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1 Theoretical results for the LASSO-type estimator

1.1 Assumptions

As usual, assumptions on the dictionary are necessary to obtain oracle results for LASSO-
type procedures. We refer the reader to van de Geer and Bühlmann (2009) for a good review
of different assumptions considered in the literature for LASSO-type estimators and con-
nections between them. The dictionary approach aims at extending results for orthonormal
bases. Actually, our assumptions express the relaxation of the orthonormality property. To
describe them, we introduce the following notation. For l ∈ N, we denote

νmin(l) = min
|J|≤l

min
λ∈RM

λJ 6=0

|| fλJ ||
2
n

||λJ ||2`2

and νmax(l) = max
|J|≤l

max
λ∈RM

λJ 6=0

|| fλJ ||
2
n

||λJ ||2`2

,

where || · ||`2 is the l2 norm in RM . The notation λJ means that for any k ∈ {1, . . . ,M},
(λJ)k = λk if k ∈ J and (λJ)k = 0 otherwise. Previous quantities correspond to the “re-
stricted” eigenvalues of the Gram matrix G = (G j, j′) with coefficients

G j, j′ =
1
n

n

∑
i=1

b2
i ϕ j(xi)ϕ j′(xi).

Assuming that νmin(l) and νmax(l) are close to 1 means that every set of columns of G with
cardinality less than l behaves like an orthonormal system. We also consider the restricted
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correlations

δl,l′ = max
|J|≤l
|J′|≤l′

J∩J′= /0

max
λ ,λ ′∈RM

λJ 6=0,λ ′J′ 6=0

〈 fλJ , fλ ′
J′
〉

||λJ ||`2 ||λ ′J′ ||`2

,

where 〈 f ,g〉 = 1
n ∑

n
i=1 b2

i f (xi)g(xi). Small values of δl,l′ means that two disjoint sets of
columns of G with cardinality less than l and l′ span nearly orthogonal spaces. We will
use the following assumption considered in Bickel et al (2009).

Assumption 1 For some integer 1≤ s≤M/2, we have

νmin(2s) > δs,2s. (A1(s))

Oracle inequalities of the Dantzig selector were established under this assumption in the
parametric linear model by Candès and Tao (2007) and for density estimation by Bertin et al
(2011). It was also considered by Bickel et al (2009) for nonparametric regression and for
the LASSO estimate.

Let us denote

κs =
√

νmin(2s)
(

1−
δs,2s

νmin(2s)

)
> 0, µs =

δs,2s√
νmin(2s)

.

We will say that λ ∈ RM satisfies the Dantzig constraints if for all j = 1, . . . ,M∣∣∣(Gλ ) j− β̂ j

∣∣∣≤ rn, j, (1)

where

β̂ j =
1
n

n

∑
i=1

biϕ j(xi)Yi.

We denote D the set of λ that satisfies (1). The classical use of Karush-Kuhn-Tucker condi-
tions shows that the LASSO estimator λ̂ ∈D , so it satisfies the Dantzig constraint. Finally,
we assume in the sequel

M ≤ exp(nδ ),

for δ < 1. Therefore, if ‖ϕ j‖n is bounded by a constant independent of n and M, then
rn, j = o(1) and oracle inequalities established below are meaningful.

1.2 Oracle inequalities

We obtain the following oracle inequalities.

Theorem 1 Let τ > 2. With probability at least 1−M1−τ/2, for any integer s < n/2 such
that (A1(s)) holds, we have for any α > 0,

|| f̂ − f ||2n ≤ inf
λ∈RM

inf
J0⊂{1,...,M}
|J0|=s

{
|| fλ − f ||2n +α

(
1+

2µs

κs

)2
Λ(λ ,Jc

0)
2

s
+16s

(
1
α

+
1

κ2
s

)
r2

n

}
(2)

where
rn = sup

j=1,...,M
rn, j,
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Λ(λ ,Jc
0) = ||λJC

0
||`1 +

(
||λ̂ ||`1 −||λ ||`1

)
+

2
,

for any x ∈ R x+ := max(x,0) and || · ||`1 is the l1 norm in RM .

Theorem 2 Let τ > 2. With probability at least 1−M1−τ/2, for any integer s < n/2 such
that (A1(s)) holds, we have for any α > 0,

|| f̂− f ||2n≤ inf
λ∈D

inf
J0⊂{1,...,M}
|J0|=s

|| fλ − f ||2n +α

(
1+

2µs

κs

)2 ||λJC
0
||`1 + ||λ̂JC

0
||`1

s
+32s

(
1
α

+
1

κ2
s

)
r2

n

 .

(3)

Similar oracle inequalities were established by Bunea et al (2006), Bunea et al (2007a),
Bunea et al (2007b), or van de Geer (2010). But in these works, the functions of the dictio-
nary are assumed to be bounded by a constant independent of M and n. Let us comment the
right-hand side of inequalities (2) and (3) of Theorems 1 and 2. The first term is an approx-
imation term which measures the closeness between f and fλ and that can vanish if f is a
linear combination of the functions of the dictionary. The second term can be considered as
a bias term. In both theorems, the term ||λJC

0
||`1 corresponds to the cost of having λ with a

support different of J0. For a given λ , this term can be minimized by choosing J0 as the set
of largest coordinates of λ . Note that if the function f has a sparse expansion on the dictio-
nary, that is f = fλ where λ is a vector with s non-zero coordinates, then by choosing J0 as
the set of the s non-zero coordinates, the approximation term and the term ||λJC

0
||`1 vanish.

In Theorem 1, the term
(
||λ̂ ||`1 −||λ ||`1

)
+

will be smaller as the `1-norm of the LASSO

estimator is small and this term is equal to 0 if ||λ̂ ||`1 ≤ ||λ ||`1 , which is frequently the case.
In Theorem 2, given a vector λ such that fλ approximates well f , the term ||λ̂JC

0
||`1 will

be small if the LASSO estimator selects the largest coordinates of λ . The last term can be
viewed as a variance term corresponding to the estimation of f as linear combination of s
functions of the dictionary (see Bertin et al (2011) for more details). Finally, the parameter
α calibrates the weights given for the bias and variance terms.

The following section deals with estimation of sparse functions.

1.3 The support property of the LASSO estimate

Let τ > 2. In this section, we apply the LASSO procedure with r̃n, j instead of rn, j, with

r̃n, j = σ‖ϕ j‖n

√
τ̃ logM

n
, τ̃ > τ.

We assume that the regression function f can be decomposed on the dictionary: there exists
λ ∗ ∈ RM such that

f =
M

∑
j=1

λ
∗
j ϕ j.

We denote S∗ the support of λ ∗:

S∗ =
{

j ∈ {1, . . . ,M} : λ
∗
j 6= 0

}
,
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and by s∗ the cardinal of S∗. We still consider the LASSO estimate λ̂ and, similarly, we
denote Ŝ the support of λ̂ :

Ŝ =
{

j ∈ {1, . . . ,M} : λ̂ j 6= 0
}

.

One goal of this section is to show that with high probability, we have:

Ŝ⊂ S∗.

We have the following result.

Theorem 3 We define

ρ(S∗) = max
k∈S∗

max
j 6=k

|< ϕ j,ϕk > |
‖ϕ j‖n‖ϕk‖n

and we assume that there exists c ∈ (0,1/3) such that

s∗ρ(S∗)≤ c.

If we have √
τ̃ +
√

τ√
τ̃−
√

τ
≤ 1− c

2c
,

then
P
{

Ŝ⊂ S∗
}
≥ 1−2M1−τ/2.

A similar result was established by Bunea (2008) in a slightly less general model. However,
her result is based on strong assumptions on the dictionary, namely each function is bounded
by a constant L (see Assumption (A2)(a) in Bunea (2008)). This assumption is mild when
considering dictionaries only based on Fourier bases. It is no longer the case when wavelets
are considered and Bunea’s assumption is satisfied only in the case where L depends on M
and n on the one hand and is very large on the other hand. Since L plays a main role in the
definition of the tuning parameters of the method, with too rough values for L, the procedure
cannot achieve satisfying numerical results for moderate values of n even if asymptotic
theoretical results of the procedure are good. In the setting of this paper, where we aim at
providing calibrated statistical procedures, we avoid such assumptions.

Finally, we have the following corollary.

Corollary 1 We suppose that A1(s∗) is satisfied and that there exists c ∈ (0,1/3) such that

s∗ρ(S∗)≤ c.

If we have √
τ̃ +
√

τ√
τ̃−
√

τ
≤ 1− c

2c
,

then, with probability at least 1−4M1−τ/2,

|| f̂ − f ||2n ≤
32s∗r̃2

n

κs∗
,

where
r̃n = sup

j=1,...,M
r̃n, j.

This corollary is a simple consequence of Theorem 2 with λ = λ ∗ and J0 = S∗. Taking
λ = λ ∗ implies that the approximation term vanishes. Taking J0 = S∗ implies that the bias
term vanishes since the support of the LASSO estimator is included in the the support of
λ ∗. In this case, assuming that sup j ‖ϕ j‖n < ∞, the rate of convergence is the classical rate
s∗ logM

n .
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2 The proofs

2.1 Preliminary lemma

Lemma 1 For 1≤ j≤M, we consider the event A j =
{
|Vj|< rn, j

}
where Vj = 1

n ∑
n
i=1 biϕ j(xi)εi.

Then,
P(A j)≥ 1−M−τ/2.

Proof of Lemma 1: We have

P
(
A c

j
)
≤ P

(√
n|Vj|/(σ‖ϕ j‖n)≥

√
nrn, j/(σ‖ϕ j‖n)

)
≤ P

(
|Z| ≥

√
τ logM

)
≤M−τ/2

where Z is a standard normal variable. �

2.2 Proof of Theorem 1

Let λ ∈ RM and J0 such that |J0|= s. We have

‖ fλ − f‖2
n = ‖ f̂ − f‖2

n +‖ fλ − f̂‖2
n +

2
n

n

∑
i=1

b2
i
(

f̂ (xi)− f (xi)
)(

fλ (xi)− f̂ (xi)
)
.

We have ‖ fλ − f̂‖2
n = ‖ f∆‖2

n where ∆ = λ − λ̂ . Moreover

A =
2
n

n

∑
i=1

b2
i
(

f̂ (xi)− f (xi)
)(

fλ (xi)− f̂ (xi)
)

= 2
M

∑
j=1

(λ j− λ̂ j)
[
(Gλ̂ ) j−β j

]
,

where

β j =
1
n

n

∑
i=1

b2
i ϕ j(xi) f (xi).

Since λ̂ satisfies the Dantzig constraint, we have with probability at least 1−M1−τ/2, for
any j ∈ {1, . . . ,M},

|(Gλ̂ ) j−β j| ≤ |(Gλ̂ ) j− β̂ j|+ |β̂ j−β j| ≤ 2rn, j

and |A| ≤ 4rn‖∆‖1. This implies that

‖ f̂ − f‖2
n ≤ ‖ fλ − f‖2

n +4rn‖∆‖1−‖ f∆‖2
n.

Moreover using Lemma 1 and Proposition 1 of Bertin et al (2011) (where the norm ‖ · ‖2 is
replaced by ‖ · ‖n), we obtain that(

||∆JC
0
||`1 −||∆J0 ||`1

)
+
≤ 2||λJC

0
||`1 +

(
||λ̂ ||`1 −||λ ||`1

)
+

(4)

and

|| f∆ ||n ≥ κs||∆J0 ||`2 −
µs√
|J0|

(
||∆JC

0
||`1 −||∆J0 ||`1

)
+

≥ κs||∆J0 ||`2 −2
µs√
|J0|

Λ(λ ,Jc
0).
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Note that Proposition 1 of Bertin et al (2011) is obtained using Lemma 2 and Lemma 3 of
Bertin et al (2011). In our context, Lemma 2 and Lemma 3 can be proved in the same way
by replacing the norm ‖ · ‖2 by ‖ · ‖n and by considering PJ01 as the projector on the linear
space spanned by (ϕ j(x1), . . . ,ϕ j(xn)) j∈J01 .

Now following the same lines as Theorem 2 of Bertin et al (2011), replacing κJ0 by κs
and µJ0 by µs, we obtain the result of the theorem.

2.3 Proof of Theorem 2

We consider λ̂ D defined by

λ̂
D = argminλ∈RM ||λ ||`1 such that λ satisfies the Dantzig constraint (1).

Denote by f̂ D the estimator f
λ̂ D . Following the same lines as in the proof of Theorem 1, it

can be obtained that, with probability at least 1−M1−τ/2, for any integer s < n/2 such that
(A1(s)) holds, we have for any α > 0,

|| f̂ D− f ||2n≤ inf
λ∈RM

inf
J0⊂{1,...,M}
|J0|=s

{
|| fλ − f ||2n +α

(
1+

2µs

κs

)2
Λ(λ ,Jc

0)
2

s
+16s

(
1
α

+
1

κ2
s

)
r2

n

}
,

where here

Λ(λ ,Jc
0) = ||λJC

0
||`1 +

(
||λ̂ D||`1 −||λ ||`1

)
+

2
.

If the infimum is only taken over the vectors λ that satisfy the Dantzig constraint, then, with
the same probability we have

|| f̂ D− f ||2n ≤ inf
λ∈D

inf
J0⊂{1,...,M}
|J0|=s

{
|| fλ − f ||2n +α

(
1+

2µs

κs

)2 ‖λJC
0
‖2

l1

s
+16s

(
1
α

+
1

κ2
s

)
r2

n

}
.

(5)
Following the same lines as the proof of Theorem 1, replacing λ by λ̂ D, we obtain, with
probability at least 1−M1−τ/2,

‖ f̂ − f‖2
n ≤ ‖ f̂ D− f‖2

n +4rn‖∆‖1−‖ f∆‖2
n,

with ∆ = λ̂ − λ̂ D. Applying (4) where λ̂ plays the role of λ and λ̂ D the role of λ̂ , the vector
∆ satisfies (

||∆JC
0
||`1 −||∆J0 ||`1

)
+
≤ 2||λ̂JC

0
||`1 .

Following the same lines as in the proof of Theorem 1, we obtain that for each J0 ⊂
{1, . . . ,M} such that |J0|= s

|| f̂ − f ||2n ≤

|| f̂ D− f ||2n +α

(
1+

2µs

κs

)2 ‖λ̂JC
0
‖2

l1

s
+16s

(
1
α

+
1

κ2
s

)
r2

n

 . (6)

Finally, (5) and (6) imply the theorem.



7

2.4 Proof of Theorem 3

We first state the following lemma.

Lemma 2 We have for any u ∈ RM ,

crit(λ̂ +u)− crit(λ̂ )≥

∥∥∥∥∥ M

∑
k=1

ukϕk

∥∥∥∥∥
2

n

.

Proof of Lemma 2: Since for any λ ,

crit(λ ) =
1
n

n

∑
i=1

(yi−bi fλ (xi))
2 +2

M

∑
j=1

r̃n, j|λ j|,

crit(λ̂ +u)− crit(λ̂ ) =
1
n

n

∑
i=1

(
yi−bi

M

∑
k=1

λ̂kϕk(xi)−bi

M

∑
k=1

ukϕk(xi)

)2

+2
M

∑
j=1

r̃n, j|λ̂ j +u j|

−1
n

n

∑
i=1

(
yi−bi

M

∑
k=1

λ̂kϕk(xi)

)2

−2
M

∑
j=1

r̃n, j|λ̂ j|

=
1
n

n

∑
i=1

b2
i

(
M

∑
k=1

ukϕk(xi)

)2

+2
M

∑
j=1

r̃n, j

(
|λ̂ j +u j|− |λ̂ j|

)
−2

n

n

∑
i=1

(
yi−bi

M

∑
k=1

λ̂kϕk(xi)

)
bi

M

∑
k=1

ukϕk(xi)

=
1
n

n

∑
i=1

b2
i

(
M

∑
k=1

ukϕk(xi)

)2

+2
M

∑
j=1

r̃n, j

(
|λ̂ j +u j|− |λ̂ j|

)
+

2
n

n

∑
i=1

b2
i

M

∑
j=1

λ̂ jϕ j(xi)
M

∑
k=1

ukϕk(xi)−
2
n

n

∑
i=1

biyi

M

∑
k=1

ukϕk(xi)

=
1
n

n

∑
i=1

b2
i

(
M

∑
k=1

ukϕk(xi)

)2

+2
M

∑
j=1

r̃n, j

(
|λ̂ j +u j|− |λ̂ j|

)
+

2
n

n

∑
i=1

M

∑
k=1

ukϕk(xi)

(
b2

i

M

∑
j=1

λ̂ jϕ j(xi)−biyi

)
.

Since λ̂ minimizes λ 7−→ crit(λ ), we have for any k,

0 =
2
n

n

∑
i=1

ϕk(xi)

(
b2

i

M

∑
j=1

λ̂ jϕ j(xi)−biyi

)
+2r̃n,ks(λ̂k),

where |s(λ̂k)| ≤ 1 and s(λ̂k) = sign(λ̂k) if λ̂k 6= 0. So,

2
n

n

∑
i=1

M

∑
k=1

ukϕk(xi)

(
b2

i

M

∑
j=1

λ̂ jϕ j(xi)−biyi

)
=−2

M

∑
k=1

uk r̃n,ks(λ̂k)
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and

crit(λ̂ +u)− crit(λ̂ ) =
1
n

n

∑
i=1

b2
i

(
M

∑
k=1

ukϕk(xi)

)2

+2
M

∑
j=1

r̃n, j

(
|λ̂ j +u j|− |λ̂ j|

)
−2

M

∑
k=1

uk r̃n,ks(λ̂k)

=
1
n

n

∑
i=1

b2
i

(
M

∑
k=1

ukϕk(xi)

)2

+2
M

∑
j=1

r̃n, j

(
|λ̂ j +u j|− |λ̂ j|−u js(λ̂ j)

)

≥ 1
n

n

∑
i=1

b2
i

(
M

∑
k=1

ukϕk(xi)

)2

,

which proves the result. �

Now, still with s∗ = card(S∗), we consider for µ ∈ Rs∗

critS∗(µ) =
1
n

n

∑
i=1

(
yi−bi ∑

j∈S∗
µ jϕ j(xi)

)2

+2 ∑
j∈S∗

r̃n, j|µ j|,

and
µ̃ = arg min

µ∈Rs∗
critS∗(µ).

Then we set

S =
⋂
j/∈S∗

{∣∣∣∣∣1n n

∑
i=1

yibiϕ j(xi)− ∑
k∈S∗

µ̃k < ϕ j,ϕk >

∣∣∣∣∣< r̃n, j

}
and we state the following lemma.

Lemma 3 On the set S , the non-zero coordinates of λ̂ are included into S∗.

Proof of Lemma 3: Recall that λ̂ is a minimizer of λ 7−→ crit(λ ). Using standard convex
analysis arguments, this is equivalent to say that for any 1≤ j ≤M,

1
n ∑

n
i=1 yibiϕ j(xi)−∑

M
k=1 λ̂k < ϕ j,ϕk > = r̃n, jsign(λ̂ j) if λ̂ j 6= 0,∣∣∣ 1

n ∑
n
i=1 yibiϕ j(xi)−∑

M
k=1 λ̂k < ϕ j,ϕk >

∣∣∣ ≤ r̃n, j if λ̂ j = 0.

Similarly, on S , we have

1
n ∑

n
i=1 yibiϕ j(xi)−∑k∈S∗ µ̃k < ϕ j,ϕk > = r̃n, jsign(µ̃ j) if j ∈ S∗ and µ̃ j 6= 0,∣∣ 1

n ∑
n
i=1 yibiϕ j(xi)−∑k∈S∗ µ̃k < ϕ j,ϕk >

∣∣ ≤ r̃n, j if j ∈ S∗ and µ̃ j = 0,∣∣ 1
n ∑

n
i=1 yibiϕ j(xi)−∑k∈S∗ µ̃k < ϕ j,ϕk >

∣∣ < r̃n, j if j /∈ S∗.

So, on S , the vector µ̂ such µ̂ j = µ̃ j if j ∈ S∗ and µ̂ j = 0 if j /∈ S∗ is also a minimizer of
λ 7−→ crit(λ ). Using Lemma 2, we have for any 1≤ i≤ n:

M

∑
k=1

(λ̂k− µ̂k)ϕk(xi) = 0.
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So, for j /∈ S∗, ∣∣∣∣∣1n n

∑
i=1

yibiϕ j(xi)−
M

∑
k=1

λ̂k < ϕ j,ϕk >

∣∣∣∣∣< r̃n, j.

Therefore, on S , the non-zero coordinates of λ̂ are included into S∗. �

Lemma 3 shows that we just need to prove that

P{S } ≥ 1−2M1−τ/2

P{S c} ≤ ∑
j/∈S∗

P

{∣∣∣∣∣1n n

∑
i=1

yibiϕ j(xi)− ∑
k∈S∗

µ̃k < ϕ j,ϕk >

∣∣∣∣∣≥ r̃n, j

}
≤ A+B,

with

A = ∑
j/∈S∗

P

{∣∣∣∣∣1n n

∑
i=1

[yibiϕ j(xi)−E(yibiϕ j(xi))]

∣∣∣∣∣≥ rn, j

}

= ∑
j/∈S∗

P

{∣∣∣∣∣1n n

∑
i=1

εibiϕ j(xi)

∣∣∣∣∣≥ rn, j

}
= ∑

j/∈S∗
P
{∣∣Vj

∣∣≥ rn, j
}

(see Lemma 1) and

B = P

⋃
j/∈S∗

{∣∣∣∣∣1n n

∑
i=1

E(yibiϕ j(xi))− ∑
k∈S∗

µ̃k < ϕ j,ϕk >

∣∣∣∣∣≥ r̃n, j− rn, j

}
= P

⋃
j/∈S∗

{∣∣∣∣∣< ϕ j, fλ ∗ >− ∑
k∈S∗

µ̃k < ϕ j,ϕk >

∣∣∣∣∣≥ r̃n, j− rn, j

}
= P

⋃
j/∈S∗

{∣∣∣∣∣∑k∈S∗
(λ ∗k − µ̃k) < ϕ j,ϕk >

∣∣∣∣∣≥ r̃n, j− rn, j

}
≤ P

⋃
j/∈S∗

{
ρ(S∗)‖ϕ j‖n ∑

k∈S∗
|λ ∗k − µ̃k|‖ϕk‖n ≥ r̃n, j− rn, j

}
since

ρ(S∗) = max
k∈S∗

max
j 6=k

|< ϕ j,ϕk > |
‖ϕ j‖n‖ϕk‖n

.

Using notation of Lemma 3, we have:

‖ fλ ∗ − fµ̂‖2
n = ‖ ∑

k∈S∗
(λ ∗k − µ̂k)ϕk‖2

n

= ∑
k∈S∗

(λ ∗k − µ̂k)2‖ϕk‖2
n + ∑

k∈S∗
∑

j∈S∗, j 6=k
(λ ∗k − µ̂k)(λ ∗j − µ̂ j) < ϕ j,ϕk >,
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and

∑
k∈S∗

(λ ∗k − µ̂k)2‖ϕk‖2
n ≤ ‖ fλ ∗ − fµ̂‖2

n +ρ(S∗) ∑
k∈S∗

∑
j∈S∗, j 6=k

|λ ∗k − µ̂k|‖ϕk‖n×|λ ∗j − µ̂ j|‖ϕ j‖n

≤ ‖ fλ ∗ − fµ̂‖2
n +ρ(S∗)

(
∑

k∈S∗
|λ ∗k − µ̂k|‖ϕk‖n

)2

.

Finally,

(
∑

k∈S∗
|λ ∗k − µ̂k|‖ϕk‖n

)2

≤ s∗ ∑
k∈S∗

(λ ∗k − µ̂k)2‖ϕk‖2
n

≤ s∗

‖ fλ ∗ − fµ̂‖2
n +ρ(S∗)

(
∑

k∈S∗
|λ ∗k − µ̂k|‖ϕk‖n

)2
 ,

which shows that

(
∑

k∈S∗
|λ ∗k − µ̂k|‖ϕk‖n

)2

≤ s∗

1−ρ(S∗)s∗
‖ fλ ∗ − fµ̂‖2

n.

Now,

1
n

n

∑
i=1

(
yi−bi ∑

j∈S∗
µ̃ jϕ j(xi)

)2

+2 ∑
j∈S∗

r̃n, j|µ̃ j| ≤

1
n

n

∑
i=1

(
yi−bi ∑

j∈S∗
λ
∗
j ϕ j(xi)

)2

+2 ∑
j∈S∗

r̃n, j|λ ∗j |.

So,

‖ ∑
j∈S∗

µ̃ jϕ j‖2
n−

2
n

n

∑
i=1

biyi ∑
j∈S∗

µ̃ jϕ j(xi)+2 ∑
j∈S∗

r̃n, j|µ̃ j| ≤

‖ ∑
j∈S∗

λ
∗
j ϕ j‖2

n−
2
n

n

∑
i=1

biyi ∑
j∈S∗

λ
∗
j ϕ j(xi)+2 ∑

j∈S∗
r̃n, j|λ ∗j |,

and using previous notation,

‖ fµ̂‖2
n−

2
n

n

∑
i=1

biyi ∑
j∈S∗

µ̃ jϕ j(xi)+2 ∑
j∈S∗

r̃n, j|µ̃ j| ≤

‖ fλ ∗‖2
n−

2
n

n

∑
i=1

biyi ∑
j∈S∗

λ
∗
j ϕ j(xi)+2 ∑

j∈S∗
r̃n, j|λ ∗j |.
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Therefore,

‖ fλ ∗ − fµ̂‖2
n = ‖ fµ̂‖2

n +‖ fλ ∗‖2
n−2 < fµ̂ , fλ ∗ >

≤ 2‖ fλ ∗‖2
n−2 < fµ̂ , fλ ∗ > +

2
n

n

∑
i=1

biyi ∑
j∈S∗

(µ̃ j−λ
∗
j )ϕ j(xi)+2 ∑

j∈S∗
r̃n, j(|λ ∗j |− |µ̃ j|)

=
2
n

n

∑
i=1

biyi( fµ̂(xi)− fλ ∗(xi))−
2
n

n

∑
i=1

b2
i fλ ∗(xi)( fµ̂(xi)− fλ ∗(xi))

+2 ∑
j∈S∗

r̃n, j(|λ ∗j |− |µ̃ j|)

=
2
n

n

∑
i=1

bi(yi−E(yi))( fµ̂(xi)− fλ ∗(xi))+2 ∑
j∈S∗

r̃n, j(|λ ∗j |− |µ̃ j|)

=
2
n

n

∑
i=1

biεi( fµ̂(xi)− fλ ∗(xi))+2 ∑
j∈S∗

r̃n, j(|λ ∗j |− |µ̃ j|)

= 2
M

∑
j=1

Vj(µ̂ j−λ
∗
j )+2 ∑

j∈S∗
r̃n, j(|λ ∗j |− |µ̃ j|).

Now let us assume that for any j ∈ S∗, Vj < rn, j. Then,

‖ fλ ∗ − fµ̂‖2
n < 2 ∑

j∈S∗
(rn, j + r̃n, j)|µ̂ j−λ

∗
j |

< 2σ

√
logM

n
(
√

τ +
√

τ̃) ∑
j∈S∗
‖ϕ j‖n|µ̂ j−λ

∗
j |.

So,

∑
k∈S∗
|λ ∗k − µ̂k|‖ϕk‖n < 2σ

√
logM

n
(
√

τ +
√

τ̃)
s∗

1−ρ(S∗)s∗

and for any j /∈ S∗,

ρ(S∗)‖ϕ j‖n ∑
k∈S∗
|λ ∗k − µ̂k|‖ϕk‖n < 2σ

√
logM

n
‖ϕ j‖n(

√
τ +
√

τ̃)
ρ(S∗)s∗

1−ρ(S∗)s∗

<
2σc(

√
τ +
√

τ̃)
1− c

√
logM

n
‖ϕ j‖n

< (
√

τ̃−
√

τ)σ

√
logM

n
‖ϕ j‖n

< r̃n, j− rn, j.

Therefore,

B ≤ ∑
j∈S∗

P
{∣∣Vj

∣∣≥ rn, j
}

and using Lemma 1, since P{S c} ≤ A+B,

P{S } ≥ 1−2M1−τ/2.
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2.5 Proof of Corollary 1

First note that λ ∗ satisfies the Dantzig constraint (1) where rn, j is replaced by r̃n, j with
probability larger than 1−M1−τ̃/2. On the event Ŝ ⊂ S∗, we have λ ∗(S∗)C = λ̂(S∗)C = 0, then
applying Theorem 2, we obtain that for any α > 0

|| f̂ − f ||2n ≤ 32s∗
(

1
α

+
1

κ2
s∗

)
r̃2

n,

which implies the result of the theorem.
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