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Abstract Parametric nonlinear mixed effects models
(NLMEs) are now widely used in biometrical studies, es-
pecially in pharmacokinetics research and HIV dynamics
models, due to, among other aspects, the computational ad-
vances achieved during the last years. However, this kind of
models may not be flexible enough for complex longitudi-
nal data analysis. Semiparametric NLMEs (SNMMs) have
been proposed as an extension of NLMEs. These models are
a good compromise and retain nice features of both para-
metric and nonparametric models resulting in more flex-
ible models than standard parametric NLMEs. However,
SNMMs are complex models for which estimation still re-
mains a challenge. Previous estimation procedures are based
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on a combination of log-likelihood approximation meth-
ods for parametric estimation and smoothing splines tech-
niques for nonparametric estimation. In this work, we pro-
pose new estimation strategies in SNMMs. On the one hand,
we use the Stochastic Approximation version of EM algo-
rithm (SAEM) to obtain exact ML and REML estimates
of the fixed effects and variance components. On the other
hand, we propose a LASSO-type method to estimate the
unknown nonlinear function. We derive oracle inequalities
for this nonparametric estimator. We combine the two ap-
proaches in a general estimation procedure that we illustrate
with simulations and through the analysis of a real data set
of price evolution in on-line auctions.
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1 Introduction

We consider the semiparametric nonlinear mixed effects
model (SNMM) as defined by Ke and Wang (2001) in which
we have n individuals and we observe:

yij = g(xij ,φi , f ) + εij , εij ∼ N
(
0, σ 2) i.i.d.,

i = 1, . . . ,N, j = 1, . . . , ni, (1)

where yij ∈ R is the j th observation in the ith individual,
xij ∈ R

d is a known regression variable, g is a common
known function governing within-individual behavior and f

is an unknown nonparametric function to be estimated. The
random effects φi ∈ R

p satisfy

φi = Aiβ + ηi , ηi ∼ N (0,Γ ) i.i.d.
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where Ai ∈ Mp,q are known design matrices, β ∈ R
q is the

unknown vector of fixed effects and we suppose that εij and
ηi are mutually independent.

The parameter of the model is (θ , f ), where θ =
(β,Γ , σ 2) belongs to a finite dimensional space whereas
f belongs to an infinite dimensional space of functions de-
noted H.

Ke and Wang (2001) consider the most common type of
SNMM in practice, in which g is linear in f conditionally
on φi ,

g(xij ,φi , f ) = a(φi;xij ) + b(φi;xij )f
(
c(φi;xij )

)
, (2)

where a, b and c are known functions which may depend
on i.

Different formulations of SNMM’s have been recently
used to model HIV dynamics (Wu and Zhang 2002; Liu
and Wu 2007, 2008), time course microarray gene expres-
sion data (Luan and Li 2004), circadian rhythms (Wang and
Brown 1996; Wang et al. 2003), as in the following exam-
ple, or to fit pharmacokinetic and pharmacodynamic models
(Wang et al. 2008), among many other applications.

Example 1 The following model was proposed by Wang
and Brown (1996) to fit human circadian rhythms:

yij = μ + η1i + exp(η2i ), f

(
xij − exp(η3i )

1 + exp(η3i )

)
+ εij ,

εij ∼ N
(
0, σ 2) i.i.d.,

ηi ∼ N (0,Γ ) i.i.d.

for i = 1, . . . ,N , j = 1, . . . , ni , where yij is the physiolog-
ical response of individual i at the j th time point xij . This
model can be written in the general form (1) as:

yij = g(xij ,φi , f ) + εij , εij ∼ N
(
0, σ 2) i.i.d.,

g(xij ,φi , f ) = φ1i + exp(φ2i ) f

(
xij − exp(φ3i )

1 + exp(φ3i )

)
,

φi = (1,0,0)′μ + ηi , ηi ∼ N (0,Γ ) i.i.d.

where φi = (φ1i , φ2i , φ3i )
′ and ηi = (η1i , η2i , η3i )

′. In this
example f represents the common shape of the observed
curves, and φ1i , exp(φ2i ), and exp(φ3i )/(1+exp(φ3i )) stand
for the individual vertical shift, individual amplitude and in-
dividual horizontal shift respectively. Here d = 1, p = 3,
q = 1 and the parameter of the model is (μ,Γ , σ 2, f ). This
model was also used by Ke and Wang (2001) for modeling
Canadian temperatures at different weather stations.

Let us introduce the following vectorial notation: yi =
(yi1, . . . , yini

)′, y = (y ′
1, . . . ,y

′
N)′, φ = (φ′

1, . . . , φ
′
N)′,

η = (η′
1, . . . ,η

′
N)′, gi (φi , f ) = (g(xi1,φi , f ), . . . , g(xini

,

φi , f ))′, g(φ, f ) = (g1(φ1, f )′, . . . ,gN(φn, f )′)′, A =
(A′

1, . . . ,A
′
N)′, Γ̃ = diag(Γ , . . . ,Γ ) and n = ∑N

i=1 ni .
Then, model (1) can be written as:

y|φ ∼ N
(
g(φ, f ), σ 2In

)
,

φ ∼ N (Aβ, Γ̃ ) (3)

where In is the identity matrix of dimension n, and the like-
lihood of observations y is:

p
(
y; (θ , f )

)

=
∫

p
(
y|φ; (θ , f )

)
p
(
φ; (θ , f )

)
dφ

=
∫

1

(2πσ 2)
n
2

exp

{ −1

2σ 2

∥∥y − g(φ, f )
∥∥2

}

× 1

(2π)
Np
2 |Γ |N

2

exp

{−1

2

∥∥Γ̃
−1/2

(φ − Aβ)
∥∥2

}
dφ

= 1

(2π)
n+Np

2 (σ 2)
n
2 |Γ |N

2

×
∫

exp

{−1

2

(
1

σ 2

∥∥y − g(φ, f )
∥∥2

+ ∥∥Γ̃
−1/2

(φ − Aβ)
∥∥2

)}
dφ, (4)

where ‖ · ‖ is the L2 norm. In their seminal paper, Ke and
Wang consider a penalized maximum likelihood approach
for the estimation of (θ , f ). That is, they propose to solve

max
θ ,f

{
�
(
y; (θ , f )

) − nλJ (f )
}
, (5)

where �(y; (θ, f )) is the marginal log-likelihood, J (f ) is
some roughness penalty and λ is a smoothing parame-
ter. Moreover, they assume that f belongs to some re-
producing kernel Hilbert space (RKHS) H = H1 ⊕ H2,
where H1 is a finite dimensional space of functions, H1 =
span{ψ1, . . . ,ψM}, and H2 is a RKHS itself. Since the non-
linear function f interacts in a complicated way with the
random effects and the integral in (4) is intractable, they re-
place �(y; (θ, f )) by a first-order linearization of the likeli-
hood with respect to the random effects. Then, they propose
to estimate (θ , f ) by iterating the following two steps:

(i) given an estimate of f , get estimates of θ and φ by fit-
ting the resultant nonlinear mixed model by linearizing
the log-likelihood (replacing � by �̃). In practice they
use the R-function nlme (Pinheiro and Bates 2000) to
solve this step.

(ii) given an estimate of θ , θ̂ , estimate f as the solution to

max
f ∈H

{
�̃
(
y; (θ̂, f, φ̃)

) − nλJ (f )
}
.



Stat Comput (2014) 24:443–460 445

Since in (ii) the approximated log-likelihood involves a
bounded linear functional, the maximizer in H of
�̃(y; (θ̂ , f, φ̃)) − NλJ(f ) given θ̂ and φ̃ belongs to a fi-
nite dimensional space and it is estimated as a linear com-
bination of functions from H1 and H2. Conceptually, the
whole approach is equivalent to solving (5) not on H but
on a finite-dimensional approximation space of H at each
iteration. As it is discussed in that article, despite of the lack
of an exact solution, the spline smoothing method provides
good results and its use in this framework is largely justi-
fied. However, the method relies on prior knowledge of the
nonlinear function f and provides better results when this
kind of information is available.

In practice, the Ke and Wang’s method is implemented in
the R package assist (Wang and Ke 2004) and in particular
in the snm function which is directly related with the nlme
function.

As for the parametric estimation, it is important to point
out some drawbacks of the approximated methods based on
linearization of the log-likelihood, such as the first-order lin-
earization conditional estimates (FOCE) algorithm used in
the snm function (Wang and Ke 2004). It has been shown
that they can produce inconsistent estimates of the fixed
effects, in particular when the number of measurements
per subject is not large enough (Ramos and Pantula 1995;
Vonesh 1996; Ge et al. 2004). Furthermore, simulation stud-
ies have shown unexpected increases in the type I error of the
likelihood ratio and Wald tests based on these linearization
methods (Ding and Wu 2001). In addition, from of statistical
point of view, the theoretical basis of this linearization-based
method is weak.

Since estimation in SNMMs is an important problem and
a difficult task from which many challenging aspects arise,
in this paper we propose an alternative estimation procedure
to tackle some of these points. On the one hand, for the para-
metric step we will focus on the maximization of the exact
likelihood. We propose to use a stochastic version of the EM
algorithm, the so-called SAEM algorithm introduced by De-
lyon et al. (1999) and extended by Kuhn and Lavielle (2005)
for nonlinear mixed models, to estimate θ without any ap-
proximation or linearization. This stochastic EM algorithm
replaces the usual E step of EM algorithm (Dempster et al.
1977) by a simulation step and a stochastic procedure, and
converges to a local maximum of the likelihood. The SAEM
has been proved to be computationally much more efficient
than other stochastic algorithms as for example the classi-
cal Monte Carlo EM (MCEM) algorithm (Wei and Tanner
1990) thanks to a recycling of the simulated variables from
one iteration to the next (see Kuhn and Lavielle 2005). In-
deed, previous attempts to perform exact ML estimation in
SNMMs have been discarded because of the computational
problems related to the use of an MCEM algorithm (see Liu
and Wu 2007, 2008, 2009). Moreover we use a Restricted

Maximum Likelihood (REML) version of the SAEM algo-
rithm to correct bias estimation problems of the variance pa-
rameters following the same strategy as Meza et al. (2007).

On the other hand, for the nonparametric step we will
propose a LASSO-type method for the estimation of f . The
popular LASSO estimator (least absolute shrinkage and se-
lection operator, Tibshirani (1996)) based on �1 penalized
least squares, has been extended in the last years to non-
parametric regression (see for instance Bickel et al. 2009).
It has been also used by Schelldorfer et al. (2011) in high-
dimensional linear mixed-effects models. In the nonpara-
metric context, the idea is to reconstruct a sparse approxi-
mation of f with linear combinations of elements of a given
set of functions {f1, . . . , fM}, called dictionary. That is, we
are implicitly assuming that f can be well approximated
with a small number of those functions. In practice, for the
nonparametric regression problem, the dictionary can be a
collection of basis functions from different bases (splines
with fixed knots, wavelets, Fourier, etc.). The difference be-
tween this approach and the smoothing splines, is that the
selection of the approximation function space is done au-
tomatically and based on data among a large collection of
possible spaces spanned by very different functions. This
is particularly important in situations in which little knowl-
edge about f is available. This approach allows us to con-
struct a good approximation of the nonparametric function
which is sparse thanks to the large dictionary. The sparsity
of the approximation gives a model more interpretable and
since few coefficients have to be estimated, this minimizes
the estimation error. The LASSO algorithm allows to use
the dictionary approach to select a sparse approximation,
unlike to wavelet thresholding or �0-penalization. Moreover
the LASSO algorithm has a low computational cost since it
is based on a convex penalty.

We can summarize our iterative estimation procedure as:

(i) given f̂ , an estimate of f , get estimates of θ and φ by
fitting the resulting NLME with the SAEM algorithm
(using either ML or REML).

(ii) given estimates of θ and φ, solve the resulting non-
parametric regression problem using a LASSO-type
method.

The rest of the article is organized as follows. In Sect. 2.1
we describe the SAEM algorithm and its REML version in
the framework of SNMMs. In Sect. 3 we propose a LASSO-
type method for the estimation of f in the resulting non-
parametric regression problem after estimation of θ and φ.
Oracle inequalities and subset selection properties for the
proposed estimator are provided in the Supplementary Ma-
terial. In Sect. 4, we describe the algorithm that combines
both procedures to perform joint estimation of (θ , f ) in the
SNMM. Finally, in Sect. 5, we illustrate our method through
a simulation study and the analysis of price dynamics in on-
line auction data. We conclude the article in Sect. 6.
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2 Estimation of the finite-dimensional parameters

2.1 SAEM estimation of θ and φ

In this subsection we consider that we have an estimate of
f , f̂ , obtained in the previous estimation step that does not
change during the estimation of θ . Thus, we can proceed as
if f was a known nonlinear function and we fall into the
SAEM estimation of nonlinear mixed-effects model frame-
work (see Kuhn and Lavielle 2005). In this setting, conver-
gence of the algorithm to a local maximum of the likelihood
is guaranteed. In fact, note that since the estimation of f

is performed by solving a nonparametric regression prob-
lem with regression variables c(φ̂i;xij ), i = 1, . . . ,N, j =
1, . . . , ni (see Sect. 3), it will depend on the estimated value
of φ at the precedent iteration. Then, we will note f̂− the
current estimated function.

The complete likelihood for model (1) is:

p(y,φ; θ)

= p(y|φ; θ)p(φ; θ)

= 1

(2π)
n+Np

2 (σ 2)
n
2 |Γ |N

2

exp

{−1

2

(
1

σ 2

∥∥y − g(φ, f̂−)
∥∥2

+ ∥
∥Γ̃

−1/2
(φ − Aβ)

∥
∥2

)}

where n = ∑N
i=1 ni . Then, the complete log-likelihood is:

logp(y,φ; θ) = −1

2

{

C + n logσ 2 + N log |Γ |

+ 1

σ 2

∥∥y − g(φ, f̂−)
∥∥2

+
N∑

i=1

(φi − Aiβ)′Γ −1(φi − Aiβ)

}

(6)

where C is a constant that does not depend on θ .
The distribution of the complete-data model belongs to

the exponential family, that is logp(y,φ; θ) = − Ψ (θ)

+ 〈S(y,φ),Φ(θ)〉, where 〈·, ·〉 stands for the scalar prod-
uct and S(y,φ) is the sufficient statistics. The EM algo-
rithm in this framework would involve the computation of
E[S(y,φ)|y; θ (k)] in the E step, which in our case is in-
tractable. The SAEM algorithm replaces, at each iteration,
the step E by a simulation step (S) of the missing data
(φ) and an approximation step (A). Then, iteration k of the
SAEM algorithm writes:

Algorithm 1

– S step: simulate m values of the random ef-
fects, φ(k+1,1), . . . ,φ(k+1,m), from the conditional law
p(·|y; θ (k)).

– A step: update sk+1 according to:

sk+1 = sk + χk

[
1

m

m∑

l=1

S
(
y,φ(k+1,l)

) − sk

]

.

– M step: update the value of θ :

θ (k+1) = arg max
θ

{−Ψ (θ) + 〈
sk+1,Φ(θ)

〉}

where (sk)k is initialized at s0 and (χk)k is a decreasing se-
quence of positive numbers which accelerates the conver-
gence (Kuhn and Lavielle 2004). The role of the sequence
(χk)k is crucial in the SAEM algorithm since it performs
a smoothing of the calculated likelihood values from one
iteration to another. In practice, this smoothing parameter
is defined as follows. During the first L iterations, χk = 1,
and from iteration (L + 1) the smoothing parameter starts
to decrease in order to stabilize the estimates and provide
a faster convergence towards the true ML estimates. For
example, Kuhn and Lavielle (2005) recommend to take
χk = (k − L)−1 for k ≥ (L + 1). The choices of the total
number of iterations, K , and of L are then crucial. In order
to define these constants, following Jank (2006) and Meza
et al. (2009), we may use a graphical approach based on the
likelihood difference from one iteration to the next one and
monitor SAEM by estimating its progress towards θML by
using the property of increasing likelihood of the EM al-
gorithm (see for more details Meza et al. 2009). Then, the
total number of iterations can be fixed and the smoothing
step can be defined. However, it is important to note that
this procedure implies to run the SAEM algorithm twice.
Furthermore, as all EM-type algorithms, SAEM is sensitive
to the choice of the initial values.

From (6), the sufficient statistics for the complete model
are given by

s1,i,k+1 = s1,i,k + χk

[
1

m

m∑

l=1

φ
(k+1,l)
i − s1,i,k

]

,

i = 1, . . . ,N,

s2,k+1 = s2,k + χk

[
1

m

m∑

l=1

N∑

i=1

φ
(k+1,l)
i φ

(k+1,l)′
i − s2,k

]

,

s3,k+1 = s3,k + χk

[
1

m

m∑

l=1

∥∥y − g
(
φ(k+1,l), f̂−

)∥∥2 − s3,k

]

.
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Now, θ (k+1) is obtained in the maximization step as follows:

β(k+1) =
(

N∑

i=1

A′
iΓ

(k)−1
Ai

)−1 N∑

i=1

A′
iΓ

(k)−1
s1,i,k+1,

Γ (k+1) = 1

N

(

s2,k+1 −
N∑

i=1

Aiβ
(k+1)s′

1,i,k+1

−
N∑

i=1

s1,i,k+1
(
Aiβ

(k+1)
)′

+
N∑

i=1

Aiβ
(k+1)

(
Aiβ

(k+1)
)′
)

,

σ 2(k+1) = s3,k+1

n
.

When the simulation step cannot be directly performed,
Kuhn and Lavielle (2004) propose to combine this algo-
rithm with a Markov Chain Monte Carlo (MCMC) proce-
dure. Then, the simulation step becomes:

– S step: using φ(k,l), draw φ(k+1,l) with transition proba-
bility Πθ (k) (·|φ(k,l)), l = 1, . . . ,m,

that is, (φ(k+1,1)), . . . , (φ(k+1,m)) are m Markov chains with
transition kernels (Πθ (k) ). In practice, these Markov chains
are generated using a Hastings-Metropolis algorithm (see
Kuhn and Lavielle 2005 for details).

With respect to the number of chains, the convergence of
the whole algorithm to a local maximum of the likelihood is
granted even for m = 1. Greater values of m can accelerate
the convergence, but in practice m is always lower than 10.
This is the main difference with the MCEM algorithm, in
which very large samples of the random effects have to be
generated to obtain convergence of the algorithm.

2.2 REML estimation of variance components

It is well known that the maximum likelihood estimator of
variance components in mixed effects models can be biased
downwards because it does not adjust for the loss of degrees
of freedom caused by the estimation of the fixed effects. This
is also true in the context of SNMMs as Ke and Wang (2001)
point out in their paper.

To overcome this problem we consider restricted maxi-
mum likelihood (REML) estimation. REML, as originally
formulated by Patterson and Thompson (1971) in the con-
text of linear models, is a method that corrects this problem
by maximizing the likelihood of a set of linear functions of
the observed data that contain none of the fixed effects of the
model. But this formulation does not directly extend beyond
linear models, where in general it is not possible to construct
linear functions of the observed data that do not contain
any of the fixed effects. However, in the case of nonlinear

models, other alternative formulations of REML have been
proposed. Here, we will consider the approach of Harville
(1974), that consists in the maximization of the likelihood
after integrating out the fixed effects. To perform this inte-
gration we follow Foulley and Quaas (1995) and consider
the fixed effects as random with a flat prior. The combina-
tion of this REML approach with the SAEM algorithm in
the context of nonlinear mixed effects models has been stud-
ied recently by Meza et al. (2007). The authors showed the
efficiency of the method against purely ML estimation per-
formed by SAEM and against REML estimation based on
likelihood approximation methods.

Following these ideas we note z = (φ,β) the random ef-
fects and θ̃ = (Γ , σ 2) the new parameter of the model. As
in the general case, the simulation step is performed through
an MCMC procedure. Here, since we have to draw values

from the joint distribution of (φ,β)|y; θ̃ (k)
, we use a Gibbs

scheme, i.e., we iteratively draw values from the conditional

distributions of φ|y,β(k); θ̃ (k)
and β|y,φ(k); θ̃ (k)

. Then, we
use again a Hastings-Metropolis algorithm to obtain approx-
imations of these conditional distributions.

Finally, iteration k of the SAEM-REML algorithm for
model (3) writes:

Algorithm 2

– S step: using z(k,l) = (φ(k,l),β(k,l)), simulate z(k+1,l) =
(φ(k+1,l),β(k+1,l)), l = 1, . . . ,m with a Metropolis-
within-Gibbs scheme.

– A step: update s̃k+1 by s̃k+1 = s̃k +
χk[ 1

m

∑m
l=1 S̃(y,z(k+1,j)) − s̃k], namely:

s̃1,k+1 = s̃1,k + χk

[
1

m

m∑

l=1

N∑

i=1

η
(k+1,l)
i η

(k+1,l)′
i − s̃1,k

]

s̃2,k+1

= s̃2,k + χk

[
1

m

m∑

l=1

∥∥y − g
(
z(k+1,l), f̂−

)∥∥2 − s̃2,k

]

where η
(k+1,l)
i = φ

(k+1,l)
i − Aiβ

(k+1,l).

– M step: update θ̃ by θ̃
(k+1) = arg maxθ̃ {−Ψ (θ̃) +

〈s̃k+1,Φ(θ̃)〉}, namely:

Γ (k+1) = s̃1,k+1

N
and σ 2(k+1) = s̃2,k+1

n
.

In many situations, it is important to obtain inference on
the fixed effects in the context of REML estimation of vari-
ance components. Following Meza et al. (2007), estimation
of fixed effects can be directly obtained as a by-product of
the SAEM-REML algorithm via the expectation of the con-
ditional distribution of the fixed effects given the observed
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data, the estimate, f̂ , of the unknown function f and the
REML estimates of the variance-covariance components.
This estimator makes sense in an Empirical Bayes frame-
work.

3 Estimation of the function f using a LASSO-type
method

In this part, our objective is to estimate f in the model
(1) using the observations yi,j and assuming that for i =
1, . . . ,N we have φi = φ̂i and σ 2 = σ̂ 2 where the estimates
φ̂i and σ̂ 2 have been obtained in the precedent SAEM step.
Since g satisfies (2), model (1) can be rewritten as

ỹij = b(φi;xij )f (x̃ij ) + εij , i = 1 . . . ,N, j = 1, . . . , ni

with ỹij = yij − a(φi;xij ) and x̃ij = c(φi;xij ). Of course,
since the φ̂i ’s and σ̂ 2 depend on the observations, the distri-
bution of σ̂−1ỹij is no longer Gaussian and the εij ’s are not
i.i.d. but dependent. But in the sequel, to be able to derive
theoretical results, we still assume that

εij
iid∼ N

(
0, σ 2), (7)

where the value of σ 2 is given by σ̂ 2. Simulation studies of
Sect. 5 show that this assumption is reasonable. However,
note that (7) is true at the price of splitting the data set into
two parts: the first part for estimating θ and φ, the second
part for estimating f . Now, reordering the observations, it is
equivalent to observing (y1, . . . , yn) with n = ∑N

i=1 ni , such
that

yi = bif (xi) + εi, εi ∼ N
(
0, σ 2) i.i.d. (8)

where the bi ’s and the design (xi)i=1,...,n are known and de-
pend on the estimators of the precedent SAEM step and the
εi ’s are random variables with variance σ 2 estimated by σ̂ 2.
Note that the notation yi , i = 1, . . . , n, does not correspond
to the original observations in the SNMM or to any of the
values introduced in the previous sections, and it is used in
this section for the sake of simplicity. Without loss of gener-
ality, we suppose that bi 
= 0 for all i = 1, . . . , n.

In the sequel, our objective is then to estimate f non-
parametrically in model (8). A classical method would con-
sist in decomposing f on an orthonormal basis (Fourier ba-
sis, wavelets, . . . ) and then to use a standard nonparamet-
ric procedure to estimate the coefficients of f associated
with this basis (�0-penalization, wavelet thresholding, . . . ).
In the same spirit as Bertin et al. (2011) who investigated
the problem of density estimation, we wish to combine a
more general dictionary approach with an estimation pro-
cedure leading to fast algorithms. The dictionary approach
consists in proposing estimates that are linear combinations

of various types of functions. Typically, the dictionary is
built by gathering together atoms of various classical or-
thonormal bases. This approach offers two advantages. First,
with a more wealthy dictionary than a classical orthonor-
mal basis, we aim at obtaining sparse estimates leading to
few estimation errors of the coefficients. Secondly, if the es-
timator is sparse enough, interesting interpretations of the
results are possible by using the set of the non-zero coeffi-
cients, which corresponds to the set of functions of the dic-
tionary “selected” by the procedure. For instance, we can
point out the frequency of periodic components of the sig-
nal if trigonometric functions are selected or local peaks if
some wavelets are chosen by the algorithm. Both aspects are
illustrated in the next sections. �0-penalization or threshold-
ing cannot be combined with a dictionary approach if we
wish to obtain fast and good algorithms. But LASSO-type
estimators based on �1-penalization, leading to minimiza-
tion of convex criteria, constitute a natural tool for the dic-
tionary approach. Furthermore, unlike ridge penalization or
more generally �p-penalization with p > 1, �1-penalization
leads to sparse solutions for the minimization problem, in
the sense that if the tuning parameter is large enough some
coefficients are exactly equal to 0 (see Tibshirani 1996).

There is now huge literature on LASSO-type procedures.
From the theoretical point of view and in the specific con-
text of the regression model close to (8), we mention that
LASSO procedures have already been studied by Bunea
et al. (2006, 2007a, 2007b), Bunea (2008), Bickel et al.
(2009), van de Geer (2010), and Bühlmann and van de Geer
(2011) among others.

In our setting, the proposed procedure is the following.
For M ∈ N

∗, we consider a set of functions {ϕ1, . . . , ϕM},
called the dictionary. We denote for λ ∈ R

M ,

fλ =
M∑

j=1

λjϕj .

Our objective is to find good candidates for estimating f

which are linear combinations of functions of the dictionary,
i.e. of the form fλ. We consider, for λ ∈ R

M

crit(λ) = 1

n

n∑

i=1

(
yi − bifλ(xi)

)2 + 2
M∑

j=1

rn,j |λj |,

where rn,j = σ‖ϕj‖n

√
τ logM

n
with τ > 0 and for a func-

tion h

‖h‖2
n = 1

n

n∑

i=1

b2
i h

2(xi).

We call the LASSO estimator λ̂ the minimizer of λ �−→
crit(λ) for λ ∈ R

M and we denote f̂ = f
λ̂
.
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The function λ �−→ crit(λ) is the sum of two terms: the
first one is a goodness-of-fit criterion based on the �2-loss
and the second one is a penalty term that can be viewed as
the weighted �1-norm of λ.

Before going further, let us discuss the important issue
of tuning. In our context, the tuning parameter is the con-
stant τ . From a theoretical point of view (see Theorem 1 in
the supplementary material), the benchmark value for τ is 2.
In the sequel, τ will be chosen satisfying two criteria: to be
as close as possible to this benchmark value and allowing
the stability of the SAEM algorithm. In Sect. 5, we will see
that sometimes we choose values of τ smaller than 2 but
relatively close of it, in particular to obtain the convergence
of the variance components estimates, which is always chal-
lenging in NLME models.

Once we have chosen a value for τ satisfying these two
criteria, the numerical scheme of the nonparametric step is
the following:

– Using the estimates of the φi ’s and of σ 2 obtained in the
previous iteration of SAEM, compute for i = 1, . . . , n,
the observations yi , the constants bi and the design xi .

– Evaluate the dictionary {ϕ1, . . . , ϕM} at the design and
calculate rn,j .

– Obtain the LASSO estimates λ̂ and f
λ̂
.

In practice, there exist many efficient algorithms to tackle
this third point, namely, the minimization on λ of crit(λ).
For the implementation of our estimation procedure we have
considered the approach used by Bertin et al. (2011) which
consists in using the LARS algorithm.

Numerical results of our procedure are presented in next
sections but we also validate our approach from a theoret-
ical point of view. Theoretical results are presented in the
supplementary material. We prove oracle inequalities and
properties of support for sparse functions under the mild
assumption log(M) = o(n). Oracle inequalities ensure that
the LASSO estimator of f behaves as well as the best lin-
ear combination of functions of the dictionary. Moreover,
we obtain that if the function f is a sparse linear combi-
nation of functions from the dictionary, then the support of
the LASSO estimator (functions of the dictionary selected
in the LASSO estimator) is included in the support of the
function f . These results are generalizations of the results
of Bunea et al. (2006, 2007a, 2007b), van de Geer (2010)
and Bunea (2008) and they are obtained under more general
assumptions on the dictionary. In particular, in our results,
the functions of the dictionary do not need to be bounded
independently of n and M , which allow us to take wavelet
functions.

4 Estimation algorithm and inferences

We propose the following estimation procedure for semi-
parametric estimation of (θ , f ) in model (3), combining the
algorithms described in Sects. 2.1 and 3:

Algorithm 3 (Estimation Algorithm—ML version) At it-
eration k,

– Given the current estimate of θ , θ (k) = (β(k),Γ (k),

σ 2(k)), and m sampled values of the random effects
φ(k,l), l = 1, . . . ,m, update the estimates of f , f (k,l),
l = 1, . . . ,m, with the algorithm described in Sect. 3.

– Given the current estimates of f , f (k,l), l = 1, . . . ,m,
sample m values of the random effects φ(k,l), l =
1, . . . ,m, and update the value of θ , θ (k+1) =
(β(k+1),Γ (k+1), σ 2(k+1)) with Algorithm 1.

Algorithm 4 (Estimation Algorithm—REML version)
At iteration k,

– Given the current estimate of θ̃ , θ̃
(k) = (Γ (k), σ 2(k)),

and m sampled values of the missing data z(k,l) =
(φ(k,l),β(k,l)), l = 1, . . . ,m, update the estimates of f ,
f (k,l), l = 1, . . . ,m, with the algorithm described in
Sect. 3.

– Given the current estimates of f , f (k,l), l = 1, . . . ,m,
sample m values of the missing data z(k+1,l) =
(φ(k+1,l),β(k+1,l)), l = 1, . . . ,m, and update the value

of θ̃ , θ̃
(k+1) = (Γ (k+1), σ 2(k+1)) with Algorithm 2.

As it is explained in Sect. 2.1, for parametric estimation
(SAEM or SAEM-REML algorithms alone) the number of
chains, m, can be set to 1, which still guarantees the con-
vergence towards a local maximum of the log-likelihood.
Higher values of m, may accelerate the convergence of the
algorithms (but in practice, m is always lower than 10).

For the global semiparametric estimation procedure, we
extend this idea of “parallel chains” of values to the esti-
mation of f . Indeed, at iteration k, the estimation of f de-
pends on the value of the missing data, and thus, from m

sampled values z(k,1), . . . ,z(k,m) we obtain m estimates of
f , f (k,1), . . . , f (k,m) (see Sect. 3). Then, in the second step,
we use each one of these different estimates of f in paral-
lel to perform parametric estimation (using f (k,l) to sample
z(k+1,l) and replacing f̂− by f (k,l) in Algorithm 2 for the
estimation of θ̃ ). This is in the case of the REML version of
the algorithm, but the same idea underlies the ML version.

Inferences on model and individual parameters, β,Γ , σ 2

and φ, are performed as in NLMEs (see Kuhn and Lavielle
2005 and Meza et al. 2007). For inferences on the nonlinear
function f , we propose an empirical approach based on the
fact that our algorithm automatically provides large samples
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of estimates of f . Indeed, at each iteration of Algorithms 3
and 4 we obtain m estimates of f . The last iterations of the
algorithms typically correspond to small values of χk in Al-
gorithms 1 and 2, see Sect. 5 for the details. This can be
seen as a phase in which the estimates of parameters are sta-
bilized since we assume that convergence has been reached.
Let us note by K and L < K the total number of iterations
and the number of iterations in the “stabilization phase” of
the algorithm. Then, by considering the last L0 < L itera-
tions of the algorithm, we get a large sample of estimates
of f : f (k,l), l = 1, . . . ,m, k = K − L0 + 1, . . . ,K . These
m × L0 estimates of f are obtained conditionally on values
of θ which are supposed to be close to the corresponding
ML or REML estimates. Then, we obtain a point estimate
for f as:

f̂ = 1

m × L0

K∑

k=K−L0+1

m∑

l=1

f (k,l). (9)

We think that it will be interesting to study how to exploit
the estimates f (k,l) to obtain pointwise confidence intervals
for f (x). An intuitive empirical pointwise (1 − α)100 %
confidence interval for f (x) could be defined as follows:

(
f̂ (x) − zα

2

√
S2

f (x)

m × L0
, f̂ (x) + zα

2

√
S2

f (x)

m × L0

)
. (10)

where S2
f (x) = 1

m×L0−1

∑K
k=K−L0+1

∑m
l=1(f

(k,l)(x) −
f̂ (x))2 and z α

2
is the 1 − α

2 percentile of a standard
normal distribution. This interval is of course not a true
(1−α)100 % confidence interval for f (x) but constitutes an
approximation of it. It provides a starting point for further
research on how function samples generated by semipara-
metric stochastic approximation algorithms, such us saem-
lasso, can be used for inference.

5 Application to synthetic and real data

Since our procedure consists in the combination of a para-
metric and a nonparametric estimation algorithm, one may
be interested in evaluating the performance of both compo-
nents separately. In Sect. 5.1 we provide a simulation study
to compare only the parametric versions of our method and
Ke and Wang’s procedure. In Sect. 5.2 we compare both pro-
cedures in the whole semiparametric setting.

5.1 Simulation study: parametric estimation

As a first step, we want to validate through simulation our
parametric estimation strategy alone, based on the SAEM al-
gorithm, and to compare it, in the framework of SNMMs, to
the FOCE method implemented in Ke and Wang (2001) via

the nlme function. In order to be able to assess only the dif-
ferences induced by the use of different parametric estima-
tion algorithms, we will use the same nonparametric estima-
tion algorithm for the estimation of f , namely the procedure
proposed by Ke and Wang (2001). In Sect. 5.2, we compare
the whole versions, including nonparametric estimation, of
both approaches.

To this end, we performed the following simulation study
based in Ke and Wang (2001) where data were generated
from the model:

yij = φ1i + exp(φ2i )2f

(
j

N
− exp(φ3i )

1 + exp(φ3i )

)
+ εij ,

i = 1, . . . ,N, j = 1, . . . , J,

where εij ∼ N (0, σ 2) and φi = (φ1i , φ2i , φ3i )
′ ∼ N (μ,Γ )

with μ = (μ1,μ2,μ3)
′. The nonlinear function was set to

f (t) = sin(2πt). As in the original setting, we choose a
complex scenario with small sizes of individuals and ob-
servations and with high variance values: N = J = 10,
μ = (1,0,0)′, σ 2 = 1 and Γ is diagonal with diag(Γ ) =
(1,0.25,0.16).

These data were analyzed using two semiparametric pro-
cedures: our SAEM based method combined with the non-
parametric algorithm of Ke and Wang’s (called semi-SAEM)
and Ke and Wang’s procedure for semiparametric models
(called snm). For the SAEM algorithm, we used 80 iter-
ations and the following sequence (χk): χk = 1 for 1 ≤
k ≤ 50 and χk = 1/(k − 50) for 51 ≤ k ≤ 80. We also
considered m = 5 chains in each iteration. For the non-
parametric estimation algorithm common to both proce-
dures, following Ke and Wang (2001) we considered that
f is periodic with period equal to 1 and

∫ 1
0 f = 0, i.e.

f ∈ W 0
2 (per) = W2(per) � span{1} where W2(per) is the

periodic Sobolev space of order 2 in L2 and span{1} rep-
resents the set of constant functions. The same initial val-
ues were used for both methods: μ0 = (1,0,0), σ 2

0 = 2 and
diag(Γ0) = (γ 0

1 , γ 0
2 , γ 0

3 ) = (1,0.3,0.1).
Tables 1 and 2 summarize the performance of both meth-

ods over 100 simulated data sets. For each parameter we
show the sample mean, the mean squared error (MSE(θ̂) =

1
100

∑100
i=1(θ − θ̂i )

2), and a 95 % confidence interval com-
puted over the total number of simulations.

We also compared the REML estimates obtained with our
method and with snm (using the REML version of nlme)
for the same simulated data sets. The results are summa-
rized in Tables 3 and 4. It can be seen that the mean val-
ues for the REML estimates obtained with both procedures
were closer to the simulated values, especially for the pa-
rameter γ1. Moreover, the individual confidence intervals
of REML estimates of this parameter, at a 95 % level, in-
clude the true value for these parameters on the contrary to
the ML estimates, showing that REML versions of the algo-
rithms were able to correct the bias observed with ML. If we
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Table 1 ML procedure: Mean,
MSE and 95 % confidence
interval of mean components
obtained with semi-SAEM and
snm (parametric estimation)

Method μ1 μ2 μ3

True value 1 0 0

Mean semi-SAEM 1.06 0.31 0.27

snm 1.05 0.26 −0.01

MSE semi-SAEM 0.12 0.16 0.10

snm 0.12 0.11 0.01

95 % C.I. semi-SAEM [0.99;1.12] [0.27;0.36] [0.23;0.30]
snm [0.99;1.12] [0.22;0.30] [−0.02;0.01]

Table 2 ML procedure: Mean,
MSE and 95 % confidence
interval of variance components
obtained with semi-SAEM and
snm (parametric estimation)

Method γ1 γ2 γ3 σ 2

True value 1 0.25 0.16 1

Mean semi-SAEM 0.86 0.24 0.16 0.95

snm 0.89 0.19 0.14 0.99

MSE semi-SAEM 0.22 0.02 0.01 0.03

snm 0.22 0.02 0.01 0.03

95 % C.I. semi-SAEM [0.77;0.95] [0.21;0.27] [0.14;0.17] [0.92;0.98]
snm [0.80;0.98] [0.17;0.21] [0.13;0.16] [0.96;1.02]

Table 3 REML procedure:
Mean, MSE and 95 %
confidence interval of mean
components obtained with
semi-SAEM and snm
(parametric estimation)

Method μ1 μ2 μ3

True value 1 0 0

Mean semi-SAEM 1.04 −0.01 −0.01

snm 1.05 0.26 −0.01

MSE semi-SAEM 0.03 0.02 0.01

snm 0.12 0.11 0.01

95 % C.I. semi-SAEM [1.01;1.07] [−0.03;0.02] [−0.02;0.01]
snm [0.99;1.12] [0.22;0.30] [−0.02;0.01]

Table 4 REML procedure:
Mean, MSE and 95 %
confidence interval of variance
components obtained with
semi-SAEM and snm
(parametric estimation)

Method γ1 γ2 γ3 σ 2

True value 1 0.25 0.16 1

Mean semi-SAEM 0.99 0.25 0.16 0.95

snm 0.92 0.19 0.15 1.02

MSE semi-SAEM 0.21 0.03 0.01 0.03

snm 0.23 0.02 0.01 0.03

95 % C.I. semi-SAEM [0.89;1.08] [0.22;0.28] [0.14;0.18] [0.92;0.98]
snm [0.83;1.02] [0.17;0.22] [0.13;0.17] [0.98;1.05]

compare our method and snm, for both procedures ML and
REML, we obtained results that are similar but it seems that
our REML estimates are closer to the simulated values than
those obtained with Ke and Wang’s method. Furthermore,
we can observe that our REML version, in comparison with
our ML method, allows to reduce the bias of estimation of
variance components in a better way. For instance, in Ta-
bles 2 and 4, we see that, for γ1, we reduce the bias in al-

most 93 % with our REML method whereas with Ke and
Wang’s REML method this reduction is only of 27 %. Fi-
nally, let us point out that fixed effects estimates are more
accurate with our REML method than with Ke and Wang’s
one. Let us remind that for SAEM-REML these estimates
are the expectation of the conditional distribution of fixed
effects given the observed data and the REML estimates of
the variance-covariance parameters.
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An important issue to discuss is the convergence of es-
timates with this kind of iterative maximization algorithms.
It is well known that approximate methods for maximum
likelihood estimation often present numerical problems and
even fail to converge in the framework of NLME estimation
(see Hartford and Davidian 2000 for instance). An advan-
tage of the exact likelihood method is exactly to avoid those
convergence problems as it was established by Kuhn and
Lavielle (2005). In this simulation study, we have to say that
both semi-SAEM and snm achieved convergence for all the
data sets. However, we also tried to fit a nonlinear mixed
effects model to the simulated data, that is, assuming that
f was known and estimating only the fixed and random ef-
fects with SAEM and nlme, and in that case the second algo-
rithm failed to converge for several data sets. It seems that
in this case the combination of nlme with a nonparametric
algorithm to perform semiparametric estimation solves the
numerical problems encountered by nlme on its own. How-
ever, this is not true in general as we will see in the next
simulation study.

5.2 Simulation study: semiparametric estimation

In order to test our LASSO-based estimator we consider the
same general model of the previous section

yij = φ1i + exp(φ2i )2f

(
j

N
− exp(φ3i )

1 + exp(φ3i )

)
+ εij ,

i = 1, . . . ,N, j = 1, . . . , J,

where εij ∼ N (0, σ 2) and φi = (φ1i , φ2i , φ3i )
′ ∼ N (μ,Γ )

with μ = (μ1,μ2,μ3)
′. Now, f (·) is supposed to be un-

known and must be estimated. It is generated as a mixture
of one trigonometric function and two Laplace densities (see
Fig. 1).

f (t) = 0.6 sin(2πt) + 0.2

(
e−40|t−0.75|

2 × ∫ 1
0 e−40|t−0.75|

)

+ 0.2

(
e−40|t−0.8|

2 × ∫ 1
0 e−40|t−0.80|

)
.

Data were simulated using the following parameters: N =
10, J = 20, μ = (1,0,0)′, σ 2 = 0.4 and Γ is diagonal with
diag(Γ ) = (0.25,0.16,0.04).

The chosen function exhibits two sharp peaks that can not
be clearly distinguished by only looking at the resulting data
(Fig. 2). We propose this setting in order to compare the per-
formance of our method and snm in a situation in which the
underlying function is not smooth. Indeed, the definition of
Ke and Wang’s method guarantees that it will achieve very
good results if the function to be estimated is well approxi-
mated by combinations of spline functions. However, there

Fig. 1 True function f (solid line) and its estimates obtained with
LASSO-SAEM (dashed line) and snm (dash-dotted line) for a particular
data set in the semiparametric simulation study

might be practical situations in which assessing the smooth-
ness of the underlying function might not be easy. It is then
interesting to investigate the performance of both methods
in such cases.

Data were analyzed using the two following semipara-
metric procedures: our SAEM and LASSO based method
(called LASSO-SAEM) and Ke and Wang’s procedure for
semiparametric models, still denoted snm. For both methods
we obtained the REML estimates of parameters.

It is necessary to specify several values in order to run
our algorithm, such as the choice of the LASSO’s tuning
parameter τ and the inputs of the SAEM algorithm (initial
values, step sizes χk , number of chains in the MCMC step,
number of burn-in iterations, and total number of iterations).
For the latter, we used again 80 iterations with χk = 1 for
1 ≤ k ≤ 50 and χk = 1/(k − 50) for 51 ≤ k ≤ 80, and we
considered m = 5 chains in each iteration. The initial values,
which were also used with snm, were: μ0 = (1,0,0), σ 2

0 = 2
and diag(Γ0) = (γ 0

1 , γ 0
2 , γ 0

3 ) = (1,0.3,0.1).
The nonparametric LASSO step has been performed with

τ = 1/3. For some datasets, larger values of τ did not lead to
the stabilization of the convergence of some parameters, in
particular the variance γ2, and smaller values of τ provided
similar results to the one presented here. The dictionary cho-
sen combined very different orthonormal families, namely
Fourier functions with Haar wavelets, which ensured a suf-
ficiently incoherent design in the spirit of Sect. 3. More
precisely, our dictionary was composed by the following
Fourier functions {t �→ 1, t �→ cos(πt), t �→ sin(πt), t �→
cos(2πjt), t �→ sin(2πjt), j = 1, . . . ,5} and by the Haar
wavelet basis with resolution between 24 and 27, with a to-
tal size of 245 functions. Note that the data x̃ij = c(φi;xij )

belongs approximately to [−0.4,1.6]. For snm, we took
f ∈ W 0

2 (per). Of course, the true function does not belong
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Fig. 2 Simulated data and fitted curves obtained with LASSO-SAEM (solid line) and snm (dashed line) for a particular data set in the semipara-
metric simulation study

to that space and a partial spline model with possible change
points would be more appropriate for modeling it. However,
we want to reflect the fact that in a real situation the only
information available is the one provided by the observed
data set. In this case the simulated data exhibit a clear pe-
riodic structure which we try to capture with a function in
W 0

2 (per). In Figs. 1 and 2, we can see the estimates of f

compared with the true function and the fitted data with the
two methods for a specific simulated data set. Results for
REML estimates obtained with LASSO-SAEM and snm for
100 simulated data sets are summarized in Tables 5 and 6.
We can see that the means of the estimates obtained with our
method are close to their real values except for the variance
of the error, σ 2, since our method tends to overestimate that
parameter. However, we get overall better results than using
the snm methodology (except for γ1).

An important issue for this kind of problem is the esti-
mation of the nonlinear function f . Ke and Wang’s method
based on splines works very well for regular functions. So, it
is interesting to study its performance on less smooth func-

tions, which is typically the case with the function f con-
sidered here. Then, to evaluate the accuracy of the estima-
tion, we calculated the Integrated Square Error (ISE) of f̂

for each simulated data set. Figure 3 provides a summary of
estimates of f using LASSO-SAEM and snm. We computed
the ISE for each estimate of f and plotted the estimates cor-
responding to (a) the minimum, (b) 1/4 quantile, (c) median,
(d) 3/4 quantile and (e) maximum ISEs. We can see that our
method outperforms snm in the estimation of f , in the sense
that our estimates are able to detect the presence of the peaks
in the original function.

As for the functions of the dictionary selected with our
LASSO method, it is interesting to note that the 100 lin-
ear combinations of functions of the dictionary obtained for
each one of the 100 data sets have a length which varies
between 10 and 32 functions, with an average length equal
to 20. Furthermore, in 98 % of the cases, the method selects
the function sin(2πt) with the highest coefficient. For the re-
maining two data sets, the functions sin(6πt) and sin(10πt)

are selected. For all the replicates, in addition to these sine
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Table 5 REML procedure:
Mean, MSE and 95 %
confidence interval of mean
components obtained with
LASSO-SAEM and snm
(semiparametric estimation)

Method μ1 μ2 μ3

True value 1 0 0

Mean LASSO-SAEM 0.97 0.02 0.01

snm 1.09 1.39 −0.01

MSE LASSO-SAEM 0.009 0.009 0.003

snm 0.019 2.035 0.005

95 % C.I. LASSO-SAEM [0.949;0.984] [0.005;0.041] [−0.006;0.014]
snm [1.057;1.119] [1.293;1.482] [−0.025;0.015]

Table 6 REML procedure:
Mean, MSE and 95 %
confidence interval of variance
components obtained with
LASSO-SAEM and snm
(semiparametric estimation)

Method γ1 γ2 γ3 σ 2

True value 0.25 0.16 0.04 0.4

Mean LASSO-SAEM 0.18 0.14 0.03 0.69

snm 0.21 0.11 0.03 0.90

MSE LASSO-SAEM 0.01 0.01 4.0e-4 0.12

snm 0.02 0.01 5.9e-4 0.27

95 % C.I. LASSO-SAEM [0.16;0.20] [0.12;0.15] [0.030;0.037] [0.66;0.73]
snm [0.18;0.25] [0.09;0.14] [0.028;0.042] [0.86;0.94]

Fig. 3 Estimated functions corresponding to the five quantiles of
ISE ((a) minimum, (b) 1/4 quantile, (c) median, (d) 3/4 quantile and
(e) maximum) obtained with LASSO-SAEM (dashed line) and snm

(dash-dotted line) compared to the true function f (solid line) for the
total of the 100 simulated data sets in the semiparametric simulation
study
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functions, the rest of the selected functions are related to the
Haar wavelets with smaller coefficients. So, our method is
quite robust.

It is important to point out that the results obtained with
snm are based only on 51 data sets since the function did not
reach convergence in 46 data sets and in other 3 data sets
we obtained incoherent estimation of the nonlinear func-
tion, when using the default setup of the snm algorithm
(REML estimation and Generalized Cross Validation for the
choice of the penalized parameter). By contrast, our method
achieved convergence for all simulated data sets with the
specific setup used here (choice of τ , initial values, number
of chains, step sizes χk , number of iterations, etc. . . .).

To assess the robustness of the LASSO procedure, we
have also performed an analysis of these data sets with a
dictionary that is composed by the union of the dictionary
defined above (the 245 functions) and the dictionary used in
Sect. 5.3 (the 64 functions). The results obtained are very
similar to those presented in Tables 5 and 6, so we have not
included them here. Moreover, the estimates of f are also
very similar. In particular, for 50 % of the data sets, the es-
timates of f select only components in the old dictionary
(with Fourier and wavelet functions) and for all the datasets,
only 7 % of the selected functions belongs to the dictionary
defined in Sect. 5.3. Additionally, the function sin(2πt) is
selected with the highest coefficient in 90 % of the cases.

Finally, we compute the confidence intervals defined in
(10) with L0 = 20. We obtained very thin confidence inter-
vals and a poor coverage (less to 40 %) with these datasets.
We think that it is a challenging issue to study if an appropri-
ate choice of L0 in (10) may yield to more robust intervals.

5.3 Application to on-line auction data

Modeling of price paths in on-line auction data has received
a lot of attention in the last years (Shmueli and Jank 2005;
Jank and Shmueli 2006; Shmueli et al. 2007; Liu and Müller
2008). One of the reasons is the availability of huge amounts
of data made public by the on-line auction and shopping
website eBay.com, which has become a global market place
in which millions of people worldwide buy and sell prod-
ucts. The price evolution during an auction can be thought
as a continuous process which is observed discretely and
sparsely only at the instants in which bids are placed. In fact,
bids tend to concentrate at the beginning and at the end of
the auction, responding to two typically observed phenom-
ena, “early bidding” and “bid sniping” (a situation in which
“snipers” place their bids at the very last moment).

To our knowledge, Reithinger et al. (2008) provide the
first attempt to model price paths taking into account the
dependence among different auctions. This is an important
consideration, since in practice bidders can participate in

different auctions that take place simultaneously. They pro-
pose a semiparametric additive mixed model with a boost-
ing estimation approach. In the same line, but considering a
more complex interaction of the random effects and the un-
known nonlinear function, we propose the following shape-
invariant model for the price paths:

yij = φ1i + exp(φ2i )f (tij − φ3i ) + εij ,

i = 1, . . . ,N, j = 1, . . . , ni,

where εij ∼ N (0, σ 2) and φi = (φ1i , φ2i , φ3i )
′ ∼ N (μ,Γ )

with μ = (μ1,μ2,μ3)
′. We introduce an individual random

horizontal shift, φ3i , to model the possible delay of the price
dynamics in some auctions with respect to the rest.

We analyzed a set of 183 eBay auctions for Palm M515
Personal Digital Assistants (PDA), of a fixed duration of
seven days, that took place between March and May, 2003.
This is the data set used in Reithinger et al. (2008) and it
is publicly available at http://www.rhsmith.umd.edu/digits/
statistics/data.aspx. We were interested in modeling the live
bids, that is, the actual prices that are shown by eBay during
the live auction. Note that these are different from the bids
placed by bidders during the auction, which are the prices
recorded in the bid history published by eBay after the auc-
tion closes. Then, a transformation on the bid records is re-
quired to recover the live bids (see Shmueli and Jank 2005
for details).

The live bids range from $0.01 to $300 and form a se-
quence of non decreasing prices for each auction. We typi-
cally observe between 10 and 30 bids per auction, although
there are auctions with only two bids. We have a total of
3280 bids for the 183 auctions. Following Reithinger et al.
(2008), we considered the square root of live bids to re-
duce the price variability. We run the REML version of our
LASSO-SAEM algorithm, of which we performed 100 it-
erations with the following sequence of decreasing steps
(χk)k : χk = 1 for 1 ≤ k ≤ 60 and χk = 1/(k − 60) for
61 ≤ k ≤ 100. We also considered m = 3 chains in each
iteration. The dictionary for nonparametric estimation was
composed by a combination of B-splines of degrees three
and four, with 17 knots unequally spaced so that most of
the knots were in those places with more data observed (at
the beginning, at the end and at the middle of the interval),
10 power functions, 10 exponential functions and 5 logit
functions, with a total size of 64 functions. The estimate of
f is monotone, as expected by the nature of the data, and
presents two steepest parts at the beginning and at the end of
the interval. At each iteration of the algorithm the estimated
function at the nonparametric step is a sparse combination
of the functions of the dictionary. In fact, the set of func-
tions selected by the LASSO method at the last iterations
of the algorithm is almost constant, containing mainly two
functions, ϕ(x) = x0.35 and ϕ(x) = exp(0.9x), and in some

http://www.rhsmith.umd.edu/digits/statistics/data.aspx
http://www.rhsmith.umd.edu/digits/statistics/data.aspx
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Fig. 4 Left: Estimated nonlinear function f̂ (solid line) and 95 % confidence band (gray shadow) in the on-line auction data set. Right: Last 24
LASSO estimates whose empirical mean provides f̂

Table 7 Estimated mean vector and covariance matrix of the random
effects and estimated error variance in the on-line auction data set

φ1 φ2 φ3

Mean 1.04 0.18 −0.06

Correlation 1 (7.68) −0.02 0.41 φ1

Matrix −0.02 1 (0.19) 0.37 φ2

(variances) 0.41 0.37 1 (0.23) φ3

σ 2 1.93

iterations a small component of a cubic B-spline around the
middle of the interval. In Fig. 4 we present the last 24 esti-
mates f (k,l) from which we have obtained f̂ as in (9), and
f̂ , together with a 95 % pointwise confidence band. These
results have been obtained with τ = 2 as the value for the
tuning parameter in the LASSO estimation step. The esti-
mates for μ and Γ are presented in Table 7.

To assess the robustness of the LASSO procedure, we
have also performed an analysis of this data set with a dic-
tionary that is composed by the union of the dictionary de-
fined above and the dictionary used in Sect. 5.2 to analyze
the simulated data. That is, we have added Fourier and Haar
wavelets bases to the dictionary initially chosen. The results
are very similar to those obtained with the original dictio-
nary. They are shown in Fig. 5. In particular, the estimates
of f are almost identical. Among the last 24 estimates of f ,
f (k,l), obtained with this new dictionary, only two estimates

contain a significant component of functions not included in
the original dictionary.

To compare our method to Ke and Wang’s, in Figs. 5 and
6 we also present the results of the analysis of this data set
with snm. We have to mention that we have performed this
analysis with five different function models for f and two
different criteria for the estimation of the smoothing param-
eter, namely, general cross validation (GCV) and general-
ized maximum likelihood (GML). So, we ran snm with ten
different specifications, among which we got convergence
for only six specifications. None of the six estimates of f

is strictly monotone and five of them are extremely rough.
In Fig. 5 we present the smoothest snm f -estimate, which
is obtained by modeling f with cubic splines and by using
the GLM criterion, together with the saem-LASSO estimate
obtained with the largest dictionary. In Fig. 6 we present
the observed live bids and the model fits for 18 chosen auc-
tions with different price profiles. We can appreciate how
the fitted models provide in general an accurate fit of the fi-
nal price, even in the cases when “bid sniping” is present.
There are some differences between the two fits, mostly at
the beginning of each auction, although the fitted curves are
in general similar with the two methods. For the rest of the
combinations of a function model and a smoothing estima-
tion criterion used with snm, the fits of the data are sub-
optimal. Indeed, the fitted price curves produce almost per-
fect interpolation of the data.

As for the computation time, saem-lasso took 300 sec-
onds to run on these data on a 2.5 GHz Mac OS X whereas
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Fig. 5 Left: Estimates of f obtained with snm (dashed line) and saem-lasso with the large dictionary (solid lines) and 95 % confidence bands
(gray shadows). Right: Last 24 LASSO estimates in saem-lasso

the average time for snm over the six runs was about six
hours on the same computer.

6 Conclusions and discussion

Semiparametric nonlinear mixed effects models cover a
wide range of situations and generalize a large class of
models, such as nonlinear mixed effects models or self-
modelling nonlinear regression models among others. We
have proposed a new method for estimation in SNMMs
combining an exact likelihood estimation algorithm with a
LASSO-type procedure. Our strategy relies on an iterative
procedure to estimate θ conditioned on f and vice versa,
which allow us to tackle the parametric and the nonparamet-
ric problem independently. This makes possible the use of
fast algorithms providing an accurate and computationally
efficient estimation method.

Concerning parametric estimation, our simulation results
illustrate our method and point out some important advan-
tages of using an exact likelihood estimation algorithm in-
stead of likelihood approximation methods, such as conver-
gence of the estimates. The REML version of our algorithm,
corrects the estimation of variance components accounting
for the loss of degrees of freedom from estimating the fixed
effects and provide satisfactory results. However, as it was
already pointed out in the comments to Ke and Wang (2001),

it will be important to define a REML estimator that can
also take into account the loss of degrees of freedom from
estimating the nonlinear function. As for computational as-
pects, we have to mention that the SAEM algorithm avoids
the convergence problems encountered by nlme based rou-
tines.

For nonparametric aspects, the dictionary approach based
on LASSO algorithms shows, in some situations, some im-
provements when compared with Ke and Wangs’ methodol-
ogy. This is the case for instance for spiky or non-continuous
functions to be estimated. Our dictionary method can adapt
to different features of signals for wealthy enough dictio-
naries. Furthermore, our methodology allows us to obtain
interesting interpretation with respect to the functions of
the dictionary selected by the procedure. For instance, we
can detect trends, frequencies of sinusoids or location and
heights of peaks of the common shape represented by the
estimated function f . We have observed that our LASSO
estimate achieves good theoretical and numerical results if
the dictionary is wealthy and incoherent enough. From the
theoretical point of view, incoherence is expressed, in this
paper, by Assumption A1(s) or by the quantity ρ(S∗) de-
fined in the Supplementary Material. These incoherence as-
sumptions are hard to check in practice and we do not know
if they can be relaxed in our setting.

We mention that our method can be non robust if the dic-
tionary is not wealthy enough. That is, if the function to be
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Fig. 6 Observed live bids
(circles) and fitted price curves
for a subset of 18 auctions
obtained with snm (dashed
lines) and saem-lasso (solid
lines) with the large dictionary

estimated cannot be well approximated by linear combina-
tions of the functions of the dictionary, the functions that are
selected can vary from one simulation to another, which may
lead to different estimates. However, it the main features of
a signal (periodicity, smoothness, peaks, . . . ) are included in
the dictionary, our method is very robust to the enlarging of
the dictionary with additional functions, as seen in Sects. 5.2
and 5.3.

In Sect. 3, the particular structure of the observations
(where we have ni observations for each individual i) is not
used for applying the standard LASSO-procedure. But a nat-
ural and possible extension of this work would be to take
into account this structure and then to apply a more sophis-
ticated LASSO-type procedure inspired, for instance, by the
group-LASSO proposed by Yuan and Lin (2006) to achieve
better results. This is a challenging research axis we wish

to investigate from a theoretical and practical point of view.
The LASSO is a very popular algorithm, but Hybrid Adap-
tive Spline, MARS or BSML (see Sklar et al. 2012) could
also be combined with the dictionary approach proposed in
this paper. Since results of our paper show that the dictio-
nary approach seems promising, results of our paper could
be extended by using algorithms mentioned previously from
both theoretical and practical points of view.

Among other possible extensions of this work, a very
promising one would be the use of the nonparametric tech-
niques herein described for density estimation (in the spirit
of Bertin et al. 2011) of the random errors, assuming that
they do not need to be normal. Indeed, the recent work of
Comte and Samson (2012) deals with this problem in the
case of a linear mixed effects model. Its generalization to
NLMEs or even SNMMs is a real challenge.
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