.

Prove that
E[C] = E[∥F (X)− β∗∥2].

Correction : We have

E[C] = E[∥X − F (X)∥2] + 2σ2E

[
n∑
i=1

∂Fi
∂xi

(X)

]
− nσ2

= E[∥X − β∗∥2] + E[∥F (X)− β∗∥2] + 2
n∑
i=1

E[(Xi − β∗
i )(β

∗
i − Fi(X))] + 2σ2E

[
n∑
i=1

∂Fi
∂xi

(X)

]
− nσ2

= E[∥F (X)− β∗∥2]− 2
n∑
i=1

E[(Xi − β∗
i )Fi(X)] + 2σ2E

[
n∑
i=1

∂Fi
∂xi

(X)

]
,

where we have used E[Xi − β∗
i ] = 0 and

E[∥X − β∗∥2] = σ2E[∥Z∥2] = σ2

n∑
i=1

E[Z2
i ] = nσ2.

Using the previous question, we have

E[C] = E[∥F (X)− β∗∥2].
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5. We now assume that the estimate F (X) depends on a hyperparameter λ; we write
F (X) ≡ F λ(X).

(a) Deduce a method to select the hyperparameter λ.

Correction : Since C is an unbiased estimate of E[∥F (X)−β∗∥2], we naturally
minimize the function

λ 7→ ∥X − F λ(X)∥2 + 2σ2

n∑
i=1

∂F λ
i

∂xi
(X)

(b) We now assume that for all i ∈ {1, . . . , n}, F λ
i (X) only depends on Xi and

there exists Hλ
i such that for any x ∈ R,

F λ
i (x) =

∫ x

0

Hλ
i (t)dt.

Prove that

C̃λ = ∥X − F λ(X)∥2 + 2σ2

n∑
i=1

Hλ
i (Xi)− nσ2

satisfies
E[C̃λ] = E[∥F λ(X)− β∗∥2].

Correction : We assume that F λ
i is absolutely continuous on R: there exists

Hλ
i such that for any x ∈ R,

F λ
i (x) =

∫ x

0

Hλ
i (t)dt.

We can check that all previous computations hold by replacing
∂Fλ

i

∂xi
(X) by Hλ

i

(see (A.9)).

(c) We consider the soft thresholding rule and estimate each coordinate β∗
i by

F λ
i (X) = sign(Xi)(|Xi| − λ)+. Determine a good criterion to select λ.

Correction : We set
Hλ
i (x) = 1{|x|>λ}, x ∈ R.

By distinguishing the cases x > 0 and x < 0, we obtain

F λ
i (x) =

∫ x

0

Hλ
i (t)dt.

We obtain the SURE criterion (Stein Unbiased Risk Estimate criterion):

C̃λ = ∥X − F λ(X)∥2 + 2σ2card{i : |Xi| > λ} − nσ2.
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Exercise 2

In the sequel, we denote

L2(R) :=
{
f : R 7→ C : ∥f∥22 :=

∫
R
|f(t)|2dt <∞

}
endowed with the Euclidian scalar product:

⟨f, g⟩ :=
∫
R
f(t)g(t)dt.

For any f ∈ L2(R), we denote f̂ its Fourier transform:

f̂(ξ) :=

∫
R
e−itξf(t)dt, ξ ∈ R.

We recall the inversion formula:

f(t) =
1

2π

∫
R
eitξf̂(ξ)dξ, t ∈ R

and the Plancherel formula:∫
R
f(t)g(t)dt =

1

2π

∫
R
f̂(ξ)ĝ(ξ)dξ,

∫
R
|f(t)|2dt = 1

2π

∫
R
|f̂(ξ)|2dξ.

We recall that a multiresolution analysis V = (Vj)j∈Z is a sequence of nested vector spaces
satisfying

{0} ⊂ · · · ⊂ Vj+1 ⊂ Vj ⊂ Vj−1 ⊂ · · · ⊂ L2(R)

such that, for any j ∈ Z, if PVj is the orthogonal projection on Vj, for any f ∈ L2(R),

1. ∥PVjf − f∥2
j→−∞−→ 0

2. ∥PVjf∥2
j→+∞−→ 0

3. f ∈ Vj ⇐⇒ x 7→ f(x/2) ∈ Vj+1 for any j ∈ Z

4. f ∈ Vj ⇐⇒ x 7→ f(x+ 2jk) ∈ Vj for any (j, k) ∈ Z2

5. ∃ϕ such that (ϕk)k∈Z is an orthonormal basis of V0 with for any x ∈ R, ϕk(x) =
ϕ(x− k).
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In the sequel, we set

ϕ(t) =
sin(πt)

πt
, t ∈ R.

The goal is to prove that the sequence of vector spaces (Vj)j∈Z, defined by

Vj =
{
f ∈ L2(R) : supp(f̂) ⊂ [−2−jπ, 2−jπ)

}
, j ∈ Z,

is a multiresolution analysis associated with ϕ.

1. Establish that
ϕ̂(ξ) = 1[−π,π)(ξ), ξ ∈ R.

Indication : Use the Fourier inversion formula.

Correction : We have for any t ∈ R:

1

2π

∫
R
eitξ1[−π,π)(ξ)dξ =

1

2πit
(eitπ − e−itπ)

=
sin(πt)

πt
.

This provides the result.

2. We consider f ∈ V0 and we set g such that ĝ is 2π-periodic and

ĝ(ξ) := f̂(ξ), ξ ∈ [−π, π).

(a) By using that any 2π-periodic function can be decomposed on (ξ 7→ eikξ)k∈Z,
prove that there exists (ak)k∈Z ∈ ℓ2(Z) such that for any ξ ∈ R,

ĝ(ξ) =
∑
k∈Z

ake
−ikξ.

Correction : Since ĝ is 2π-periodic, this is obvious.

(b) By computing ϕ̂k(ξ) for any k ∈ Z and any ξ ∈ R, deduce that

f(t) =
∑
k∈Z

akϕk(t), t ∈ R.

Correction : We have for any k ∈ Z and ξ ∈ R,

ϕ̂k(ξ) =

∫
R
e−itξϕ(t− k)dt

= e−ikξ
∫
R
e−itξϕ(t)dt

= e−ikξ1[−π,π)(ξ).
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Then, we have

f̂(ξ) = ĝ(ξ)1[−π,π)(ξ)

=
∑
k∈Z

ake
−ikξ1[−π,π)(ξ)

=
∑
k∈Z

akϕ̂k(ξ).

This gives the result.

3. We study projections on the spaces (Vj)j∈Z.

(a) Let j ∈ Z. Prove that for any f ∈ L2(R), the projection of f on Vj is given by
the function fj such that for any ξ ∈ R,

f̂j(ξ) := f̂(ξ)× 1[−2−jπ,2−jπ)(ξ).

Correction : We obviously have that fj ∈ Vj. Furthermore, for any gj ∈ Vj
then ĝj is supported by [−2−jπ, 2−jπ), we have that

⟨f − fj, gj⟩ =
∫

(f(t)− fj(t))gj(t)dt =
1

2π

∫
R
(f̂(ξ)− f̂j(ξ))ĝj(ξ)dξ = 0.

This gives the result.

(b) Let f ∈ L2(R). Prove that ∥PVjf − f∥2
j→−∞−→ 0.

Correction : We have:

∥PVjf − f∥22 =
1

2π
∥f̂j − f̂∥22 =

1

2π

∫
ξ ̸∈[−2−jπ,2−jπ)

|f̂(ξ)|2dξ.

Since f̂ ∈ L2(R), the right hand side goes to 0 when j → −∞.

(c) Let f ∈ L2(R). Prove that ∥PVjf∥2
j→+∞−→ 0.

Correction : We have:

∥PVjf∥22 =
1

2π
∥f̂j∥22 =

1

2π

∫
ξ∈[−2−jπ,2−jπ)

|f̂(ξ)|2dξ.

Since f̂ ∈ L2(R), the right hand side goes to 0 when j → +∞.

4. Establish that (Vj)j∈Z is a multiresolution analysis.

Correction :
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- Previous questions give Conditions 1 and 2.

- We prove Condition 5. We have that for any (k, k′) ∈ Z2,∫
R
ϕk(t)ϕk′(t)dt =

1

2π

∫
R
ϕ̂k(ξ)ϕ̂k′(ξ)dξ =

1

2π

∫ π

−π
ei(k

′−k)ξdξ = 1{k=k′},

by using the first part of Question 2b). This result, combined with the second
part of Question 2b), shows that Condition 5 is satisfied.

- We prove Condition 3. Let f ∈ L2(R). We denote g : x 7→ f(x/2). We have
for ξ ∈ R,

ĝ(ξ) =

∫
R
f(x/2)e−ixξdx = 2

∫
R
f(t)e−2itξdt = 2f̂(2ξ)

and for any j ∈ Z,

supp(f̂) ⊂ [−2−jπ, 2−jπ) ⇐⇒ supp(ĝ) ⊂ [−2−j−1π, 2−j−1π)

meaning that
f ∈ Vj ⇐⇒ x 7→ f(x/2) ∈ Vj+1.

- We prove Condition 4. Let f ∈ L2(R) and (j, k) ∈ Z2. We denote g : x 7→
f(x+ 2jk). We have for ξ ∈ R,

ĝ(ξ) =

∫
R
f(x+ 2jk)e−ixξdx = ei2

jkξ

∫
R
f(t)e−itξdt = ei2

jkξf̂(ξ)

and
supp(f̂) = supp(ĝ)

meaning that
f ∈ Vj ⇐⇒ g ∈ Vj.
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A.6 Exam 2021-2022

High-dimensional statistics

EXAM: duration 3h00

Documents, calculators, phones and smartphones are forbidden

Problem 1: Group-Lasso estimation

We consider the multivariate linear regression Gaussian model :

Y = Xβ∗ + ε (A.10)

with Y = (Y1, . . . , Yn)
T the vector of observations. The matrix X of size n× p is assumed

to be known and β∗ ∈ Rp is the vector to be estimated. Finally, the error vector is ε =
(ε1, . . . , εn)

T and satisfies ε ∼ N (0, σ2In) with σ
2 > 0 unknown. We denote (X1, . . . , Xp)

the columns of X. The ℓ2-norm is denoted ∥ · ∥. For any matrix A, we denote AT its
transpose matrix and for any estimate β̂, var(β̂) denotes its variance-covariance matrix.

We choose M ≤ p and let G1, . . . , GM some sets so that {G1, . . . , GM} form a known
partition of {1, . . . , p} in M sets. That is

M⋃
j=1

Gj = {1, . . . , p}, Gj ∩Gj′ = ∅, if j ̸= j′.

For any j ∈ {1, . . . ,M}, we denote Kj = |Gj| the cardinal of Gj and we denote by XGj

the n×Kj sub-matrix of X formed by the columns indexed by Gj. Finally, for any β ∈ Rp

and any j ∈ {1, . . . , p}, we introduce β(j) the vector of size Kj defined by

β(j) = (βk)k∈Gj
.

We also denote
S(β) =

{
j ∈ {1, . . . ,M} : β(j) ̸= 0

}
.

To estimate β∗ = (β∗
1 , . . . , β

∗
p)
T ∈ Rp, we consider the Group-Lasso estimator defined by

a solution of the following minimization problem

β̂ ∈ arg min
β∈Rp

{
∥Y −Xβ∥2 +

M∑
j=1

λj∥β(j)∥

}
, (A.11)

where λ1, . . . , λM are positive parameters specified later.
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1. We study the criterion C associated with the minimization problem (A.11) and
defined by

C : β ∈ Rp 7−→ ∥Y −Xβ∥2 +
M∑
j=1

λj∥β(j)∥.

(a) Show rigorously that the criterion C is convex.

Correction : Any (squared) norm is convex. So β 7−→ ∥Y − Xβ∥2 is convex
and for any j, β 7−→ ∥β(j)∥ is convex. Since the λj’s are positive, the penalty
is convex and the criterion C is convex (the sum of two convex functions is a
convex function).

(b) Show that if β̂1 and β̂2 are two solutions of the minimization problem (A.11),
then

Xβ̂1 = Xβ̂2 and
M∑
j=1

λj∥β̂(j)
1 ∥ =

M∑
j=1

λj∥β̂(j)
2 ∥.

Correction : We assume that Xβ̂1 ̸= Xβ̂2 and we consider β̂ = 1
2
(β̂1 + β̂2).

Then, since β 7−→ ∥β∥2 is strictly convex and Y −Xβ̂1 ̸= Y −Xβ̂2,

∥Y −Xβ̂∥2 =
∥∥∥1
2
(Y −Xβ̂1)+

1

2
(Y −Xβ̂2)

∥∥∥2 < 1

2

∥∥∥Y −Xβ̂1

∥∥∥2+ 1

2

∥∥∥Y −Xβ̂2

∥∥∥2.
The penalty being convex, we obtain

C(β̂) <
1

2

(
C(β̂1) + C(β̂2)

)
= C(β̂1) = C(β̂2),

which cannot occur. So, Xβ̂1 = Xβ̂2. The second point is an immediate
consequence of this property.

(c) Give some conditions on the parameters of the problem so that β̂ is the unique
solution of the minimization problem (A.11).

Correction : The minimization problem has a unique solution if the criterion
to be minimized is strictly convex. This is true for instance if the rank of X is
equal to p.

(d) Give the values of the parameters of the problem for which β̂ corresponds to
the classical Lasso estimator.

Correction : M = p and for any j ∈ {1, . . . , p}, Kj = 1, λj = λ for some
λ > 0.

(e) Describe the specificity of the Group-Lasso estimator with respect to the classi-
cal Lasso estimator and provide a concrete example for which the Group-Lasso
is of interest.
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Correction : For the Group-Lasso estimate, for any j ∈ {1, . . . ,M}, either

β̂(j) ̸= 0 and all coordinates of β̂(j) are different from 0 or β̂(j) = 0 and all
coordinates of β̂(j) are equal to 0.
The Group-Lasso estimator is useful for instance if the vector Y is the response
variable corresponding to a disease and each column of X models the influence
of a specific gene on Y . All genes can be grouped according to their belonging
to chromosones, and a gene has an impact on the disease if and only if the
chromosone on which it is located has an impact on the disease.

2. We study the theoretical properties of β̂. We consider the event A so that

A =
M⋂
j=1

Aj, Aj =

{
∥XT

Gj
ε∥ ≤ λj

4

}
.

(a) Show rigorously that for any vectors a and b of Rp,

aT b ≤
M∑
j=1

∥a(j)∥∥b(j)∥.

Correction : We have:

aT b =

p∑
k=1

akbk =
M∑
j=1

∑
ℓ∈Gj

aℓbℓ

≤
M∑
j=1

√∑
ℓ∈Gj

a2ℓ

√∑
ℓ∈Gj

b2ℓ =
M∑
j=1

∥a(j)∥∥b(j)∥,

where the inequality comes from the Cauchy-Schwarz inequality.

(b) Deduce that for any β ∈ Rp,

∥X(β̂−β∗)∥2 ≤ ∥X(β−β∗)∥2+2
M∑
j=1

∥XT
Gj
ε∥∥β̂(j)−β(j)∥+

M∑
j=1

λj∥β(j)∥−
M∑
j=1

λj∥β̂(j)∥.

Correction : By definition of β̂, we have:

∥Y −Xβ̂∥2 ≤ ∥Y −Xβ∥2 +
M∑
j=1

λj∥β(j)∥ −
M∑
j=1

λj∥β̂(j)∥,
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which is equivalent to

∥X(β̂ − β∗)∥2 ≤ ∥X(β − β∗)∥2 + 2εTX(β̂ − β) +
M∑
j=1

λj∥β(j)∥ −
M∑
j=1

λj∥β̂(j)∥

≤ ∥X(β − β∗)∥2 + 2
M∑
j=1

∥(εTX)(j)∥∥β̂(j) − β(j)∥+
M∑
j=1

λj∥β(j)∥ −
M∑
j=1

λj∥β̂(j)∥.

We conclude by observing that for any ℓ ∈ Gj,

(εTX)ℓ = εTXℓ = XT
ℓ ε

and (εTX)(j) = XT
Gj
ε.

(c) Finally, prove that on the event A,

∥X(β̂−β∗)∥2+1

2

M∑
j=1

λj∥β̂(j)−β(j)∥ ≤ ∥X(β−β∗)∥2+2
∑
j∈S(β)

λj min
(
∥β(j)∥; ∥β̂(j)−β(j)∥

)
.

(A.12)

Correction : On the event A,

∥X(β̂−β∗)∥2+1

2

M∑
j=1

λj∥β̂(j)−β(j)∥ ≤ ∥X(β−β∗)∥2+
M∑
j=1

λj∥β̂(j)−β(j)∥+
M∑
j=1

λj

(
∥β(j)∥−∥β̂(j)∥

)
.

Then, for any j ̸∈ S(β),

∥β̂(j) − β(j)∥+ ∥β(j)∥ − ∥β̂(j)∥ = ∥β̂(j)∥ − ∥β̂(j)∥ = 0.

For any j ∈ S(β), on the one hand,

∥β̂(j) − β(j)∥+ ∥β(j)∥ − ∥β̂(j)∥ ≤ ∥β̂(j)∥+ ∥β(j)∥+ ∥β(j)∥ − ∥β̂(j)∥ = 2∥β(j)∥,

and on the other hand,

∥β̂(j) − β(j)∥+ ∥β(j)∥ − ∥β̂(j)∥ ≤ 2∥β̂(j) − β(j)∥.

We obtain the desired result.

(d) Provide a bound on A of ∥X(β̂ − β∗)∥2 only depending on
√∑

j∈S(β∗) λ
2
j and

∥β∗∥.
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Correction : In the previous expression, we take β = β∗ and we obtain

∥X(β̂ − β∗)∥2 ≤ ∥X(β̂ − β∗)∥2 + 1

2

M∑
j=1

λj∥β̂(j) − β∗(j)∥

≤ 2
∑

j∈S(β∗)

λj min
(
∥β∗(j)∥; ∥β̂(j) − β∗(j)∥

)
≤ 2

∑
j∈S(β∗)

λj∥β∗(j)∥

≤ 2

√ ∑
j∈S(β∗)

λ2j ×
√ ∑

j∈S(β∗)

∥β∗(j)∥2

= 2∥β∗∥
√ ∑

j∈S(β∗)

λ2j .

3. We now assume that all eigenvalues of the symmetric matrix XTX are larger than
a constant κ assumed to be positive.

(a) Prove that ∑
j∈S(β)

λj∥β̂(j) − β(j)∥ ≤
√ ∑

j∈S(β)

λ2j × κ−1/2∥X(β̂ − β)∥.

Correction : We have:∑
j∈S(β)

λj∥β̂(j) − β(j)∥ ≤
√ ∑

j∈S(β)

λ2j ×
√ ∑

j∈S(β)

∥β̂(j) − β(j)∥2

≤
√ ∑

j∈S(β)

λ2j × ∥β̂ − β∥

≤
√ ∑

j∈S(β)

λ2j × κ−1/2∥X(β̂ − β)∥.

(b) Using Inequality (A.12), establish that on the event A,

∥X(β̂ − β∗)∥2 ≤ inf
β∈Rp

c1∥X(β − β∗)∥2 + c2
κ

∑
j∈S(β)

λ2j

 ,

with c1 and c2 two positive absolute constants.



Vincent Rivoirard 119

Correction : We set

A := ∥X(β̂ − β∗)∥2 + 1

2

M∑
j=1

λj∥β̂(j) − β(j)∥

Then, from Inequality (A.12), we get for any α > 0,

A ≤ ∥X(β − β∗)∥2 + 2
∑
j∈S(β)

λj∥β̂(j) − β(j)∥

≤ ∥X(β − β∗)∥2 + 2

√ ∑
j∈S(β)

λ2j × κ−1/2∥X(β̂ − β)∥

≤ ∥X(β − β∗)∥2 + α∥X(β̂ − β)∥2 + (ακ)−1
∑
j∈S(β)

λ2j

≤ (1 + 2α)∥X(β − β∗)∥2 + 2α∥X(β̂ − β∗)∥2 + (ακ)−1
∑
j∈S(β)

λ2j .

We take α = 1/4 and we obtain on the event A,

∥X(β̂ − β∗)∥2 ≤ inf
β∈Rp

3∥X(β − β∗)∥2 + 8

κ

∑
j∈S(β)

λ2j

 .

4. We now assume that all eigenvalues of the symmetric matrix XXT are smaller than
a finite constant Φ. We study S(β̂) the support of β̂. For this purpose, we recall

that β̂ is a solution of (A.11) if and only if for any j ∈ {1, . . . ,M}, 2XT
Gj
(Y −Xβ̂) = λj × β̂(j)

∥β̂(j)∥
if β̂(j) ̸= 0,∥∥∥2XT

Gj
(Y −Xβ̂)

∥∥∥ ≤ λj if β̂(j) = 0.

(a) Let j ∈ {1, . . . ,M}. Prove that if β̂(j) ̸= 0, on A,

∥XT
Gj
X(β∗ − β̂)∥ ≥ λj

4
.

Correction : If β̂(j) ̸= 0, we have∥∥∥2XT
Gj
(Y −Xβ̂)

∥∥∥ = λj

and the triangular inequality gives, on A,

∥XT
Gj
X(β∗ − β̂)∥ ≥

∥∥∥XT
Gj
(Y −Xβ̂)

∥∥∥− ∥∥∥XT
Gj
(Y −Xβ∗)

∥∥∥
≥ λj

2
− λj

4
=
λj
4
.
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(b) Deduce that |S(β̂)|, the cardinal of S(β̂), satisfies on A,

|S(β̂)| ≤
M∑
j=1

16

λ2j
∥XT

Gj
X(β∗ − β̂)∥2.

Correction : We have on A,

|S(β̂)| =
M∑
j=1

1{β̂(j) ̸=0}

≤
M∑
j=1

1{
∥XT

Gj
X(β∗−β̂)∥≥

λj
4

}

≤
M∑
j=1

1{
16

λ2
j

∥XT
Gj
X(β∗−β̂)∥2≥1

}

≤
M∑
j=1

16

λ2j
∥XT

Gj
X(β∗ − β̂)∥2.

(c) Finally prove that on A,

|S(β̂)| ≤ 16Φ

minj λ2j
∥X(β∗ − β̂)∥2.

Correction : We have on A,

|S(β̂)| ≤
M∑
j=1

16

λ2j
∥XT

Gj
X(β∗ − β̂)∥2

≤ 16

minj λ2j

M∑
j=1

∥XT
Gj
X(β∗ − β̂)∥2

≤ 16

minj λ2j
∥XTX(β∗ − β̂)∥2

≤ 16Φ

minj λ2j
∥X(β∗ − β̂)∥2.

Using the bound of 2d), we obtain

|S(β̂)| ≤ 32Φ

minj λ2j
∥β∗∥

√ ∑
j∈S(β∗)

λ2j .
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5. The goal of this question is to determine the values of the λj’s such that the prob-
ability of A is large. In the sequel, we denote Φj the largest eigenvalue of the
symmetric matrix XGj

XT
Gj
.

(a) Prove that
∥XT

Gj
ε∥2 ≤ σ2Φj∥σ−1ε∥2.

Correction : We have

∥XT
Gj
ε∥2 = εTXGj

XT
Gj
ε ≤ Φj∥ε∥2

and we get the result.

(b) Let β > 1. By identifying the distribution of ∥σ−1ε∥2, determine λj such that

P(A) ≥ 1−M1−β.

Correction : The random variable ∥σ−1ε∥2 is a χ2(n)-variable. Therefore,

P(Ac) ≤
M∑
j=1

P(Ac
j)

≤
M∑
j=1

P
(
4∥XT

Gj
ε∥ > λj

)
≤

M∑
j=1

P

(
∥σ−1ε∥2 >

( λj

4σ
√
Φj

)2)
.

Consequently, taking qn,M,1−β the quantile of order 1 − M−β of the χ2(n)-
distribution, we set

λj = 4σ
√
Φj ×

√
qn,M,1−β

and

P(Ac) ≤
M∑
j=1

P
(
∥σ−1ε∥2 > qn,M,1−β

)
≤

M∑
j=1

M−β =M1−β

and
P(A) ≥ 1−M1−β.

6. We now replace the linear regression Gaussian model (A.10) by the following Poisson
model

Y ∼ Poisson
(
exp(Xβ∗)

)
,



122 High-dimensional statistics

meaning that we observe Y = (Y1, . . . , Yn)
T ∈ Rn so that its components are

independent and each component Yi has a Poisson distribution with parameter

θi = exp
(∑p

ℓ=1Xiℓβ
∗
ℓ

)
. As previously, the matrix X of size n× p is assumed to be

known and β∗ ∈ Rp is the vector to be estimated.

(a) Give the expression of the log-likelihood associated with the previous Poisson
model.

Correction : We have for any i and any integer k,

P(Yi = k) = exp(−θi)
θki
k!
.

Therefore the expression of the log-likelihood at any β ∈ Rp is

L(β) =
n∑
i=1

(
− exp

( p∑
ℓ=1

Xiℓβℓ

)
+ Yi

p∑
ℓ=1

Xiℓβℓ − log(Yi!)

)
.

(b) Suggest a Group-Lasso type estimator of β∗ based on a convex criterion built
from the log-likelihood given in the previous question. Justify your statements.

Correction : For any α ∈ [0; 1] and any vectors β1 and β2 of Rp, we have

exp
( p∑
ℓ=1

Xiℓ(αβ1ℓ + (1− α)β2ℓ

)
= exp

(
α

p∑
ℓ=1

Xiℓβ1ℓ + (1− α)

p∑
ℓ=1

Xiℓβ2ℓ

)
≤ α exp

( p∑
ℓ=1

Xiℓβ1ℓ

)
+ (1− α) exp

( p∑
ℓ=1

Xiℓβ2ℓ

)
,

by using the convexity of the function x ∈ R 7−→ exp(x). Therefore,

−L(αβ1 + (1− α)β2) ≤ −αL(β1)− (1− α)L(β2),

meaning that the function −L is convex. Consequently, a natural Group-Lasso
type estimate is

β̂ ∈ arg min
β∈Rp

{
− L(β) +

M∑
j=1

λj∥β(j)∥

}
,

with λ1, . . . , λM positive parameters.
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Exercise 2: Scale-invariant estimators

We consider the multivariate linear regression Gaussian model :

Y = Xβ∗ + ε (A.13)

with Y = (Y1, . . . , Yn)
T the vector of observations and β∗ ∈ Rp the vector to be estimated.

The matrix X of size n× p, with p < n, is assumed to be known and of rank p. Finally,
the error vector, ε = (ε1, . . . , εn)

T , is assumed to be centered and its variance-covariance
matrix is σ2

Y In where σ
2
Y > 0, the variance of the Yi’s, is unknown. The ℓ2-norm is denoted

∥ · ∥, whereas the ℓ1-norm is denoted ∥ · ∥1.
We consider β̂ an estimator of β∗ obtained by minimizing some function crit depending

on Y and β:
β̂ = arg min

β∈Rp
crit(Y, β).

We say that β̂ is scale-invariant if for any deterministic constant s > 0,

arg min
β∈Rp

crit(sY, sβ) = arg min
β∈Rp

crit(Y, β).

1. Prove that the ordinary least squares estimate is scale-invariant.

Correction : For the ordinary least squares estimate

crit(Y, β) = ∥Y −Xβ∥2

and for any s > 0
crit(sY, sβ) = s2crit(Y, β)

and
arg min

β∈Rp
crit(sY, sβ) = arg min

β∈Rp
crit(Y, β).

2. We consider the following estimate

β̂ = arg min
β∈Rp

{
∥Y −Xβ∥+ λ∥β∥1

}
with λ independent of β, Y and σY . Establish that β̂ is scale-invariant.

Correction : In this case,

crit(Y, β) = ∥Y −Xβ∥+ λ∥β∥1
and we have

crit(sY, sβ) = s× crit(Y, β)

and
arg min

β∈Rp
crit(sY, sβ) = arg min

β∈Rp
crit(Y, β).
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3. We consider the following Lasso-estimate

β̂1 = arg min
β∈Rp

{
∥Y −Xβ∥2 + λ∥β∥1

}
.

(a) We assume that σY is known. By computing the standard deviation of sY1, for

some s > 0, provide an expression of λ such that β̂1 is scale-invariant.

Correction : We have σsY = s×σY . Therefore, by taking λ proportional to σY ,
say λ = σY µ with µ independent of σY , Y and β, we have, with

crit(Y, β) = ∥Y −Xβ∥2 + λ∥β∥1 = ∥Y −Xβ∥2 + σY µ∥β∥1,

crit(sY, sβ) = s2crit(Y, β)

and
arg min

β∈Rp
crit(sY, sβ) = arg min

β∈Rp
crit(Y, β).

(b) We assume that σY is unknown. Suggest an estimate of σY and provide a

data-dependent expression of λ such that β̂1 is scale-invariant.

Correction : We consider

β̂ols(Y ) = arg min
β∈Rp

∥Y −Xβ∥ = (XTX)−1XTY

where the last expression is valid since rank(X) = p. For any s > 0,

β̂ols(sY ) = sβ̂ols(Y ).

and we estimate σY by σ̂Y with

σ̂2
Y =

∥Y −Xβ̂ols∥2

n− p

and
σ̂sY = s× σ̂Y .

Taking λ = σ̂Y µ with µ independent of σY , Y and β, the estimator β̂1 is scale-
invariant.
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Exercise 3: Estimation of the mean of functional data
Let Z a random variable taking its values in H = L2([0, 1]). For all f, g ∈ H, we

denote as usual

⟨f, g⟩H =

∫ 1

0

f(t)g(t)dt,

and ∥f∥H =
√

⟨f, f⟩H. We suppose that there exists a constant C > 0 such that |Z(t)| ≤
C a.e. in t and a.s.

1. Prove that there exists m ∈ H such that, for all f ∈ H,

E [⟨f, Z⟩H] = ⟨f,m⟩H
and that

∥m∥H ≤ C.

Correction : Let φ : f 7→ E[⟨f, Z⟩H]. By linearity of the scalar product and the
expectation, φ is a linear application from H to R. Moreover, for all f ∈ H, by
Cauchy-Schwarz inequality,

|φ(f)| ≤ E [|⟨f, Z⟩H|] ≤ E [∥f∥H∥Z∥H] ≤ C∥f∥H.

Then, the linear form φ is continuous and the result comes directly from the Riesz
representation theorem.

2. Let Z1, . . . , Zn be i.i.d. random variables following the same distribution as Z. Prove
that

E

∥∥∥∥∥ 1n
n∑
i=1

Zi −m

∥∥∥∥∥
2

H

 =
E[∥Z −m∥2H]

n
≤ 4C2

n
.

Correction :

E

∥∥∥∥∥ 1n
n∑
i=1

Zi −m

∥∥∥∥∥
2

H

 =
1

n2
E

∥∥∥∥∥
n∑
i=1

(Zi −m)

∥∥∥∥∥
2

H


Let Z̃i = Zi −m, we have

E

∥∥∥∥∥
n∑
i=1

Z̃i

∥∥∥∥∥
2

H

 =
n∑

i,j=1

E
[
⟨Z̃i, Z̃j⟩H

]
=

n∑
i,j=1

E
[∫ 1

0

Z̃i(t)Z̃j(t)dt

]
.

Using Cauchy-Schwarz inequality and the assumption that ∥Z∥H ≤ C, we remark
that Z̃iZ̃j is integrable. Then, the Fubini theorem and the fact the the Z̃i’s are
independent and centered gives us

E
[∫ 1

0

Z̃i(t)Z̃j(t)dt

]
=

∫ 1

0

E[Z̃i(t)Z̃j(t)]dt = 1{i=j}

∫ 1

0

E[Z̃2
i (t)]dt = E[∥Z̃∥2H]1{i=j}

which implies the expected result.
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3. We suppose now that Z is continuous a.s. We observe {Ui,h, i = 1, . . . , n;h =
1, . . . , p} such that

Ui,h = Zi(th) + εi,h,

where th = h/p, h = 1, . . . , p and {εi,h} ∼i.i.d. N (0, σ2) is independent of Z1, . . . , Zn.
Let Ih = [(h − 1)/p, h/p[, h = 1, . . . , p. We define a simple histogram estimator m̂
as follows

m̂(t) =
1

n

n∑
i=1

Ũi

where

Ũi =

p∑
h=1

Ui,h1Ih(t).

(a) Explain why m∗ = 1
n

∑n
i=1 Zi is not an estimator of m.

Correction : The Zi’s are not observed.

(b) Verify that

E
[∥∥∥m̂− E[Ũ1]

∥∥∥2
H

]
=

E[∥Ũ1 − E[Ũ1]∥2H]
n

.

Correction : We apply the result of 2. to the sequence Ũ1, . . . , Ũn which is i.i.d.
and verify

E[∥Ũ1∥2] = E

∫ 1

0

(
p∑

h=1

U1,h1Ih(t)

)2

dt

 = E

[
p∑

h=1

∫
Ih

U2
1,hdt

]
=

1

p

p∑
h=1

E[U2
1,h] < +∞,

since E[U2
1,h] ≤ 2E[Z2

i (th)] + 2E[ε2i,h] < +∞ for all h.

(c) Prove that

E[∥Ũ1 − E[Ũ1]∥2H =
1

p

p∑
h=1

Var(Z1(th)) + σ2.

Correction :

E[∥Ũ1 − E[Ũ1]∥2H =

∫ 1

0

Var(Ũ1(t))dt =

p∑
h,h′=1

∫ 1

0

Cov(U1,h, U1,h′)1th1th′dt

=

p∑
h=1

1

p
(Var(Z1(th)) + Var(ε1,h))
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(d) Calculate E[Ũ1].

Correction :

E[Ũ1] =

p∑
h=1

E[Ui,h]1Ih(t) =
p∑

h=1

m(th)1Ih .

(e) We suppose that m is an α-Hölder continuous function, with α > 0, i.e., there
exists L > 0 such that, for all s, t ∈ [0, 1],

|m(t)−m(s)| ≤ L|t− s|α.

Prove the following bound on the risk of the estimator m̂,

E[∥m̂−m∥2H] ≤
L2

p2α
+

4C2 + σ2

n
.

Correction : We start from the bias-variance decomposition of the risk

E[∥m̂−m∥2H] = E
[∥∥∥m̂− E[Ũ1]

∥∥∥2
H

]
+ ∥E[Ũ1]−m∥2H.

(b) and (c) and the boundedness assumption allow to upper-bound the variance
term. For the bias term we get from (d) that

∥E[Ũ1]−m∥2H =

∫ 1

0

(
p∑

h=1

m(th)1Ih(t)−m(t)

)2

dt

=

p∑
h=1

∫
Ih

(m(th)−m(t))2 dt ≤ L2

p∑
h=1

∫
Ih

|th − t|2αdt.

The result comes from the fact that∫
Ih

|th − t|2αdt ≤
∫
Ih

1

p2α
dt =

1

p2α+1
.
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A.7 Exam 2022-2023

High-dimensional statistics

EXAM: duration 2h30

Documents, calculators, phones and smartphones are forbidden

Exercise 1: Fast wavelet transform

Along this exercice, we use the discrete convolution, denoted ⋆d, between two sequences
of real numbers a = (ak)k∈Z and b = (bk)k∈Z:

[a ⋆d b](k) :=
∑
ℓ∈Z

aℓbk−ℓ, k ∈ Z.

1. We consider a multiresolution analysis:

{0} ⊂ · · · ⊂ Vj+1 ⊂ Vj ⊂ Vj−1 ⊂ · · · ⊂ L2(R).

We introduce the father wavelet ϕ and for any (j, k) ∈ Z2,

ϕj,k(t) =
1√
2j
ϕ

(
t− k2j

2j

)
= 2−j/2ϕ(2−jt− k), t ∈ R,

so that for any j ∈ Z, (ϕj,k)k∈Z is an orthonormal basis of Vj.

(a) By using x 7→ ϕ(x/2) ∈ V1, prove that for any x ∈ R,

ϕ(x/2) =
√
2
∑
k∈Z

hkϕ(x− k),

with

hk =
1√
2

∫
R
ϕ

(
t

2

)
ϕ(t− k)dt.

Correction : We have x 7→ ϕ(x/2) ∈ V1 ⊂ V0. So, for any x ∈ R,

ϕ(x/2) =
∑
k∈Z

⟨ϕ(·/2);ϕk⟩ϕk(x) =
√
2
∑
k∈Z

hkϕ(x− k),

with

hk =
1√
2

∫
R
ϕ

(
t

2

)
ϕ(t− k)dt.
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(b) We fix (j, k) ∈ Z2. For any f ∈ L2(R), we set

αj,k = ⟨f ;ϕj,k⟩.

i. Show that for any ℓ ∈ Z

⟨ϕj+1,k;ϕj,ℓ⟩ = hℓ−2k.

Correction : We have:

⟨ϕj+1,k;ϕj,ℓ⟩ :=
∫
R

1√
2j+1

ϕ(2−(j+1)t− k)
1√
2j
ϕ(2−jt− ℓ)dt

=
1√
2

∫
R
ϕ

(
t− 2k

2

)
ϕ(t− ℓ)dt

=
1√
2

∫
R
ϕ

(
t

2

)
ϕ(t− (ℓ− 2k))dt

= hℓ−2k.

ii. Justify that we can decompose ϕj+1,k on the ϕj,ℓ’s and prove:

ϕj+1,k =
∑
ℓ∈Z

hℓ−2kϕj,ℓ.

Correction : Since for any k ∈ Z, ϕj+1,k ∈ Vj+1 ⊂ Vj, we can decompose
ϕj+1,k on the ϕj,ℓ’s. Since (ϕj,ℓ)ℓ∈Z is an orthonormal basis of Vj, we obtain:

ϕj+1,k =
∑
ℓ∈Z

⟨ϕj+1,k;ϕj,ℓ⟩ϕj,ℓ

=
∑
ℓ∈Z

hℓ−2kϕj,ℓ.

iii. Show that

αj+1,k = [αj· ⋆d h̃](2k),

where αj· = (αj,ℓ)ℓ∈Z and for k ∈ Z, h̃k = h−k.
Correction : We have:

αj+1,k = ⟨f ;ϕj+1,k⟩ =
∑
ℓ∈Z

hℓ−2k⟨f ;ϕj,ℓ⟩ =
∑
ℓ∈Z

hℓ−2kαj,ℓ = [αj· ⋆d h̃](2k).
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2. For any j ∈ Z, we now introduce Wj as the orthogonal complement of Vj in Vj−1:

Vj ⊕Wj = Vj−1.

We introduce the mother wavelet ψ and for any j ∈ Z and any k ∈ Z

ψj,k(t) =
1√
2j
ψ

(
t− k2j

2j

)
= 2−j/2ψ(2−jt− k), t ∈ R

so that for any j ∈ Z, (ψj,k)k∈Z is an orthonormal basis of Wj.

(a) Show that there exists (λk)k∈Z such that we can write for any x ∈ R,

ψ(x/2) =
√
2
∑
k∈Z

λkϕ(x− k). (A.14)

Correction : We just use the following fact: the function x 7→ ψ(x/2) ∈ W1 ⊂
V0.

(b) We fix (j, k) ∈ Z2. For any f ∈ L2(R), we set

βj,k = ⟨f ;ψj,k⟩.

i. For any j ∈ Z, express the coefficients (βj+1,k)k∈Z in function of the coef-
ficients (αj,k)k∈Z and (λk)k∈Z.
Correction : As before, we establish that

ψj+1,k =
∑
ℓ∈Z

λℓ−2kϕj,ℓ.

We deduce:

βj+1,k = ⟨f ;ψj+1,k⟩ =
∑
ℓ∈Z

λℓ−2k⟨f ;ϕj,ℓ⟩ =
∑
ℓ∈Z

λℓ−2kαj,ℓ = [αj· ⋆d λ̃](2k),

with for any k ∈ Z, λ̃k = λ−k.

ii. Show finally that we have for any j ∈ Z and any k ∈ Z,

αj,k =
∑
ℓ∈Z

hk−2ℓαj+1,ℓ +
∑
ℓ∈Z

λk−2ℓβj+1,ℓ.

Correction : To prove the result, we decompose ϕj,k ∈ Vj = Vj+1 ⊕Wj+1

and we obtain

ϕj,k =
∑
ℓ∈Z

⟨ϕj,k;ϕj+1,ℓ⟩ϕj+1,ℓ +
∑
ℓ∈Z

⟨ϕj,k;ψj+1,ℓ⟩ψj+1,ℓ

=
∑
ℓ∈Z

hk−2ℓϕj+1,ℓ +
∑
ℓ∈Z

λk−2ℓψj+1,ℓ.

Then, taking the scalar product with f , we obtain the result.
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3. We recall the connection between ϕ and ψ: for any w ∈ R,

ψ̂(2w) = e−iwm0(w + π)ϕ̂(w),

where ψ̂ and ϕ̂ denote the Fourier transform of ψ and ϕ respectively and

m0(w) =
1√
2

∑
k∈Z

hke
−ikw.

(a) Establish that for any w ∈ R,

ψ̂(2w) =
1√
2

∑
k∈Z

h1−k(−1)k+1e−ikwϕ̂(w).

Correction : For any w ∈ R,

ψ̂(2w) =
1√
2
e−iw

∑
k∈Z

hke−ik(w+π)ϕ̂(w)

=
1√
2

∑
k∈Z

hke
−iw(1−k)(−1)kϕ̂(w)

=
1√
2

∑
ℓ∈Z

h1−ℓe
−iwℓ(−1)1−ℓϕ̂(w)

=
1√
2

∑
ℓ∈Z

h1−ℓe
−iwℓ(−1)1+ℓϕ̂(w)

(b) From Equation (A.14), deduce the relationship

λk = (−1)k+1h1−k, k ∈ Z.

Correction : Equation (A.14) gives: for any x ∈ R,

ψ(x/2) =
√
2
∑
k∈Z

λkϕ(x− k).

By taking the Fourier transform of both sides, we obtain for any w ∈ R,∫
ψ(x/2)e−ixwdx =

√
2
∑
k∈Z

λk

∫
ϕ(x− k)e−ixwdx

=
√
2
∑
k∈Z

λke
−iwkϕ̂(w)

and
2ψ̂(2w) =

√
2
∑
k∈Z

λke
−iwkϕ̂(w),

which provides the result by using the previous question.
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Exercise 2: Degree of freedom

Given β∗ ∈ Rp and a matrix X of size n× p, and whose lines are denoted xT1 , . . . , x
T
n , so

that

X =


xT1
xT2
...
xTn

 ,

we consider the regression model

Yi = xTi β
∗ + εi, εi

iid∼ N (0, σ2), i = 1, . . . , n, (A.15)

with σ2 > 0. We denote

Y = (Y1, . . . , Yn)
T , ε = (ε1, . . . , εn)

T

and we define the degree of freedom of a function g : Rn 7→ Rn by:

df(g) =
1

σ2

n∑
i=1

cov(gi(Y ), Yi),

where gi designs the ith coordinate of g. We recall that

cov(gi(Y ), Yi) = E[(gi(Y )− E[gi(Y )])(Yi − E[Yi])].

Model (A.15) can be rewritten
Y = Xβ∗ + ε

and we assume that rank(X) = p. In the sequel, we denote ∥ · ∥ the ℓ2-norm on Rn.

1. We consider β̂ ∈ Rp any estimate of β∗ and we set g(Y ) = Xβ̂, so

gi(Y ) = (Xβ̂)i.

We denote
Cp := ∥Y −Xβ̂∥2 − nσ2 + 2σ2df(Xβ̂).

(a) Prove that for any i ∈ {1, . . . , n},

E[(Yi − E[Yi])(E[Yi]− (Xβ̂)i)] = E[(Yi − E[Yi])(E[(Xβ̂)i]− (Xβ̂)i)].

Correction : We observe that for any i ∈ {1, . . . , n},

E[(Yi − E[Yi])(E[Yi]− (Xβ̂)i)] = E[(Yi − E[Yi])(E[Yi]− E[(Xβ̂)i] + E[(Xβ̂)i]− (Xβ̂)i)]

= 0 + E[(Yi − E[Yi])(E[(Xβ̂)i]− (Xβ̂)i)].
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(b) Prove that

E[Cp] = E[∥Xβ̂ −Xβ∗∥2].

Correction : We have:

E[∥Xβ̂ −Xβ∗∥2] = E[∥Xβ̂ − Y + Y −Xβ∗∥2]

= E[∥Xβ̂ − Y ∥2] + E[∥Y −Xβ∗∥2]− 2E

[
n∑
i=1

(Y −Xβ∗)i(Y −Xβ̂)i

]
= E[∥Xβ̂ − Y ∥2] + E[∥ε∥2]

− 2E

[
n∑
i=1

(Yi − E[Yi])(Yi − E[Yi] + E[Yi]− (Xβ̂)i)

]

= E[∥Xβ̂ − Y ∥2]− E[∥ε∥2]− 2E

[
n∑
i=1

(Yi − E[Yi])(E[Yi]− (Xβ̂)i)

]
.

So, since E[∥ε∥2] = nσ2 and using the result of the previous question,

E[∥Xβ̂ −Xβ∗∥2] = E[∥Xβ̂ − Y ∥2]− nσ2 − 2
n∑
i=1

E[(Yi − E[Yi])(E[(Xβ̂)i]− (Xβ̂)i)]

= E[∥Xβ̂ − Y ∥2]− nσ2 + 2σ2df(Xβ̂)

= E[Cp].

2. We now estimate Xβ∗ with

g(Y ) = X(XTX)−1XTY.

(a) Prove that

df(g) =
n∑
i=1

xTi (X
TX)−1xi.

Correction : For this case, gi(Y ) = xTi (X
TX)−1XTY . We denote 1i the vector

whose components are all equal to 0 except the ith component equal to 1. Since
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XT × 1i = xi

df(g) = σ−2

n∑
i=1

E[xTi (XTX)−1XT ε× εi]

=
n∑
i=1

xTi (X
TX)−1XTσ−2E[εiε]

=
n∑
i=1

xTi (X
TX)−1XT × 1i

=
n∑
i=1

xTi (X
TX)−1xi.

(b) Deduce that
df(g) = Trace(X(XTX)−1XT ).

Correction : Obvious.

(c) Finally, prove that
df(g) = p.

Correction : The matrix X(XTX)−1XT is the projection matrix on Im(X),
so, since rank(X) = p, df(g) = Trace(X(XTX)−1XT ) = p.

Exercise 3: Model selection

We consider the multivariate linear regression model :

Y = Xβ∗ + ε

with Y = (Y1, . . . , Yn)
T the vector of observations. The matrix X of size n× p is assumed

to be known and is such that its columns, denoted (X1, . . . , Xp), are orthogonal and of
unit norm (consequently XTX = Ip). The vector β∗ ∈ Rp is unknown. Finally, the error
vector is ε = (ε1, . . . , εn)

T and satisfies ε ∼ N (0, σ2In) with σ
2 > 0 assumed to be known.

The classical ℓ2-norm is denoted ∥ · ∥2. We denote for any model m, a subset of indexes
of {1, . . . , p}, Pm the projection on span(Xj : j ∈ m). We denote PmY = 0 if the model
m is empty. We estimate f ∗ = Xβ∗ by using Pm̂λ

Y , where for some λ > 0,

m̂λ = arg min
m⊂{1,...,p}

{
∥Y − PmY ∥22 + λσ2|m|

}
,

where |m| is the cardinality of m.
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1. Prove that

∥Y − PmY ∥22 + λσ2|m| = ∥Y ∥22 +
∑
j∈m

(
λσ2 − (XT

j Y )2
)
.

Indication: Use that ⟨Xj;Xk⟩ℓ2 = 1{j=k}.

Correction : Since the Xj’s are orthonormal, we have:

∥Y − PmY ∥22 = ∥Y ∥22 + ∥PmY ∥22 − 2⟨Y ;PmY ⟩ℓ2
= ∥Y ∥22 + ∥PmY ∥22 − 2⟨PmY ;PmY ⟩ℓ2
= ∥Y ∥22 − ∥PmY ∥22

= ∥Y ∥22 −
∥∥∥∑
j∈m

(XT
j Y )Xj

∥∥∥2
2

= ∥Y ∥22 −
∑
j∈m

(XT
j Y )2.

We obtain the result.

2. Deduce that
m̂λ =

{
j : (XT

j Y )2 > λσ2
}
.

Correction : Since ∥Y ∥22 does not depend on m,

m̂λ = arg min
m⊂{1,...,p}

{
∥Y − PmY ∥22 + λσ2|m|

}
= arg min

m⊂{1,...,p}

{∑
j∈m

(
λσ2 − (XT

j Y )2
)}

=
{
j : (XT

j Y )2 > λσ2
}
.

3. We assume that β∗ = 0.

(a) Show that |m̂λ| has a binomial distribution with parameters (p, qλ), with qλ =
1− F (λ) and F is the cumulative distribution of a χ2(1)-variable:

|m̂λ| ∼ Bin
(
p, 1− F (λ)

)
.

Correction : If β∗ = 0, we have

|m̂λ| =
p∑
j=1

1{(XT
j ε)

2>λσ2}

=

p∑
j=1

1{Z2
j>λ},
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with Zj = σ−1XT
j ε and the Zj’s are i.i.d. N (0, 1)-variables. Therefore,

|m̂λ| ∼ Bin
(
p, 1− F (λ)

)
.

(b) If λ is a constant independent of n and p, evaluate, almost surely, limp→+∞
|m̂λ|
p
.

Correction : We apply the strong law of large numbers

lim
p→+∞

|m̂λ|
p

= lim
p→+∞

1

p

p∑
j=1

1{Z2
j>λ} = E[Z2

1 > λ] a.s.

Therefore

lim
p→+∞

|m̂λ|
p

= 1− F (λ) a.s.

(c) We take λ = K log(p), where K is a constant independent of n and p. Deter-
mine the smallest constant K such that

lim
p→+∞

E[|m̂λ|] = 0.

Indication: Use

1− F (λ) ∼λ→+∞

√
2

πλ
e−λ/2.

Correction : We have
E[|m̂λ|] = p(1− F (λ)).

Therefore, when p→ +∞,

E[|m̂λ|] = p(1− F (K log(p)))

∼ p

√
2

πK log(p)
e−K log(p)/2

∼

√
2

πK log(p)
p1−K/2.

and K = 2 is the smallest constant such that

lim
p→+∞

E[|m̂λ|] = 0.
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A.8 Exam 2023-2024

High-dimensional statistics

EXAM: duration 2h30

Documents, calculators, phones and smartphones are forbidden

Exercise 1: Lasso for the logistic model

In the high-dimensional setting, we observe (Y1, Y2, . . . , Yn), n independent random vari-
ables such that for any i, Yi ∈ {0, 1} and its expectation depends on p non-random
predictors according to the following transformation

E[Yi] = P(Yi = 1) = 1− P(Yi = 0) =
exp

(∑p
j=1 β

∗
jXij

)
1 + exp

(∑p
j=1 β

∗
jXij

) .
In the last expression, Xij denotes the value of the predictor Xj associated with Yi and
β∗ is a sparse p-dimensional unknown vector to be estimated. In the sequel, we denote
for any β ∈ Rp and any i ∈ {1, . . . , n},

pi(β) =
exp

(∑p
j=1 βjXij

)
1 + exp

(∑p
j=1 βjXij

)
and p(β) = (p1(β), . . . , pn(β))

T .

1. Show that the log-likelihood associated with this model is, for β ∈ Rp,

L(β) =
n∑
i=1

[
Yi

p∑
j=1

βjXij − log

(
1 + exp

(
p∑
j=1

βjXij

))]
.

Correction : The likelihood is

V (β) =
n∏
i=1

[
pi(β)

Yi(1− pi(β))
1−Yi

]
.

Therefore,

L(β) =
n∑
i=1

[
Yi log(pi(β)) + (1− Yi) log(1− pi(β))

]
=

n∑
i=1

[
Yi

p∑
j=1

βjXij − log

(
1 + exp

(
p∑
j=1

βjXij

))]
.
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2. Prove that L is a concave function on Rp.

Correction : We first study the function

f(x) = log
(
1 + ex

)
, x ∈ R.

We have, for x ∈ R,

f ′(x) =
1

1 + e−x
, f ′′(x) =

e−x

(1 + e−x)2
,

and f ′′(x) > 0. Therefore, f is a convex function. Now, for any α ∈ [0, 1], and any
p-dimensional vectors β and β′

log

(
1 + exp

(
p∑
j=1

(αβj + (1− α)β′
j)Xij

))
= f

(
p∑
j=1

(αβj + (1− α)β′
j)Xij

)

≤ αf

(
p∑
j=1

βjXij

)
+ (1− α)f

(
p∑
j=1

β′
jXij

)
.

It yields

n∑
i=1

log

(
1 + exp

(
p∑
j=1

(
αβj + (1− α)β′

j

)
Xij

))
≤

α
n∑
i=1

log

(
1 + exp

(
p∑
j=1

βjXij

))
+ (1− α)

n∑
i=1

log

(
1 + exp

(
p∑
j=1

β′
jXij

))
.

Therefore, since β 7−→
∑n

i=1 Yi
∑p

j=1 βjXij is linear,

L(αβ + (1− α)β′) ≥ αL(β) + (1− α)L(β′)

and L is concave.

3. We estimate β∗ by using the estimate

β̂ ∈ arg min
β∈Rp

{
− L(β) + λ∥β∥ℓ1

}
,

where ∥β∥ℓ1 is the ℓ1-norm of the vector β and λ > 0 is a constant. Justify carefully

the introduction of β̂ to estimate β∗. In the sequel, we denote for any β ∈ Rp,

Cλ(β) = −L(β) + λ∥β∥ℓ1 .

Correction : Using previous questions, Cλ is convex on Rp. We are in the high-
dimensional setting, so we need to use a convex criterion to minimize. The vector
β∗ is sparse, so it is natural to use a Lasso-type estimate by introducing the ℓ1-
penalty.
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4. Deduce that β̂ is a minimizer of Cλ if and only if there exists w ∈ Rp such that
∥w∥∞ ≤ 1 and wT β̂ = ∥β̂∥1 and such that

XT
(
Y − p

(
β̂
))

= λw.

Correction : We have

∂L(β)
∂βj

=
n∑
i=1

[
YiXij −

Xij

1 + exp
(
−
∑p

ℓ=1 βℓXiℓ

)]
= (XTY )j − (XTp(β))j.

Since Cλ is a convex function, β̂ is a minimizer of Cλ if and only if 0 belongs to the
subdifferential of Cλ at β̂. We obtain the conclusion.

5. We denote H the Hessian matrix associated with L. It means that for any (j, k) ∈
{1, . . . , p}

Hjk(β) =
∂2L(β)
∂βj∂βk

.

(a) For any β ∈ Rp, give the expression of Hjk(β).

Correction : We have

∂L(β)
∂βj

=
n∑
i=1

[
YiXij −

Xij

1 + exp
(
−
∑p

ℓ=1 βℓXiℓ

)].
Therefore,

∂2L(β)
∂βj∂βk

= −
n∑
i=1

XijXik exp
(
−
∑p

ℓ=1 βℓXiℓ

)(
1 + exp

(
−
∑p

ℓ=1 βℓXiℓ

))2 .
(b) Deduce that for any vector v ∈ Rp, vTH(β)v ≤ 0 and

vTH(β)v = 0 ⇐⇒ Xv = 0.

Correction :

vTH(β)v =

p∑
j=1

p∑
k=1

vjvkHjk(β)

= −
n∑
i=1

p∑
j=1

p∑
k=1

vjvk
XijXik exp

(
−
∑p

ℓ=1 βℓXiℓ

)(
1 + exp

(
−
∑p

ℓ=1 βℓXiℓ

))2
= −

n∑
i=1

(Xv)2i
exp

(
−
∑p

ℓ=1 βℓXiℓ

)(
1 + exp

(
−
∑p

ℓ=1 βℓXiℓ

))2 .
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Therefore, vTH(β)v ≤ 0 and

vTH(β)v = 0 ⇐⇒ for any i ∈ {1, . . . , n}, (Xv)i = 0 ⇐⇒ Xv = 0.

(c) Prove that if X is full rank, then there exists a unique vector β̂ minimizing the
function Cλ on Rp.

Correction : If X is full rank, the previous question shows that the log-likelihood
L is strictly concave. Then, Cλ is strictly convex on Rp. We obtain the result.

6. Describe precisely the tuning of λ by using cross-validation.

Correction : For any i ∈ {1, . . . , n}, we denote xi = (Xi1, . . . , Xip)
T .

(a) Choose V and a discrete set Λ of possible values for λ.

(b) Split the training set {1, . . . , n} into V subsets, B1, . . . , BV , of roughly the same
size.

(c) For each value of λ ∈ Λ, for k = 1, . . . , V , compute the estimate β̂
(−k)
λ on the

training set ((xi, Yi)i∈Bℓ
)ℓ ̸=k and record the total error on the validation set Bk:

ek(λ) :=
1

card(Bk)

∑
i∈Bk

(
Yi − Ŷ

(−k)
i,λ

)2
,

where Ŷ
(−k)
i,λ = 1 if pi

(
β̂
(−k)
λ

)
> 0.5 and Ŷ

(−k)
i,λ = 0 otherwise.

(d) Compute the average error over all folds,

CV (λ) :=
1

V

V∑
k=1

ek(λ) =
1

V

V∑
k=1

1

card(Bk)

∑
i∈Bk

(
Yi − Ŷ

(−k)
i,λ

)2
,

(e) We choose the value of tuning parameter that minimizes this function CV on Λ:

λ̂ := argmin
λ∈Λ

CV (λ).
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Exercise 2: Uniqueness of the Lasso estimate

We consider the linear regression model

Y = Xβ∗ + ε,

with X the known design matrix whose columns are denoted X1, X2, . . . , Xp. Here, β
∗ ∈

Rp is an unknown vector to estimate and ε is the error vector. We consider the Lasso
estimate of β∗ defined by

β̂ ∈ arg min
β∈Rp

{
∥Y −Xβ∥2ℓ2 + λ∥β∥ℓ1

}
,

where λ > 0 is a constant. We recall that a vector β̂ ∈ Rp is a global minimizer of the
criterion Cλ,1 defined for β ∈ Rp by

Cλ,1(β) = ∥Y −Xβ∥2ℓ2 + λ∥β∥ℓ1

if and only if there exists w such that
λw = 2XT (Y −Xβ̂),

∥w∥∞ ≤ 1,

wj = sign(β̂j) if j ∈ {1, . . . , p} is such that β̂j ̸= 0.

We set
T (β̂) = w.

The goal of this exercice is to derive conditions so that Cλ,1 has a unique minimizer. In

the sequel, we consider two vectors β̂(1) and β̂(2) that minimize Cλ,1.

1. Show that Xβ̂(1) = Xβ̂(2).

Correction : Assume that Xβ̂(1) ̸= Xβ̂(2). We set u =
(
β̂(1) + β̂(2)

)
/2. We have

Y −Xβ(1) ̸= Y −Xβ(2).

Since x 7−→ ∥x∥2ℓ2 is strictly convex and x 7−→ ∥x∥ℓ1 is convex, we have:

Cλ,1(u) = ∥
(
Y −Xβ(1)

)
/2 +

(
Y −Xβ(2)

)
/2∥2ℓ2 + λ∥β(1)/2 + β(2)/2∥ℓ1

<
1

2

(
∥Y −Xβ(1)∥2ℓ2 + λ∥β(1)∥ℓ1 + ∥Y −Xβ(2)∥2ℓ2 + λ∥β(2)∥ℓ1

)
and

Cλ,1(u) <
Cλ,1(β

(1)) + Cλ,1(β
(2))

2
= Cλ,1(β

(1)) = Cλ,1(β
(2)).

We obtain a contradiction. Therefore, Xβ̂(1) = Xβ̂(2).
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2. Deduce that T (β̂(1)) = T (β̂(2)).

Correction : We have

λT (β̂(1)) = 2XT
(
Y −Xβ̂(1)

)
= 2XT

(
Y −Xβ̂(2)

)
= λT (β̂(2))

and, since λ > 0, T (β̂(1)) = T (β̂(2)).

3. We set
w = T

(
β̂(1)
)
= T

(
β̂(2)
)

and
J =

{
j ∈ {1, . . . , p} : |wj| = 1

}
.

(a) Prove that if j ∈ {1, . . . , p} \ J , β̂(1)
j = 0.

Correction : Let j ∈ {1, . . . , p} \J . If β̂(1)
j ̸= 0, then we can set wj = sign(β̂

(1)
j )

and |wj| = 1, which implies j ∈ J . contradiction. Therefore, β̂
(1)
j = 0.

(b) We denote X(J) the matrix whose columns are the columns Xj for j ∈ J . The
matrix X(J) has n rows and |J | columns. Show that for any j ∈ J ,(

X(J)TX(J)β̂(1)(J)
)
j
= XT

j Y − λ

2
wj,

where β̂(1)(J) is the vector of size |J | whose components are the β̂
(1)
j ’s for j ∈ J .

Correction : We have
2XT (Y −Xβ̂(1)) = λw.

Therefore, for j ∈ J ,

XT
j Y − λ

2
wj =

(
XTXβ̂(1)

)
j

= XT
j Xβ̂

(1)

= XT
j

p∑
ℓ=1

β̂
(1)
ℓ Xℓ

= XT
j

∑
ℓ∈J

β̂
(1)
ℓ Xℓ

=
(
X(J)TX(J)β̂(1)(J)

)
j
.

We have used that β̂
(1)
ℓ = 0 if ℓ /∈ J .
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(c) Conclude that if X(J)TX(J) is invertible, then β̂(1) = β̂(2).

Correction : We set z the vector of size |J | whose components for j ∈ J are

zj = XT
j Y − λ

2
wj.

From the previous question, we deduce

X(J)TX(J)β̂(1)(J) = z.

Therefore,

β̂(1)(J) =
(
X(J)TX(J)

)−1

z.

Similarly, we obtain

β̂(2)(J) =
(
X(J)TX(J)

)−1

z

and β̂
(2)
j = 0 if j /∈ J . This implies β̂(1) = β̂(2).

(d) Deduce an algorithm that can be used in practice to check that Cλ,1 has a
unique minimizer.

Correction : We compute β̂ a minimizer of Cλ,1. Then, we determine

J =

{
j ∈ {1, . . . , p} : |XT

j (Y −Xβ̂)| = λ

2

}
.

Finally, we check that X(J)TX(J) is invertible.
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Exercise 3: Model selection for functional data

We assume that we observe Y1, . . . , Yn such that, for all i = 1, . . . , n,

Yi = ⟨Xi, β
∗⟩+ εi

• Yi is the variable of interest (we suppose here that Yi is a scalar quantity),

• Xi is a fixed functional variable belonging to L2([0, 1]),

• β∗ is an unknown element of F = L2([0, 1]), called slope function,

• ε1, . . . , εn are i.i.d. centered Gaussian variables. We denote σ2 = Var(ε1).

In the last expression ⟨·, ·⟩ denotes the L2([0, 1])-scalar product. We suppose that for all
t ∈ [0, 1],

µ̂(t) :=
1

n

n∑
i=1

Xi(t) = 0.

We consider the empirical covariance operator

Γ̂ : f ∈ L2([0, 1]) 7−→ 1

n

n∑
i=1

⟨f,Xi⟩Xi

and its eigenelements (ψ̂m, λ̂m)m≥1 with λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂m ≥ · · · . Denoting for any
integer m such that m ≤ n,

Sm = span{ψ̂1, . . . , ψ̂m},

we consider

γn(β) =
1

n

n∑
i=1

(Yi − ⟨β,Xi⟩)2

and
β̂m = arg min

β∈Sm

γn(β).

Finally, we estimate β∗ with β̂m̂ with

m̂ = arg min
m∈N∗,m≤n

{
γn(β̂m) + pen(m)

}
,

where pen(m) is a penalty function only depending on m. In the sequel, we set for any
f ∈ L2([0, 1]),

∥f∥2n =
1

n

n∑
i=1

⟨f,Xi⟩2, νn(f) =
1

n

n∑
i=1

εi⟨f,Xi⟩.
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1. Show that for any integer m such that m ≤ n, and any β ∈ Sm,

∥β̂m̂ − β∗∥2n ≤ ∥β − β∗∥2n + 2νn(β̂m̂ − β) + pen(m)− pen(m̂).

Correction : We have

γn(β̂m̂) + pen(m̂) ≤ γn(β̂m) + pen(m)

≤ γn(β) + pen(m).

Therefore,

1

n

n∑
i=1

(Yi − ⟨β̂m̂, Xi⟩)2 + pen(m̂) ≤ 1

n

n∑
i=1

(Yi − ⟨β,Xi⟩)2 + pen(m),

which means

1

n

n∑
i=1

(εi + ⟨β∗ − β̂m̂, Xi⟩)2 + pen(m̂) ≤ 1

n

n∑
i=1

(εi + ⟨β∗ − β,Xi⟩)2 + pen(m).

We obtain

∥β̂m̂ − β∗∥2n ≤ ∥β∗ − β∥2n + 2νn(β̂m̂ − β) + pen(m)− pen(m̂),

which is the result.

2. Prove that for any α ∈ (0, 1),

∥β̂m̂ − β∗∥2n ≤ (1 + 2α)∥β − β∗∥2n + 2α∥β̂m̂ − β∗∥2n + α−1 sup
f∈Sm∨m̂,∥f∥n=1

ν2n(f) + pen(m)− pen(m̂).

Correction : Since β̂m̂ − β ∈ Sm∨m̂, we have:

2νn(β̂m̂ − β) ≤ 2∥β̂m̂ − β∥n sup
f∈Sm∨m̂,∥f∥n=1

νn(f)

≤ α∥β̂m̂ − β∥2n + α−1 sup
f∈Sm∨m̂,∥f∥n=1

ν2n(f)

≤ 2α∥β̂m̂ − β∗∥2n + 2α∥β − β∗∥2n + α−1 sup
f∈Sm∨m̂,∥f∥n=1

ν2n(f).

This gives the result.

3. Deduce that

∥β̂m̂ − β∗∥2n ≤ 3∥β∗ − β∥2n + 8 sup
f∈Sm∨m̂,∥f∥n=1

ν2n(f) + 2pen(m)− 2pen(m̂).

Correction : This is obvious by taking α = 1/4.
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4. We study now for any integer m such that m ≤ n,

Hm = sup
f∈Sm,∥f∥n=1

νn(f).

For this purpose, we introduce the matrix Ψm such that for 1 ≤ i ≤ n and 1 ≤ k ≤ m

(Ψm)ik = ⟨Xi, ψ̂k⟩

and Pm the projection matrix on Im(Ψm).

(a) Establish that

Hm =
1√
n

sup
x∈Rn,x∈Im(Ψm ),xT x=1

xT ε,

with ε = (ε1, . . . , εn)
T .

Correction : We have:

Hm = sup
f∈Sm,∥f∥n=1

νn(f)

= sup
f∈Sm,∥f∥n=1

1

n

n∑
i=1

εi⟨f,Xi⟩.

Given f =
∑m

k=1 ukψ̂k ∈ Sm, we set

x =
1√
n

(
⟨f,X1⟩, . . . , ⟨f,Xn⟩

)T
=

1√
n
Ψm × (u1, . . . , um)

T ∈ Im(Ψm)

and

∥f∥n = 1 ⇐⇒ xTx = 1.

Therefore,

Hm =
1√
n

sup
x∈Rn,x∈Im(Ψm ),xT x=1

xT ε.

(b) Deduce that nH2
m has a χ2 distribution.

Correction : From the previous question, we deduce

nH2
m = sup

x∈Rn,x∈Im(Ψn ),xT x=1

(
xTPmε

)2
= ∥Pmε∥2ℓ2

and nH2
m has a χ2 distribution with m degrees of freedom.
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A.9 Exam 2024-2025

High-dimensional statistics

EXAM: duration 2h30

Documents, calculators, phones and smartphones are forbidden

Exercise 1: Lasso for the Poisson model

In the high-dimensional setting, we observe (Y1, Y2, . . . , Yn), n independent random vari-
ables such that for any i, Yi is a Poisson variable whose mean is

E[Yi] = exp
( p∑
j=1

β∗
jXij

)
.

In the last expression, Xij denotes the value of the predictor Xj associated with Yi and
β∗ is a sparse p-dimensional unknown vector to be estimated. In the sequel, we denote
for any β ∈ Rp and any i ∈ {1, . . . , n},

λi(β) = exp
( p∑
j=1

βjXij

)
and λ(β) = (λ1(β), . . . , λn(β))

T .

1. Show that the log-likelihood associated with this model is, for β ∈ Rp,

L(β) =
n∑
i=1

[
Yi

p∑
j=1

βjXij − exp

(
p∑
j=1

βjXij

)
− log

(
Yi!
)]
.

Indication : We recall that if Y is a Poisson variable with mean µ > 0, we have for

any k ∈ {0, 1, 2, . . .}, P(Y = k) = exp(−µ)µk
k!
.

Correction : The likelihood is

V (β) =
n∏
i=1

[
exp

(
− λi(β)

)λi(β)Yi
Yi!

]
.
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Therefore,

L(β) = log
(
V (β)

)
=

n∑
i=1

[
Yi log(λi(β))− λi(β)− log

(
Yi!
)]

=
n∑
i=1

[
Yi

p∑
j=1

βjXij − exp

(
p∑
j=1

βjXij

)
− log

(
Yi!
)]
.

2. Prove that L is a concave function on Rp.

Correction : Since β ∈ Rp 7−→
∑p

j=1 βjXij is linear and β ∈ Rp 7−→ exp
(∑p

j=1 βjXij

)
is convex, L is a concave function on Rp.

3. We estimate β∗ by using the estimate

β̂ ∈ arg min
β∈Rp

{
− L(β) + γ∥β∥ℓ1

}
,

where ∥β∥ℓ1 is the ℓ1-norm of the vector β and γ > 0 is a constant. Justify carefully

the introduction of β̂ to estimate β∗. In the sequel, we denote for any β ∈ Rp,

Cγ(β) = −L(β) + γ∥β∥ℓ1 .

Correction : Using previous questions, Cγ is convex on Rp. We are in the high-
dimensional setting, so we need to use a convex criterion to minimize. The vector
β∗ is sparse, so it is natural to use a Lasso-type estimate by introducing the ℓ1-
penalty.

4. Deduce that β̂ is a minimizer of Cγ if and only if there exists w ∈ Rp such that

∥w∥∞ ≤ 1 and wT β̂ = ∥β̂∥1 and such that

XT
(
Y − λ

(
β̂
))

= γw.

Correction : We have

∂L(β)
∂βj

=
n∑
i=1

[
YiXij −Xij exp

(
p∑
ℓ=1

βℓXiℓ

)]
= (XTY )j − (XTλ(β))j.

Since Cγ is a convex function, β̂ is a minimizer of Cγ if and only if 0 belongs to the

subdifferential of Cγ at β̂. We obtain the conclusion.
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5. We denote H the Hessian matrix associated with L. It means that for any (j, k) ∈
{1, . . . , p}

Hjk(β) =
∂2L(β)
∂βj∂βk

.

(a) For any β ∈ Rp, give the expression of Hjk(β).

Correction : We have

∂L(β)
∂βj

=
n∑
i=1

[
YiXij −Xij exp

(
p∑
ℓ=1

βℓXiℓ

)]
.

Therefore,

∂2L(β)
∂βj∂βk

= −
n∑
i=1

XijXik exp
( p∑
ℓ=1

βℓXiℓ

)
.

(b) Deduce that for any vector v ∈ Rp, vTH(β)v ≤ 0 and

vTH(β)v = 0 ⇐⇒ Xv = 0.

Correction :

vTH(β)v =

p∑
j=1

p∑
k=1

vjvkHjk(β)

= −
n∑
i=1

p∑
j=1

p∑
k=1

vjvkXijXik exp
( p∑
ℓ=1

βℓXiℓ

)
= −

n∑
i=1

(Xv)2i exp
( p∑
ℓ=1

βℓXiℓ

)
.

Therefore, vTH(β)v ≤ 0 and

vTH(β)v = 0 ⇐⇒ for any i ∈ {1, . . . , n}, (Xv)i = 0 ⇐⇒ Xv = 0.

(c) Prove that if X is full rank, then there exists a unique vector β̂ minimizing the
function Cγ on Rp.

Correction : If X is full rank, the previous question shows that the log-likelihood
L is strictly concave. Then, Cλ is strictly convex on Rp. We obtain the result.
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Exercise 2: Estimation of the mean of functional data

Let X1, . . . , Xn ∼i.i.d. X where X is a random variable taking values in the space L2([0, 1])
of square-integrable functions on [0, 1] equipped with its usual scalar product

⟨f, g⟩ =
∫ 1

0

f(t)g(t)dt, f, g ∈ L2([0, 1])

and associated norm ∥f∥ =
√

⟨f, f⟩, f ∈ L2([0, 1]). The aim of the exercise is to study
several estimators of the mean function µ = E[X] from a set of noisy and discretized
observations of the Xi’s. More precisely, we assume we observe a data matrix

Y = (Yi,j)1≤i≤n;j=0,...,p,

such that
Yi,j = Xi(tj) + εi,j, i = 1, . . . , n; j = 0, . . . , p,

with

- t0, . . . , tp a regular grid of [0, 1] i.e. tj = j/p, j = 0, . . . , p;

- {εi,j}1≤i≤n;0≤j≤p ∼i.i.d. N (0, σ2) are noise variables assumed to be independent of
X1, . . . , Xn.

We study in the exercise two estimators of µ:

- a first estimator defined as a step function as defined in the course

µ̃(t) =
1

n

n∑
i=1

Yi,j, for t ∈ [tj−1, tj), j = 1, . . . , p.

- a second least-squares estimator

µ̌D(t) =
D∑
k=1

m̌kφk(t), t ∈ [0, 1],

with {φ1, . . . , φD} a sequence of orthonormal functions of (L2([0, 1]), ⟨·, ·⟩) and
m̌D = (m̌1, . . . , m̌D)

T ∈ RD is solution of the minimisation problem

minm=(m1,...,mD)T∈RD

1

n

n∑
i=1

p∑
j=1

(
Yi,j −

D∑
k=1

mkφk(tj)

)2

.

The aim is to study the quadratic risk of both estimators.
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1. Study of the estimator µ̃: we split the quantity µ̃− µ in three terms

µ̃− µ = µ̂− µ+Rdisc +Rnoise,

where

µ̂(t) =
1

n

n∑
i=1

Xi(t), t ∈ [0, 1];

Rdisc(t) =
1

n

n∑
i=1

(Xi(tj)−Xi(t)) for t ∈ [tj−1, tj), j = 1, . . . , p;

Rnoise(t) =
1

n

n∑
i=1

εi,j for t ∈ [tj−1, tj), j = 1, . . . , p.

(a) Assume that E[∥X∥2] < +∞, prove that

E[∥µ̂− µ∥2] = E[∥X − µ∥2]
n

.

Correction :

E[∥µ̂− µ∥2] = E

∥∥∥∥∥ 1n
n∑
i=1

Xi − µ

∥∥∥∥∥
2
 =

1

n2

n∑
i,i′=1

E[⟨Xi − µ,Xi′ − µ⟩].

For i ̸= i′, since Xi − µ and Xi′ − µ are independent,

E[⟨Xi − µ,Xi′ − µ⟩] = ⟨E[Xi]− µ,E[Xi′ − µ]⟩ = 0.

The result follows.

(b) Assume that there exist α ∈ (0, 1] and L > 0 such that

E[(X(t)−X(s))2] ≤ L|t− s|2α, for all t, s ∈ [0, 1].

Prove that

E[∥Rdisc∥2] ≤
L

(2α + 1)p2α+1
.
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Correction : By using e.g. the Cauchy-Schwartz inequality

E[∥Rdisc∥2] = E
[∫ 1

0

R2
disc(t)dt

]
=

p∑
j=1

∫ tj

tj−1

E[R2
disc(t)]dt

=

p∑
j=1

∫ tj

tj−1

E

( 1

n

n∑
i=1

(Xi(tj)−Xi(t))

)2
 dt

=

p∑
j=1

∫ tj

tj−1

E

( 1

n

n∑
i=1

(Xi(tj)−Xi(t))

)2
 dt

≤ 1

n

n∑
i=1

p∑
j=1

∫ tj

tj−1

E
[
(Xi(tj)−Xi(t))

2] dt
≤ 1

n

n∑
i=1

p∑
j=1

∫ tj

tj−1

L|tj − t|2αdt = L

(2α + 1)p2α
.

(c) Prove that

E[∥Rnoise∥2] =
σ2

n
.

Correction :

E[∥Rnoise∥2] = E
[∫ 1

0

R2
noise(t)dt

]
=

p∑
j=1

∫ tj

tj−1

E[R2
noise(t)]dt

=

p∑
j=1

∫ tj

tj−1

E

( 1

n

n∑
i=1

εi,j

)2
 dt

=
1

n2

p∑
j=1

∫ tj

tj−1

n∑
i,i′=1

E [εi,jεi′,j] dt =
σ2

n
.

(d) Deduce an upper-bound on the risk of the estimator

E[∥µ̃− µ∥2].

Discuss how this upper-bound varies with the number of individuals n, the
number p, the noise variance, and the regularity of the process (quantified
by α).
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Correction : We have:

E[∥µ̃− µ∥2] ≤ 3E[∥µ̂− µ∥2] + 3E[∥Rdisc∥2] + 3E[∥Rnoise∥2]

≤ 3E[∥X − µ∥2]
n

+
3L

(2α + 1)p2α
+

3σ2

n
.

The larger n (or the larger p or the larger α), the smaller the risk. These results
are expected. In particulars the smoother the signal, the easier the function to
be estimated and the smaller the risk. Of course, when σ2 increases, the risk
increases.

2. Study of the estimator µ̌:

(a) Let

γn,p(m) =
1

n

n∑
i=1

p∑
j=1

(
Yi,j −

D∑
k=1

mkφk(tj)

)2

.

Verify that

γn,p(m) =
1

n

n∑
i=1

p∑
j=1

(Xi(tj)− µ̂(tj))
2 +

p∑
j=1

(
µ̂(tj)−

D∑
k=1

mkφk(tj)

)2

+
1

n

n∑
i=1

p∑
j=1

ε2i,j

+
2

n

n∑
i=1

p∑
j=1

(Xi(tj)− µ̂(tj))εi,j +
2

n

n∑
i=1

p∑
j=1

εi,j

(
µ̂(tj)−

D∑
k=1

mkφk(tj)

)
.

Correction :

γn,p(m) =
1

n

n∑
i=1

p∑
j=1

(
Xi(tj)− µ̂(tj) + µ̂(tj)−

D∑
k=1

mkφk(tj) + εi,j

)2

=
1

n

n∑
i=1

p∑
j=1

(Xi(tj)− µ̂(tj))
2 +

p∑
j=1

(
µ̂(tj)−

D∑
k=1

mkφk(tj)

)2

+
1

n

n∑
i=1

p∑
j=1

ε2i,j +
2

n

n∑
i=1

p∑
j=1

(Xi(tj)− µ̂(tj))

(
µ̂(tj)−

D∑
k=1

mkφk(tj)

)
︸ ︷︷ ︸

=0

+
2

n

n∑
i=1

p∑
j=1

(Xi(tj)− µ̂(tj))εi,j +
2

n

n∑
i=1

p∑
j=1

εi,j

(
µ̂(tj)−

D∑
k=1

mkφk(tj)

)
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(b) Let, for two functions f, g : [0, 1] → R, and a vector u = (u1, . . . , up)
T ∈ Rp

⟨f, u⟩p =
p∑
j=1

f(tj)uj, ⟨f, g⟩p =
p∑
j=1

f(tj)g(tj), ∥f∥2p =
p∑
j=1

f 2(tj),

ε• =

(
1

n

n∑
i=1

εi,j

)
j=1,...,p

and

ΠDµ =

p∑
j=1

⟨µ, φj⟩φj.

Deduce from (a) that

∥µ̂− µ̌∥2p ≤ 2⟨µ̌− ΠDµ, ε•⟩p + ∥µ̂− ΠDµ∥2p.

Indication: Set mD = (⟨µ, φ1⟩, . . . , ⟨µ, φD⟩)T and use

γn,p(m̌D) ≤ γn,p(mD).

Correction : Let mD = (⟨µ, φ1⟩, . . . , ⟨µ, φD⟩)T , we have, by definition of m̌D,

γn,p(m̌D) ≤ γn,p(mD).

Then, by (a),

1

n

n∑
i=1

p∑
j=1

(Xi(tj)− µ̂(tj))
2 +

p∑
j=1

(
µ̂(tj)−

D∑
k=1

m̌kφk(tj)

)2

+
1

n

n∑
i=1

p∑
j=1

ε2i,j

+
2

n

n∑
i=1

p∑
j=1

(Xi(tj)− µ̂(tj))εi,j +
2

n

n∑
i=1

p∑
j=1

εi,j

(
µ̂(tj)−

D∑
k=1

m̌kφk(tj)

)

≤ 1

n

n∑
i=1

p∑
j=1

(Xi(tj)− µ̂(tj))
2 +

1

n

n∑
i=1

p∑
j=1

ε2i,j

+

p∑
j=1

(
µ̂(tj)−

D∑
k=1

⟨µ, φk⟩φk(tj)

)2

+
2

n

n∑
i=1

p∑
j=1

(Xi(tj)− µ̂(tj))εi,j

+
2

n

n∑
i=1

p∑
j=1

εi,j

(
µ̂(tj)−

D∑
k=1

⟨µ, φk⟩φk(tj)

)
.
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It means that

p∑
j=1

(
µ̂(tj)−

D∑
k=1

m̌kφk(tj)

)2

≤ − 2

n

n∑
i=1

p∑
j=1

εi,j

(
µ̂(tj)−

D∑
k=1

m̌kφk(tj)

)

+

p∑
j=1

(
µ̂(tj)−

D∑
k=1

⟨µ, φk⟩φk(tj)

)2

+
2

n

n∑
i=1

p∑
j=1

εi,j

(
µ̂(tj)−

D∑
k=1

⟨µ, φk⟩φk(tj)

)

≤ − 2

n

n∑
i=1

p∑
j=1

εi,j

D∑
k=1

(m̌k − ⟨µ, φk⟩)φk(tj)

+

p∑
j=1

(
µ̂(tj)−

D∑
k=1

⟨µ, φk⟩φk(tj)

)2

(c) Prove that, for all η > 0,

E[2⟨µ̌− ΠDµ, ε•⟩p] ≤ ηE[∥ΠDµ− µ̌∥2p] + η−1σ2 p

n
.

Indication: remember that for all x, y ∈ R and η > 0, 2xy ≤ ηx2 + η−1y2.

Correction : Using successively Cauchy-Schwarz inequality and the suggested
inequality

2⟨ΠDµ− µ̌, ε•⟩p ≤ 2∥ΠDµ− µ̌∥p∥ε•∥p ≤ η∥ΠDµ− µ̌∥2p + η−1∥ε•∥2p.

Now

E[∥ε•∥2p] = E

 p∑
j=1

(
1

n

n∑
i=1

εi,j

)2
 =

σ2p

n
.

(d) Deduce that there exists a constant C > 0 such that

E[∥µ− µ̌∥2p] ≤ C
(
E[∥µ− µ̂∥2p] + ∥µ− ΠDµ∥2p + σ2 p

n

)
.

Indication: for all f, g : [0, 1] → R, ∥f + g∥2p ≤ 2∥f∥2p + 2∥g∥2p.
Correction : We have

∥µ− µ̌∥2p ≤ 2∥µ− µ̂∥2p + 2∥µ̂− µ̌∥2p.
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From (b) we obtain,

∥µ− µ̌∥2p ≤ 2∥µ− µ̂∥2p + 4⟨µ̌− ΠDµ, ε•⟩p + 2∥µ̂− ΠDµ∥2p.

Taking expectation and applying (c) leads to

E[∥µ− µ̌∥2p] ≤ 2E
[
∥µ− µ̂∥2p

]
+ 2ηE[∥ΠDµ− µ̌∥2p] + 2η−1σ2 p

n
+ 2E

[
∥µ̂− ΠDµ∥2p

]
≤ 2E

[
∥µ− µ̂∥2p

]
+ 4ηE[∥ΠDµ− µ∥2p] + 4ηE[∥µ− µ̌∥2p] + 2η−1σ2 p

n
+4E

[
∥µ̂− µ∥2p

]
+ 4E

[
∥ΠDµ− µ∥2p

]
.

Then choosing η such that 1 − 4η > 0 (i.e. η < 1/4) and C > 0 sufficiently
large leads to the expected result.

(e) Let K(s, t) = Cov(X1(s), X1(t)) be the covariance kernel of X, prove that

E
[
∥µ̂− µ∥2p

]
≤ p

n
sup
t∈[0,1]

K(t, t).

Correction : Remark that

E[µ̂(t)] = µ(t), t ∈ [0, 1].

Then

E
[
∥µ̂− µ∥2p

]
= E

[
p∑
j=1

(µ̂(tj)− E[µ̂(tj)])2
]
=

p∑
j=1

Var(µ̂(tj)) =
1

n

p∑
j=1

Var(Xi(tj))

=
1

n

p∑
j=1

K(tj, tj).

(f) Verify that for any function f : [0, 1] → R such that there exists L > 0 and
α ∈ (0, 1] such that, for all s, t ∈ [0, 1]

|f 2(t)− f 2(s)| ≤ L|t− s|2α, (A.16)

we have ∣∣∣∣∥f∥2 − 1

p
∥f∥2p

∣∣∣∣ ≤ Lp−2α.

Correction : Since tj − tj−1 =
1
p
,∣∣∣∣∥f∥2 − 1

p
∥f∥2p

∣∣∣∣ =

∣∣∣∣∣
∫ 1

0

f 2(t)dt− (tj − tj−1)

p∑
j=1

f 2(tj)

∣∣∣∣∣
=

∣∣∣∣∣
p∑
j=1

∫ tj

tj−1

(
f 2(t)− f 2(tj)

)
dt

∣∣∣∣∣ ≤ Lp−2α.
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(g) Assume that µ, ΠDµ, µ̌ and µ̂ verify assumption (A.16), deduce an upper-
bound on the risk E[∥µ̌−µ∥2] as a function of σ2, n, p, α and ∥ΠDµ−µ∥2 and
compare with the upper-bound obtained in question 1.(d).

Correction : We have:

E[∥µ− µ̌∥2] ≤ C
(
E[∥µ̂− µ∥2p] + ∥ΠDµ− µ∥2p + σ2 p

n

)
≤ C

(
p

n
sup
t∈[0,1]

K(t, t) + ∥ΠDµ− µ∥2p + σ2 p

n

)
.



158 High-dimensional statistics



Bibliography
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[6] Dacunha-Castelle, D. et Duflo, M. (1997) Probabilités et statistiques. Masson.

[7] Daubechies, I. (1992). Ten lectures on wavelets. CBMS-NSF Regional Conference
Series in Applied Mathematics, 61. Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA

[8] Dobson, A.J. et Barnett, A.G. (2008) An introduction to generalized linear models.
Chapman & Hall.

[9] Donoho, D. (2000) High-Dimensional Data Analysis: The Curses and Blessings of
Dimensionality. American Math. Society ”Math Challenges of the 21st Century” .

[10] Fourdriner, D. (2002) Statistique inférentielle. Dunod.
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