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Chapter 1

Wavelets and statistics

1.1 Continuous wavelet transform

We consider a function ¢ : R — R such that ¢ € L;(R) N Ly(R),

/w(t)dt =0 and |¢|2=1. (1.1)
R
In the sequel, the function v will be called mother wavelet or just wavelet or analyzing

function. We build a family of time-frequency atoms by translating i) at positions u and
by dilating it as scale s, for any v € R and s > 0. We set

s (1) = %w (t - “) | teR.

We can easily check that

/wuys(t)dt =0 and |[¢usll2=1.
R

We set:

Definition 1.1. The continuous wavelet transform of a signal f € Ly(R) at time
u € R and s > 0 is defined by

WIF) (s 5) = / ()t

The function W[f] : R? — R is called the continuous wavelet transform of f.

In the sequel, we denote for any f € Ly(R), fthe Fourier transform of f:

-~

f(€) rz/Re‘“ﬁf(t)dt, ¢eR.

5



6 High-dimensional statistics
Then, observe that (1.1) implies YZ(O) = 0. Next remarks show basic elements for time
and frequency analysis of a signal f.

Remark 1.1. If ¢ is well-localized around 0, it will be also the case for 1, s around u
and

WIf|(u,s) # 0= f # 0 in the neighborhood of .
Remark 1.2. If we set for any t € R, ?ﬁ(t) = (—t) and @u,s(t) = . s(—1), then
WIS, s) = [f *o,s)(w),

where x denotes the standard convolution product. Then

—

WIEs) = / WL, s)edu = F(€)/50(—56).

Therefore,

o~ o~

WIFI(E, s) # 0= f(§) #0.

We can reconstruct a signal from the knowledge of its continuous wavelet transform.

Theorem 1.1. We assume that i satisfies

+oo |77 2
Cy = / de < 00.
0

w

Then, any function f € LLy(R) satisfies

- T [ (S ad,

Proof. We denote

b(t) = Ciw /OJFOO/R)/\)[]?](% 3)%@@ (t — u) du@ = Ciw 0+oo[f*?;0,s*¢0,s](t)§

S S 52

and we show that for any £ € R, N R
f(&) = b(&).
Il

Remark 1.3. The condition Cy < oo implies [(t)dt = @(O) = 0. So, (1.1) is a
necessary condition for Theorem 1.1.

Example 1.1. If fort € R, ¢(t) = —=(1 — t2)e "/, then

5

~

D(0)=0 and P(€) = e /2
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1.2 Orthogonal wavelets

The continuous wavelet transform is redundant since we can show that we don’t need
all W[f](u, 5))uer.s>0 to reconstruct f. In this paragraph, we explain how to subsample
this redundant transformation in an optimal way. More precisely, we wish to keep the
minimal number of wavelet coefficients to ensure the reconstruction of the signal. The
idea is to determine ¢ such that the family of functions (¢xes 2i) ez kez is an orthonormal
basis of Ly(R).

Change of notation: From now on, for j € Z and k € Z, we denote

onlt) = o (57 ) =2 b,

The goal is to determine conditions on v such that (¢;x);ezrez is an orthonormal basis
of Ly(R), ie

-V (5,k) €2V (§, k) € 7,
<¢jk7¢j’,k’> = { 0 if

-V f e Ly(R),

F=Y0 i)t

JEZ kEZ

We have denoted (-, ) the scalar product associated with the Lo-norm. We shall need the
notion of multiresolution analysis.

1.2.1 Multiresolution analysis

We start with the definition of a multiresolution analysis.

Definition 1.2. A multiresolution analysis is a sequence of nested vector spaces
{0yc---cVipcV,cVy C--- CLo(R)

such that, for any j € Z, if Py, is the orthogonal projection on Vj, for any f € La(R),

J——00

2. ||Py, flla 72570

3. feV, < x— f(x/2) € Vjy1 for any j € Z
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4. feEV, <= x> f(x+2k) €V, forany k € Z

5. 3¢ such that (¢r)rez is an orthonormal basis of Vo with for any x € R, ¢p(x) =
oz — k).

The previous definition can be interpreted as follows. In our setting, the resolution
means the quantity of information which can be used to represent a signal. In some sense,
the resolution is the inverse of the scale which describes the sharpness of visible details
of a function for a given resolution. So, the space V_; represents the set of functions of
maximal resolution equal to 2/ (equivalently at the scale 277). The larger j, the sharper
the details for representing a signal.

The dilation of a function by the factor 2 allows to increase details by a factor 2, which
can be expressed by the fact that we can represent it in a space of weaker resolution.
Finally, in the previous definition, ¢ is the scaling function (or father wavelet), which
is the main brick to build a multiresolution analysis.

Example 1.2. The first example is provided by piecewise constant functions, where for
any j € Z,

Vi={feLla(R): f(t)= f(2k) fort e [27k,27(k+1))}.
If we take ¢ = 11y, V = (V})jez is a multiresolution analysis.
Example 1.3. The second example is provided by
Vi={f€La®): supp(f) C [-27m,279m) |

If we take for t € R, ¢(t) = sin(wt)/(wt), V = (V})jez is a multiresolution analysis. See
Exam 2020-2021.

1.2.2 Study of the scaling function

Definition 1.3. Let ¢ € Li(R) a scaling function associated with a multiresolution anal-
ysis V.= (V;)jen. We setVjeZ andVk € Z,

ojr(t) = \/12—3.@1? (t _2f2j> =272p(27t — k), teR.

Remark 1.4. For any k € Z, ¢, = ook

We then prove the following proposition.

Proposition 1.1. Let j € Z be fized. Then, (¢;x)rez is an orthonormal basis of V;. The
orthogonal projection on Vj is

Py f =Y {f dim) i

keZ
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Proof. We successively prove:
L. (pjk, djir) = Lik=pry, for any (k, k') € Z*
2. For any f € V;, 3(ag)kez such that
fx) = Zak¢jk($), x € R.

kEZ

Remark 1.5. Remember that Py, f = argmingey, || f — g||2.
Using orthonormality of the ¢;;’s, we prove the following result.

Proposition 1.2. If ¢ € L;(R) is a scaling function then its Fourier transform satisfies

- |o(0)] =1

- S ien (w4 2kT)2 =1, w e R
Proof. For f a function chosen later, we set

g;(t) == V2 f(21), teR.
Then, with ¢(t) = ¢(—t) for ¢ € R,
(s i) = lgj * D1 (k)
and for £ € R, _
Py, J(€) = V2I6(€27) Y lg; * )(k)e ™.

keZ
We then use the Poisson formula: If 2 € L;(R) and B is compactly supported,
> h(k)e =" h(w + 2kn).
keZ kez
This implies

~

Py, J(6) = V2a(¢2) Y G;(627 + 2km) (€27 + 2kn).

kEZ

~

Now, we take f(w) = 1j_r~(w). So, if j <0 and § € [—7, 7],
Py (€)= lo(e2))

Using || Py, f — fll2 7228°0, we obtain
| [1-1aene| a
and finally |¢(0)| = 1.

For the second point, we apply the Poisson formula to h = $x¢ and use the orthonormality
property of the functions ¢;’s. O

J——00
—

0
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1.2.3 Conjugate mirror filter

We first express the decomposition of z +— ¢(x/2) on the ¢;’s. Indeed, we have z —
o(x/2) € Vi C V. So, for any x € R,

3(x/2) =Y (3(-/2), o)dn(z) = V2Y_ hud(a — k),

k€eZ kEZ
by setting
1 T
hy, = E/ﬂ;ﬁ (5) oz — k)dz. (1.2)

Definition 1.4. The function k € Z — hy, is called the conjugate mirror filter asso-
ciated with the function ¢. The transfer function associated with h is

1 .
mg: W H— — he v,
B

kEZ

The following proposition provides the connections between ¢ and my.
Proposition 1.3. We have

1. gg(Qw) = gg(w)mo(w), weR

2. mo(0) =1

3. |mo(w)]? + |mo(w+m)* =1, w e R

Proof. The first point is obtained by computing the Fourier transform of

0(35) = V2Y_ hola — k).

kEZ

The second point is an easy consequence of the first one (since ¢(0) # 0). The third point
is proved by using

> 1o(w/2+ k)P lmo(w/2 + k)P = > |p(w + 2km) 2 = 1.
keZ k€EZ
L]

The previous introduced notions are very important for the building of wavelets and
for algorithmic aspects associated with wavelets.
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1.2.4 Wavelets

In this paragraph, we describe a construction of wavelets ¢ starting from ¢. We first
define W, as the orthogonal complement of V; in V,_;

VioW; =Vj..
We have the following theorem:

Theorem 1.2. Let h the conjugate mirror filter associated with a function ¢. Let mgy is
the transfer function associated with h. We define the function g as

g(w) = e ™“mo(w +7), weR.

We set R R
b =3(5)0(5) wer

We set for any j € Z and any k € Z

V() = \/12—].1/1 (t _;2]') =2792(27t — k), teR

Then, for any j € Z, (Yji)kez is an orthonormal basis of W;. Furthermore, (Vjk)jez ez
is an orthonormal basis of Lo(R).

Proof. The proof is quite technical and very long. See Exam 2018-2019. [
This result shows that the goal specified at the beginning of this section is achieved.

Remark 1.6. Observe that

~

[ vt = 70) = 50)30) = mom30) = 0.

Remark 1.7. The function x — (x/2) € Wy C Vg, so there exists (A\g)kez Such that we

can write for any v € R,
V(x/2) = V2 E Aep(z —
keZ

It can be proved that for any k € 7Z,
Me = (=D hy .

See Ezercise 1 of Exam 2022-2023. The sequence (A, )kez is the conjugate mirror filter
associated with .
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1.2.5 Representation of a signal on a wavelet basis

We have built W; such that V; = V11 @ W44 So, for any jo > j,
V=V, @ Wy
Therefore, for any f € Ly(R),

Jo
Py, f = Py, f+ Z Pw, f

=it
= (Bioks Hbiok + D D (s Ny
kEZ j'=j+1 k€Z

We denote
Aok = (Pjor> [)  and By = (y, f).

Then, with j — —oo, since Py, f — f, we have:

Jo
F= rdurt D D Bty

keZ j'=—o0 kEZ

This representation is the wavelet decomposition of f. The spaces V; are called approx-
imation spaces. The spaces W; are called detail spaces.

Daubechies’ theory allows to take ¢ and v with some nice properties:

- regular (i.e. belonging to some Hélder spaces H®, s > 0)
- compactly supported
- with vanishing moments: for some N € N*

- [o(t)tdt =0, (=1,...,N
- [Y@)ttdt =0, ¢=0,...,N

The size of the support, s and N are connected.

Observe that once ¢ is fixed, the theory is complete. The building of ¢ relies on the
relations satisfied for any w € R :

o~

) = Gluwmatu). mo(w) = <=3 e

kEZ

By iterating,
+o00 +o0
s =300 () = [T ().
=1 =1

So, once the conjugate mirror filter is fixed, the theory is complete. Figure 1.1 provides
some very famous examples of father and mother wavelets with their associated filters.
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1.2.6 Fast wavelet transform

We now present an algorithm that allows to compute all wavelet coefficients once we
have the approximation wavelets at a given level jj, namely the (aj,x)r’s. We use the
discrete convolution, denoted %4, between two sequence of real number a = (ay)rez and

b ::(bk)kezi
@*d Z&gbk 25 kel

el

We have the following result.

Theorem 1.3. We consider h the conjugate mirror filter associated with ¢ and we set
for k € Z, hy, = h_,. We then have for any 7 € Z and any k € Z,

Qjy1k = [Oéj. *d iL](2k‘)
Similarly, .
Bitik = [aj. xa A|(2k),
where A\, = A\_x and (e is defined in Remark 1.7.
Proof. Let j € Z. Since for any k € Z, ¢ 11 € Vi1 C Vj, we can decompose ¢;11x on
the QSJ[’SZ
Gjre = > _(Gjr1k: bje)je

LETL

with

) 1 )
<¢j+1k7 ¢jg> = /1% TS ¢<2_(J+1)t — k‘)ﬁqﬁ(Z_Jt — g)dt
1
2
1

see (1.2). Therefore,
Gjrik = Z hi—or®je

LeZ

and

ik = (f5 Pjrn) Zhe 2wl [, Dje) = Zhé—%%‘z = [oyj. *q h](2K).

LeZ LETL

The second point is proved by using similar arguments and by replacing ¢;1 with ;1.
O
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We obtain a converse result.

Theorem 1.4. We use the same notations as for Theorem 1.3. Then, we have for any
JE€Z and any k € Z,

Qi = E Py —200tjq 10 + E Ae—208j110-

LEZ LeZ

Proof. To prove the result, we decompose ¢;;, € V; = V11 @ W;4; and we obtain

Gik = > _(Dik Gi10)Gjrre + > (St Vi) by

tez ez
= E hi—20Pji1e + E Ak—200j 1105
LeL i/

see the proof of Theorem 1.3. Then, taking the scalar product with f, we obtain the
result. O

Discrete convolutions can be computed very quickly. This is another reason for the
popularity of wavelets.

1.3 Numerical illustrations of wavelets

Some illustrations of what wavelets can offer in practice can be found on
https://www.ceremade.dauphine.fr/~rivoirar/Cours-Ondelettes.pdf

1.4 Estimation of a signal decomposed on a wavelet
basis

In the sequel, we modify the notation and replace 5 with —j.

1.4.1 Nonparametric regression model
We assume that we observe y = (Y7,...,Y,)? such that
Y;‘ :f(tl)—l-é“ 1= ].,...,TL, (].3)

where f is the signal to be estimated, the ¢;’s are i.i.d. such that E[g;] = 0, var(e;) = o2,
with 02 > 0 assumed to be known. We assume that f is compactly supported and, without
loss of generality, we assume that supp(f) C [0,1]. In the previous nonparametric
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regression model, we assume that t; = i/n, meaning that observations are equispaced.
We decompose f on a wavelet basis (we have set jo = 0):

+o00
[ = Z QrPr + Z Z Bik Wik

keZ j=0 keZ
with
With the change of notation, for any = € R,

or(z) = ¢z — k), jn(z) = 2592z — k).
Estimating f is equivalent to estimating the a;’s and the §j;’s.

Remark 1.8. If ¢ and ¢ are compactly supported with support included into [—A; A],
with A > 0, then ¢y is supported by [k — A;k + A] and v, is supported by I =
277(k — A);279(k + A)]. Therefore if k < —A or k > 27 4+ A, then B, = 0. We have no
more than 27 + 2A + 1 non-zero wavelet coefficients to estimate.

The regression model is "equivalent” to a white noise model where we observe

X_ =+ Zz_ kel
{ 1k Kt A1k (1.4)

Xj :ﬂjkﬁ-\/LﬁZﬂg 120, kelZ

where the z;;’s are i.i.d. N(0,1). Indeed, if n = 27! one may construct an n-by-n
orthogonal matrix W, the discrete wavelet transform matrix. This matrix yields a vector
w of the discrete wavelet coefficients of y via

w =Wy

and because the matrix is orthogonal we have the inversion formula y = W7Tw. The
vector w has n = 277! elements. It is convenient to index dyadically the rows of W. By
denoting Wjy (i) the element of row (j, k) and column i of VW, we can prove the following
approximation:

wa =,
Since ¢ := (g1, ...,en)" ~ N(0,02I,) and W is orthogonal,
z:=0 "We ~N(0,1,).

We finally use

% Z F) Wi (i) = % Z F(t)289 (2t — k) =~ /f(t)2%¢(2jt — k)dt = (f, ;i)
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Setting
1 n
Xjk = —= Y YiWi(i),
Vi

using (1.3), we obtain
o

X =~ (f, ¥jw) + %Z]’k,

which approximately justifies (1.4).

1.4.2 Thresholding

We denote
ICj I:{ki [Jkﬂ[o,l]#(b}

We only have to deal with the coefficients (au)rex, and (Bjr);>0.rex;- We work with the

model
o

%zﬂm
with f_1, = a3 and K_; = Ky. For practical reasons, we only estimate a finite set of
wavelet coefficients. This set will have the form

Xk = Bjx + j=>-1, kekj,

L={(G,k): —-1<j<J kek;}

with J to be chosen. Considering that most of signals are sparse (ie. most of wavelet
coefficients are zero or negligible), the procedure is the following:

- If | X[ is small (namely |X ;| smaller than a threshold), we estimate S, by 0.
- If | Xy | is large (namely | X ;| larger than the threshold), we estimate (3, by Xj.

From the mathematical point of view, we use the following procedure. We consider 7;;, a
threshold (to be chosen later) and we set for any j and any k,

Bik = Xjkl{\Xjk\>?7jk}'

The estimate of f is then
J
F=Y>" Bintoir.
j=—1kekK;

We set 1_1;, = 0. So, it remains to choose J and the n;;’s for 0 < 7 < J and k € K;. To
study the theoretical performance of f, we shall use the oracle approach. We set

B = cinXje e € {0,1}
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and c¢;; non-random. The oracle approach will give us the ideal value for cj;. It may
depend on the signal. The ideal value for c;; will be the value that minimizes the f5-risk
of 50 The latter can be computed and we obtain

0.2

B (85 — Bn)?] = = + (1= cu)* .

The ideal value for ¢;; € {0,1} is then

{ Jk—on }

Indeed, with this value, the risk of 5 .» called the oracle risk of 3j;, is minimum and

equal to min < o J k> The ”oracle estimator” is then

Z X_ 1k¢k+zz Uik

keK_1 J=0 ke,

and the oracle risk is

2

E [|I7°~ fIP| = Tcard(ic- +i2mm( B+ L Y A

j=0 kek; §>J kek;

The goal is to find 7;;, such that the true estimate f has (almost) the same risk. This is
given by the next theorem.

Theorem 1.5. We choose

2vlogn
Njk =0 P
n

with v a constant larger than 1 and such that

|2

card(l") <
In this case,
; 9 o? o logn
E[1f - 7] <  candlic_ +clzzmm( ) DI
j=—1kek; J>J kek;
where Cy and Cy are two constants.

Proof. We start with the following lemma.
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Lemma 1.1. If Z ~ N(0,1), then for any x > 0,

P(1Z] > o) < — ( x)
X ex _— .
T a2 P 2

Proof. We just use:

P(|Z| > z) = \/i_/m exp (-%) dt
ST

We can now prove the theorem:

J

E [Hf - f||2} = Z E[(X_1x — B-w)’] + Z Z E [(Bjk - 5jk)2} + Z Z
kek_1 J=0 kek; J>J ke
2
= U_card + Z Z |: ﬁ]k — ﬁjk ] Z Z
7=0 kek; j>J kek;

So, it remains to study E [(B]k — ﬁjk)z]. We can prove that

. 2
B [(f — 607] < min (257, ).

See Exam 2019-2020. OJ
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Chapter 2

Variable selection

We study the problem of variable selection in the linear regression setting.

2.1 Introduction

Why linear regression?
1. It models various concrete situations
2. Is is simple to use from the mathematical point of view
3. It allows to introduce and to present new methodologies

Definition 2.1. Let Y = (Yi,...,Y,)T € R" a vector of observations. We say that Y
obeys a linear regression model when

Y = X3 +¢,
where
- X 15 a known n X p-matrix
- ¢ € R™ such that its components ¢; are centered and 1.i.d.
- B* € RP is unknown
We say that the linear model is gaussian when Y ~ N(X*,0%1,), where o® := var(ey).
The terminology is the following:

- Xj, the jth column of X, is an explanatory variable or a predictor

- Y is the response variable

21
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- € is the error vector
We can consider 3 statistical problems:
- the estimation problem: Estimate §*
- the prediction problem: Estimate X 3*

- Selection problem: Determine non-zero coordinates of 5*

2.2 Classical estimation

We still denote || - || the classical euclidian norm. We denote Px the orthogonal projection
on Im(X).

Definition 2.2. We denote B the ordinary least squares estimate of B*: B 15 the vector
of RP such that X
= in |V — X%
§ = arg min | Bl

Proposition 2.1. If X is one to one (injective) then we have
B=(XTx)"'XxTy.

Proof. Since X is one to one, X TX is invertible. When B describes RP, X3 describes
Zm(X). So, X is the orthogonal projection of Y on Zm(X) and

X3 =PyY =XX"X)"'X"Y.
Since X is one to one, we get the result. O]
Remark 2.1. Since E[e] = 0, E[3] = 8* and since var(e) = 021, var(f) = o2(XT X)L,
Definition 2.3. The vector of residuals is given by
E=Y-Y, Y =X3=PyY.
If Py. = I, — Px is the projection matrix on Zm(X)+, then & = Pyx.Y.

Remark 2.2. If X is one to one, E[¢] =0 and

~

var(¢) = 0*Px., cov(é,Y) = 0.

Indeed, .
cov(é,Y) = E[(Px+ (Y — E[Y]))" (Px (Y — E[Y])]

and we use (I, — Px)Px =0
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We shall use the following lemma.

Lemma 2.1. For any deterministic matriz A with n columns,
E[||Ae|]?] = o*Tr(AAT).
Proof.

E[|Ae|*] = E[(Ae)" (Ae)] = E[T7((Ae)" (Ae))] = E[Tr((Ae)(Ae)")] = o*Tr(AAT).

O
Definition 2.4. The natural estimate of o2 is
o 2 v - Pov)?
n—p n-p
Proposition 2.2. If rank(X) = p, then E[6?] = o2
Proof. We have
E[|[€]*] = o*Tr(Px1) = o*(n —p).
O

2.3 Inference in the Gaussian case

In this section, we still assume that rank(X) = p, E[¢] = 0 and var(e) = oI, but we
further assume that € ~ ANV(0,021,). The likelihood of the observations is then available.
We then obtain the following proposition.

Proposition 2.3. The mazimum likelihood estimate of (8*,02) is (B, (n — p)/n x 62).
Proof. The proof is very classical. ]

Note that most of the time, we prefer to use, in practice, 62, which is unbiased, to
estimate 0. Of course, asymptotically, there is no difference between 6% and (n —p)/n x
62). To establish the properties of (3, (n — p)/n x %), we now recall Cochran’s theorem.

Theorem 2.1. Let W ~ N (m, I;) a Gaussian vector of R? and E® E+ = R? a decompo-
sition of R? in two orthogonal vector spaces. Then, the vectors Wg and Wg., orthogonal
projections of W on E and E* respectively, are independent. Furthermore, the random
variables |[Wg|* and |Wg.||* are independent and

IWel* ~ x*(dim(E), lmel*),  [[We|* ~ x*(d — dim(E), [lmp.]|*).

where mg and mgy are projections of m on E and E*+ respectively.
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Remark 2.3. Cochran’s theorem can be extended to decompositions in more than 2 spaces.
From this theorem, we deduce:
Proposition 2.4. We have:
1B~ N o*(XTX))
2. BT~ 2 (n - p)
3. B and 6% are independent

Proof. The first point is obvious. For the second point, we write

(n—p)6® _ ||PxeY|

= 2 prm—

[Pxe(o )|

o? o
Finally, for the last point, we show:
B=p"+(X"X)"' X" Pxe.
O

Theorem 2.2. We fix two vector spaces V. and W where W is a vector subspace of V.
We assume q = dim(W) < p = dim(V'). We set

|PwY — PyY|I?/(p — q)

N
P Y S RY D)

where PyY is the orthogonal projection of Y on V and PwY is the orthogonal projection
of Y on W. When Xp* € W CV, then

F~Fp—gn—p).
We deduce the following corollary.

Corollary 2.1. We fix two vector spaces V. and W where W is a vector subspace of V.
We assume g = dim(W) < p = dim(V'). We set

o IPwY =AY/ (0 —q)
1Y = P Y |2/ (n —p)

where PyY is the orthogonal projection of Y on V and PwY is the orthogonal projection
of Y on W. Then

¢<Y) - 1{F>fp*q,n7p,17a}7

where fy_qn—pi—a s the quantile of order 1—a: of the Fisher distribution with (p—q,n—p)
degrees of freedom, is a test of size o for

Hy: Xp*eW wersus Hy: Xp*eV\W.
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2.4 Choosing a good model

We still consider the linear regression model
Y =X5"+e.

We wish to select a good model, namely a good set of predictors to explain and predict
the response variable. We assume that p < n with n and p large. However, we are not
sure that all predictors X; are necessary to predict Y. We wish to select only relevant
predictors. We assume that the first column of X is the vector with only 1 in each row
(i.e. X7 is the intercept).

Remark 2.4. Sometimes, predictors are called variables.
In the sequel, we describe several methods to select a set of variables, called model.

Definition 2.5. A model m will denote in the sequel a subset of the set {1,...,p}. With
a slight abuse of notations, a model m may also denote the variables X; for j € m.

It is often easy to choose between two given models, but the general question of
choosing a model is more intricate because, most of the time there is no natural order
between variables. Furthermore, when p is large the number of models is huge (27 in full
generality).

Notation: For any model m, we denote P,, the projection matrix on span(X;, j € m).

We also denote
RSS(m) = [|Y — P,.Y||?

the residual sum of squares associated with the model m.
Observe that if X, is the matrix with the columns (X;);em, then
Py =X (XEX,) P X

If X is one to one, X,, is also one to one. We now describe main methodologies to choose
a model. In the sequel, all models will contain the first column of X (ie the intercept),
which represents the mean response value when all predictors are set to 0.

2.4.1 Tests between models
We assume that € ~ N(0,0%1,). Let mg a model, which contains the predictor I, with
I=(1,...,1) e R

Let my such that mq C m; and card(m,) = card(mg) + 1. We denote k = card(my).
Therefore, card(m;) = k + 1. We use the Fisher test to choose between mg and m;. We
can use

X (n—Fk—1)
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or

~ RSS(mo) — RSS(ml)
F= -
g

with 62, which is independent of the numerator. Observe that

1Y = PugY[* = [Py Y = P Y [? + [[Y = P, Y%,

)

which is equivalent to
RSS(mg) = || Pn,Y — P, Y ||> + RSS(my).
Using Corollary 2.1, we have:
Corollary 2.2. Since e ~ N(0,0%1,,), statistics F and F allow to test
Hy : mg = true model wvs Hi:my = true model.
o If FF'> fin_k-11-a then my is chosen with respect to mg at risk cv.

o IfF > fin—pi—a then my is chosen with respect to mo at risk .

It’s hard to choose between F and F. Mose of the time, we use F. Note that
assumption mgy C m; is crucial.

2.4.2 R squared (R?)
We recall that the R? (the R squared), or the coefficient of determination, is defined by

) 7 1 N
oY YIRSy by oy vl Y.
Definition 2.6. For any model m, we define
P,Y — YT||? Y - P,Y|?
Ry = WP VU2 Y = PYE | RSSm)
v —vIP? v - VI RSS,

with B
RSS, = ||Y — Y]IHQ.

We observe that, if mg C myq,

|Pm0Y B Pm1YH2 >

RSS, 0

R(m) — R (mg) = |

and
RZ(ml) Z R2(m0).

Most of the time, we don’t use the R? as criterion since it will always increase with the
size of the model. However, when the R? does not increase any longer, it can be useful.
It can be used for two different models with the same number of variables.
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2.4.3 The adjusted R?
To take into account the number of variables, we use the adjusted R? defined by

RSS(m) (n—1)

a ::]-_ )
Ra(m) (n—|m]) * RSS,

where we have denoted |m/| the cardinal of m. The selected model is the model which
maximizes m — R,(m).

2.4.4 Mallows’ C),

In this paragraph, we denote for any model m, Y,, = P,Y. We're going to use Y,, to
estimate X 3* for some model m which has to be selected. For this purpose, we use the
Mallows’ C), criterion.

Remark 2.5. In Section 3.1, we provide more arqguments for the use of Ym, i particular
in the Gaussian setting.

Definition 2.7. For any model m, the Mallows’ C,, associated with m is defined by

RSS(m
Cylom) = X o,

where |m| still denotes the cardinal of m.
The selected model is the model which minimizes m —— C,(m). We have:

Theorem 2.3. An unbiased estimate of the risk of Yin for estimating X B* is given by
Cyp(m) x 62. Indeed, we have:

E[Cy(m) x &°] = E[||Y — X5|%).

Proof. First observe that
E[|| Prel’] = o*|m].

Then,

62Cy(m) = RSS(m) + (2|m| — n)s?
= [|Y = Youll* + (2lm]| — n)6.

And on the one hand, we have

E[Cy(m) x 6%] = E[[|(In — Pn)(XB" + &)[I*] + (2lm| — n)E[57]
(In = Pu) XB*|* + 0*(n — |m]) + 0*(2|m| — n)

1(In =
1(Zn = Po) XB||* + [mlo™.
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and on the other hand,

E

E[[|Yo — X577

N PnY — X 5*||°]

E(|| Pue + (P — L) X 5"
(I = P) X B°||” + E[|| Prue ]
(I, — Pp)XB*||> + |m|o®

]

The previous result shows that when m is fixed, C,(m) x 6% is an unbiased estimate
of the mean squared error of Y,,. So, if we wish to minimize

m —s E[||Y;, — X5%|)7,

then it is natural to minimize

m — Cp(m) x 62,

which is equivalent to minimize
m +— Cp(m).

This justifies the introduction of the Mallows’ C, criterion. When we studied the classical
R?, we observed that when we add variables the RSS decreases. Therefore, adding the
term 2|m|6? is an alternative to the adjusted R? to face with this problem.

Remark 2.6. The proof shows that for any m,
ELRSS(m)] = (n — [m])o? + (I — Pu) X812
So, if the true model is included into mqy, we have
Xp* = P, X"

and

RSS(myg) =~ E[RSS(my)] = (n — |mo|)o? = (n — |mg|)6*.

And in this case,

Cp(mo) =~ |m0|

So, if we add useless variables to mg, Cy(mg) will increase. Furthermore, if we have
forgotten important variables

RSS(myg) ~ E[RSS(myg)] = (n — |mo|)o? + C =~ (n — |mg|)6* + C

with C > 0 and
Cp(mo) > |mgl.

So, we are naturally interested in models mq such that C,(mg) < |my|.
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2.4.5 AIC and BIC criteria
In the previous paragraph, we have only assumed that

rank(X) =p, Elg]=0, var(e)=0"1,.

In addition, we assume now that ¢ ~ N(0,021,). Therefore, we can compute the likeli-
hood. The log-likelihood is equal to

n n 1
L(8,0%) = =% log(0?) - 5 log(2m) — 5 5|V — X3

Given a model m, the estimate 5™ maximizing L(83, 02) such that BAJ(m) =0if j ¢ mis
such that |[Y — X 3| is minimum. Therefore,

XB™ =Py

and )
(m) o2y — _" 2y _ I .
L™, 0%) 5 log(c*) 5 log(2) 552 RSS(m).

To maximize 02 — L(B™,¢?), we derive the last expression and o = LRSS(m) is the
maximizer. Then, the maximum of L given a model m is

Lm) = e L5™.0%) =~ hog (P ) - hogem) - 5.

o2€RY 2

Therefore, maximizing the likelihood is equivalent to minimizing the RSS. But minimizing
m +—— RSS(m) is not a good idea. So, we add a penalty and we minimize

m — —L(m) + penalty(m) = glog (RSS(m)) + penalty(m) 4+ Const.
n

__ log(n)

For AIC, we take penalty(m) = |m|. For BIC, we take penalty(m) = m).

Finally, the AIC procedure consists in minimizing
m— glog(RSS(m)) + |m|.
The BIC procedure consists in minimizing
m +— nlog(RSS(m)) + log(n)|m|.

Note that if n > 7, then log(n) > 2. Therefore, models selected by BIC are smaller than
for AIC.
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2.4.6 Comparisons between criteria

We compare criteria in the case mg C my with |my| = |mg| + 1. We study the case where

myg is chosen instead of m;.

1. With the F-statistics (F is less used), we approximate Jin—jmo|-1,1—a by 4, which is
valid if & = 0.05 and n — |mg| — 1 > 16. Therefore, my is chosen if

RSS(mo) — RSS(ml)

X (n—|mg| —1) < 4.

2. With the R%, my is never chosen.

3. With the adjusted R?,
R2mo) > Ram) =
<~

4. With the Mallows’ C),
Cp(mp) < Cp(my) =
<~

—

RSS(my) RSS(m;)

n—|mg| — n—|mg| —1

RSS(mg) — RSS(m;)
RSS(m;)

<

x (n — |mo| — 1) < 1.

+2

o o

52
RSS(mgy) — RSS(my)

— —-1)<2
RSS(ml) X (n |m0| ) =~ 4

if we can replace 62 with RSS(my)/(n — |my]).

5. With AIC and BIC, then, setting f(n) = 2/n for AIC f(n) = log(n)/n for BIC, m,

will be selected

<= log(RSS(myg)) — log(RSS(m,)) < f(n)

RSS(mo) — RSS(ml)

Asymptotically, it gives for AIC

X (n = mo| = 1) < (exp(f(n)) = 1) x (n = |mo| = 1)

and for BIC

X (n—|mo| = 1) <

S

X (n—|mgl —1) < = x (n—|mg| — 1)

logn

X (n— |mgo| —1).
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So, roughly speaking, each criterion is equivalent to

X(n_’m0|_1)SQ7

with
1. g = 4 for the Fisher test
2. ¢ = —oo for the R?
3. ¢ = 1 for the adjusted R?
4. g = 2 for the Mallows’ C),

5. ¢=2x (n—|mg| —1) for AIC

n

6. ¢ =81 x (n — |mg| — 1) for BIC

n

Then, BIC is the most favorable for mg and the R? is the most favorable for m;.

2.5 Step by step procedures

Minimizing or maximizing a criterion may be a difficult task when the number of variables
is large. Indeed, if we have p variables, we have 2P~! different models (if each model
contains the intercept). When the exhaustive research is not possible (either because we
wish to use the Fisher test or because p is too large), we can use a step by step procedure
combined with one of the 6 previous procedures. The drawback is that we don’t test all
possible combinations. So, we are not sure to obtain a global extremum. We can use one
of the following methods.

1. Forward selection: At each step, a variable is added (the variable which has the
strongest impact (if we use a test, it corresponds to the smallest p-value)).

2. Backward selection: At each step, a variable is removed (the variable which has the
strongest impact (if we use a test, it corresponds to the largest p-value)).

3. Stepwise selection: Similar to forward selection, but at each step, we can question
each variable of the model according to the backward selection.

The intercept is always one of the variables. For each of these algorithms, we stop at a
p-value previously given or when the impact is not significative.
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1 |Daihatsu Cuocre

2 |Suzuki Swift 1.0 GLS 12490 39
3 |Fiat Panda Mambo L 10450 899 29
4 [VW Polo 1.4 60 17140 1390 44
5 |Opel Corsa 1.2i Eco 14825 1195 33
6 |Subaru Vivic 4WD 13730 658 32
7 |Toyota Corolla 18490 1331 55
8 [Ferrari 456 GT 285000 5474 325
9 |Mercedes S 600 183900 5987 300
10 [Maserati Ghibli GT 92500 2789 209
11 |Opel Astra 1.6( 16V 25000 1597 74
12 | Peugeot 306 XS 108 22350 1761 74
13 [Renault Safrane 2.2. V 36600 2165 101
14 [Seat Ibiza 2.0 GTI 22500 1883 85
15 [VW Golt 2.0 GTI 31580 1884 85
16 | Citroen ZX Volcane 28750 1898 89
17 [Fiat Tempra 1.6 Liberty 22600 1580 65
18 | Fort Escort 1.4i PT 20300 1330 54
18 [Honda Civic Joker 1.4 18900 1396 66
20 |Volvo B50 2.5 39800 2435 106
21 |Ford Fiesta 1.2 Zetec 18740 1242 55
22 [Hyundai Sonata 3000 38990 2972 107
23|Lanca K3.0LS 50800 2858 150
24 | Mazda Hachtback V 36200 2497 122
25 [Mitsubishi Galant 31990 1898 66
26 | Opel Omega 2.5 VB 47700 2496 125
27 |Peugeot B06 2.0 36950 1898 89
28 |Nissan Primera 2.0 26950 1897 92
28 [Seat Alnambra 2.0 36400 1884 85
30 [Toyota Previa salon 50900 2438 97
31 |Volvo 860 Kombi aut 48300 2473 125

Figure 2.1: 31 types of cars with their price (prix), their engine capacity (cylindrée), their
power (puissance), their weight (poids) and their consumption (consommation)

2.6 Illustrative example with R

We use the data file provided in Table 2.1.

2.6.1 Exhaustive selection of models

In this paragraph, we consider the problem of the model choice by using one of the
following methodologies: The R?, the adjusted R?, the Mallows’ C}, and the BIC. We use
the following lines.

# Model choice (exhaustive method)

library(leaps)

choix_modele=regsubsets(Consommation”Prix+Cylindree+Puissance+Poids, int=T,
nbest=1,nvmax=4,method="exhaustive",data=conso_voit)

resume=summary (choix_modele)



Vincent Rivoirard 33

print (resume)

quartz()

par (mfrow=c(2,2))
plot(choix_modele,scale="r2")
plot(choix_modele,scale="adjr2")
plot(choix_modele,scale="Cp")
plot(choix_modele,scale="bic")
par (mfrow=c(1,1))

We specify that nbest gives the number of models selected by dimension, nvmax the
maximum number of the selected variables (without intercept). Imposing int=T allows
to ensure that the intercept will be selected. We obtain following outputs.

Subset selection object
Call: regsubsets.formula(Consommation ~ Prix + Cylindree + Puissance +
Poids, int = T, nbest = 1, nvmax = 4, method = "exhaustive",
data = conso_voit)
4 Variables (and intercept)
Forced in Forced out

Prix FALSE FALSE
Cylindree FALSE FALSE
Puissance FALSE FALSE
Poids FALSE FALSE

1 subsets of each size up to 4
Selection Algorithm: exhaustive
Prix Cylindree Puissance Poids

G I e "
2 (1) o ! "
3 (1) "mxnoomow ! e
4 (1) "kmoomxn ! e

We also obtain Figure 2.2 : All the methodologies, except R?, select a model with 3
variables (plus the intercept): Prix, Puissance and Poids. Note that except for Mallows’
C), the variable Prix is not strictly excluded from the best model.

2.6.2 Step by step approaches

We now illustrate the step by step approaches with the AIC criterion. We start with
stepwise selection.

# Model selection (step by step)
library (MASS)
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adjr2

Prix —

Poids
Prix —
Poids

(Intercept) —
Cylindree
Puissance —
(Intercept) —
Cylindree
Puissance —

-81

-80

bic

-79

-67

Prix —
Prix —
Poids

(Intercept) —
Cylindree
Puissance —
Poids
(Intercept) —
Cylindree
Puissance —

Figure 2.2:  Models choice with R?, adjusted R? Mallows’ C, and BIC criterion for

Example 2.1.

step(lm(Consommation™1,data=conso_voit), Consommation~Prix+Cylindree+Puissance+Poids,

data=conso_voit, direction="both")
We obtain the following output.

Start: AIC=79.87
Consommation ~ 1

Df Sum of Sq RSS AIC
+ Puissance 1 346.79 35.35 8.071
+ Cylindree 1 338.37 43.77 14.692
+ Prix 1 303.45 78.69 32.878
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+ Poids 1 285.17 96.96 39.351
<none> 382.14 79.866

Step: AIC=8.07
Consommation ~ Puissance

Df Sum of Sq  RSS  AIC

+ Poids 1 14.27 21.08 -5.961
+ Cylindree 1 3.01 32.34 7.310
<none> 35.35 8.071
+ Prix 1 0.00 35.35 10.070

- Puissance 1 346.79 382.14 79.866

Step: AIC=-5.96
Consommation ~ Puissance + Poids

Df Sum of Sq RSS AIC

+ Prix 1 3.205 17.871 -9.074
<none> 21.077 -5.961
+ Cylindree 1 0.058 21.019 -4.046
- Poids 1 14.273 35.350 8.071

— Puissance 1 75.888 96.964 39.351

Step: AIC=-9.07
Consommation ~ Puissance + Poids + Prix

Df Sum of Sq RSS AIC
<none> 17.871 -9.0744
+ Cylindree 1 0.5065 17.365 -7.9657
- Prix 1 3.2053 21.077 -5.9605
- Puissance 1 3.9434 21.815 -4.8934
- Poids 1 17.4783 35.350 10.0704

Call:
Im(formula = Consommation ~ Puissance + Poids + Prix, data = conso_voit)

Coefficients:

(Intercept) Puissance Poids Prix
2.499e+00 2.013e-02 3.735e-03 1.852e-05

The alternative based on forward selection is the following.
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step(lm(Consommation™1,data=conso_voit), Consommation”Prix+Cylindree+Puissance+Poids,
data=conso_voit, direction="forward")

The output is then:

Start: AIC=79.87
Consommation ~ 1

Df Sum of Sq RSS AIC

+ Puissance 1 346.79 35.35 8.071
+ Cylindree 1 338.37 43.77 14.692
+ Prix 1 303.45 78.69 32.878
+ Poids 1 285.17 96.96 39.351
<none> 382.14 79.866

Step: AIC=8.07
Consommation ~ Puissance

Df Sum of Sq RSS AIC
+ Poids 1 14.2733 21.077 -5.9605
+ Cylindree 1 3.0114 32.339 7.3104
<none> 35.350 8.0706
+ Prix 1 0.0002 35.350 10.0704

Step: AIC=-5.96
Consommation ~ Puissance + Poids

Df Sum of Sq RSS AIC
+ Prix 1 3.2053 17.871 -9.0744
<none> 21.077 -5.9605

+ Cylindree 1 0.0580 21.019 -4.0460

Step: AIC=-9.07
Consommation ~ Puissance + Poids + Prix

Df Sum of Sq RSS AIC
<none> 17.871 -9.0744
+ Cylindree 1 0.50652 17.365 -7.9657

Call:
Ilm(formula = Consommation ~ Puissance + Poids + Prix, data = conso_voit)
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Coefficients:
(Intercept) Puissance Poids Prix
2.499e+00 2.013e-02 3.735e-03 1.852e-05

The alternative based on backward selection is the following.

step(reg,direction=’backward’)

The output is then:

Start: AIC=-7.97
Consommation ~ Prix + Cylindree + Puissance + Poids

Df Sum of Sq RSS AIC
- Cylindree 1 0.5065 17.871 -9.0744
<none> 17.365 -7.9657
- Prix 1 3.6537 21.019 -4.0460
- Puissance 1 4.1792 21.544 -3.2805
- Poids 1 14.9706 32.335 9.3075

Step: AIC=-9.07
Consommation ~ Prix + Puissance + Poids

Df Sum of Sq RSS AIC
<none> 17.871 -9.0744
- Prix 1 3.2053 21.077 -5.9605
- Puissance 1 3.9434 21.815 -4.8934
- Poids 1 17.4783 35.350 10.0704

Call:
Im(formula = Consommation ~ Prix + Puissance + Poids, data = conso_voit)

Coefficients:
(Intercept) Prix Puissance Poids
2.499e+00 1.852e-05 2.013e-02 3.735e-03

For backward selection we can also use the function drop1. All the step by step approaches
give the same results, which is coherent with the exhaustive approach. We conclude that
3 variables have to be considered to explain the variable Consommation: Prix, Puissance
and Poids
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Chapter 3

Model selection

3.1 Models and oracle

We still consider the problem of linear regression
Y =X3"+¢,

with Y = (V,...,Y,)T, X = [X1,...,X,]. We denote f* = X* and we assume that
e ~ N(0,021,), with 0% assumed to be known. We also assume that there exists a (small)
subset m* of {1,2,...,p} such that V j ¢ m*, 87 = 0. If m* were known, then we

would estimate X 3* by fm where fm = Ps:Y, and Ps+ : R" — R" is the orthogonal
projection on S* = span(X;, j € m*). Indeed, the log-likelihood with respect to an
estimate candidate f is given by

; n 2 1 £li2
fr— 5 log(2m0”) — o |IY = fII%,
where || - || denotes the fo-norm. But the space S* (or the subset m*) is unknown, so fi,-

cannot be used. So, given M a collection of models m (m C {1,...,p}), we wish to

1. Consider a collection (.S,,)mem of linear subspaces of R", also denoted (with a slight
abuse of notations) models.

2. Associate to each subspace S, the constrained maximum likelihood estimates fm =

Ps Y.
3. Finally select the best estimate among the collection ( fm)me M-

To give a meaning to the terminology "best estimate”, we need a criterion to quantify the
quality of an estimator. In the sequel, we will measure the quality of an estimate f of f*
by its fo-risk, defined as follows.

R(f) :=E[If - f*I)-
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We also set X R
rm = R(fm) = Elll fm — £*]1%).

Now, the best estimate in terms of the fy-risk is fmo with

mg = arg min 7
meM mn

and fmo is called the oracle estimate.
Remark 3.1. f* may not belong to Sp,,. It may even not belong to U,earSm.

Remark 3.2. Fven if XpB* € S, with m = {1,...,p}, this last model may be far from
the oracle model which is our benchmark for comparison.

We cannot use fmo since it depends on the unknown true vector 8* (via the expecta-
tion). A natural idea to circumvent this issue is to replace r,,, by some estimate 7,,,. Then
we estimate f* by f; with

= arg min 7.

The goal of this chapter is to provide some suitable 7, for which we can guarantee that
the selected estimate f,; performs almost as well as the oracle f,,,.

Collections of models. For this purpose, we denote
S, :=span(Xj, j € m).

- We set M =P({1,...,p}) where P({1,...,p}) denotes the set of all the subsets of
{1,...,p}. We have card(M) = 2P and

Spi={XB: B R with B; =0if j ¢ m}.

- Weset M ={{1,...,J}, 1 < J <p}. In this case, card(M) = p.

3.2 Model selection procedures

We first compute 7, = R( fm) We denote d,,, the dimension of S,,:
dy, = dim(S,,).
Remark 3.3. If X is one-to-one, by using the rank-nullity theorem, d,, = |m|.

Lemma 3.1. We have

Proof. The proof of the lemma is similar to the proof of Theorem 2.3. O
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The risk involves two terms. The first one decreases when m increases whereas the
second one increases. The first term is an approximation term. The second one is a
variance term. The oracle model S,,, is the model which achieves the best trade-off
between these two terms. The Mallows’ procedure studied in Section 2.4.4 is based on
unbiased estimate of the risk and if we set

P = ||Y = foul? + 02(2d,, — 1)

then 7, is an unbiased estimate of the risk (see Theorem 2.3). The Mallows’ procedure
can produce very poor results since it does not take into account the variability of 7,
around 7,,. This is a problem when the number of models per dimension is large. Indeed,
we have many estimators 7, and some of them deviate seriously from their expected value
Tm. In particular, some 7, are very small, much smaller than #,,,. This leads to select
a model S; much bigger than S,,, (overfitting). See Problem 1 of Exam 2016-2017 for
more details.

Penalized estimator of the risk: To avoid the previous problem, we replace the term 202d,,,
with something larger. We focus on a selection criterion of the form

m = arg mln {HY fml? + o?pen(m )} (3.1)

where pen : M — R, is called the penalty function. To define pen(m), we associate to
the collection of models (S,,)merm @ probability distribution IT = (I,,);ners. Then, we
set:

Definition 3.1. Let
pen(m <\/ ++/2log(1/11,, )

with K > 1. Then, we estimate f* with f = fs such that m is defined in (3.1).
We have the following risk bound on R(f).

Theorem 3.1. There exists a constant Cx > 1 depending only on K > 1 such that

E(If = /1] < Cic min {E || = FI12] + 0*log(IT,.1) + 0%}
<C’Km1n{||] — Ps, ) f*|I? 4+ 0°dy + 0? log(IL}) 4+ 07} .

Remark 3.4. Remember that our benchmark is fmo whose risk is

R(fung) = Tmg = (I = P, ) F|* + 0%,
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Observe that if for some constant L(p) > 0 (that may depend on p but not on n),
log(ITY) < L(p)d,,, then f achieves the same risk as fn, up to a constant depending
on L(p). Indeed, in this case,

log(I;') < L(p)dy, < 0 2L(p)Tm,

and for C' a constant
B[ = 717] < Coe (14 L(p)) min r+ 0%)
and min,,ep T = Ty -

Remark 3.5. The upper bound of Theorem 3.1 can be proved to be optimal. We can also
prove that we cannot take K < 1.

Choice of IT = (II,,)merr: II has to be a probability measure and in view of Theorem 3.1,
The II,,’s have to be as small as possible. In the sequel, for the sake of simplicity, X is
assumed to be one-to-one.

1. M=P({L,...,p}): We take, with |m| = d,,,

l1—e®

-1

—1

Hm:C’x(p) xe M O = ¢ .
ml

We have

V4 -1
=Cy, > (yf;\) x et
d=1 meM |m|=d
= C'zp: e =1,

d=1

Lemma 3.2. For 1 < d < p, we have the upper bound

g () < (1108 (4)).
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Proof. We prove the result by induction. The result of the lemma is obvious for
d=1. For d > 2, we use

(@)=
Sexp(<d—1>(1+10g(dfl>))Xg
s<d6_pl>d_l><§ )
7 () e

We have used for z > 0, (1+z71)" <e O

So, we have
log(H;f) = |m| + log (‘T]:LO +log(C™1)

< 2|m| + |m|log <

|m|) +log(C1)

< Im|log(p),

and in this case, we can take L(p), introduced in Remark 3.4, proportional to log(p).
Therefore, applying Theorem 3.1,

R(f) Slogp x R(fu,)-

it can be proved that term log p is unavoidable.

2. M={{1,...,J}, 1 <J<p}: We take
» -1
I, = |m| 2 x (Z d‘2> .
d=1

log(IT1) < 21og(|m/|) + const

So, we have

and applying Theorem 3.1, X X
R(f) < R(fmo)-
meaning that the Mallows heuristics works. Indeed, in this case, L(p), the constant

introduced in Remark 3.4, does not depend on p. An alternative consists in taking
I1,,, proportional to e~™!.
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Proof of Theorem 3.1: By definition, for any m € M,

1Y = fall® + o®pen(in) < |IY — full® + o®pen(m).
Since Y = f* 4 ¢, we obtain
" = 1P < N7 = full® + 206, f = f7) + 20 f* = fun) + 0*(pen(m) — pen(ii)).
We have

E (e, f* = fm)| =Elfe, f* = Ps, (f* +))]
=0-E||Ps,el?] = —0%dn <0

and
o’pen(m) < 2Ko* (d,,, + 21log(I;)1))
< 2Kr,, +4Ko?log(I1;})
< 2KE[|f* — full?) + 4K 0% log(IT;).
Finally,

E[llf* = fIP] < (1 + 2K)E[|f" — ful®] + 4K 0 log(IL,")
+E (2@, f — f*) — o?pen(m)| .

Lemma 3.3. There exists a random variable Z such that
2e, f = f7) = o”pen(in) < a”M||f = f*I* + Z,
with E[Z] < co? for some constants a > 1 and ¢ > 0 depending on K.

Using the lemma, we have

~

E|2(e. f - ) = o®pen(m)| < o 'E[|lf - £°|") + E[Z]
< @ 'BI|f =[]+ co®.
We obtain
(1= a ElS* = FIF) < (14 2K)EIS* = full®) + 4K log(IL,) + o

The theorem is proved.
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3.3 Appendix: Proof of Lemma 3.3

We have, with Sy, = span(Sy;,, f*) and with Pg_ the projection on Sy,

2<€7f_f*> :2<P§m€7f_f*>
< al|Pg,el* +a | f — f*I°
< ac* (N> +Uq) +a”' || f = £71%,

where N2 = || Pspan(s+2[|*/o? ~ x*(1) and for any m € M, we define U,, and S,, such
that

Pz ¢|> - _
—H 5;”2 | , Sy @ span(f*) = Sp.

U,, =
We have U, ~ x*(d,) if f* ¢ S,, and U, ~ x*(d,, — 1) if f* € S,,. So, we take
Z = ac®(N? + Uy,) — o’pen(mh).
Note that 1 depends on the data so Uy, is not a y?-variable. We set

_K—i—1>1
= )

To prove the lemma, we just have to prove that E[aUy; — pen(m)] is bounded. Then,
K+1
E[aUy, — pen(m)] < il E [max (Um - pen )]
2 meM

K+1 l( 2
< U,, — pen(m)) }
2 meM K + 1 +

Kl > [(Um (Vi + m))}

The following lemma is used, the proof of which is accepted.

Lemma 3.4. Assume that F': R? — R is 1-Lipschitz and Z has a Gaussian N (0, 0%1,)-
distribution. Then, there ezists a variable ( ~ exp(1) such that

F(2) <E[F(2)] + /2.

Now, observe that ¢ — || Pg ¢| is 1-Lipschitz. Therefore, there exists a variable
Cm ~ exp(1) such that

1Ps,.ell < E[llPs,,elll + 0/ 2Cm.
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46
It implies
= IPsacl
o
2
< (BlIPs, o7l + v/2Gn)
2
< ((EllIPs,07"el?)" + V2Gn)
P, sm ell? 2 1Ps,,, el 6|I2 2
Since —%— ~ x*(d,,) or ~ x*(dm — 1), we have
2
Un < (Vb + V26

< <\/_+ V21og(IL1) + v/2(Grn — log (L)1)« )2
< (14 ) (Vi + v210g{,0) + (14 07") x 2(Gy — log(IT, ).

with @ = £-1 Then 1+ a = 25 and 2(1 + o ') = £, Finally,
]E m 2]. —]E m_l H_l — Hm
(0 7y (Vi + VIoRTED)) | < Bl s )] = 5

and
. K+1 4K 2K(K +1)
JRp— < P — =
E[aUys, — pen(m)] < 5 P 1Hm 71




Chapter 4

From Bridge estimates to Lasso
estimates

The methodological material of this chapter can be found on
https://www.ceremade.dauphine.fr/~rivoirar/Cours-HD2023.pdf

4.1 Characterization of the Lasso estimate

We still consider the regression model
Y =X5"+¢,
where
- X is a known n X p-matrix
- € € R” such that its components ¢; are centered and i.i.d.
- * € R? is unknown.

The Lasso estimate of $*, proposed by Tibshirani (1996), is the bridge estimate with
v=1: A
B = argmin {[[Y — XBII* + All5] }

This estimate has no closed form in full generality but we can characterize it by using the
following result.

Theorem 4.1 (Characterization of the Lasso). A vector 3 € RP is a global minimizer of
the criterion C) ;1 defined for f € RP, by

Cra(B) = [[Y = XBII* + A Bllx

iof and only sz satisfies following conditions: For any j € {1,...,p},
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o if B; # 0, 2X] (Y — XJ) = Asign(3;)
o if B; =0, 2X](Y — XB)| < A

Furthermore, [ is the unique minimizer if Xg is one to one with

£ = {j L 2XT(Y — XB)| = )\}

Proof. Let f : RP — R a convex function. We define the subdifferential of f at x € R?
by
Of(x):={weR: fly)>f(z)+w"(y—=z), VyeR}.

A vector w € Jf(z) is called a subgradient of f in z. We recall the following classical
facts:

1. If f is differentiable at « € RP, 0f(z) = {V f(z)}

2. If f and g are two convex functions on RP with f differentiable on R? then

If+g)(x) =Vf(z)+0dg(z), zeRP

3. For a convex function f, /3 is a minimizer of f if and only if 0 € Of (B ).

The next lemma determines the subdifferential of the ¢;-norm.

Lemma 4.1. We define f : R? +— R by f(2) = |lz|ly = X}, 2] for any x € RP. In
this case, we have, for x € RP:

Of (@) ={weR: ||ul|o<1, wa=|z|}.
Remark 4.1. Let x € RP. If w is such |[w]|e < 1 then wTz = ||z||y if and only if for
JjeA{l,...,p} such that x; # 0, we have w; = sign(x;).
Proof of the lemma. Let w € f(x). By taking successively y = 0 and y = 2x, we obtain
0> [zl +w"(0—2), 2lzli > 2] +w" (22 — ).

It yields w'z = ||z]|;. We take a vector s € R? such that ||s|; <1 and ||w|le = s7w. We
have:
ol +1 = [zl + sl = llz+ sl > llzfh + 87w = 2]l + ]|

We obtain ||w|s < 1.
Conversely, we take w € R? such that ||w|. < 1 and w'z = ||z||;. For any y € R?, we
have:

]l + 0" (y — 2) = w'y < Iyl

and w € 0f(z). O
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We now prove the theorem. The criterion C ; is convex. Therefore, a vector 8 € R? is

A

a global minimizer of the criterion Cy; if and only if 0 € 9C) (). Using previous facts,
it means that there exists w € R? such that ||w| . < 1 and w”3 = ||3]|; such that

0=—2X"(Y = XB) 4+ w < 2XT(Y — Xf) = \w.
This gives the result. O]

4.2 Theoretical properties of the Lasso estimate for
linear regression

We still consider the regression model
Y =X5"+¢,
where
- X is a known n X p-matrix
- ¢ € R™ such that its components ¢; are centered and i.i.d.
- B* € RP is unknown

and we estimate * by using the Lasso estimate
—~ _ B )
f € arg min {|[Y" = X5 + A5l } .

for A > 0. We have the following result.

Theorem 4.2. We assume that
X7 e]|oo ;= max |XTe| <
je{1
Then, R
1X5 — X512 < 2M8*1.

If we further assume that all eigenvalues of the symmetric matriz X* X are larger than a
constant Kk assumed to be positive, then, by denoting for any B € RP,

SB)={j: B #0}
and |S(B)| the cardinal of S(f3), we have

~ )\2
1B - X517 < wain {315 - x5 + s (@)

and

~ 4\
18- 51l < 21581
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Proof. Let § € RP. We have

1Y = XBI”+ MBIk < [[Y = X8|+ A8,

which is equivalent to
IXB=XBIP < X8 — X8| +25" (X5 — XB) + Ai (181 - 13:1)
pm
< X8 - X+ 2XTe)T(B - ) + AZ (181 = 13:1) .
Since | X7elo < 2,

~ A~ Ld ~
IXB— X812 < 1X8— X812+ 518 = Bl + 2 (18,1 - 13:])
j=1
and
~ A~ ~ L4 ~
IXB - X8I+ SIB - Bl < 1XB— X812+ MB- Bl +AD_ (181 - 1311).
j=1

Now, we study the right hand side. We have

NEE 6||1+AZ<IBJI—|BJ)—A > (1B -Bl+181-181) + 2 X (1Bl - 13)

JES(B) i¢8()
<\ Z min <2|6j|§2|ﬁj —Bj|>
JjES(B)
< 2\ min Z |5] Z WJ BJ
JjeS(B) jes(B

Finally,
~ . A~ . . ~
X5 = X317+ S5 = Bl < X5 = XF"° +2xmin | D 18] D 15— Byl
Jes(B) jeS(B)
By taking § = (*, we obtain the first inequality:

1X5 — X8| < 2X18|x.



Vincent Rivoirard 51

Now, we further assume that all eigenvalues of the symmetric matrix X7 X are larger
than a constant x assumed to be positive. Then, by diagonalizing the matrix X7 X, we
have

|XB8 = X8I = wl|B - BII”
Then, for any o > 0,

20 Y 1B = Bl <2A x VIS(B)] x |18 - 8]

JjeS(B)
<2x 5 20/|S(B)] x | XB — XB||
<o 'wTINS(8)| + | XB - X8|

This yields, for 0 < o < 1/2,

~ A~ ~
\|X5—X5*||2+§Hﬁ—ﬁ!h < X8 = XBP + a7 RTINS(B)] + o X B - X B

< (1420)|X8 = XB)>+a 'k 'A2S(B)]
+2a]| X5 — X 5|2

Therefore,

N A~
(1=20)|XB = XB"|° + S 118 = Bl < (1 +20)[|XB = X" + a7 NS (B)].
Now, we take o = 1/4 and

~ /\2
IXB X8 < 31X8 X5 + 2o |(8)]

which yields the second inequality 4.1. We also obtain with ov = 1/2,

A s A2
218 - 8l < 201X5 - X8+ Z-15(5)

and taking 5 = 3* gives the third inequality. m

Remark 4.2. Inequality (4.1) of Theorem 4.2 is an oracle inequality. The assumption
on eigenvalues of XT X are quite strong. These assumptions can be relazed by considering
Restricted Eigenvalues Conditions (see slides).

Remark 4.3. By taking 8 = f* of Inequality (4.1) of Theorem 4.2, we obtain, under the
assumptions of the theorem,

~ 82
X5 — X8 < =-IS(8)].
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Under assumptions on £, we can prove oracle inequalities in the same spirit as Theo-
rem 3.1.

Proposition 4.1. Assume that for any j € {1,...,p}, |X;|| = 1 and ¢ ~ N(0,0%1,).
Then, for any 8 > 0, by taking

A =4do+\/2logp + 20,
we have \
P <||XTs||oo < Z) >1—e”.

Proof. We have
P(]XTe| S < ZP:IP’ |XT5|>5
Y 7 4
p
- ZIP’(|X]-T5|>J\/2logp+26>.

=1

But, for any j,
X]e~ N(0,X] 0?1, X;) ~ N(0,07).

If Z ~N(0,1), for any ¢t > 0,
P(|Z| > t) < exp(—t?/2),
where the inequality is obtained by studying the function
O(t) = 2 /+00 e~ Pdx — exp(—12/2).
Ver Ji

Therefore,

IA

P exp (—% x (2logp + QB))
< exp(—p).

This yields the result. O]

A
Pl IX"e]low > =
G

Using the result of the proposition, by taking A = cov/logp (i.e. [ proportional to
log p) for ¢ large enough, we have that inequalities of Theorem 4.2 hold with large probabil-

ity. For instance, with 5 = vlogp, taking A = 40v/2log p + 2ylogp = 40/2(1 + 7) logp,
we obtain, with probability larger than 1 —p™7,

1X5 — XB*|1* < 80y/2(1 + ) log p|| 3.
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If all eigenvalues of X7 X are larger than x

25602(1 + ) log p
K

~ 160+/2(1 1
18 - gy < SOTVELE DB g

1205~ X5 < i {315 - X6 +

S}

93
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Chapter 5

Multiple testing

We explain some possible ways to handle the impact of high-dimensionality for testing.
More precisely, we focus on the problem of performing simultaneously a large number of
tests.

5.1 Introduction

Assume that we have n measurements for the expression of a gene g in two different
conditions A and B (corresponding, for instance, to some normal cells and some cancerous
cells). We want to know if there is a difference in the expression of this gene between
these two conditions A and B. We can formulate the problem as follows. We denote:

- X4, ..., X2 measurements under condition A,

- XP. ..., XB: measurements under condition B.

We assume that the X’s are i.i.d. and that the X?’s are i.i.d. with respective mean p*
and pP. We want to test

Hy:p*=pB vs Hy:pt# 4P

The classical test statistic associated with this problem is the following. We set Z; =
XA — XB. We reject Hy when S > s, where

A A
S = H,

where
I 1 & _
Z = — ZZ AQ::— ZZ—Z2

and s is a threshold. Give o > 0, we choose s := s, such that the probability to wrongly
reject Hy is not larger than a. It is common in the scientific literature to display the

25
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p-palue of a test rather than the outcome of the test. In our case, the p-value of the test
is simply the value & such that S = s4. Since the function o — s, is decreasing, we have:
- If & > a, then s, > S and Hj is not rejected.

- If @ < a, then s, < S and Hy is rejected.

DNA microarrays and NGS technologies allow us to measure the expression level of thou-
sands of genes simultaneously. Our statistical objective is then to test simultaneously for
all genes g € {1,...,p}:

Hygy : 7 the mean expression levels of the gene g in conditions A and B are the same”
Versus
Hi4 : "the mean expression levels of the gene g in conditions A and B are different”.

Assume that we are given a test T, := Lig,>sur for any g of size a. If we consider the
p genes simultaneously, the number of hypotheses Hy, wrongly rejected (false positives)
can be high. The mean number of false positives is:

E[number of False Positives| = Z P(S, > s4) = card{g : Hy, true} x .

g: Hog true

For instance, if card{g : Hy, true} = 10000 and o = 5%, then
E[number of False Positives| = 500.

To study 500 genes may be expensive. The biologists ask for powerful tests but with as
few false positives as possible.

5.2 Statistical setting

We assume that we have m families of probability distribution {Py : 6 € ©,} with i €
{1,...,m} and we consider simultaneously the m tests

Hm:ﬁe(%m VS HliZGE@M

for i € {1,...,m}, where ©¢; and ©Oy; are 2 disjoint subsets Qf ©;. We assume that for
eachi € {1,...,m}, we have a test of the form Ligiss where S; is some observed statistic

and s; some threshold value. For 6 € ©;, we denote Ty(s) = ]P)Q(Si > s). The p-value
associated to the statistic S; for the test 7 is

Pi = sup Te(Si).
96@07;

The p-values are distributed as follows.
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Proposition 5.1. The p-values p; fulfill the distributional property

sup Py(p; <u) <wu, VYue]|0,1].
0€0g;

We say that the p-values are stochastically larger than a uniform random variable.

Proof. For any 6 € ©y; and u € [0, 1], we have

Po(ps <u) = Pg( sup Tgl(Si) < u)
0'€Oy;

< Py(Tp(S:) < w).
For u € [0, 1], we define
T, (u) ==inf{s € R: Tp(s) <u}.
Since T} is decreasing, we have:
(Ty ' (w), +o0) C {s€R:  Ty(s) <u} C [T, (u), +00).
- If Ty(T; ' (u)) < u, we have
[seR: Ty(s) <u} = [Ty (w), +00)

and

~

Po(Ty(Si) < u) = Py(S; > Ty (w) = T(T;  (w) < u.
- If Ty(T,; * (u)) > u, we have

(Ty H(u), +00) = {s € R:  Ty(s) <u}
and therefore,
Py(Ty(S;) < u) = Py(S: > T, H(u)
=1 —Pe(S; < T, ().
Since & — Py(S; < ) is right-continuous,
Py(Tp(S;) <u)=1-— g{%m(é@. < Tyl (u) +¢)
= lim Po(S; > Ty (u) + )
< ll\i% Ty(T,  (u) + €)
< u.

In both cases, Pp(p; < u) < u. O
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5.3 Multiple testing setting

A multiple testing procedure is a procedure that takes as imput the vector of p-values
(P1, .., Dm) corresponding to the m tests and returns a set of indices

RcI={1,...,m}

which gives the set of the null hypotheses { Hy;, i € ]%} that are rejected. Writing I for
the set

Iy:={iel: Hy is true},

we call:

- R : indices of positives

- RNy : indices of false positives
-R \ Iy : indices of true positives.
We denote:

FP=card(RN 1), TP =-card(R\ I).

Ideally, we would like a procedure that selects R in such a way that
- F'P is small

- TP is large.

The tradeoff between these two goals is sensitive.

Bonferroni correction: The Bonferroni correction provides a severe control of F'P. It
is designed to control P(F'P > 0). Its rejection region is defined by

. o a
Ryong = {Zi Di < E}

We set mo = card(lp). We have:

m
Q
< su IP’(}<—)
_Z p Fg\P m

icly 0€BOp;
(0% mo
< —=a— <«
£ m m
icly

The Bonferroni correction avoids false positives but produces only a few true positives in
general (when m is large).
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5.4 False Discovery Rate

The False Discovery Proportion (FDP) corresponds to

FP
FP+TP’

with the convention 0/0 = 0. The False Discovery Rate (FDR) is defined as the mean
of the False Discovery Proportion:

FDP =

FP
FDR=E |:F1P—W1{FP+TP>1}:|

Let f:1:={1,...,m} — R, and let us set

R:{zel y<o¢5(k)}, (5.1)
m
with
k= X{kEI Dk) aii@}a
and

Py <pe) < < Doy

are the p-values ranked in non-decreasing order. When {k: €l: px < O‘ngk)} = (), we
set R = ).

Theorem 5.1. Let  : I := {1,...,m} — R, be a non-decreasing function and for
a > 0, we define R as in (5.1). Then,

ozmo 6]/\m
FDR(R
Z JjG+1)

Proof. We first prove that card(R) = k. )
Itk > k then pg,y > == by definition of k. And since f3 is non-decreasing, p) > %(k)
-If k< k, then, by deﬁnltlon of k,
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and card(R) = k. Now,

card {z cly: p; < aﬁ(i‘“)}
1

FDR(R) =E p thz1)
|

For k > 1, we have
+00 1

1—2
k = J+1

So,
+o0 1 >k
PR = 38 oy 3 )|
ZEIO
- Z Z [ {ﬁi<a6<fﬂ>}1{jzl€}1{k21}1
zEI -
—+00 ;
1 . _aB(jAm)
<Y o oo (s
7j=1 j(j + 1) 1€y m
< amy i B'(j./\ m)7
m = GG +1)
where we have used Proposition 5.1 for the last inequality. O

Remark 5.1. It can be proved that the upper bound of the theorem cannot be improved.

Now, we choose 3 non-decreasing and such that

Zﬂ]/\m <

In this case FDR(R) < a. We set

2 1 1 1 psto
k) = H =14+-4+-4...40 "] .
Bk) =g Hn=ltgtg+ -+ og(m)
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We have
+o00 m—1 . +o0o
B(GiAm) B(5) B(m)
Zl iG+1)  HiG+D) j:ZJ(j+1)
Kt m <X /1 1
- ;J+1+Hmjzm(3_m)

It yields the Benjamini-Yekuteli procedure which is associated with the following rejection

region:
Redier. p< 2k
=41 P S .
b mH,,

5.5 Benjamini-Hochberg procedure

We would like to enlarge the rejection region provided by the Benjamini-Yekuteli pro-
cedure. Most of the time, it is not possible. However, in the case where we have some
independence properties, we can remove the term H,, of R.

Definition 5.1. The distribution of the p-values (p1,...,Pm) is said to fulfill the Weak
Positive Regression Dependence Property (WPRDP) if for any measurable bounded non-
decreasing function g : [0; 1™ — R and for all i € Iy, the function

uvr— Elg(p1, .., 0m) | i < 4
is non-decreasing on the interval J; :== {u € [0;1] : P(p; <wu) > 0}.
The set of distributions fulfilling the WPRDP includes the independent distributions.
Lemma 5.1. Assume that the (p;)icr, s are independent random variables and that the

(Di)ien1, s are independent from the (P;)icr, s. The distribution of (p1, ..., Pm) fulfills the
WPRDP.

Proof. We consider g a measurable non-negative bounded non-decreasing function. We
consider ¢ € Iy. Without loss of generality, we take ¢ = 1. The variable p; is independent
of (P2, ..., Pm). So, for u € [0;1] such that P(p; < u) > 0, we have:

E[g(p, ) | 1 < ] = / Elg(ps, 22, 2m) | 1 < 11
(z2,...,xm ) E[0;1]m—1

.....

x P(py € dxa, ..., Pm € dTpm).
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Since ¢ is non-decreasing, then the function ¢; : z; — g(z1,29,...,2,,) is also non-
decreasing. We denote for t € R,

g§_1)(t) =inf{x € [0;1] : ¢1(x) > t}.

Let t € Ry and x € [0;1].

~If gy(x) >t then ¢\ V(1) < =

- If 95_1)(t) < z, then gl(gg_l)(t)) < ¢g1(x) and if g; is continuous at gg_l)(t), then by
considering a decreasing sequence (u,), belonging to {x € [0;1] : ¢;(x) > t} and going to
gifl)(t), we have ¢g; (g%fl)(t)) > t. Therefore gy (z) > t.

We have proved that ¢,(z) >t <~ ggfl)(t) < z as soon as g; is continuous at ggfl)(t).
Since g; is non-decreasing, there exists at most a countable set of discontinuities for g;.

So there exists at most a countable set of reals numbers ¢ such that g; is not continuous

at gg_l)(t). The Lebesgue measure of this set of points, denoted N, is null. Now, using

that ¢, is non-negative, we can write
Elg(pr. 2. .. xm) [ D1 < ul =E[gi(p1) | p1 < 4]
+o0
— [ Bt =t 51 < wy
0
| Bz ™0 < e
Ry \W

To conclude, we simply notice that

— P(pr > gt V(1) | 1 < u) = 0,1~
u— PG > ¢7(0) | 1 < ) wa<’ PGir < v)

P@1<g§”@»>

is non-decreasing for all ¢t € R,. O

Under the Weak Positive Regression Dependence Property, we can enlarge the rejection
region R and we obtain the Benjamini-Hochberg procedure.

Theorem 5.2. We denote
k
S:Z{k’E]Z ﬁ(k)ga—}
m

When the distribution of the p-values fulfills the WPRDP, the Benjamini-Hochberg proce-
dure defined by R =0 if

and

with k := max S has a FDR bounded by a.
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Proof. When R =0, k = 0. We now assume that R 7 (). Using the same arguments as
in the proof of Theorem 5.1, we prove that k = card(R). Then,

FDR Z]I{ <ak: ~ {k>1}]
1€l
R ak
;ZZEP(k < o)
i€lp k=1
-x > r(i e (n=).
k m m
iclo k=k}
where k] = 1nf{k€N P(ﬁ %k)>0} Then,
FDR(}?)_ZZ%P(I%_I@ b %k)%k
i€ly k=k;
<32i Pli<i|p<®)_p(h<h—t|p<®
— — — m — [ — m .

The function
9Brs - Pm) = Ly = 1{max{j€[: Py <} <k}

is non-decreasing with respect to (p1,...,Pm). So, the WPRDP ensures that

) ]

IP( <—k>§P<k§k g < Akt )>

m m
and
. ) ] ) ke
FDR(R) < & [P(kﬁm pr < At ))—P(ks@—l ﬁisc“)}
m m
i€l
amy
<—<u«
m
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A.1 Exam 2016-2017

High-dimensional statistics

Correction of the EXAM (duration 2h30)

Documents, calculators, phones and smartphones are forbidden

Problem 1: Selection bias of the Mallows criterion.

We consider the multivariate linear regression model :
Y=XB+¢

with Y = (Y1,...,Y,)T the vector of observations. The matrix X of size n x p is assumed to be
known. The rank of X is p (with p < n) and 8 € RP is the vector to be estimated. Finally, the
error vector is € = (g1,...,&,)7 and satisfies ¢ ~ N(0,021,) with ¢ > 0 unknown. We denote
(X1,...,X,) the columns of X. The classical fo-norm is denoted || - ||2. We denote for all m, a
subset of indexes of {1,...,p},

RSS(m) = [|Y — PY|[3,

where P, is the projection on span(Xj; : j € m). We shall denote P,,Y = 0 if the model m is
empty. Let m be some model, we recall that the Mallows criterion associated to m is defined
by:

~ RSS(m)

6-2

Cp(m) _n+2‘m|7

where |m| is the cardinality of m and &2 is the estimator of o2 studied in course. We suppose
that the columns of the matrix X are orthogonal and of unit norm (consequently X7 X = I,,).

1. Recall the expression of B , the ordinary least squares estimator of 3, and give its distri-
bution.
Correction : We have:
B=xTx)"1xTy.
Since
Y ~ N(XB,0%1,),

then

B~ N(B,o*(XTX)™) = N(B,0%L,)

2. We denote Px the projection matrix on the image of X.
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a) Prove that for all model m,
RSS(m) = ||Y — PxY|[3 + ||[PxY — PnY 3.
Correction : We have:
Y - PxY 1L Im(X), PxY —P,Y e€ZIm(X).
So, Y — PxY 1 PxY — P,Y and

RSS(m) = Y =PpY |3 = |Y = PxY +PxY =PnY|5 = [|Y =PxY |3+ PxY = PnY||3

b) After having given for all j € {1,...,p} the expression of Bj in function of X; et Y,
deduce that

RSS(m) = (n—p)e® + Y _ B2
Jjgm
Correction : We recall that
Y — PyY|?
2 IV = Pxv3
n—p
80

IY = PxY|3 = (n—p)*.

If we denote U the matriz whose columns are the columns of X without columns
corresponding to the indices of m,

PyxY — P,Y =UUTU)'UTY.
But, UTU = I,,_\;, and PxY — P,,Y = UU'Y and

|PxY — P,Y |3 = Wu'v)'uuly
= vluvtuutly
= vluuly
= |UTYl3
= 1(X))jem) Y5 =D B

Jgm
c¢) Conclude that we have the following expression

52Cylm) = S22 - 6%) = (52 —26%)

7=1 JjEM
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Correction : We have:

6%Cy(m) = RSS(m) —né? + 2|m|5?
= (n—p)&*+ Z 6? —n6? + 2|m|é?
jgm

p ~ A

St R S
7j=1 jeEM
P )

= > (B} -6%) - (5 —27)
7=1 JjEM

. Using the last expression above, what is the one-variable-model which minimizes the
Mallows criterion ?
Correction : The Mallows criterion selects the model m which minimizes m — Cp(m).
Using the previous question, if we force |m| =1, we’re going to choose m = {j}, with ,5’]2
as large as possible.

. Let k be a fixed non null and non random integer. According to the Mallows criterion,
what is the model with & variables which will be chosen?

Correction : Using the same arguments, the selected model m will be the model with the k
indices j corresponding to the k largest 372

. By now, we do not suppose anymore that the number of selected variables is fixed in
advance and we denote m the selected model by the Mallows criterion. Prove that j € m
if and only if 671(5;| > v/2.

Correction : Obvious

. Compute for all j € {1,...,p} the expectation of BJQ — 62,

Correction : E[B? — 6% = var(Bj) + (]E[BAJ])2 —E[62] =02 + BJQ» —o0? = 5]2
. By now, we suppose that for all j € {1,...,p}, 5; =0.

a) Determine E[|m/|] the expectation of the cardinality of /m in function of p and the
cumulative distribution function of the Student distribution with n — p degrees of
freedom.

Correction : We have: m = {j : Bf > 262},

Ellnf] = S E

M-

(L. g2525%)]

<
Il
—

I
M=

P (18;1/6 > v2).

<
Il
—
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If we suppose that for all j € {1,...,p}, B; =0 then

[)) ~ N(O> O—QIP)

and Bj/& ~ t(n —p). With T,,,, ~ t(n —p) and a, the value of the cumulative
distribution function of T, at V2, then

Ellri]] = p x P(|Tnpl > v2) = 2p(1 — anp).

b) By using the fact that on |0, +00[ the cumulative distribution function of the Student
distribution with n—p degrees of freedom is smaller than the cumulative distribution
function of the standard normal distribution, what is the limit of E[|/2|] when p tends
to +oo with n > p ?

Correction : If Z ~ N(0,1)

Ellm|] = 2p(1—anp)
> 2p(1 —P(Z <V?2))
> 2pP(Z > V/?2)
and
pETOOEHmH = +o0.

¢) What is your conclusion ?
Correction : The size of the selected model is too large in expectation.

8. We still denote m the selected model by the Mallows criterion. For any model m, we
define Cj(m) by
~ RSS(m)

- 3|m|.
52 n + 3|m|

ép(m)

If 72 minimizes m — Cy,(m), prove that || < |].
Correction : We take m such that |m| > |m|. Then,

- RSS(ii
Co(im) = %m)—n+3|m|

Il

|
S
+
N
4
+
3>

ANVAR VAN
3
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Problem 2: Support properties of the Lasso estimator
We consider the following model of nonparametric regression :
Yi:f(.%i)—l-Ei, 1=1,...,n,

where f :[0,1] — R is a function to be estimated thanks to observations (Y;)i=1, . . Points
(xi)i=1,....n are known and non random. Finally, variables (&;);=1, . are independent with
common distribution a standard normal distribution of variance o2 supposed to be known. To
estimate f, we rely on functions of a given dictionary (¢;);=1,.., (p > 2) and we denote for all

B = (Bj)j=1,..p € RP,

p
fa=>_Bjo;.

Jj=1

We define for every function g,

lgln =

If for any functions g and ¢’, we denote

n

(9.0 = > g(w)g ()

i=1
we have
lg+ 17 = lalz + 19'I5 + 2{g. 9')n-
For all j € {1,...,p}, one is given r,; > 0. The Lasso estimator of f is then fB where 3 is a

minimizer of the function crit where for all © € RP

n

P
crit(u) = %Z (Y; — fulzi)® + 22"%]"“3"-
j=1

i=1

We suppose that f can be developed on the dictionary. Hence there exists 3* such that f = fg-.
One studies the properties of the Lasso estimator to estimate S*, the support of 5* :

S ={j: B;#0}.

One denotes for all x € R,

1 ifx>0,
sign(z) = 0 ifz=0,
-1 ifx<0.
One admits that u is a minimizer of the function crit if and only if for all j € {1,...,p},

Ly Yidy(@i) — Yoy uk(®), dk)n = Tgsign(uy) if uy £ 0

| i Yidy (i) = oy unBss dkdn| < if uj = 0.
The goal is to give the conditions insuring that the support of §* actually contains the support

of (.
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1. Prove that for all u € RP,

n p p
cet(Brn)—erit(5) = Fu+2 Y rus (13 + il = 151) 42 30 wnla (Zﬁj@(mi)n).

7j=1 =1 k=1 j=1
Correction :
o " 1< 2 1< .
crit(B + u) — crit(f) = n;(ﬁ:—fﬁ}ﬂ(wi)) _nZ;(Y fa( wz) +2217’ng Juj + Bl — 185])
1= 1= J

n p

- _%Z<y fﬁxl)fuxl qu Zm (luj + B = 185])

y JLIg .
AR+ 2 g+ Bl 1B + oD D wdn(wi) S By

j=1 i=1 k=1 Jj=1
2. Deduce that

crit(B + u) — crit(8) = | fu]2 + 221%] (|5g + uj| — |BJ| - UJSJ)

7j=1

with |s;] < 1 and s; = sign(3;) if 5; # 0.

n p p
%Zcbk(xi) (ZBJ‘%(%‘) ) Z (65, Pr)n — —Zm ().
i=1 j=1 j=1
Since B s a minimizer of crit,

p
Z (&5, Dr)n —quﬁk )Y

<Tnk

We set

1 & S
Sk =T (n D oe(@)Yi = Biley, ¢k>n)
i=1 j=1
therefore sy, = sign(Bk) if By #0 and |sg| <1 if Br =0 and

erit(§ -+ u) — erit() = HfulanrQZTng(lﬁﬁuj\ Byl — wss)
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3. Then prove that
crit(B + w) — crit(8) > | ful?. (A.1)

Correction : We have:

o If B >0, B +ujl — |Bj] —ujsj = |Bj +uyl = Bj — u; > 0.

* IfBj <0, |B] +ui| = 8] —uys; = ’53 + JF/BJ +uj = 0.

° Ifﬁj =0, ’BJ + uj| — ‘BJ —ujs; = |uj| —u;s; > 0.
Then, cmt(ﬁ +u) — crit(f ) > | ful?.
If k* = card(S*), we now denote for all u = (u;);es+ € R

2
1 n
critS* (u) = — Z Y — Z ujdj(z;) | +2 Z Tl usl,

n
with f a minimizer of critS* and we finally denote

i=1 jest jest
> Yigi(w) = > finldy, dk)n

1 n
jES* i=1 kesS*

One can show that the probability of the event T is asymptotically close to 1.

4. Prove that on T, the vector i = (fij);j=1,..p such that i; = fi; if j € S* and fi; = 0 if
je{1,...,p}\ S* is also a minimizer of the function crit.
Correction : On T, we have:

1 n
=D Yid(@i) = Y Akl Okn = rngsign(iiy) if 5 € S*, fij # 0
i=1

keS*

< Tn,j ij € S*./ ﬁj =0

1
ﬁ ZK(ﬁJ(sz) — Z ﬂk<¢j7¢k>n
=1

keS*

1 n
— > Yidj(xi) = D fi(ds, Gudn
=1

keS*
Therefore, we have [i that satifies (,&j #0 <= jeS*and ij #0)

< Tng ifj ¢S

—~ ZY¢J ;) — Ak<¢jv¢k>n = rngsign(fi;) if fij # 0

p

S Vidy () =3 inlonn
=1

< T if fij =0
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5. Using (A.1), prove that on T, for all 1 < ¢ < n,

p
> (B — fu) i (i) = 0.
k=1

Correction :
0 = erit() — erit(B) = |I£,_4I1.
Therefore

I~ o
w2 igle
=1

and for any i € {1,...,n}
fo sl =0
which means that for any i € {1,...,n}

p
> (i — Br)dw(ai) = 0.
k=1

. Deduce that on T, for j ¢ S*,

%g%@(% kzi: (@j: dk)n| <7
Correction : For j ¢ S*,

! iwj () - kzsj {5y Db < 7
= fZquj ) 2_:1 [k (@5 Prin| < Tnj
_ n;m(wi) kz iiwi)m(m < g
N iiYiqﬁj(wl — Zcbj ;) i fikPr(xi)| < Tnj
= *ZY@ ;) ;qﬁj(xz)kiﬁ Pr(2i)| <7Tnj
N —ZY(;&] () ZP;B (55 Sr)n| < Tn;

73
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7. Conclude that on 7T, the support of B is included in the support of 5*:

le Bi#ojciic 5 #0).
Correction : If j ¢ S* and if Bj # 0, then

< Tnj,

1 & "

- Z Yidj(xi) = > Brldjs dr)n
=1 k=1

which is excluded. So, if j ¢ S* Bj = 0. Therefore

{iv BiAojc{i: B #0}.
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A.2 Exam 2017-2018

High-dimensional statistics

Correction of the EXAM (duration 2h30)

Documents, calculators, phones and smartphones are forbidden

Problem 1: Lasso for density estimation.

The goal of this problem is to estimate the unknown density f* of a real variable X. For
this purpose, we assume we are given an n-sample &, := (X;)1<i<, with density f*. We assume
that f* € Lo(R) and assume we are given a dictionary of known functions ® = (¢;)1<j<p such
that for any j, ||¢;]| = 1, where || - || denotes the Lo-norm. We also assume that the functions
¢; are all bounded by a finite positive constant L: Denoting | - || the sup-norm, we have

ax ||l < L

We set for any vector 5 = (3;)1<j<p € RP
p
fo =Y Bid;.
j=1

The goal is to select a vector B € RP such that f/3’ is close to f*. For this purpose, we set:

p
B::argmin 1C’(B)—i—)\Z:]BH ,
j=1

BeRP | 2

where A := 2L, /2 log (%P) with § > 0 and

) = 7l = 23 ol o).
=1

1. Show that
E[C(B)] = IIfs = £¥I1* = L7
Explain why this equality justifies the use of fﬁ to estimate f*.
Correction : The equality is obvious since E[fg(X;)] = (f3, f*). Minimizing E[C(B)] with

respect to 3 is equivalent to minimizing 8 — || fz — f*||. But E[C(B)] is unknown, which
is not the case of C(B) that should be close to its expectation.
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2. We recall the Hoeffding inequality: If we consider n independent variables Y1, ..., Yy, such
that for any 1,
a; < }/’L < bi7

where the a;’s and the b;’s are non-random, then for any t > 0,

- 2t2
’ ( 2 ”) <209 (-G
We set
= ﬂ {Z Z(¢j(Xi) —Elp;(Xy)])| < /\} .
j=1 i=1
Show that
P(Q) >1—06.

Correction : We take Y; = ¢j(X;), ai = —L, b = L and t = n\/2. Then,

P(Q)>1-2 2
- Pesp n(2L)?

2

nA\?
>1—2pexp <8L2> =1-4.

3. We fix 8 € RP.

(a) Show that
2 SN 2 — L
If5017 = =3 fa(Xa) +20 Y 18| < Ilfall* = = Y fa(Xi) +20 Y155l
i=1 j=1 i=1 j=1
Correction : We have:
1, - SN -
50(5) + )\Z 1851 < 50(@ + /\Z 1841,
j=1 j=1
which is equivalent to

2 n p . 2 n p
175012 = 5ng(X7:) +20> 16| < | fsl* - 5Zfﬁ(X7:) +20) 185
=1 7j=1 =1 7j=1
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(b) Deduce then
P 9 p R
1£5=F1 < W= FIP4 30085 =81~ > (0(Xa) — Bl (X)) +2X D (1851 - 1;1)-
j=1 i=1 j=1
Correction : We have:

1£5 = £ = 1550+ 15717 = 2F50 )

n

2 S P L
<117 = 2(f5 1 +n2f5 )= 2D 1B+ sl = = fa(Xi) + 22 ) 1B
j=1 i=1 j=1

<= £ = 2f5— o f 4 2 ngofi) -2 IUESECONETRED

=1

P p
<|fs = FIP+= Z - Bj) qug )= 2> (B — Bi) (¢, £7) + 22> (1851 — 1551)
Jj=1

]—1 7j=1
p

<= PP+ 23006 - ) Y (5(X) ~ B +2AZ 181 - 18D
j=1 =1

(c) Finally, conclude that on 2,

If5 = £I? +Ai 18— Bil <Wfs— FI2+ax S 18- Bil, (A2
J=1 JES(B)
where S(f) is the support of 53:
S(B) == {j € {1,....p} : B £0}.
Correction : We have on €):

p p
If5 — 12 < lfs — 1117 +)\Z 18; — B4 +2>\Z(\BJ| —1B51).

j=1 j=1

Therefore,

p p p
1F5 = P2+ A0 185 = Bil < Nfa— £+ 203185 — B + 23D (1851 — 1B51)

j=1 j=1 j=1
<fs— FIP+4x D 18— B,
JES(B)

since |8 — Bj| + (18;] — 18;]) = 0 if j & S(B) and |B;] — |B;| < |8; — B
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4. We now wish to bound the last term of (A.2). We introduce the symmetric matrix G

whose elements are given by
Gy i= [ 6,(@)onla)do

and assume that 7, the smallest eigenvalue of G, satisfies 7, > 0.

(a) Prove that for any 5 € RP,
p ~
15— fall> =70 > (85 — B)*
j=1
Correction : We have for any g € RP,
> p >
Ifall* = 11 Bidsll* = B°GB = rpllI3-
Jj=1

Therefore,

p
15— Fall® = mp Y (85— B)*.

(b) Deduce
> 18-l < [ (15, - U+ 15 - 1)

J€S(B)

Correction : We have:

> 1B = B4l < V/card(S(B)) Z

jes(B) jes(p
< W!fg—fﬂ
<[ S XEED (5= p+ 15 - 1)
'
(c) Show that for any constant a,
Y 18— Byl < XIEE) oo (g - £+ 18- 1)

JES(B) b
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Correction : Since 2ab < a~'a? + ab?,

card(S(p)) "

Y 1B -l <22 (£ = £+ 1175 = £°11)

'y

J€S(B) P
2
card(S
<ot (% W) va (It = £+ 18- 1)’
p
4% card(S(B)) . e
s 2 (ISP P,

(d) Finally, prove that on €,

32\2card(S(B)) }

o *2< : |12
165 £ < jut, {3l = 1717 + 220

Give an interpretation of this result.
Correction : We take a« = 1/4. Then,

A 16)\2card(S 1 .
ZD)\ Z |6j *5j| < (’a;’ (5(8)) + 5”]‘13 — f*”2 + inq *f*HQ‘
JesS(B) P
Using (A.2),
5 32X\2card(S
HfB — f*H2 < 3Hf’9 _ f*HZ + (‘CL: ( ([)’))
p

Problem 2: Gauss-Markov property and
regularization via elastic-net.

We consider the multivariate linear regression model :

Y =Xp"+¢

with Y = (Y1,...,Y,)T the vector of observations. The matrix X of size n x p is assumed
to be known. The vector f* € RP is the vector to be estimated. Finally, the error vector is
e = (e1,...,en)" and satisfies ¢ ~ N(0,02%I,) with 02 > 0 unknown. We denote (X1, ..., X,)
the columns of X. The ¢y-norm is denoted || - ||2, whereas the ¢;-norm is denoted || - ||;. For
any matrix A, we denote A7 its transpose matrix and for any estimate B, Var(B) denotes its
variance-covariance matrix. For the first two questions, we assume that the rank of X is p (with

p < n) and

1. We consider B"ZS the ordinary least-squares estimate.
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(a) Recall the expression of 4% in function of X and Y.

Correction :
BOZS _ (XTX)leTY

(b) Show that
E[3°] = 8* and var(8”®) = o?(XT X)L,

Correction : We have:
B3] = (XTX) " XTE[Y] = (X7 X)X X = 5
var(B%) = (XTX) ' X Twar(V)(XTX) 1 X1 = o2(XT X)L,

2. We consider B a linear estimate of 5*: /3’ = CY, where C is a (non-random) p X n-matrix.
We assume that § is non-biased.

(a) Prove that CX = I,,.
Correction : We have for any 3*,

B* =E[f] =E[CY] = CXpB*.
Since this is true for any vector *, we have CX = I,.
(b) Show that
var(8) = 02CCT = o*(C — (XTX)1XT)(C — (XTX)'xD)T + 2(xTx)"L.
Correction : We have:
var(B) = var(CY) = Cvar(Y)CT = o2CCT.
Furthermore
coT — (C— (XTX)AXT + (XTX)AXT)(C _ (XTX)AXT + (XTX)AXT)T
= (C—(XxXTx)'xTy(Cc - (xTX)'XT)T + (xTx)™?
+2(C - (XTX)'xT)x(xTx)™!
= (C - (xXTx)'xTy(Cc - (xTX)'XT)T + (xTx)"L.

(c) Show that for any vector z € RP,
aTvar(B)z > " var(5°%)x.

The last inequality shows that among unbiased linear estimates, B"ls is the estimate
with minimal variance-covariance matriz (the Gauss-Markov property).

Correction : Since (C — (XTX)7'XT)(C — (XTX)'XTT is a non-negative sym-
metric matriz, the inequality is obvious.
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3. From now on, we do not consider that the rank of X is p. We now consider for Ay > 0
and Ay > 0,

- _ o )
B = arg min {1y = XBII2 + Al Bl + A2l 8113} -

(a) What’s the name of this procedure? Correction : Elastic net What does it correspond
when Ay > 0 and Ao = 0 ? Correction : Lasso What does it correspond when Ay > 0
and A\; = 07 Correction : Ridge

(b) We assume A > 0. Show that /3 exists and is the unique minimizer of C, with
C(B) = IY = XBz + Al Bll + A=l BII3.

Correction : C' is a continuous function. Since Ao > 0, C is strictly convex.

(c) Give a condition under which 8 may have some zero coordinates.
Correction : Ay >0

(d) We now consider j and k such that 8; x f > 0. Prove that
—2XJT(Y — XB) + Alsign(ﬁj) + 2)\233' = 0
and . . .
—2X;1 (Y — X3) + Aisign(Bk) + 2X2fk = O,
where for any x € R*, sign(z) denotes the sign of z.

Correction : Since 3; and B), are different from 0, it’s just a consequence of compu-
tations of the partial derivatives of the criterion C with respect to 5; and .

(e) Under assumptions of the previous question, deduce

Y2/l X5 — Xill2

1B — B| < /\2

Correction : Since sign(fy,) = sign(B;), we have:

Xo|Bj — Bl = 1(X; — Xi)' (Y — XB)]
<X = Xill2 x [IY — XBl2
< [[Y[2]| X5 — Xkl[2,

since C(B) < C(0), so

1Y — XBI3 < Y — X85 + MllBll + A llBI13 < Y3

(f) We estimate 3* by 3 = (1+ A\y)3. Show that

. ) XTX + NI
B = argérelﬁ}’ {BT (1_}_)\22])) p— QYTXB + /\IH/BHI} :
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Correction : We use: for any fonctions f and g, if there exists o such that for any
7, g(z) = f(ax), then

arg mwin f(x) = a xarg n%ing(x).
Then,
B = axg yuin {1V~ XBI3 + Aall5h + all 513}
= arg min {BT(XTX + XNaIp) B — 2V X B+ M| }

= arg min {1+ X) (BT(XTX + XaI)B —2YTXB + N B]h) }

. XTX 4+ Mol
= arg min 3 (14 X2)B3)" ( ==L ) (1+22)8) = 2V T X(1+ A2)B + Ail|(1+ A2)Bll1 ¢ -
BERP 14+ Ao
and
_ ) XTX 4+ NI
(1+X)B = arg min {uT <1+)\22p> u—2YT Xu + )qHUh} :
Therefore,

. XTX + X1,
_ . T (A AT A2 _oyT
5—arggrélﬂ§1p{5 ( e )5 2Y X5+/\1||5||1-}-

By expressing B as the Lasso estimate for a special regression problem, show that [3’
can be viewed as a stabilized version of the Lasso estimate.

Correction : We set

~\o, T VT \ Vel
So,
~ o~ 1
T T
X X = 1+)\2(X X + Malp)
and

ho_ . Tx~Tyvnap  ovIvy
B = arg in {4 XTX8 - 27 X8+ 8] }

— arg min { |V~ X85 + A8 }
arg min {[[V ~ X5 + X151

Eigenvalues of XT X are larger than \y/(1 + \o)

We assume that the matrix X satisfies X7 X = I,. For any j € {1,...,p}, give the
expression of 3; with respect to ﬁ;?ls .
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Correction :

Therefore,

We have:
A . 2 T
B = arg min {]1[> B+ |8l }
p
o . 2 T
= arg min 2 (82 4+ B, X]Y + MlBj)

B = sign(B7°) (157 — A1/2)+

83
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A.3 Exam 2018-2019

High-dimensional statistics

Correction of the EXAM (duration 2h30)

Documents, calculators, phones and smartphones are forbidden

Exercise 1

Given a collection of models M, we study two model selection procedures based on the mini-
mization of two criteria defined for any m € M by

Ci(m) = C(m) + aj x card(m), Ca(m) = C(m) + az x card(m),

where m +— C(m) is a non-negative function defined on M and 0 < a1 < ag < oco. If 1y
minimizes m — C7(m) and mgy minimizes m +— C(m), prove that card(ms) < card (7).

Correction : Let m a model such that card(m) > card(m). We show that Ca(m) > Ca(mq).
Indeed,

m) + ag X card(m)

)
C(m) 4+ ag x card(m) + (ag — 1) X card(m)
Ci(m) + (g — aq) X card(m)

Cy(m1) + (ag — a1) X card(m)

Ci(m1) + (ag — 1) X card(my)

C

1
= C(11) + aq x card(mq) + (ag — aq) X card(m;)

Exercise 2

We consider the multivariate linear regression model :
Y=Xp"+¢

with Y = (Y1,...,Y,)T the vector of observations. The matrix X is assumed to be known and
of size n x 2. The rank of X is 2 (with 2 < n) and 8* € R? is the vector to be estimated. Finally,
the error vector is € = (e1,...,&,)" and satisfies E[¢] = 0, var(e) = o21I,,, with 02 > 0 unknown.
We denote (X, X5) the columns of X. The ¢3-norm is denoted || - ||. For any matrix A, we
denote AT its transpose matrix and for any estimate B , Var(B) denotes its variance-covariance
matrix.
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1. Prove that for any estimator B of 8*, we have

2
E[lI3 - £*11P) = D (var(B)) + (E[3] - B;)%).

j=1

Correction : Obvious

2. We consider BOZS the ordinary least-squares estimate. Prove that
E[[|57" — 8%)*) = o (X" X) ™)1 + (XTX) " ")a2) .
Correction : We know that E[3%%] = 5* and var(6°) = o2(XTX)~1. This leads to the
result, using Question 1.

3. We consider the estimate BN = (Bl, 0)”, with Bl the ordinary least-squares estimate com-
puted in the wrong model

Y =p6iX1+e
Give the expression of 3; and show that
E[(61 - B1)%] = o2 (XT X1) ' + [(X{ X1) 7' XT X 65]°

and
E[|I8 — B*I1°] = o*(XT X1) ™" + [(X{ X1) 7' XT X851 + (B3)°.

Correction : The expression of B is
B = (X1 X1) 'X]Y,
which leads to

E[B1] = (X{ X1) ' X{E[Y]
= (XTX1) 7 'XT (BT X1 + B3 X3)
= Bf + B3(X{ X1) ' XT X,
and
(E[B1] — B1)* = (83)2((XT X1) 7' X X0)2.

Furthermore,

var(fy) = (XT X)) LXT x var(Y) x X1(XE X))t = o?(XT X)) L.
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4. Prove that when |£5] # 0 but small enough, then
E[|8 - 87II"] < E[II6** - 8*11%]-

Indication: You can use the inequality (XTX)™1)11 > (X{ X1)~L.
Correction : If 55 is such that

\ (X" X) D — (X x)™
< ) T X X

then

E[|5 — 5117 = o®(X{ X1) ™" + [(X{ X1) ' X{ X251 + (85)
o (XTX) ™D — (X7 X))
2

<o (X{ X))+
<o*(XTX) Y
< E[|5% - B*|°].

5. Even if 85 # 0 is estimated by 0 and B is computed in a wrong model, explain why the
previous result is not so surprising.

Correction : A sparse estimate may be better that a non-biased estimate since it has some
zero coordinates whose variance is equal to zero.

Problem

We recall the definition of a multiresolution analysis:
Definition A.1. A multiresolution analysis is a sequence of nested vector spaces
{0} C---CVipuCV;CVjg C--- CLa(R)
such that, for any j € Z, if Py, is the orthogonal projection on V;, for any f € La(R),

Jj——00

1P f - £l 20
2 |[Py fll2 "5 0

3. feV; < x> f(x/2) € Vji1 for any j € Z
4. feV; <= x f(x+27k) €V forany k € Z

5. 3¢ such that (¢r)rez is an orthonormal basis of Vo with for any x € R, ¢p(x) = ¢(z — k).
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Furthermore, setting

— k97

for any j € Z, (¢ji)rez is an orthonormal basis of V.
For any j € Z, the detail space W; is defined as the orthogonal complement of V; in V;_;:
VioW; =V

The goal of this problem is to prove the following theorem (providing the definition of a wavelet
¥ in function of its associated scaling function ¢).

Theorem A.1l. Let h a conjugate mirror filter. We define the function g as

g(w) = e_iwmo(w + ),

where myq is the transfer function associated with h. We define the real-valued function i such
that

~ W\ ~ /W

i) =3(3)9(3)-

We set for any j € Z and any k € Z,

W@zéyC;?),mR

Then, for any j € Z, (Yji)kez is an orthonormal basis of W;. Furthermore, (Vi) cz.kez is an
orthonormal basis of La(R).

To prove this theorem, you can use the following proposition established in the course.

Proposition A.1. We have
1. $(2w) = dp(w)mo(w), w € R
2. myg is 2m-periodic and mo(0) = 1

3. |mo(w)]? + |mo(w+7)> =1, we R

We denote (-, -) the scalar product associated with the Lo-norm and * the standard convo-
lution product between two functions.

1. The goal of this question is to prove that functions of V4 are orthogonal to the functions
(Yor ) kez. We often use (- — k) = ¢, and ¢(- — k) = k.
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(a) Denoting for any t € R, ¢)(t) = ¢(—t), first prove that

D (¢x ) (k)e ™ =" d(w + 2km ) (w + 2k).

keZ keZ

Indication: Use that ¢ is a real-valued function and the Poisson formula: for any

> h(k)e e =" h(w + 2kn).

k€EZ keZ

function h,

Correction : We hawve:

S (6% ) (R)e 0 = 3 (o x ) (w + 2km) = 3w + 2w + 267)
keZ keZ keZ

and, since v is a real-valued function

dw) = [ = [ et = iw),

Deduce that for any n € Z and any p € Z, (¢(- —n),¢(- — p)) = 0 if and only if

> ¢(w + 2km)ih(w + 2km) = 0. (A.3)

keZ

Correction :
(@ =m0~ p) = [ ot =yt~ ph
— [ oitu+ n - pu

= (¢x ) (p—n).

Therefore, for any n € Z and any p € Z, (¢(- —n),¥(- — p)) = 0 if and only if for
any k € Z, (¢ x 1) (k) = 0, which leads to the result.

(c) Establish that for any w € R,

mo(w)g(w) + mo(w + m)g(w + ) = 0.

Correction : We hawve:

(w)g(w) +mo(w +m)g(w + ) = mo(w)e™ mo(w + 7) — mo(w + )e " mo(w) = 0.
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(d) Prove that the previous equality yields

Zm()( —I—lmr)m‘(b( +k7r>‘2=0.

kEZ

2
Indication: Use that for any w € R, >, ‘ (w + 2k7r)‘ =1

Ao (2 )G (2 )
5 (5 ) (G G 2+ )
S () ) o (5 )

o (§ )i (e o (5 e )
Z

+ (
VA
(5 +2m)|

(e) Using Proposition A.1, prove that (A.3) is satisfied.
Correction :

S b(w + 2km)d(w + 2k) = qu( +k7r) (%+k)7](w+2k7r)

(i) o (5o

=0.

(f) Conclude that functions of V}y are orthogonal to the functions (o )kez-

Correction : Using Questions 1)(b) and 1)(e), since functions (¢r)rkez span Vo, func-
tions of Viy are orthogonal to the functions (Vok)kez-

2. We now study the functions (Yog)rez-

(a) Show that
Z lh(w + 2kn)|> =1, weR.

kEZ
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2
Indication: Use that for any w € R, Y, ‘ (w + 2k7r)| =1

Correction :
;Z|1/A)(w+2k7r)|2zkezz (2—|-k:7r>‘ ‘qb( —|—k‘7r)‘
= [mo (5 + (e 0m) 6 (5 + o)
keZ

=" |mo (%+(2p—|—2)ﬂ')‘ ‘¢3<3+(2p+1)7r>‘2
+Z’mo(12u+(2p+1 )) ’¢( +2p7r)‘2
PEZL
z)qs(gmpﬂm)f
Z

o5 +e) o (5
- (B 4+ -

(b) Prove that for any n € Z and any p € Z,

(W =n), (- —p)) = Ln=p}-

Indication: The arguments are similar to those of the Question 1.

Correction : For anyn € Z and any p € Z

The Poisson formula and Question 2)(a) give:

D W) (ke =" |(w + 2k)|* =

kEZ kEZ

which is a constant function. By identification, (1 * 1&)(1{:) =0 for k # 0 and
(1 %1)(0) = 1. This implies

(@ =n),¢( =) = Ln=p}-
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(¢) Deduce that functions (¢ok)kez are orthonormal.

Correction : Obvious

3. In this question, we show that V_; = Vi @& Wy, where W is the space spanned by the
functions (d@k)kel-

(a) Show that the inclusion V_; C V) & Wy is equivalent to the property:

Y (ak)kez € l2(Z), 3 (bk)kez € l2(Z) and (ck)kez € ¢2(Z) such that

D apV20(2t — k) =) bpd(t —k)+ > epp(t—k), teR. (A.4)

k€EZ keZ keZ

Correction : The space V_1 is spanned by functions ¢_1y : t — /2¢(2t — k). The
space Vy is spanned by functions ¢oi : t — ¢(t — k). These arguments give the result.

(b) By setting for any w € R,

= Zake*ikw’ [;(w) — Zbke*ikw, é(w) = cheﬂ'kw7

keZ keZ keZ

show that (A.4) is satisfied if
P (%) = V2 (b(w)mo (%) +ew)y (), wer (A.5)

Correction : We have

(A.4)<:>/ TN V22t — E)dt = / TN b (t — k dz‘—i—/ TN e (t — k)dt, Y w €

keZ kEZ kEZ
= %a L€ Z]“”/2/ o(u ﬂwu/Q du Igb emwffb Zu”*du—i—%%clge mw/Tb e~ wuq
— a (%) é (%) =2 (B(w)gz(w) n w(w)é(w)> NweR
0 (5)3(2) - V2 () (2) -t (3)§(15) v

Therefore, (A.5) implies (A.4).
(c) By setting

show that (A.5) is satisfied.
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Correction : We have for w € R,

 tam (3) + 003 () =3 (3)

>

VN

ols 2
(SRS SIS

~—  — ~—
| &
~——
T o
4
Q>
—
| 8
+
3
~—
Q
—| ]

Il
Q>
N
S - NI
N——
: /N
GRS
~ —~ —

(d) Prove that Vj @ Wy C V_; and deduce that Wy = W,.

Correction : We already know that Vo C V_i. To show that Wy C V_1, we just have
to show that

V(Ck)kez S €2<Z), = (ak)kez S KQ(Z) such that

St —k) =) apV20(2t — k), teR,

kEZ keZ

which is equivalent to

o (3)5(3) = v (3)a(3) wwes

So, we have to set a so that Vw € R,
w w
£ (5) = s (2)
(3) = V2 (5

to obtain the result. . .
These results imply Vo ® Wy =V_1 = Vo ®@ Wy. This yields Wy = Wy.

4. Show that for any j € Z, (¢j1)rez constitutes an orthonormal system of functions. Show
also that for any j € Z and for any function f € Vj, (f,¥;) = 0 for any k € Z.

Correction : We have
1 . 4
Wi t) = 55 [ 6020 — ko9t = K
— [ wla = Rywtu = K)du = 1,

which proves the first point. For the second one, we just have to prove that for any k
and any k', (¢jr, Vi) = 0. By using similar computations and Question 1), the result is
satisfied.

TN L/~ T N

ISIESENIESE VRS

— ~ —
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5. Prove that for any j € Z, (¢ji)rez is an orthonormal basis of ;. Deduce that the spaces
(W})jez are orthogonal and for any L < J,

Vi, = B912L+1VVA e V.

Correction : f € Vj_1 =V, & W; < f(2/) € Vo1 = Vo ® Wy. Therefore, there exist
(ag)kez and (bg)rez such that for any x € R,

F@z) = ard(z —k)+ Y bpip(x — k).

kEZ kEZ

Therefore, for any © € R,

f(z) = Zakgb(Q_jx —k)+ Zbkd}@_jx — k).

keZ kEZ

We obtain that {(¢jr)kez, (Vjk)rez} is an orthonormal basis of Vi1 = V; & W; and
(Vi )kez s an orthonormal basis of W.

We have for any j € Z that W; 1 C V; L W;. Therefore, the spaces W; are orthogonal.
Finally,

Vi =Vi41 ©@ Wi
=V @ Wi ® Wi

=V;eW;® - dWrio® Wry
= [@_ Wil @ V).

6. Finally, prove that (1;)jez kez is an orthonormal basis of La(R).
Correction : We start from
Vi = [@}']:LHWJ'] oV

with L < J. Now take L — —oo and J — 400, we obtain

Ly(R) = &/ W,

j=—00

Since for any j, (Vjx)rez is an orthonormal basis of W and the spaces W; are orthogonal,
(Vjk)jez.kez is an orthonormal basis of La(R).
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A.4 Exam 2019-2020

High-dimensional statistics

EXAM: duration 2h30

Documents, calculators, phones and smartphones are forbidden

Exercise 1

Given 3* € R? and a matrix X of size n x p, and whose lines are denoted z7,... 27 so
that
Ty
T
x
x=|"721,
Ty
we consider the regression model
Y, =2TB +e, & N N0,0%), i=1,...,n, (A.6)

with 2 > 0. We denote
Y =(,....)", e=(e,...,en)"

and we define the degree of freedom of a function ¢ : R” — R" with coordinates g; by

dflg) = — > cov(gi(¥), Y.

Model (A.15) can be rewritten
Y =X5"+¢

and we assume that rank(X) = p. In the sequel, we denote || - || the f3-norm on R™.

1. We consider 3 € R? any estimate of 3* and we set g(Y) = X3, so that g;(Y) is the
1th coordinate of X f:

9:(Y) = (XB):.

We denote R R
C, = ||Y — XB|* — no? + 202df(X ).
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(a) Establish that E[||¢||*] = no?.

Correction : Obuvious since

n
lel? = et
i=1

(b) Prove that for any i € {1,...,n},
E[(Y; — E[Y}))(E[Y;] — (X8),)] = E[(Y; — EV])(E[(XB):] — (XB):)].
Correction : We observe that for any i € {1,...,n},
E[(Y; - E[Vi]))(E[Y}] — (XB):)] = E[(Y; — E[Vi])(E[V;] - E[A(Xﬁ)i] +fE[(XB)i] — (XB))]
=0+ E[(Y; - E[YI])(E[(XB):] — (XB):)].

(c) Prove that R
E[Cy] = E[I|X8 — X67||°].

Indication: We recall that
cov(gi(Y),Y:) = E[(g:(Y) — Elg:(Y)])(Y; — E[Yi])].
Correction : We have:

E[|X5 - X5 |*) = E[IX3 - Y +Y — X5||

=E[| X5 - Y|] +E[|Y — X8|} - 2E

DY = XB)(Y - X@)i]

i=1

= E[| X5~ Y] + E[|l¢]]

—2E zn:(Yi —EY)(Y; - E[Yi] + E[Yi] — (XB)i)]

i=1

=E[| X8 - Y|’] - E[e]’] - 2E

> (¥ —EY](EY] - (Xﬁ)i)] :

i=1

So, since E[||e]|?] = no? and using the result of the previous question,

E[|X5 — XB) =E[| X8 = Y|*] - no® = 23 E[(Y; - EN))(E[(XP)] - (XB):)
[1X5 = Y[[*) = no® + 20" df{ X B)

E
E[C,].
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2. We now estimate X [* with
g(YV) = X(XTX)"' X"y,
(a) Prove that

=3
=1

Correction : For this case, g;(Y) = 27 (XTX)"'XTY. We denote 1; the vector
whose components are all equal to 0 except the ith component equal to 1. Since
XT x 1z = I;

- *QZE (XTX) X e x g
— Z xiT(XTX)’lXTU’Q]E[eie]
=1

= Z (XTX)"'XT x 1,
= ZxZ(XTX)—l
=1

(b) Deduce that
df(g) = Trace(X (X7 X)'XT).

Correction : Obuvious.

(c) Finally, prove that
df(g) =

Correction : The matriz X (XTX)™1XT is the projection matriz on Im(X),
so, since rank(X) = p, df(g) = Trace(X (XTX)1XT) =p

Exercise 2
We consider the model of Exercise 1 written
Y =Xp5"+e.
We use notations of Exercise 1. We consider the ridge estimate: for A\ > 0,

By = (XTX + L)' XTY.
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We denote (u1, . . ., j1,) the eigenvalues of the matrix X7 X and (Uy, ..., U,) the associated
orthonormal basis of eigenvectors. So, we can write

XTX =UDUT,

with U an orthogonal matrix whose columns are given by the U;’s and D the diagonal
matrix with the p;’s on the diagonal:

1.

2.

3.

H1
U:[Uh"'?UP]? D= e

Hp

Establish the following bias-variance decomposition:
E[|6x — 8°1°] = IE[B:] — 8°I1* + E ||| 51 — E[B:I17.

Correction : Obuvious.

Prove that )
E[B] = (XX + \L) ' XTX 5"

Correction : Obuvious.

Deduce that

~

E[B\] — B = —MXTX + \I,) !B
Correction : We have:

E[5] — 8 = (XTX + L) 'XTXp* — g*
= (XT"X +AL)Y(XTX - XTX - \L,)B"
= - ANXTX 4+ ) '8

Finally, establish that
IE[B] — 87|17 = A28 (XTX + \I,)*B".
Correction : Obuvious.

Prove that R R
By —E[By] = (XTX + A,) ' XTe.

Correction : Obuvious.
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6. Establish the decomposition

(XX + AL ' XTX(XTX + A1) ' =UDUT,

where

_m

(p1+A)2
M2
(n2+X)?

S
[

Hp
(HptA)?
Correction : The eigenvalues of X* X are (pa, ..., pp) and (Uy, ..., U,) is the associ-
ated orthonormal basis of eigenvectors. So, in this basis, the eigenvalues of XX +
M, are (1+X, . . ., pp+A) and the eigenvalues of (X7 X +AL,) P XTX(XTX+N,)~!
in this basis are the diagonal elements of D.

. Finally, establish

p

|1~ EIAIP| =* X0

Jj=1

Correction :  We simply use the following result: For any deterministic matriz A

with n columns,

E[||Ae|]?] = o*Tr(AAT).

Problem

We wish to estimate a function f € Ly(R) decomposed on a wavelet basis denoted (1) j:

400
F=>3 B,

j=-1 kJE’Cj

where for any j > —1, K, is the set of integers k£ such that

Vié¢K;, Bin=0.

In the previous decomposition, the coefficients (5_1x); correspond to the approximation
coefficients. We assume that we observe a noisy version of wavelet coefficients ;. The

noise is assumed to be Gaussian and we consider the following model:

g

Xk = Bjx + %ij)

jZ_L keKj?
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where the z;;’s are i.i.d. N'(0,1). The noise level \/iﬁ is assumed to be known. For practical
reasons, we only estimate a finite set of wavelet coefficients. This set will have the form

I'={(Uk): -1<j<J kek;}
with J an integer. We consider 7;;, a threshold (defined below) and we set for any j and
any k,
Bin = XL {xpu>n)-
The estimate of f is then

J
f= Z Z Bitthin-

j=—1 k’G’C]’

For any k € K_1, we set n_1;, =0 and for 0 < 57 < J and k € K,

2vlogn

Njk =0
! n

We take v a constant larger than 1 and such that

X
8

card(T") < mn5.

The goal of the problem is to study the LLo-risk of the estimate f . In the sequel, we denote
|| - || the Lao-norm.

1. Prove that if Z ~ N(0, 1), then for any = > 0,

P(|2] > 7) < — ( x2>
X ex _— .
0T a2 P 2

Correction : We just use:

2 +oo t?
P(|Z| > x) = \ﬁ/ exp () dt
/+oo t < 2> dt 2 ( CL’2>
—ex = exp | —— ).
- \/27T P /21 P 2

2. Establish the following equality:

0.2

E[(X_1 — B-w)?] = P

Correction : It’s obvious since the zj,’s are i.i.d. N'(0,1).
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3. Then prove

J

2 N
E[If = £I?| = Zcard(k) + 32 D E | B — B + D0 Y B (AT)
J=0 kek; i>J kek;
Correction : We have:
i 400 J 2
E [H/E - f||2} =E 1D B — D D Bintie
| ||=—1 kek; j=—1kek;
- 2
J
=E [|[D D B =B+ > Bt
| ||i=—1keK; §>J keK;
By using Parseval’s identity,
J
E[If=11F] = 3 E[(X =B+ > S B [Gu— ] + 3>
ke -1 J=0 kek; J>J keK;
2
:J—card +ZZ [ﬂ]k—ﬂjk }—I—ZZ
Jj=0 kek; j>J keK;

4. In the sequel, we fix j € {0,...,J} and k € K;. We wish to provide a control of
E (B — 81)?]

(a) For this purpose, first prove that
E [(Bjk—ﬁjk)Q] <A+ B+C+D,
with
A=k [<Xﬂ"f - ﬁj’“)Ql{lXjk—ﬁjklﬁ%"“}} o B =Bl <o)

C:=E [(Xjk - 5jk)21{|5jk|>%%}] , D=E [ﬁ?kl{mjk—ﬁjkb”jk} ’

Indication: Distinguish cases according to whether |X;i| is larger than n;, or
not, and whether |5;x| is large or not.
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Correction :
3 2] 2 2

= [(ﬁjk ~ Bix) } =k [<Xjk ~ Bix) 1{|Xjk|>77jk}} +E |:/8jk1{|Xjk|§njk}]
_ 2
=K [( L 6]k) 1{|Xjk|>7]]k} {18x1< "2k } +E [/Bjkl{‘xjklgnjk}1{|Bjk|§277jk}:|

2
+E [( k= @k) 1{\Xjk\>77jk} {lﬁjk\>%?k}] T [ﬁjk1{|xjk|§mk}1{\ﬁjk\>2mk}]
<A+B+C+D.
(b) By using the definition of n;;, establish that
D < n 7.

\/_\/W

Correction : We use for any x > 0,

(Il = 2) < : ¢ ( xQ)
P(|z; T Xp .
== /2T 2

= ﬁfk x P(| X — Bkl > mjx)

< B3 ¥ P(]z]k] > \/27vlogn)
\/27r\/2'y logn
\/_x/vlogn

We have:

(c) By using E[z};] = 3, prove that
2

n )

S
}2

ASCAO

(vlogn)~

with Cy a numerical constant.
Correction : Since

A=E [(Xjk n ﬁjk)Ql{lxjkfﬂjkb%}} ’
the Cauchy-Schwarz inequality gives

A* <E[(Xj — Bje)'] x P <|X1k — Byl > W)

30 4
< 7 X P(|zjx| > \/2—1fylogn)
30

X n
2 \/27r\/2*1710gn

NS
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and

with

(d) Prove that for n large enough
21
B < 8&ymin <U ogn) fk) .
n

Correction : We have that

02
b= 5jk1{\ﬁjk|§2ﬁjk}

and
2vlogn
77jk =0 .
n
If—28n 21°g” > %, the inequality is obvious since 8y > 1. Otherwise, log" < B
but 2 ,
Mk o”logn
ik
(e) Prove that
o2
C=—log, >
and that for n large enough
2logn
C < min <a s ,ﬂjzk)
n
Correction : The first point is obvious. So,
2
o
¢= El{\ﬁjkb%k}
and
2vlogn
Nik =0 .
n
If " log” < Jk, the inequality is obvious when logn > 1. Otherwise, o*logn
but
Jk’

2 2
U N W
n Mk ~vlogn J

when n is large enough so that ylogn > 2.
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5. Finally, conclude that for n large enough,

J
E[If - fIF] < %card(lC_l) + Y min (@ 2 ) +33 3 + -

j=0 kek, §>J kek;

where C; and Cy are two constants depending on || f|, v and o

Correction : Using previous inequalities, for n large enough,

2
? (v logn)_in_% + (8y + 1) min (

o’logn
Mgk |

A 1 _’Y
BB = 8] < B x e +

We have
Z S8, — /17 .
par o) f\/vlogn — Vm/ylogn
and
J 2 2 2
Cao ) in ® < Cng (v logn)_%card(F)n_% < Cf: (v logn)_%.

Since vy 1s larger than 1, we obtain the result.
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A.5 Exam 2020-2021

High-dimensional statistics

EXAM: duration 2h30

Documents, calculators, phones and smartphones are forbidden

Exercise 1

For n € N* and ¢ > 0, we consider the following statistical model

X=0F"4+02,

with X = (Xy,..., X,)T e R"and Z = (Zy,...,Z,)" € R" so that the Z;’s are i.i.d with
common distribution A/(0,1). The goal is to estimate 3* = (85, ..., )T € R™ by using
the observation X. We denote || - || the classical fo-norm.

1. (a)

We consider B ! the penalized estimate defined by
B' € arg min {||X = ||* + 2Apen(8) }

with A > 0 and where the penalty pen : R” — R, is a function depending only
on . Write the penalty pen corresponding to the Lasso estimate.

Correction : pen(5) = |5l = >, |5il-
Establish that for any i € {1,...,n}, 5, the ith coordinate of 5', is obtained
by minimizing the function

O:te Rt —2tX; + 2)\[t.

Correction : We have:

n

X = BI2 + 2xpen(B) = 3 |87 = 28,X; + X2 + 2|3

=1

and minimization is obtained coordinatewise.
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(c) Prove that for any i € {1,...,n},
B! = sign(Xi)(1Xu] = M),

where sign(X;) € {+1, —1} denotes the sign of X; and (| X;|— )y = max(|X;|—
A;0).
Correction : On Ry, O(t) = t* — 2t X; + 2At and

arg min O(t) = max(X; — A;0)

t€R+
OnR_, O(t) = t* — 2t X; — 2\t and

arg min ©(¢) = min(X; + X;0)

teR_
- [f X7 Z )\7
O(Xi—A) = XZHA =22 X;—2(X;— N X; 42X (X;—)\) = — X2 = N+2)0X; = —(X;—))* < 0.

CIF X € [=A A, ©(0) = 0.
- [fXZ < _>\7

O(Xi+A) = XN 22X, —2( X+ A) X —2M( X)) = — X2 - N2 -2)\X; = —(X;+A)* < 0.
Finally,

A Xi—X if X; > A
g = 0 if  Xi € [=NA] o= sign(Xi) ([ Xs] — M)+
Xi+X if X, <-A

2. In the sequel, for F : R s R" a measurable function, we denote 3 = F(X) an
estimate of §*. We denote (Fi,...,F),) the R-valued components of F' that are
assumed to be C', so that F(X) = (Fi(X),...,F,(X)). We consider g : R — R
assumed to be C! such that E[|¢'(Z;)|] < co. We denote ¢ the density of Z;.

(a) Prove that for any ¢ € R,
¢'(t) = —to(t).

Correction : The density of Zy is ¢(t) = \/%7 exp(—t?/2). Therefore

¢ (t) = —t x exp(—t2/2) = —to(t).

1
2T



106 High-dimensional statistics

(b) Establish that

Bz - [ @ ([ woa)a- [ W ([ wowar) e

Indication : Use E[g'(Z1)] = El¢'(Z1)1{z,>0}) + El¢'(Z1)1{z,<0})-
Correction :

0

)
- / mg'( o (x)dz + / J(2)9(x)dz
(
(

([ s} (] v
[ ([ ) [ (] o)

(c¢) Conclude that
Elg'(21)] = E[Z1g(Z1)). (A.8)

Correction : Fubini’s theorem holds since

+oo +oo +o0 400
/0 l9'(2)] /0 td(t) Loy dtde = — /0 g/ ()] /0 ¢ (1)1 oy dtda
< E[lg'(Z1)[] < oo

Similarly,

/(;Lq (/ It (t) 1< }dt)dx / g (x |/ & (1)L ey dida

< Ellg(21)]] <
Therefore, since

+oo
| i —Eiz) -0,
we have

2= [ toto) ([ goe)ar— [ ot ([ gir) a

:/0+°°t¢(t)(g(t)—g(0))dt—/ t6(£)(g(0) — g(t))dt  (A.9)
= / - to(t)g(t)dt = E[Z19(Zy)).
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3. In the sequel, we fix i € {1,...,n} and introduce G; : R™ — R such that for any
u € R",
Gi(u) = F;(B* + ou)

and X% the vector of R*~! built from X by removing its ith component:
X = (X1, Xie1, X, - X)),
(a) Prove that the ith partial derivative of F; satisfies

OF, v\ _ 109G,

= — 7).
Correction : We have, with u = (uy, ..., u,)7T,
Fz(u) :Gl <U] _61‘:7/“”_62)/
o o

which implies

OF;
(9%;

(u)

o o o

_10G; <U1—6T Un‘ﬁi)

g 81’L o
With v = X, we obtain:

8E< )= laGi
ox; o Oy

(2).

(b) By using (A.8), deduce that

OF; 11 |
i )| = ‘Rl(z.C (i)
E {(%i (X)| X } “E[Z.G(2)| X7].

Correction : We have X0 = g0 4 520 So. by using (A.8),

OF; | 1 [0G, ‘
E|=—(X)| X = ZE|=—(2)| 29
o1 x| =28 |52 )
1 .
- 7]E|:ZLGL(Zl/ c '7Zi717 Zi>Zi+17 R Zn) ’ Z(il)}
g
1

= E]E[ZZ-GZ(Z) | X9
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(c¢) Conclude that

E Bj (X)} = LE[(X~ B)F(X)].

Correction : Finally,

o] s o ]

X

1 4
=K {—E[ZiGi(Zl, s Zis Ziy Ty Zn) | (XD
g

= B [B[(X, ~ 57)F () | (X0]]

= LE[(X: ~ B)E(X)].

4. Let
= |X - F(X)|?

—TLO'

Prove that
E[C] = E[||F(X) — 5*|].

Correction : We have

E[C] = E[|| X — F(X)|*] + 20°E

3 5

=1

= E[|IX - 81" + E[| F(X) — 5] +22EX BB — Fi(X

Z amz

= E[|F(X) - 8*|"] QZEX BHFi(X)] + 20°E

where we have used B[ X; — B] =0 and
E[|X — 5°|") = °E[I Z]*] = 0* Y E[Z]] = no™.
i=1

Using the previous question, we have

E[C] = E[| F(X) — B7[|"].

+ 20%E

Z

8xl
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5. We now assume that the estimate F'(X) depends on a hyperparameter \; we write
F(X) = FMX).

(a) Deduce a method to select the hyperparameter A.

Correction : Since C' is an unbiased estimate of E[||F(X) — B*|%], we naturally

minimize the function

n 8F}\
A X — FMX)|]? + 202 -
=X = PAXP 42025

i=1

(X)

We now assume that for all i € {1,...,n}, FA(X) only depends on X; and
there exists H? such that for any = € R,

R - [ "N @)t

Prove that "
C = ||X = F(X)|? + 20> H)NX;) — no”
=1

satisfies
A A *||2
E[C?) = E[|F(X) = 57[7)-
Correction :  We assume that F} is absolutely continuous on R: there exists
HY such that for any x € R,

FAz) = / "N @)t

o7\
We can check that all previous computations hold by replacing dai

~(X) by HY
(see (A.9)).

(¢c) We consider the soft thresholding rule and estimate each coordinate 5 by

FMX) = sign(X;)(]X;] — A)4. Determine a good criterion to select .

Correction : We set
H)\(’E) = 1{|x‘>/\}, r € R.

(2

By distinguishing the cases x > 0 and © < 0, we obtain
o) = [ HN0d
0

We obtain the SURE criterion (Stein Unbiased Risk Estimate criterion):
Cr = | X — FMNX)|? + 202 card{i : |X;| > A} — no?.
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Exercise 2

In the sequel, we denote

La(®)i= {7 R € 1 = [ 10 < oo

endowed with the Euclidian scalar product:

ungéf@mWﬁ

For any f € Ly(R), we denote fits Fourier transform:

f(€) :=/Re‘“5f(t)dt, ¢eR.

We recall the inversion formula:

1

- _/eitff(g)dg, teR

=3[

and the Plancherel formula:

[ st = 5 [ Feoa@as. [ irora =g [ (Forae

We recall that a multiresolution analysis V' = (V});ez is a sequence of nested vector spaces
satisfying
{0y c---cVimucV,cVoy C--- CLy(R)

such that, for any j € Z, if Py, is the orthogonal projection on Vj, for any f € Ly(RR),

]—}OO

LA[Pyf = fll2"—

]%Jroo

2. [Py fll2"—"0
3. feV, < xw— f(x/2) €V forany j€Z
4. f eV, < xw f(x+2k) € V; for any (j, k) € Z*

5. 3¢ such that (¢g)rez is an orthonormal basis of V with for any z € R, ¢x(x) =
oz — k).
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In the sequel, we set

o(t) = sin(mﬁ)’ LeR.

it

The goal is to prove that the sequence of vector spaces (V) ez, defined by

Vi={feL.®): swp(f)c-27r27m}, jez
is a multiresolution analysis associated with ¢.

1. Establish that R
¢(§) = 1[—7r,7r) (5), 5 e R.
Indication : Use the Fourier inversion formula.

Correction : We have for any t € R:

1 ite 1 ‘ i
! 1,7—7-[- d = — 7’1‘/7{-7 > it
QW/RG [ (§)dE 27r7§t(€ e ")

sin(mt) -

7t

This provides the result.

2. We consider f € Vj and we set g such that g is 27-periodic and

~

9(&) = f(&), &el-mm).

(a) By using that any 27-periodic function can be decomposed on (£ — €¥*¢),cz,
prove that there exists (ay)rez € ¢2(Z) such that for any £ € R,

9(&) = age™™*

keZ
Correction : Since g is 2w-periodic, this is obvious.

(b) By computing ggk(f) for any k € Z and any £ € R, deduce that

ft) = Zak¢k(t), teR.
Correction : We have for any k € Z and £ € R,
oue) = [ ot~ ryar
=e / e B (t)dt
R

= el m(6).
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Then, we have

FE&) =G rm (€)
— Z akefik'gl[,mﬂ) (&)

kEZ

= Z%C&(f)

kEZ
This gives the result.
3. We study projections on the spaces (V;)ez.

(a) Let j € Z. Prove that for any f € Ly(R), the projection of f on V; is given by
the function f; such that for any § € R,

F5(6) = F(&) X Lig-ina-in)(€).

Correction : We obviously have that f; € V;. Furthermore, for any g; € V;
then g; is supported by [—2797,27w), we have that

L (7o) - 75, = 0.

(7 = fig) = [ (10 - 1)zt

- % .
This gives the result.
(b) Let f € Ly(R). Prove that || Py, f — f]l2 ' == 0.

Correction : We have:

1, ~ = 1 ~
I1Pos = £ = o= 0Fs - P =5 [ Fe)e

§g[-277m27Im)

Since fG Lo(R), the right hand side goes to 0 when j — —o0.

(c) Let f € Lao(R). Prove that || Py, f|l2 nase
Correction : We have:

1, -~ 1 ~
1P 1 = 51508 = 5 [ Fleae.

el—2-Im27Im)
Since fE Lo(R), the right hand side goes to 0 when j — +00.

4. Establish that (V}),ecz is a multiresolution analysis.

Correction :
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- Previous questions give Conditions 1 and 2.
- We prove Condition 5. We have that for any (k,k') € Z?,

1 - = T ™ .
[ ontontar = o [ ou©au(ds = o [ Peag = 10,

—T

by using the first part of Question 2b). This result, combined with the second
part of Question 2b), shows that Condition 5 is satisfied.

- We prove Condition 3. Let f € Lo(R). We denote g : x — f(x/2). We have
for & € R,

56 = [ fa/eido =2 [ e car = 2f(z6)

and for any j € 7,

supp(f) C [=277m,279m) <= supp(g) C [-277 " 'm, 277 1)

meaning that
feV, < z— f(z/2) € Vji1.

- We prove Condition 4. Let f € Lo(R) and (j,k) € Z*. We denote g : x
f(x+27k). We have for £ € R,

3(6) = / [+ Pk)e " dr = 2 / F(tedt = ¥R fe)

and

~

supp(f) = supp(9)

meaning that
fevV, < geV,
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A.6 Exam 2021-2022

High-dimensional statistics

EXAM: duration 3h00

Documents, calculators, phones and smartphones are forbidden

Problem 1: Group-Lasso estimation
We consider the multivariate linear regression Gaussian model :
Y =Xp"+¢ (A.10)

with Y = (Y,...,Y,)T the vector of observations. The matrix X of size n x p is assumed
to be known and * € RP is the vector to be estimated. Finally, the error vector is € =
(1,...,en)" and satisfies € ~ N(0,021,,) with ¢ > 0 unknown. We denote (Xi,...,X,)
the columns of X. The ¢y-norm is denoted || - ||. For any matrix A, we denote AT its
transpose matrix and for any estimate B , var(B) denotes its variance-covariance matrix.

We choose M < p and let Gy, ..., Gy some sets so that {G,..., Gy} form a known
partition of {1,...,p} in M sets. That is

M
UG ={L....p} GiNGy=0,ifj#7.
j=1

For any j € {1,..., M}, we denote K; = |G;| the cardinal of G; and we denote by X¢;
the n x K; sub-matrix of X formed by the columns indexed by G;. Finally, for any 8 € R?
and any j € {1,...,p}, we introduce 3V the vector of size K; defined by

pY) = (Br)kea,-

We also denote '
S ={je{l,....M}: B9 £0}.

To estimate * = (07, ... ,ﬁ;)T € RP, we consider the Group-Lasso estimator defined by
a solution of the following minimization problem

M

5 i _ 2 1180)

ﬁearggéﬁg{HY XA+ IA;Hﬁ H}, (A-11)
J:

where Aq,..., \y; are positive parameters specified later.
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1. We study the criterion C' associated with the minimization problem (A.11) and
defined by

(a)

M
C:BeR —|IY — XB|* + Y _AlI89).
j=1
Show rigorously that the criterion C'is convex.

Correction : Any (squared) norm is conver. So B — ||Y — XB||* is convex
and for any j, B+ ||BY)]| is convex. Since the \;’s are positive, the penalty
is convex and the criterion C' is convex (the sum of two convex functions is a
convex function).

Show that if 3, and j; are two solutions of the minimization problem (A.11),
then

M M
XBi=XB and D> N8V =D N8
j=1 =1

Correction : We assume that X[;l =+ XBQ and we consider B = %(31 + 32)
Then, since B — ||B||* is strictly conver and Y — X ) #Y — X 3o,

—~ 1 ~ 1 ~ 2 1 2 1 2
Iy =B = |3 = xB)+ 50 = XBo)|| < 5|y —xB| +5 v - x5,

The penalty being convex, we obtain

-~ ~

@) < 5 (CB)+CBo) = B = OB,

which cannot occur. So, XP1 = XpPs. The second point is an immediate
consequence of this property.

Give some conditions on the parameters of the problem so that B is the unique
solution of the minimization problem (A.11).

Correction : The minimization problem has a unique solution if the criterion
to be minimized 1s strictly convex. This is true for instance if the rank of X s
equal to p.

Give the values of the parameters of the problem for which B corresponds to
the classical Lasso estimator.

Correction : M = p and for any j € {1,...,p}, K; = 1, \; = X for some
A > 0.

Describe the specificity of the Group-Lasso estimator with respect to the classi-

cal Lasso estimator and provide a concrete example for which the Group-Lasso
is of interest.
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Correction For the Group-Lasso estzmate for any j € {1,...,M}, either

) 240 and all coordmates of 5 are different from 0 or B(J = 0 and all
coom’mates of B are equal to 0.
The Group-Lasso estimator is useful for instance if the vector'Y is the response
variable corresponding to a disease and each column of X models the influence
of a specific gene on Y. All genes can be grouped according to their belonging
to chromosones, and a gene has an impact on the disease if and only if the
chromosone on which it is located has an impact on the disease.

2. We study the theoretical properties of ;B\ . We consider the event A so that
~ T )‘j
A=Q&,&=“%ﬂﬁz}
(a) Show rigorously that for any vectors a and b of R?,
M

Z ).

Correction : We have:

CLTb = Z akbk = Z Z Clgbg

Jj=1LeGy
M
<Z Zaz\/ZbZ S 1169
eG leG j=1

where the inequality comes from the Cauchy-Schwarz inequality.

(b) Deduce that for any € R?,
R M R M M R
X350 < X (5= 42 D IXE B0+ Al -3 A1)
j=1 j=1 j=1
Correction : By definition of B\, we have:

M M
IV = XBIP < 1Y = XBIP+ > M1891 =D A8
j=1 j=1
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which is equivalent to
IX(B =B < IIX(B =B+ 25" X (B = B) + D _ NIV =D NlIBY|
j=1 j=1
M N M M R
<X (B =B+ 2D IE"X)DNBD = BN+ N8V =D NlIBY].
j=1 j=1 j=1

We conclude by observing that for any ¢ € Gj,
('X)y =X, = X]¢

and (e" X)) = X{ €.
(c) Finally, prove that on the event A,

. 1 . N ‘
X (B-8")117+3 ;MIBU)—B“)H < uxw—ﬁ*nmg@ X min (|89 |B9—p9).
(A.12)

Correction : On the event A,

j=1 j=1

N 1 M . A M . A M _ .
IX(B=B1P4+5 D MIBO—BDN < 11X (B=7) 2+ D MIBO=O1+ 3 X (18211- 182 ).
j=1

Then, for any j & S(B),
|89 = B9 + 1891 ~ 1B = 181 ~ 159 = o.
For any j € S(B), on the one hand,
59 — 8+ 189 — B9 < 5O + 1589 + 189 - 139 = 2082,
and on the other hand,
1BY = B9 + 1891 — 189 < 259 — 5]

We obtain the desired result.

(d) Provide a bound on A of ||X(3— B*)|I* only depending on /> jes(sn) A7 and
18-
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Correction : In the previous expression, we take 3 = [* and we obtain

IX (B — 8412 < |X(B - 897+ ZAW @D

<2 Y Ajmm(uﬁ* ;189 — 570

JES(B*)
<2 ) AlIBY
JjeS(B*)
oo [>T )
JES(B*) JES(B*)
=20* [ > A%
JES(B*)

3. We now assume that all eigenvalues of the symmetric matrix X7 X are larger than
a constant x assumed to be positive.

STNIBY =D < 13T R xsT2X(B - B
JjeS(B) jeS(B)

Correction : We have:

> 189 Z A x [T B0 — a2

jeS(B) jES(B J€S(B)

I3 X2 x|5- 5|

JES(B)

I3 M x s 2 X (B - B
JES(B)

(b) Using Inequality (A.12), establish that on the event A,

(a) Prove that

IA

IA

IX(B =8I < inf { el X(B= P+ 2 3 N,

JGS(B)

with ¢; and ¢y two positive absolute constants.
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Correction : We set

= |X (B - B")|* + ZAW @)

Then, from Inequality (A.12), we get for any o > 0,
ASIXEB =8P +2 Y MlIBY — 89

J€S(B)
<IX@B-BP+2 [ D M xs2X(B - )
JjeS(B)
< X8 -8+ alX(B - B+ ZAQ
JjeES(B
< (L+20)[IX (8 — B2 + 20 X (B = B+ (ar)™ Y A2

J€S(B)
We take o = 1/4 and we obtain on the event A,

R 8
IX(B -6 < jnf 3IX(E -+ > 3 X

JES(B)

4. We now assume that all eigenvalues of the symmetric matrix X X T are smaller than
a finite constant ®. We study S(5) the support of 8. For this purpose, we recall
that 3 is a solution of (A.11) if and only if for any j € {1,..., M},

2XE (Y — XB) =\ x Hgﬁjin if BU) £ 0,
HQXG (Y — XB) H <\ it B0 = 0.

(a) Let j € {1,...,M}. Prove that ifﬁj #£0,0n A,
N A
1X6,X (5" = B)| > =
Correction : If E(j) # 0, we have
x|
and the triangular inequality gives, on A,

IXE,X(8" = B)ll = | XE,(v - xB)|| - || x5, (v - x5

AN
s

S
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(b) Deduce that |S(,73\)|, the cardinal of S(B\), satisfies on A,

|<ZVM¢%35W

Correction : We have on A,
M
SB)| = Z 1{§(j)¢o}
j=1
M
< 1 ~ ;
- Z {IxZ, x(6=-B)I2% }
< 1
> {iguxt o]

<ZVMGB - B

(c) Finally prove that on A,

16D
min; )\2

1S(B)| < 1X (8" - B)|%

Correction : We have on A,

|<Z Wcﬁ oIk

]

Sm%vZMCﬂ PP

16

< XTX (55— B)|?

< i, 2 XX )]
16P

< X 2

< oy X B = AP

Using the bound of 2d), we obtain

~ 0}
SB)< —= 151 [ 3 R

min; )\2 ‘
JES(B*)




Vincent Rivoirard 121

5. The goal of this question is to determine the values of the \;’s such that the prob-
ability of A is large. In the sequel, we denote ®; the largest eigenvalue of the
symmetric matrix X, X¢ .

(a)

Prove that
X5 el < o?®yllo e

Correction : We have

IXG,ell” = e" Xg, X e < el

and we get the result.

Let 8 > 1. By identifying the distribution of ||o~'¢||?, determine \; such that

P(A) >1—- M7~

Correction : The random variable ||o~'¢||* is a x*(n)-variable. Therefore,

I
=

P(A) P(A7)

1

o,
=

<> P(4IxE el > )
1 |
7

A \2
<N "P|[lo"e|? > ( ! ) )
) ( 40'\/(1)]'

Consequently, taking qnai—p the quantile of order 1 — M= of the XQ(n)—
distribution, we set

J

=

<
Il

Aj = 40\/&§7X Vn,M1-p

and

M M
P(A) < Z}P(HU*%HQ > C]n,M,pﬁ) < Z]W*‘B = M'F
Jj=1 j=1

and
P(A) >1—- M7~

6. We now replace the linear regression Gaussian model (A.10) by the following Poisson
model

Y ~ Poisson(exp(X ")),



122

High-dimensional statistics

meaning that we observe Y = (Y;,...,Y,)T € R" so that its components are
independent and each component Y; has a Poisson distribution with parameter

0; = exp (25:1 XMBZ>. As previously, the matrix X of size n x p is assumed to be

known and * € RP? is the vector to be estimated.

()

Give the expression of the log-likelihood associated with the previous Poisson
model.

Correction : We have for any i and any integer k,

ok

P(Y; =k) = eXP(—Qi)g-

Therefore the expression of the log-likelihood at any § € RP is

n

p p
L(p) = Z <_ exp ( Xiéﬁé) +Y; ZXigﬁg — 10g(Yi!)> .
i=1 =1 =1
Suggest a Group-Lasso type estimator of 8* based on a convex criterion built

from the log-likelihood given in the previous question. Justify your statements.

Correction : For any «a € [0; 1] and any vectors 1 and 5 of R?, we have
P P P
exp (Z Xi(afre+ (1 — 04)5%) = exp <Oé > Xubut(1—a)) Xwﬁzz)
=1 =1 =1

< aexp (i Xmﬁu) + (1 —a)exp (210: Xi/%ﬁQe)a
=1 =1

by using the convexity of the function x € R — exp(x). Therefore,

—L(afB + (1 —a)ps) < —aLl(Br) — (1 —a)L(Ba),

meaning that the function —L is convex. Consequently, a natural Group-Lasso
type estimate 18

M
5 ) 180
8 € arg min { L(B) + ;1 Aills H}a

with A1, ..., Ay positive parameters.
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Exercise 2: Scale-invariant estimators
We consider the multivariate linear regression Gaussian model :
Y =Xp"+¢ (A.13)

with Y = (Y7,...,Y,)T the vector of observations and 3* € R? the vector to be estimated.
The matrix X of size n X p, with p < n, is assumed to be known and of rank p. Finally,

the error vector, € = (gq,...,&,)7, is assumed to be centered and its variance-covariance
matrix is o3 I, where o > 0, the variance of the Y;’s, is unknown. The f;-norm is denoted
Il - ||, whereas the ¢;-norm is denoted || - [|;.

We consider § an estimator of 3* obtained by minimizing some function crit depending
on Y and f:

~

b = arg éléﬁg crit(Y, B).
We say that B is scale-invariant if for any deterministic constant s > 0,
arg grelﬁg' crit(sY, sf) = arg /grelﬁg crit(Y, B).
1. Prove that the ordinary least squares estimate is scale-invariant.
Correction : For the ordinary least squares estimate
crit(Y, B) = ||Y — X B|?

and for any s > 0
crit(sY, s3) = s*crit(Y, B)
and

arg min crit(sY, s3) = arg min crit(Y, 3).
& Bere (sY,55) = & © BeRrp (Y. 5)

2. We consider the following estimate
B = arg uin { Y — XB] + A8l |

with A independent of 3, Y and oy. Establish that B\ is scale-invariant.
Correction : In this case,
erit(Y, 8) = |V — X8 + A8l
and we have
crit(sY, sfB) = s x crit(Y, f)
and

arg min crit(sY, s3) = arg min crit(Y, 3).
& Bere (sY,50) = & © BeRrp (Y. 5)
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3. We consider the following Lasso-estimate
~ ‘ B )
B = arg min { [V — X8| + A8l }.

(a) We assume that oy is known. By computing the standard deviation of sY7, for
some s > 0, provide an expression of A such that (3; is scale-invariant.

Correction : We have o5y = s X ay. Therefore, by taking A proportional to oy,
say A = oy p with p independent of oy, Y and 3, we have, with

crit(Y, B) = |Y = XB|I* + Bl = Y = XB|* + oy pl Bl

crit(sY, sB) = s*crit(Y, B)

and
in crit(sY, sf) = in crit(Y, 3).
arg min cri (sY,sp) = arg Imin crd (Y, 8)

(b) We assume that oy is unknown. Suggest an estimate of oy and provide a
data-dependent expression of A such that (3, is scale-invariant.

Correction : We consider

F(v) = arg min [V — X5 = (XX) X7y
cRRP

where the last expression is valid since rank(X) = p. For any s > 0,

Eols(sy) _ SBOZS(Y).
and we estimate oy by oy with
Y = X5
oy = —
n—p

and
asy = s X a'y.

Taking X = oy p with p independent of oy, Y and (3, the estimator Bl 15 scale-
mvariant.
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Exercise 3: Estimation of the mean of functional data

Let Z a random variable taking its values in H = L?([0,1]). For all f,g € H, we
denote as usual

(f. g = / F(B)g(t)dt,

and || f|lm = /(f, f)m- We suppose that there exists a constant C' > 0 such that |Z(t)| <
C a.e. int and a.s.

1. Prove that there exists m € H such that, for all f € H,

and that

[mlle < C.
Correction : Let ¢ : f w— E[(f, Z)u|. By linearity of the scalar product and the
expectation, ¢ is a linear application from H to R. Moreover, for all f € H, by
Cauchy-Schwarz inequality,

e (N <ES, 2)ull <E[fllullZlla] < Cllf e

Then, the linear form ¢ is continuous and the result comes directly from the Riesz
representation theorem.

2. Let Zy,...,Z, bei.i.d. random variables following the same distribution as Z. Prove
that ~ ,
RS E[|Z —m|&] _ 4C*
E |Il= 7. — = < .
n Z i n on
i =1 H
Correction :
1 < ’ 1 a ’
E EZZi—m = SE Z(Z,L-—m)
=1 H =1 H
Let Z; = Z; —m, we have
n 2 n n 1
E||MZ|| | =Y E[(Z.Zw] =D E [/ Zi(t)Zj(t)dt} .
i=1 H ij=1 ij=1 0

Using Cauchy-Schwarz inequality and the assumption that || Z|lw < C, we remark
that Z;Z; 1is integrable. Then, the Fubini theorem and the fact the the Z;’s are
independent and centered gives us

E[/O Zi(t)Zj(t)dt} :/O E[Zi(t)Zj(t)]dtzl{,-j}/o E[Z2(t)|dt = EB[|| Z||3)1 =

which implies the expected result.
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3. We suppose now that Z is continuous a.s. We observe {U;p,i = 1,....,n;h =
1,...,p} such that

Uin = Zi(tn) + €in
where ¢, = h/p, h=1,...,pand {&;5} ~iia N(0,0?) is independent of Z1, ..., Z,.
Let I, = [(h —1)/p,h/p[, h =1,...,p. We define a simple histogram estimator m

as follows
1 < -
— E U,
n “
=1

where

p
U= Uinly,(t)
h=1

(a) Explain why m* = 13"  Z; is not an estimator of m.

Correction : The Z;’s are not observed.

(b) Verify that

n

{Hm B[ M E[||U: — E[0y)E]

Correction : We apply the result of 2. to the sequence Uy, . .., U, which is i.i.d.
and verify

2 »
E[|| 0 ]I?) / (ZUlh]-[,()> dt —E[Z/ Ufhdz‘
h Ih

since E[UT, ] < 2B[Z2(ty)] + 2E[e},] < 400 for all h.
(c) Prove that

ZE [U2,] < 400,

h=

E[|0: ~ B = 5 > Var(Zu(t) + o

Correction :

]E[H[jl —E[ﬁﬂ”% / / Cov Ulh U1 h’)]-th]-t}/dt
h,h/=

Var (Z1(tn)) + Var(e1 1))
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(d) Calculate E[U;].

Correction :
p P

E[Uh] =Y E[Uinl1,(t) = > m(ty)1y,.

h=1 h=1

(e) We suppose that m is an a-Hélder continuous function, with a > 0, i.e., there
exists L > 0 such that, for all s,t € [0, 1],

Im(t) — m(s)| < LIt — s|°.
Prove the following bound on the risk of the estimator m,

L?  4C?% + 02
=7

ﬁ

E[|m — mlfE] < -

Correction : We start from the bias-variance decomposition of the risk
~ 2 ~
Ell - mli] = & || - 0[] + 100 - mi

(b) and (c) and the boundedness assumption allow to upper-bound the variance
term. For the bias term we get from (d) that

IE[Gy] - ml% = / 1 (im<th>1zh<t>—m<t>) dt

h=1
p p
— Z/ (m(ty) —m(t))*dt < L*> [ |ty — t[**dt.
h=1"In h=1"In

The result comes from the fact that

1 1
|ty — t|**dt g/ —dt = ——.
/Ih In P2 p2att
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A.7 Exam 2022-2023

High-dimensional statistics
EXAM: duration 2h30

Documents, calculators, phones and smartphones are forbidden

Exercise 1: Fast wavelet transform

Along this exercice, we use the discrete convolution, denoted %4, between two sequences
of real numbers a = (ag)gez and b = (bg)kez:

laxqb Z agby—¢, k€7

LET

1. We consider a multiresolution analysis:
{0} Cc---C Vi CcV; Vi C--- CLy(R).

We introduce the father wavelet ¢ and for any (j, k) € Z?,

Pin(t) = \/1#5 (t _szj) =277P¢(277t — k), teR,

so that for any j € Z, (¢;x)kez is an orthonormal basis of V;.

(a) By using x — ¢(z/2) € Vi, prove that for any z € R,

o(x/2) = \/_th¢a:—

kEZ

hy, = % /qu (%) é(t — k)dt.

Correction : We have x — ¢(x/2) € Vi C Vi, So, for any xz € R,

@(I/2)22< (-/2); on)Or(z thbﬂ"—

keZ kezZ

=5 Lo (5) ot

with

with
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(b) We fix (j, k) € Z*. For any f € L*(R), we set
k= (fi0ik)-
i. Show that for any ¢ € Z
(Djt1,k3 Dje) = Mok

Correction : We have:

j+1 1 —j
(Djr1h; Dje) = /ﬁ¢f+1(2<*>t— );§§(2 t—0)dt

7 o(F) et -ou
fo(

;) (0 2k))dt

ii. Justify that we can decompose ¢;11 on the ¢;,’s and prove:

Qjt1k = Z he—or®j.

LEL

Correction : Since for any k € Z, ¢j11 € Vi1 C Vj, we can decompose
Gjs1k on the @i ’s. Since (¢j4)iez is an orthonormal basis of V;, we obtain:

Givrk = > _(Gi1n 6ie) D

LeZ

= Z ho—ok®je.

LET

iii. Show that
a1k = [ *q h](2k),

where o, = (a;¢)eez and for k € Z, hy = h_p.
Correction : We have:

1k = (f10jp1k) = Z ho—ok(f; je) = Z he—apaje = [aj. xq B](2K).

LET LET
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2. For any j € Z, we now introduce W; as the orthogonal complement of V; in V;_;
VieW; =V

We introduce the mother wavelet ¢/ and for any j € Z and any k € Z

o) = (S5 ) —rPuen-p, teR

so that for any j € Z, (v )kez is an orthonormal basis of W.

(a) Show that there exists (A\g)rez such that we can write for any = € R,

P(@/2) = V2 Meg(z — k). (A.14)

kEZ

Correction : We just use the following fact: the function x +— ¥ (x/2) € Wi C
Vo.

(b) We fix (j, k) € Z*. For any f € L*(R), we set
B = (f1¥jk)-

i. For any j € Z, express the coefficients (5,41 )kez in function of the coef-
ficients (o k)kez and (Ai)kez-
Correction : As before, we establish that

Vjij1k = Z Ne—2kDj0-
ez
We deduce:
Bivik = (Fivean) = D Meoan{f5050) = D Meoaneje = [a. xa N(2k),

ez ez,
with for any k € Z, A, = A_p.
ii. Show finally that we have for any j € Z and any k € Z,
k= Z Pi—200j41,0 + Z Ak—200j41,0-
LeZ Lel

Correction : To prove the result, we decompose ¢ € V; = Vi1 @ Wiy
and we obtain

Gik = D _{bik; D100 Gjrre + D (Diki Yir10)Ujsre

LETL LET
= E hi—200j 41,0 + E Ak—200j41,0-
tez. ez

Then, taking the scalar product with f, we obtain the result.
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3. We recall the connection between ¢ and v: for any w € R,
Y(2w) = e"mo(w + T)d(w),
where zﬁ and é denote the Fourier transform of ¢ and ¢ respectively and

T e

keZ
(a) Establish that for any w € R,

Z hl k k“e_ik“’gzg(w).

kGZ

Correction : For any w € R,

kEZ
Z hy, eﬂw (1— k )kgg(w)
keZ
\/»Z}h e wa )1 /¢(w)
LeZ
Z hl Fe—zwﬁ 1+Z¢( )
(EZ

(b) From Equation (A.14), deduce the relationship
Mo = (=DFhy . ke Z
Correction :  Equation (A.14) gives: for any x € R,

W(x/2) = \[Z)\kqﬁx—

kEZ

By taking the Fourier transform of both sides, we obtain for any w € R,

/w z/2)e ”wdx—\[Z)\k/gzﬁx— e dy

kEZ

=V2)  Me ™ o(w)

keZ

=2 Z Are” "R o(w),

keZ
which provides the result by using the previous question.

and

131
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Exercise 2: Degree of freedom

Given 3* € R? and a matrix X of size n x p, and whose lines are denoted z7,... 27 so
that
vy
T
x
X = .2 )
Ty,
we consider the regression model
Y; = xl B* + ¢, 61-%N(0,02), i=1,...,n, (A.15)
with o2 > 0. We denote
Y =W,....Y,)", e=(e1,...,en)"
and we define the degree of freedom of a function g : R® — R"™ by:
1 n
) = 5 3 eova0). )
where g; designs the ith coordinate of g. We recall that
cov(g;(Y),Y:) = E[(:(Y) — E[g;(Y)]) (Y — E[Y3])].
Model (A.15) can be rewritten
Y =X3"+¢
and we assume that rank(X) = p. In the sequel, we denote || - || the ¢5-norm on R™.

1. We consider 3 € R? any estimate of 8* and we set g(Y) = X8, so
9:(Y) = (XB)s.

We denote ) )
C, = ||Y — XB|* — no® + 20%df(X B).

(a) Prove that for any i € {1,...,n},

~ ~

E((Y; — E[Yi])(E[Y]] — (X/),)] = E[(Y; — EY)(E[(XB)] — (X5):)]-

Correction : We observe that for any i € {1,...,n},

E[(Y; — E[Vi))(E[Y]] — (XP),)] = E[(Y: — E[Y])(E[Y] - E[(X )] + E[(XB).] — (X):)]

~

= 0+ E[(Y; — E[Yi)(E[(XB)i] — (X5):)].
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(b) Prove that
E[C,] = E[|X5 — X5||%].

Correction : We have:

E[| X5 - X)) =E[| X5 - Y +Y — X%

=E[|X8 - Y|P’ + E[]Y — X5|)] - 2E

DY = XB)(Y - XB»]

i=1

=E[|X3 - Y| +E[|e|]

—2E i(Yi —EY)(Y; - E[Yi] + E[Y]] — (Xﬁ)z')]

=1

=E[| X5 - Y|’] — E[[le]*] - 2E

> (Yi—E)(EY] - (Xﬁ)i)] :

i=1

So, since E[||e]|?] = no? and using the result of the previous question,

E[l X8 — X5 = E[| X5 = Y|*] —no® =2 E[(Y; - E[Y)(E[(XB):] — (X5),)]

=1
—E[| X5 - Y| — no® + 202 df( X B)
E[C,).

2. We now estimate X [* with
g(V) = X(XTX)' X"y,
(a) Prove that

df(g) =)l (X"X) ;.
=1

Correction : For this case, ¢;(Y) = 27 (XTX)*XTY. We denote 1; the vector
whose components are all equal to 0 except the ith component equal to 1. Since
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XTXL'ZCL'i

(b) Deduce that
df(g) = Trace(X (X7 X)'XT).
Correction : Obvious.
(c) Finally, prove that
df(g) = p.

Correction : The matriz X (XTX)™'XT is the projection matriz on Im(X),
so, since rank(X) = p, df(g) = Trace(X (XTX)1XT) = p.

Exercise 3: Model selection
We consider the multivariate linear regression model :
Y =X("+¢

with Y = (Y,...,Y,)T the vector of observations. The matrix X of size n x p is assumed
to be known and is such that its columns, denoted (Xj,...,X,), are orthogonal and of
unit norm (consequently X7 X = I,). The vector 3* € R? is unknown. Finally, the error
vector is € = (g1,...,6,)T and satisfies € ~ N(0,021,) with 02 > 0 assumed to be known.
The classical fo-norm is denoted || - ||2. We denote for any model m, a subset of indexes
of {1,...,p}, P, the projection on span(X; : j € m). We denote P,Y = 0 if the model
m is empty. We estimate f* = X[* by using P, Y, where for some A > 0,

-----

where |m| is the cardinality of m.
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1. Prove that
IV = PYI3+ A% m| = [Y]3+ Y (AUQ _ (XfY)?).
JjEM
Indication: Use that (Xj; Xg)e, = Lij=py.
Correction : Since the X;’s are orthonormal, we have:
IV = PoY |3 = Y5+ [ PaY 5 — 2(Y; PnY)e,
= Y2+ [PaY[13 = 2(PaY ;s PuY)e

=Yz = 1Y 3
2
= VI3 - | x|
jeEM
= Y[3 - ) _(X]Y)*
jeEM

We obtain the result.

2. Deduce that
iy ={j: (X]Y)*>\o"}.

Correction : Since ||Y||3 does not depend on m,

my = arg min }{HY — P, Y5+ Ao?m|}

mcC{1,....p
: 2 Ty )2
= arg mcrﬁlnp} {; ()\(f - (X;Y) ) }

={j: (X]Y)*>Xo"}.

3. We assume that §* = 0.

(a) Show that |m,| has a binomial distribution with parameters (p, g,), with ¢, =
1 — F()\) and F is the cumulative distribution of a x?(1)-variable:

[ma| ~ Bin(p,1— F(\)).
Correction : If * =0, we have

p
‘m)\‘ = Z 1{(X]T5)2>/\c72}

Jj=1

p
- Z 1{Z]2>)\}7
j=1
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with Z; = 0~' X['e and the Z;’s are i.i.d. N'(0,1)-variables. Therefore,

[ma| ~ Bin(p,1— F()\)).

N

If A\ is a constant independent of n and p, evaluate, almost surely, lim,, |
Correction : We apply the strong law of large numbers

M Z :
pllgi_noo P —lezloog 1{Z2>)\} Z > )\] a.s.
Therefore
lim 1| =1-F(}) a.s
p——+00 p

We take A = K'log(p), where K is a constant independent of n and p. Deter-
mine the smallest constant K such that

lim E[|m,|] =
p——+00

[2
1= F(\) ~yigoo Ee*W.

Ellmal] = p(1 = F(A)).

Indication: Use

Correction : We have

Therefore, when p — 400,

E[[mal] = p(1 — F(K log(p)))

2

e~ Klog(p)/2
7K log(p)

2 1-K/2
wK log(p) '
and K = 2 is the smallest constant such that

lim E[|m,|] =
p—r—+00
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A.8 Exam 2023-2024

High-dimensional statistics
EXAM: duration 2h30

Documents, calculators, phones and smartphones are forbidden

Exercise 1: Lasso for the logistic model

In the high-dimensional setting, we observe (Y1, Y5, ...,Y,), n independent random vari-
ables such that for any i, ¥; € {0,1} and its expectation depends on p non-random
predictors according to the following transformation

R ( i B;Xij)
L+ exp (225, 55 Xy)
In the last expression, X;; denotes the value of the predictor X; associated with Y; and

[£* is a sparse p-dimensional unknown vector to be estimated. In the sequel, we denote
for any § € R? and any i € {1,...,n},

E[Y]] = P(Y; = 1) = 1 - P(Y; = 0)

pi(B) = exXp (Z?:l ﬁinj)
‘ 1+ exXp ( ?:1 ﬁJXl]>
and p(8) = (pi(8), .- ., pu(B))"
1. Show that the log-likelihood associated with this model is, for g € R?,

L(B) = Z Y; Zlﬁjxij — log (1 + exp <215in3')>
j= j=

i=1

Correction : The likelihood is
0 =Tl o7 i
i=1
Therefore,

n

L(B)

[Yi log(pi(8)) + (1 = Y;) log(1 — pi(ﬁ))}

1
p p
=1 j=1

i

hE

1

T
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2. Prove that £ is a concave function on RP.

Correction : We first study the function
f(z) =log (1 + ex), x e R.
We have, for x € R,

1 e *

f/(l’> = P f”(iU) = m,

and f"(x) > 0. Therefore, f is a convex function. Now, for any o € [0,1], and any
p-dimensional vectors 3 and [’

log (1 +exp <Z(aﬁj +(1- 04)5})&4)) = f(Z(Oéﬁj +(1- Oé)ﬂﬁ«)&j)

J=1 Jj=1

< af<zﬁjxij> +(1- a)f(Z@-Xm)-

It yelds

> log (1 +exp (Z (i + (1 - a)ﬁ}))@-»)) <
aZlog <1 + exp (Z@-X@)) + (1 —a) Zlog (1 + exp (Zﬂ;XU)

j=1
i=1 j=1
Therefore, since B+ Y0 Vi3 F_| B; Xy is linear,
Laf+(1—a)f)>al(B)+ (1—a)l(F)
and L is concave.

3. We estimate $* by using the estimate
f € arg min { — L(B) + /\Ilﬁllel},

where || ||¢, is the ¢1-norm of the vector 5 and A > 0 is a constant. Justify carefully
the introduction of § to estimate 5*. In the sequel, we denote for any 3 € RP,

Ca(B) = —L(B) + AllBlle, -

Correction : Using previous questions, C) is convexr on RP. We are in the high-
dimensional setting, so we need to use a conver criterion to minimize. The vector
B* is sparse, so it is natural to use a Lasso-type estimate by introducing the (-
penalty.
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4. Deduce that ,/6\ is a minimizer of C) if and only if there exists w € R? such that
[w|lee <1 and w?B = ||B||; and such that

XT(v = p(B)) = rw.

Correction : We have

OLPB) _ v
o

Xij
1+ exp ( — Z?:l BZXM)
= (XTY)j - (XTP(B))J‘

Since Cy s a conver function, B is a minimizer of Cy if and only if 0 belongs to the
subdifferential of C'\ at 3. We obtain the conclusion.

YiXy -

=1

5. We denote H the Hessian matrix associated with £. It means that for any (j, k) €

{1,...,p}
PL(B)

03,08
(a) For any 8 € RP, give the expression of Hji(5).

H;,(6)

Correction : We have

L(B)
ap; 2

L+exp (=20 BeXa) |

YiXy -

i=1

Therefore,

L) B i XijXiwexp (= D20_ BeXie)
— o
IB;05% — (1 +exp (=30, ﬁszw)>

(b) Deduce that for any vector v € RP, v H(3)v < 0 and
vTH(B)v =0 <= Xv=0.
Correction :
p P
v H(B)v = Z Z vjveH i (5)
j=1 k=1
& Xi; Xk exp ( >0 @Xw)
== 0 D v z
i=1 j=1 k=1 (1 +exp(— >0, 519@'4))
n o ¥4 X
S e CThAN)
i=1 (1 +exp(— >0, ﬁeXw)>
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Therefore, v H(B)v < 0 and

vVTH(B)v =0 <= foranyic{l,...,n}, (Xv);=0 < Xv=0.

(c) Prove that if X is full rank, then there exists a unique vector B\ minimizing the
function C'y on RP.

Correction : If X is full rank, the previous question shows that the log-likelihood
L is strictly concave. Then, C' is strictly convexr on RP. We obtain the result.

6. Describe precisely the tuning of A by using cross-validation.

Correction : For any i € {1,...,n}, we denote r; = (Xi1,..., X;p)T.

(a) Choose V' and a discrete set A of possible values for X.
(b) Split the training set {1,... ,n} intoV subsets, By, ..., By, of roughly the same
size.

(c) For each value of X € A, for k =1,...,V, compute the estimate Bg_k) on the
training set ((x;,Yi)ien,)exx and record the total error on the validation set By:

1 (k)2
MZ(E Y

i€By,

€k(>\) =

where 2(/\%) =1ifpi (Bgﬁk)) > 0.5 and EA/Z(;]C) = 0 otherwise.
(d) Compute the average error over all folds,

CV(A) := %Z@g()\) = %Z m Z (Yl — }/;;E;k))Qa

k=1 k=1 i€DB),

(e) We choose the value of tuning parameter that minimizes this function CV on A:

~

A= arg min CV(A).
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Exercise 2: Uniqueness of the Lasso estimate
We consider the linear regression model
Y =X3"+¢,

with X the known design matrix whose columns are denoted X, Xy, ..., X,,. Here, 5* €
RP? is an unknown vector to estimate and ¢ is the error vector. We consider the Lasso
estimate of 5* defined by

T
B e arg min {1V — XBI, + A8l }.

where A > 0 is a constant. We recall that a vector B € RP is a global minimizer of the
criterion C); defined for 8 € R? by

Cr1(8) = 1Y = XBI[z, + AllBlle,

if and only if there exists w such that

o o=2XT(Y — XB),
Jwlle <1, ~
w; = sign(p;) if j € {1,...,p} is such that 3; # 0.

We set R

T(p) =w.
The goal of this exercice is to derive conditions so that C\; has a unique minimizer. In
the sequel, we consider two vectors 3 and 3@ that minimize Chi.

1. Show that Xg(l) = XB@).
Correction : Assume that Xg(1> #+ XB\(Q). We set u = (B\(l) + 3\(2))/2. We have

Y — X0 £y — xp@,
Since x — ||z||7, is strictly convex and x — |||\, is convex, we have:
Con(u) = (Y — XB0) /24 (¥ — XB) /20, + M8V /2 4 52 2],
< 5 (I = XBOR, + ABO Y, + 1Y — X5, + A2, )

and

(1) (2)
_ Cr1(BWM) 42r Ca1(8%) _ CM(ﬁ(l)) — CM(ﬁ(Q)).

We obtain a contradiction. Therefore, XB(I) = XB@).

C)\71(U)
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2. Deduce that T(31)) = T(5®).

Correction : We have

AT(FV) = 2XT (Y — X5
=2xT(Y — X3?)
= \T(5®)

and, since X > 0, T(ﬁ(l)) = T(E(Q)).
3. We set R R
w=T() =7(3%)

and
J:{je{l,...,p}: lw;| =1}.

(a) Prove that if j € {1,...,p}\ J, B\j(.l) =0.
Correction : Let j € {1,...,p}\ J. ]fﬁ;l) # 0, then we can set w; = sign(ﬁj(l))
and |w;| = 1, which implies j € J. contradiction. Therefore, /9\](»1) =0.

(b) We denote X (.J) the matrix whose columns are the columns X for j € J. The
matrix X (J) has n rows and |J| columns. Show that for any j € J,

(XX, = XTY = S,

where B (.J) is the vector of size |.J| whose components are the B](-l)’s for j € J.

Correction : We have

2X7(Y — XBW) = .
Therefore, for j € J,

J

A .
xfy—§%=<xﬁmm>
T v (1
= XTxpW
p
= X7 B"X
(=1
=X VX,
led

= (X())"'X()BY(),

We have used that B,E” =0l ¢ J.
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(¢c) Conclude that if X (J)TX(J) is invertible, then 3 = 3.

Correction : We set z the vector of size |J| whose components for j € J are
A
_ T
Zj = Xj Y — §U}j.
From the previous question, we deduce
X)X (N)BO(T) = .

Therefore, :
o) = (X(J)TX(J))_ 2.

Stmilarly, we obtain
1

BA) = (X()TX(D) =

and B\](-Q) =0ifj ¢ J. This implies BV = 3@,

(d) Deduce an algorithm that can be used in practice to check that Cy; has a
unique minimizer.

Correction : We compute B a minimizer of Cy . Then, we determine
J=<j€e{l,...,p}: ]Xj(Y—XB)|:§ .

Finally, we check that X (J)T X (J) is invertible.
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Exercise 3: Model selection for functional data

We assume that we observe Y7, ...,Y, such that, forallt=1,...,n,
Y = (Xi, 8%) + &
e Y] is the variable of interest (we suppose here that Y; is a scalar quantity),
e X, is a fixed functional variable belonging to L?([0,1]),
e (3* is an unknown element of F = 1L.([0, 1]), called slope function,
® cy,...,&, are i.i.d. centered Gaussian variables. We denote 0% = Var(e;).

In the last expression (-, -) denotes the L?([0, 1])-scalar product. We suppose that for all
t €10,1],

) = % X =0

We consider the empirical covariance operator
~ 1
I': fel?(0,1]) — — X)X,
fELA(0 1)) — — 3 (f Xi)

and its eigenelements (qz)\ma/)‘\m)m21 with /):1 > }\\2 > .0 > /):m > ... Denoting for any
integer m such that m < n,

Sm = Span{{b\h s 7772771}7

we consider
n

W(B) ==Y (Vi — (8, X3))°
=1
and
Bm = arg min 7, (6).

m

Finally, we estimate £* with Em with

m=arg min {%(ﬁm) + pen(m)} :
where pen(m) is a penalty function only depending on m. In the sequel, we set for any
f e L¥([0,1]),
1< 1 —
1A% = EZUa X% wa(f) = EZ&'U, Xi).
i=1

i=1



Vincent Rivoirard 145

1. Show that for any integer m such that m < n, and any 5 € S,,,
187 — B*[I5 < 16 = B*[17 + 2vn(B5 — B) + pen(m) — pen(in).
Correction : We have

¥ (B) + pen(i) < v, (B) + pen(m)
< Y (B) + pen(m).

Therefore,

We obtain
1Ba — B2 < 18" — BI + 2v(Ba — B) + pen(m) — pen(in),
which s the result.

2. Prove that for any a € (0, 1),

185 = B11% < (1+20)]|8 = B°[1% + 20| B — B7[12 + 2™ ros, S vo(f) + pen(m) — pen(im).
EOmVvim, n:]-

Correction : Since Bz — B € Spvm, we have:

WP — ) < 2Bsm — Bl sup  valf)

FESmvamslflln=1

< allBm = Bl2 + a7t sup V2 (£)
fesm\/fr\m‘lf””:l

<2a||Bs = B+ 2018 = B[R a7 sup  vp(f).
fES777.\/777.7||an:1

This gives the result.
3. Deduce that

1Ba — 8712 < 318" —BI2+ 8f g S va(f) + 2pen(m) — 2pen(in).
EOmVvim, 71:1

Correction : This is obvious by taking o = 1/4.
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4. We study now for any integer m such that m <n,

H, = sup v,(f).
FESm | flln=1

For this purpose, we introduce the matrix ¥,, such that for 1 <7 <nand1 <k <m

(\I’m)zk = <Xi7¢k>
and P,, the projection matrix on Im(¥,,).

(a) Establish that

1
H, = sup zle,
\/_ z€R™ ze€Im(¥p),zTz=1

with € = (g1,...,&,)7.

Correction : We have:

Hm - sup Vn(f)
fES'nqu”’nzl

n

1
=  sup — > &(f,Xi).
FE€Sm, I flln=1T z;

Gwen [ = 1" upthy € Sy, we set

1

T = *(<f,X1> L Af X)) =7

W X (ug, ... )t € Im(W,,)

g

and

Top=1.

[flla=1 = =
Therefore,

1
sup zle.

H,, =
f z€R™ zeIm(¥p,),zTz=1

(b) Deduce that nH?2 has a x? distribution.

Correction : From the previous question, we deduce

2
nH? = sup (z" Pne)” = |1 Pmell7,
zER" x€Im(Wy,),xTz=1

and nH?2, has a x* distribution with m degrees of freedom.
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A.9 Exam 2024-2025

High-dimensional statistics

EXAM: duration 2h30

Documents, calculators, phones and smartphones are forbidden

Exercise 1: Lasso for the Poisson model

In the high-dimensional setting, we observe (Y1,Y5,...,Y,), n independent random vari-
ables such that for any ¢, Y; is a Poisson variable whose mean is

o o (5%

In the last expression, X;; denotes the value of the predictor X; associated with Y; and
B* is a sparse p-dimensional unknown vector to be estimated. In the sequel, we denote
for any f € RP and any i € {1,...,n},

Ai(B) = exp <i5inj)

and A(8) = (A(B), -, A(B))T.

1. Show that the log-likelihood associated with this model is, for g € R?,

p p
Y; Z ﬁinj — €xp (Z 5inj> — log (YQ!)
j=1 j=1

Indication : We recall that if Y is a Poisson variable with mean p > 0, we have for
k
any ke {0, 1,2, .. .}, ]P(Y = ]{j) == exp(_lu)%

n

LPB)=>

i=1

Correction : The likelihood is

v =] {Cxp (— Ai(,;a))))\fgf!) }

1=1
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Therefore,
L(B) = log (V(B))
= > |[¥ilog(Ai(8)) = Ai(8) — log (Y1)
i=1
2

p

Y; Z B Xi; — exp <i Binj> —log (Y3!)
=1

j=1

Prove that £ is a concave function on RP.
Correction : Since f € R? v+ 37F | 3;X;; is linear and 3 € RP —— exp <Z§=1 ﬁjXZ-j>
s convex, L is a concave function on RP.

. We estimate 8* by using the estimate

B e arg min { — £(8) + 11181l }.

where || ||¢, is the £1-norm of the vector 5 and v > 0 is a constant. Justify carefully
the introduction of £ to estimate 5*. In the sequel, we denote for any g € RP,

C5(8) = =L(B) +IBlle,

Correction : Using previous questions, C., is convex on RP. We are in the high-
dimensional setting, so we need to use a convexr criterion to minimize. The vector
B* is sparse, so it is natural to use a Lasso-type estimate by introducing the {1-
penalty.

Deduce that B\ is a minimizer of C, if and only if there exists w € R? such that
|w|lee <1 and w?B = |||, and such that

XT(Y = A(B)) = 7.

Correction : We have

OLB) _ N
8@- _Z

p
Y;X;; — Xijexp <ZB€XM>]
=1

i=1

= (XTY); = (XTA(B));-

Since C., is a convex function, B is a minimizer of C, if and only if 0 belongs to the
subdifferential of C, at 3. We obtain the conclusion.
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5. We denote H the Hessian matrix associated with £. It means that for any (j, k) €

{1,...,p}
PL(B)

08,08k

(a) For any /5 € RP, give the expression of H;;(3).
Correction : We have

L)
55, ~ 2

i=1

ij(ﬁ) =

p
Y;Xi; — Xijexp <Zﬁ£Xiz>] :

(=1

Therefore,

O*L(B z
aﬁjaﬁk LZ X exp ( ZZI BEXM) .

(b) Deduce that for any vector v € R?, vT H(8)v < 0 and

v H(B)v =0 <= Xv=0.

Correction :

=S
— Z Z Z 00X X €xp ( i me)

=1 j=1 k=1
n p
= — Z(XU)ZQ exp ( Z ﬁgXig) .
=1 /=1

Therefore, v H(B)v < 0 and

vVTH(B)v =0 <= foranyic{l,...,n}, (Xv);=0 <= Xv=0.

(c) Prove that if X is full rank, then there exists a unique vector B minimizing the
function C, on RP.
Correction : If X is full rank, the previous question shows that the log-likelihood
L is strictly concave. Then, C) is strictly convexr on RP. We obtain the result.
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Exercise 2: Estimation of the mean of functional data

Let Xi,..., X, ~;.a X where X is a random variable taking values in the space L%(]0, 1])
of square-integrable functions on [0, 1] equipped with its usual scalar product

(f. ) = / f(hgt)dt,  fg € L([0,1])

and associated norm || f|| = \/(f, f), f € L*([0,1]). The aim of the exercise is to study
several estimators of the mean function p = E[X] from a set of noisy and discretized
observations of the X;’s. More precisely, we assume we observe a data matrix

Y = (Y )i<i<nj=0,..p;

such that
K’]:Xz(t])—f—gz’], zzl,,n,j:O,,p,

with
- to,...,t, a regular grid of [0,1] i.e. t; =j/p, j=0,...,p;

- {eijh<i<no<j<p ~iida N(0,07) are noise variables assumed to be independent of
XX,

We study in the exercise two estimators of u:

- a first estimator defined as a step function as defined in the course
1 n
/Z(t):EE}/Z’W fort € [tj_l,tj),]':]_,...,p.
1=
- a second least-squares estimator

:aD<t) = kagok(t)» te [07 1]7

with {¢1,...,p} a sequence of orthonormal functions of (IL%([0,1]),(-,-)) and

mp = (1hy,...,mp)" € RP is solution of the minimisation problem
1 n p D 2
minm:(m1,...,mD)T€RD ﬁ Z Z ifiyj - Z kaOk(tJ) :
i=1 j=1 k=1

The aim is to study the quadratic risk of both estimators.
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1. Study of the estimator ji: we split the quantity i — p in three terms
o= = //Z — ¢+ Raise + Ruoise;

where

i) = =S X0, e o)
Rdisc(t) = %Z(Xl(tj) — Xl(t)) fOI‘ t e [tj—latj)yj = ]_, BN U

1< ,
Rnoise<t) = E E €ij for t € [tjfl,tj),j = 1, .oy P
=1

(a) Assume that E[|| X||?] < +oo, prove that

lu||2] — E[HX — :U'Hz].

Ella —
12 )

Correction :

E[llfi — ull*) = E

1 n
= > E[X; — p, X — p)].

ji'=1
For i #1', since X; — o and Xy — p are independent,

E[(Xi — p, Xo — )] = (E[Xi] — p, E[Xy — p]) = 0.

The result follows.

(b) Assume that there exist a € (0,1] and L > 0 such that
E[(X(t) — X(s))%] < L|t — s|*, for all ¢, s € [0,1].
Prove that

L
E isc 2 S
IRacl] < o gy
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Correction :

E[]| Raisc’]

(c) Prove that

Correction :

]E[HRnoiseHQ]

IA

IN

anM%&w>ﬁ

anM%&w>ﬁ

High-dimensional statistics

By using e.q. the Cauchy-Schwartz inequality

- L
ZZ/ Llt; — t]**dt = BT 5

=1 j=1

o
E“|Rnoise||2] =

E |:/ nozse dt‘| - i/ E nozse dt
7=1

>/

z)

Z/ S Efeqer]df =

tj— 14i'=1

(d) Deduce an upper-bound on the risk of the estimator

Efl|fz — pl”]-

Discuss how this upper-bound varies with the number of individuals n, the
number p, the noise variance, and the regularity of the process (quantified

by «).
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Correction : We have:

Efllii — pll*] < BE[I7E — pll”] + BE[|| Raisel|] + 3E[ Rnoise ]
SEIX - ul) | 8L o
n (2a+1)p*>  n

<

The largern (or the larger p or the larger «), the smaller the risk. These results
are expected. In particulars the smoother the signal, the easier the function to
be estimated and the smaller the risk. Of course, when o2 increases, the risk
mcereases.

2. Study of the estimator ji:

(a) Let

Verify that

Tnp(m) = % ; JX:(XZ(%) — hlt;)) +]Z: (Wj) - imk%pk(tf))? - % ; jZ:E’zJ
+% z:; il (X,t) — itz + = z:; Zi;% (ﬁ(tﬁ - émk@k(tﬂ)>
Tnp(m) = 711 Zl ]il (Xz-(tj) — (t;) + u(t;) — imk@k(%’) + 5@]') |
_ ! g é (X,(t;) — 1i(t;))* + Z: (ﬁ(tj) - émwk(w)> 2
+i zn; zp; e+ i zn; Zp;(Xi(tj) — hilt5)) (ﬁ(tj) - émwk(ta)>
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(b) Let, for two functions f, g :[0,1] — R, and a vector u = (uy,...,u,)’ € RP

(Fouhp =3 Fti)us (Frghy =D F)g(ts), I =D f*(t),

Jj=1

.....

and

P
Tpp =Y (1 ¢5)¢;-

j=1

Deduce from (a) that
I — 12 < 20— Tpp,Ea)y + 7 — Toul2
Indication: Set mp = ({u, 1), - .., (1, op))" and use

Vn,p(th) S /Yn,p(mD) .

Correction : Let mp = ({(i, 1), ..., {1, g0D>)T, we have, by definition of mp,

Wﬂ/,p(mD) S ’Yn,p(mD) .

Then, by (a),

L P D 2
%ZZ (Xi(t)) —0(t;)* + > (ﬁ(tj) — kagpk(tj)> i % '

i=1 j=1 j=1 k=1 i=1 j=1
2 e & 9 M L
YD Kt — Alt)e + DD E (mm -
=1 j=1 =1 j=1
1 = S LI
< DD (Xalty) — )+ DD e
=1 j=1 =1 j=1
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It means that

> (ﬁ(tj) - Z’fhwk(tj)> < —i ZZ%’ (ﬁ(tj) -y VLka@j))

j=1 k=1 k=1

(11, or) or(t; ))

_l’_
M“@
R
E\)
St
Mu

+QZZ€”< = > (s on)enlty )
S 3D ICT) I C I P
+Z (u(tj) > (porer(ts )>

(c) Prove that, for all n > 0,

; _ ) L oD
E[2(i — Tpp, &),] < nE[[Tpp = fill] + 070 =

Indication: remember that for all x,y € R and n > 0, 2zy < nz? + =1y

Correction : Using successively Cauchy-Schwarz inequality and the suggested
imequality
2(Tpp — f1,€)p < 2| Tpp — fillplEall, < nlllpp — Al + 07" |IE |5

Now

2
p n 2
_ 1 o°p
Efle. ] =E Z(HZ%) e
j=1 i=1

(d) Deduce that there exists a constant C' > 0 such that
. o p
Ellln — il < € (Ellln— 4l + i — ol + 02

Indication: for all f,g:[0,1] = R, ||f + gllZ < 2| fIl2 + 2lgl]>-
Correction : We have

I — a2 < 2llp— Al +2(r — a2
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From (b) we obtain,
i il < 2l — Al + 44— op, 22}, + 207 — ol
Taking expectation and applying (c) leads to
Elllp—ally) < 2E[[lu—allp] + 2nE[|[Tpp — all] + 277_1025 +2E [[|2 — Tppl7]
< 2E [||p = all5] +4nE[|Tpp — pll] + 4nE[||x — 23] + 277‘102§
AR || — 2] + 4B [|Tpp — pl]

Then choosing n such that 1 —4n > 0 (i.e. n < 1/4) and C > 0 sufficiently
large leads to the expected result.

(e) Let K(s,t) = Cov(Xi(s), Xi(t)) be the covariance kernel of X, prove that

~ p
E 7 —nlp] < = sup K(t,t).

Correction : Remark that

Then

E(li—nuly) = E|D @) —EaE))*| = Var(i(t;)) = L > Var(X;(t;))

j=1 j=1 j=1

1
= - ZK(tjatj)'
j=1

i
=
]

bS]

S

(f) Verify that for any function f : [0,1] — R such that there exists L > 0 and
a € (0,1] such that, for all s,t € [0, 1]
[F2(t) = f2(s)] < LIt — s, (A.16)
we have

1 —2a
‘I|f||2 - 25| <

Correction : Since t; —t; 1 = *
O ICCLION . J J p’

2 L
\an Ik
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(g) Assume that p, Ipp, o and i verify assumption (A.16), deduce an upper-
bound on the risk E[||i — u||?] as a function of 02, n, p, a and ||TIpu — pl|* and
compare with the upper-bound obtained in question 1.(d).

Correction : We have:

3 R P
Bl ] < (Bl pll) + Mo — gl + o°2)

IN

C (p sup K (t,t) + [pp — pl? —1—022> :

T 0,1
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