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Abstract

Supremum norm loss is intuitively more meaningful to quantify function estima-

tion error in statistics. In the context of multivariate nonparametric regression with

unknown error, we propose a Bayesian procedure based on spike-and-slab prior and

wavelet projections to estimate the regression function and all its mixed partial deriva-

tives. We show that their posterior distributions contract to the truth optimally and

adaptively under supremum-norm loss. The master theorem through tests with ex-

ponential errors used in Bayesian nonparametrics was not adequate to deal with this

problem, and we developed a new idea such that posterior under the regression model

is systematically reduced to a posterior arising from some quasi-white noise model,

where the latter model greatly simplifies our rate calculations. Hence, this paper takes

the first step in showing explicitly how one can translate results from white noise to

regression model in a Bayesian setting.
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1 Introduction

Consider the nonparametric multivariate regression model

Yi = f(Xi) + εi, i = 1, . . . , n, (1.1)

where Yi is a response variable, X i is covariate, and ε1, . . . , εn are independent and iden-
tically distributed (i.i.d.) as N(0, σ2) with unknown 0 < σ < ∞. Each X i takes values
in some rectangular region in Rd, which is assumed to be [0, 1]d without loss of generality.
The covariates can be deterministic or are sampled from a uniform distribution on [0, 1]d

independent of εi. There is some freedom in choosing the locations of the fixed covariates,
as long as its empirical distribution can be approximated by a uniform distribution with an
error of at most n−1.

Suppose we observe (Yi,Xi), i = 1, . . . , n, then our main problem is to recover or estimate
the unknown f and its mixed partial derivatives. In the literature, recovery is performed
by minimizing certain loss functions, with the L2 or integrated mean square error being
the most common. However, other choices of loss, especially the supremum norm or L∞ is
also of interest. Unlike the L2-loss, the L∞-loss is intuitively more meaningful and hence a
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more natural distance to use to quantify the “difference” between two functions. Moreover,
L∞-distance is used to construct simultaneous credible bands, which are visually more inter-
pretable in one dimension than L2-credible sets. Also, it can be used to solve other problems
such as function mode estimation discussed in Yoo and Ghosal [31].

Adaptive L2-posterior contraction is a well-studied topic in Bayesian nonparametrics,
where optimal procedures have been proposed for white noise models, inverse problems,
nonparametric regression and density estimation (see Belitser and Ghosal [1], Ray [21],
Shen and Ghosal [25], van der Vaart and van Zanten [28]). Results on L∞-contraction
are much more limited. In the non-adaptive case, Giné and Nickl [12] studied contraction
rates in Lr-metric, 1 ≤ r ≤ ∞, and obtained optimal rate using conjugacy for the Gaussian
white noise model, and a rate for density estimation based on random wavelet series and
Dirichlet process mixture, by using a testing approach based on concentration inequalities.
In the same context, Castillo [3] introduced techniques based on semiparametric Bernstein-
von Misses theorems to obtain optimal L∞-contraction rates. Scricciolo [24] applied the
techniques of Giné and Nickl [12] to obtain L∞-rates using Gaussian kernel mixtures prior
for analytic true densities. Using B-splines tensor product with Gaussian coefficients and
by conjugacy arguments, Yoo and Ghosal [30] established optimal L∞-posterior contraction
rates for estimating multivariate regression function and its mixed partial derivatives.

To the best of our knowledge, there are only two papers on the adaptive case. In Hoffmann
et al. [14], the authors established optimal L∞-contraction rate for the Gaussian white noise
model and gave an existential result for density estimation; while in Chapter 3 of the thesis
by Sniekers [27], a near optimal rate is given implicitly through a result on credible bands for
regression models. For models beyond the white noise, the first aforementioned paper used
an abstract sieve prior construction to prove the existence of a Bayesian procedure, which
is not readily implementable in practice; while the latter paper, which is based on a scaled
Brownian motion prior, can only adapt up to Hölder smoothness of order two.

In this paper, we study a concrete hierarchical Bayesian method to estimate f and its
mixed partial derivatives adaptively under the L∞-loss for nonparametric multivariate re-
gression models as in (1.1). We first represent f as a finite combination of tensor product
wavelet bases, and endow the basis coefficients with a spike-and-slab prior. We further endow
the error variance σ2 with a continuous prior density with support on (0,∞). Spike-and-slab
is one of the most widely used prior in Bayesian statistics, particularly in connection to
model selection (cf. Mitchell and Beauchamp [20], George and McCulloch [9], Ishwaran and
Rao [15]) and high-dimensional regression (cf. Li and Zhang [18], Castillo and van der Vaart
[5], Castillo et al. [4]). When used together with wavelet bases, it can denoise noisy signals
and compress images (see Chipman et al. [6], Abramovich and Silverman [8], Johnstone and
Silverman [16]).

In the literature, an enormous amount of theoretical investigation has been devoted to the
Gaussian white noise model, with only vague references to Le Cam’s asymptotic equivalence
theory claiming that results in this setting translate to more practical statistical problems
such as regression considered in this paper. However in the present Bayesian setting, it is
unclear whether such results still hold, in view of the fact that our design points are not
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exactly discrete uniform, but are close to uniform up to some error. In particular, we are not
aware of any master theorem that makes this translation explicit in Bayesian asymptotics.

In this paper (Section 6.2), we show how one can make the idea of asymptotic equivalence
explicit in Bayeisan posterior rate computations. In our approach, we bound the posterior
under the regression model with a posterior arising from a quasi-white noise model, with
“quasi” refers to the use of a scaling based on the wavelet basis Gram matrix rather than
the standard n−1/2 in white noise models. In a series of steps and intersecting with appropri-
ately chosen events, this is achieved by reducing the regression likelihood to a likelihood that
resembles and retains the component-wise structure of a white noise model, where the latter
likelihood structure greatly simplifies our calculations and thus giving our method a certain
Bayesian “asymptotic equivalence” flavor. We applied this new technique to establish opti-
mal L∞-posterior contraction rates for the regression model of (1.1) under the spike-and-slab
tensor product wavelet prior, by reducing its posterior distribution to a quasi-white noise
counterpart. Once in this simpler setup, we can then adapt proof techniques of Hoffmann
et al. [14], which is based on the standard white noise model to prove our main result and
translate them back to the more practical regression setting.

Our main result shows that spike-and-slab priors with appropriate weights can estimate
f and all its mixed partial derivatives optimally and adaptively under L∞-loss, in the sense
that the resulting sup-norm posterior contraction rates match with the minimax rates for
this problem. The scope of our result is quite general, in that we require only the slab
prior density to be bounded from above and bounded from below on some interval, and this
encompasses (nonconjugate) distributions such as Gaussian, sub-Gaussian, Laplace, uniform
and most t-distributions. The Gaussian assumption of our errors in (1.1) is simply a working
model to derive expressions for the posterior, and our results will hold even if the model is
misspecified and the actual data generation mechanism is sub-Gaussian.

The main challenge of this new approach is the handling of discretization inherent in re-
gression models, as many convenient wavelet properties are lost when working in the discrete
domain with finite data. As an example, the wavelet basis matrix constructed from wavelets
evaluated at the design points is not orthogonal and this complicates analysis. We solve this
problem by approximating discrete quantities or sums by its continuous or integral versions,
and thus incurring approximation errors that we propagate throughout our calculations,
while at the same time keeping them under control so as not to overwhelm stochastic and
truncation errors (bias) in other parts of the problem. Another generalization we considered
is to allow f0 to be anisotropic, i.e., different smoothness in different dimensions, and we
introduce a version of the anisotropic Besov space (see Definition 3.1 below) suited for our
analysis and we assume that the true regression function f0 belongs to this space.

One might question the need of this new approach in Bayesian nonparametrics, as there
is a state-of-the-art technique in the form of a master theorem to establish posterior con-
traction rates (cf. Ghosal et al. [10], Shen and Wasserman [26], Ghosal and van der Vaart
[11]). One of the main criterion of this theorem is the existence of tests for the hypotheses
H0 : f = f0 against H1 : f ∈ {f : ‖f−f0‖∞ > Mǫn} that have Type I error approaching zero
and exponentially decreasing Type II error, where ǫn is the minimax rate for the regression
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problem under consideration. However, we show that this is impossible to achieve in general
for sup-norm alternatives, as any such test has Type II error decreasing at least polynomi-
ally in n. For exponential error test to exists, we show that the null and the alternative
hypotheses must be further separated in L∞-norm, and this increase in separation results
in the contraction rate being inflated by the same (polynomial) factor (see also Hoffmann
et al. [14] for a related discussion on this sub-optimality issue). The proposed approach
circumvents this problem and gives optimal rates.

The paper is organized as follows. The next section introduces notations. Section 3
describes the prior and the assumptions used in this paper. The main result on adaptive
L∞-posterior contraction, for f and its mixed partial derivatives are presented in Section 4,
and this is followed by a discussion on the lower limit of adaptation. The inadequacy of the
master theorem is detailed in Section 5. Section 6 contains proofs of all main results and is
further divided into three subsections. The proof of our L∞-contraction result is in Section
6.1, we introduce our posterior bounding technique in Section 6.2 and the rest of the proofs
are gathered in Section 6.3. The last Section 7 contains technical lemmas used throughout
the proofs, where some results such as continuous approximations to discrete objects and
L2-contraction for spike-and-slab priors are of independent interests.

2 Notations

Given two numerical sequences an and bn, an = O(bn) or an . bn means an/bn is bounded,
while an = o(bn) of an ≪ bn means an/bn → 0. If an ≍ bn, then we have an = O(bn)
and bn = O(an). For stochastic sequence Zn, Zn = OP (an) means Zn/an is bounded in
P -probability, while Zn = oP (an) means Zn/an converges to 0 in P -probability. Define
N = {1, 2, . . . } to be the set of natural numbers and N0 = N ∪ {0}.

Define ‖x‖p = (
∑d

k=1 |xk|p)1/p, 1 ≤ p < ∞, ‖x‖∞ = max1≤k≤d |xk| and write ‖x‖ for
‖x‖2 the Euclidean norm. For f : U → R on some bounded set U ⊆ Rd with interior
points, let ‖f‖p be the Lp-norm, and ‖f‖∞ = supx∈U |f(x)|. For r = (r1, . . . , rd)

T ∈ Nd
0 and

|r| :=∑d
k=1 rk, let D

r be the partial derivative operator ∂|r|/∂xr11 · · ·∂xrdd . For a set A, let
1A be the indicator function on A. For a vector x, we write xj to be its jth component
with j possibly be multi-index (j1, . . . , jd)

T , and in that case we let the entries be ordered
lexicographically.

3 Wavelet series with spike-and-slab prior

Since our domain of interest is bounded i.e., [0, 1]d, we will use the boundary corrected
wavelets introduced by Cohen-Daubechies-Vial (CDV) in Section 4 of [7]. At each dimension
l = 1, . . . , d, the CDV wavelets are constructed from the usual Daubechies wavelet system
on R, by retaining wavelets supported in the interior of [0, 1] and replacing the wavelets
near {0, 1} with boundary corrected versions, such that the entire system still generates a
multiresolution analysis on [0, 1] and is orthonormal. For some Nl to be chosen below, we
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write the system’s father and mother wavelets as ϕNl,ml
(x) = 2Nl/2ϕml

(2Nlx) and ψjl,kl(x) =
2jl/2ψkl(2

jlx) where 0 ≤ ml ≤ 2Nl −1, jl ≥ Nl and 0 ≤ kl ≤ 2jl −1. For the interior wavelets,
ϕml

(x) = ϕ(x −ml) and ψkl(x) = ψ(x − kl) are the translated original Daubechies system
and for the boundary wavelets, ϕml

and ψkl are some linear combinations of this system. We
take the CDV wavelets to be η-regular at each direction (see Definition 4.2.14 of [13]) such

that the derivatives ϕ
(rl)
ml , ψ

(rl)
kl

are uniformly bounded for rl < η + 1.
For x = (x1, . . . , xd), we construct tensor products of the CDV father and mother

wavelets as ϕN ,m(x) =
∏d

l=1 ϕNl,ml
(xl) and ψj,k(x) =

∏d
l=1 ψjl,kl(xl) respectively, where

m = (m1, . . . , md),N = (N1, . . . , Nd), j = (j1, . . . , jd) and k = (k1, . . . , kd). Since the CDV
wavelets are unconditional L2-bases, we can expand f in the multivariate regression model
of (1.1) using these bases, and this leads us to consider the following hierarchical priors to
study sup-norm posterior contraction:

f(x) =

2N1−1∑

m1=0

. . .

2Nd−1∑

md=0

ϑmϕN ,m(x) +

Jn,1−1∑

j1=N1

2j1−1∑

k1=0

· · ·
Jn,d−1∑

jd=Nd

2jd−1∑

kd=0

θj,kψj,k(x),

ϑm
i.i.d.∼ p(·)

θj,k
i.i.d.∼ (1− ωj1,...jd,n)δ0(·) + ωj1,...,jd,np(·),

σ ∼ πσ. (3.1)

The prior on the mother coefficient is called a spike-and-slab, with the spike part correspond-
ing to the point mass at 0 (δ0 is the Dirac function) and the slab part some density p(·) on
R. With appropriate chosen weights ωj1,...,jd, it does a form of model selection by zeroing
“unimportant” coefficients. Observe that we only assign spike-and-slab priors on the mother
wavelet coefficients, this is done to prevent overly sparse models by allowing father coeffi-
cients to capture global structures of f . The truncation point Jn,l at some fixed l = 1, . . . , d

is a sequence of positive integers increasing with n, such that
∏d

l=1 2
Jn,l =

√
n/ log n for both

fixed and random design points, where the division by log n is a technical requirement. The
presence of a square root here is due to the method of our proof, and it relates to the fact that
we can only reduce a regression likelihood to a corresponding white noise version, when there
is a lower limit imposed on the true function smoothness that we can adapt to (see Section
4.1 for more details). Therefore for true functions that are sufficiently smooth, our theory
suggests that it suffices to take

√
n/ logn for the regression model as opposed to n used in [14]

for the white noise model, and hence our lower truncation point speeds up wavelet computa-
tions by reducing the size of the candidate coefficients. Here Nl is a positive integer such that
2Nl ≥ 2η. Also, we assume that the priors on {ϑm}, {θj,k}, σ2 are mutually independent with

each other. For the spike-and-slab weights, we let n−λ ≤ ωj1,...,jd,n ≤ min{2−
∑d

l=1 jl(1+µl), 1/2}
for some λ > 0 and µl > 1/2, l = 1, . . . , d. Here, p(·) is such that pmax = supx∈R p(x) < ∞
and for some R0 > 0,

inf
x∈[−R0,R0]

p(x) = pmin > 0. (3.2)
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Examples of p(·) include the Gaussian, sub-Gaussian, Laplace, the uniform [−R0, R0], t-
distributions and most commonly used parametric families. We let πσ be a positive and
continuous prior density with support on (0,∞), e.g., inverse gamma distribution.

If the covariates X i = (Xi1, . . . , Xid)
T for i = 1, . . . , n are fixed, we assume they are

chosen such that

sup
x∈[0,1]d

|Gn(x)− U(x)| = O

(
1

n

)
, (3.3)

where U(x) is the cumulative distribution function of a uniform on [0, 1]d, and Gn(x) is
the empirical cumulative distribution function of {X i, i = 1, . . . , n}, that is, Gn(x) =
n−1

∑n
i=1 1

∏d
l=1[0,Xil]

(x). This requirement can be fulfilled if we used a discrete uniform

design, that is for n = md for some m ∈ N, X i ∈ {(j − 1)/(m − 1) : j = 1, . . . , m}d with
i = 1, . . . , n. We will mainly discuss and prove results based on fixed design points, and we
make brief remarks concerning the random case.

Remark 3.1. To be technically precise, there should be indices to indicate the fact that
combinations of both father and mother wavelet components are used to construct ψj,k. In
particular, let I be the set of 2d − 1 sequences of the form (i1, . . . , id), such that each il
can be 0 or 1, but excluding the case where il = 0 for all l. Then ψj,k is augmented to

ψi
j,k =

∏d
l=1 ψ

il
jl,kl

, i ∈ I such that ψ0
jl,kl

= ϕNl,ml
and ψ1

jl,kl
= ψjl,kl. However, since i ∈ I

are simply identification indices to dictate which tensor product component is a father or
mother wavelet, and coupled with the fact that

∑
i∈I = 2d − 1 does not grow with n, we drop

this identification in this paper and simply work with ψj,k. This is to improve readability
and help readers focus on the main ideas instead of the technicalities of working in multiple
dimensions.

To study L∞-posterior contraction for mixed partial derivatives, we apply the differential
operator Dr on both sides of the wavelet expansion in (3.1) to yield

Drf =
∑

m

ϑmD
rϕN ,m +

∑

j,k

θj,kD
rψj,k,

where the priors on ϑm and θj,k are the same as in (3.1). To study both f and its derivatives
in the same framework, we adopt the convention D0f ≡ f . We note that objects such as
DrϕN ,m and Drψj,k are called vaguelet tensor products (see [2]).

To study frequentist properties and derive contraction rates for our posterior, we assume
the existence of an underlying true function f0, such that f0 belongs to an anisotropic Besov
space as defined below. Let us first denote α∗ to be the harmonic mean of α = (α1, . . . , αd)

T ,
i.e., (α∗)−1 = d−1

∑d
l=1 α

−1
l .

Definition 3.1 (Anisotropic Besov space). The anisotropic Besov function space Bα
p,q for

α = (α1, . . . , αd)
T such that 0 < αl < η + 1, l = 1, . . . , d and 1 ≤ p, q ≤ ∞ is given as

Bα
p,q ≡

{
{f ∈ Lp([0, 1]

d) : ‖f‖Bα
p,q
<∞}, 1 ≤ p <∞,

{f ∈ Cu([0, 1]
d) : ‖f‖Bα

p,q
<∞}, p = ∞

(3.4)
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with Cu([0, 1]
d) the space of uniformly continuous functions on [0, 1]d, and the anisotropic

Besov norm ‖f‖Bα
p,q

is (
∑

m |〈f, ϕN ,m〉|p) 1
p plus





[
∑
j

2q
∑d

l=1 αljl( 1
d
+ 1

2α∗−
1

α∗p)
(∑

k

|〈f, ψj,k〉|p
) q

p

] 1
q

, 1 ≤ q <∞,

sup
j

2
∑d

l=1 αljl( 1
d
+ 1

2α∗−
1

α∗p)
(∑

k

|〈f, ψj,k〉|p
) 1

p

, q = ∞,

(3.5)

where we replace the ℓp-sequence norm with the ‖ · ‖∞-norm when p = ∞.

Remark 3.2. If we set αl = α and take α → 0, then we can define the Besov spaces
B0

p,q, which is the multivariate and anisotropic generalization of its univariate counterpart

discussed in Section 4.3.2 of [13]. In this case, we replace
∑d

l=1 αljl(
1
d
+ 1

2α∗ − 1
α∗p

) in the

exponent by
∑d

l=1 jl/2.

Let KW (x,y) =
∑

m ϕW ,m(x)ϕW ,m(y), and define the operator KW on Lp such that
KW (g)(x) =

∫
KW (x,y)g(y)dy for g ∈ Lp. Thus, observe that KW (g) is the L2-projection

of g onto the subspace spanned by {ϕN,m : 0 ≤ ml ≤ 2Nl −1}∪{ψj,k : Nl ≤ jl ≤Wl−1, 0 ≤
kl ≤ 2jl−1}, l = 1, . . . , d. That is, KW (g) has wavelet expansion as in (3.1) but truncated at
levels W = (W1, . . . ,Wd)

T . The proposition below then tells us how well these anisotropic
wavelet projections approximate functions in Bα

p,q.

Proposition 3.3. Let 0 < αl < η + 1, l = 1, . . . , d. For any g ∈ Bα
p,q, let KW (g) be its

projected version at level W as described above, then there exists constant C > 0 depending
on the wavelets used such that

‖KW (g)− g‖p ≤ C‖g‖Bα
p,q

d∑

l=1

2−αlWl. (3.6)

The proof of this proposition can be found in Section 6.1. We are now ready to introduce
the assumptions on the underlying true model for (1.1).

Assumption 1. Under the true distribution P0, Yi = f0(X i) + εi, i = 1, . . . , n, where
f0 ∈ Bα

∞,∞ and εi are i.i.d. Gaussian with mean 0 and finite variance σ2
0 > 0 for i = 1, . . . , n.

Here, α = (α1, . . . , αd)
T ∈ (0,∞)d is unknown.

Remark 3.4. Inspection of the main proof shows that we can actually relax the assump-
tion on errors so that they are sub-Gaussian, and hence allowing the model to be possibly
misspecified. However, we would need to use the misspecified version of the master theorem
(Theorem 4.1 of [17]) to prove L2-contraction for the mother wavelet coefficients as part of
the overall proof. We refrain from doing this because this will add extra technicalities that
are a distraction for the main L∞-task at hand.

We define ϑ0m = 〈f0, ϕN ,m〉 and θ0j,k = 〈f0, ψj,k〉 to be the true wavelet coefficients. We de-
note E0(·) as the expectation operator taken with respect to P0 and write Y = (Y1, . . . , Yn)

T .
Moreover, we write Besov ball of radius R > 0 as Bα

p,q(R) := {f : ‖f‖Bα
p,q

≤ R}.
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4 Adaptive posterior contraction

Before establishing supremum norm contraction rate for f , a preliminary key step is to show
that the posterior distribution of σ is consistent under the hierarchical priors of (3.1). We
therefore begin with the following proposition whose proof is given in Section 6.1.

Proposition 4.1. Under Assumption 1, we can conclude that for any prior on σ with positive
and continuous density, the posterior distribution of σ is consistent, uniformly over f0 ∈
Bα
∞,∞(R) for any R > 0 and for any α such that 0 < αl < η + 1 where η is the regularity of

the wavelet bases.

Using wavelet expansions such as (3.1), we can work with wavelet coefficients instead of f
and treat them as component-wise signals we are trying to recover. In all our calculations, the
threshold γ

√
logn/n with some appropriately chosen constant γ > 0 is of crucial importance

as it serves as a cutoff to determine statistically which signal is considered “large” or “small”.
The speed of which the posterior will contract to the truth in L∞-norm is then dictated by
these two conditions:

1. Signal detection errors, i.e., θj,k = 0 but the true signal is “large” |θ0j,k| > γ
√
log n/n

for some large enough γ and vice versa are unlikely to occur under the posterior.

2. The posterior concentrates within a γ
√

log n/n-neighborhood (for some large enough
γ) around large detectable signals.

Asymptotically, this implies that the spike-and-slab posterior behaves like a local wavelet
thresholding operator, which does coefficient-wise thresholding with γ

√
log n/n as threshold.

During the course of establishing these conditions, we have to deal with discrete approxima-
tion errors as encoded in (3.3), finite truncation error of Proposition 3.3 and stochastic error
in our model (1.1). This requires a very delicate balancing of these opposing errors that
we propagate throughout our calculations, and we arrive at our results by ensuring that no
single source of error will dominate the others.

In many applications such as model selection and high-dimensional regression, the weights
ωj,n are typically endowed with another layer of hyper-prior or estimated using empirical
Bayes (e.g.,[15, 16, 4]). However for sup-norm posterior contraction, it suffices to choose
them fixed beforehand as was done in Section 3. This is because in order to reduce signal
detection error as alluded in 1. above, θj,k needs to decay in similar manner as θ0j,k does, i.e.,
in the same form as (6.4). To ensure this using the spike-and-slab prior, it is then enough to

set ωj,n ≤ 2−
∑d

l=1 jl(1+µl). The following main results show that by selecting coefficients using
these fixed weights, the posteriors of f and its mixed partial derivatives contract adaptively
in L∞ at the optimal rate to the truth. Note here that the same weights can be used for f
and all orders of its mixed partial derivatives. Clearly, one cannot adapt at each dimension
beyond the regularity η of the wavelets, but it will be seen that there is a lower limit of
adaptation present that prevents us to adapt arbitrarily close to 0 (see Section 4.1 for a
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more thorough discussion). Therefore, this lead us to formulate our range of adaptation as

Ar =

{
α :

2(rl + 1)α∗d

2α∗ + d
< αl < η + 1, l = 1, . . . , d

}
, (4.1)

and if r = 0, we simply write A0 as A.

Theorem 4.2. (Adaptive L∞-contraction)
(a) For the regression function:
For any 0 < R ≤ R0 − 1/2 and some constants ξ,M > 0,

sup
α∈A

sup
f0∈Bα

∞,∞(R)

E0Π
(
‖f − f0‖∞ > M (n/ logn)−

α∗

2α∗+d

∣∣∣Y
)
≤ (logn)d

nξ
.

(b) For mixed partial derivatives:
Let r ≥ 0 such that r 6= 0 and rl < η + 1, l = 1, . . . , d. Then for any 0 < R ≤ R0 − 1/2 and
some constants ξ,M > 0, we have uniformly over α ∈ Ar and f0 ∈ Bα

∞,∞(R) that

E0Π

(
‖Drf −Drf0‖∞ > M(n/ log n)−

α∗{1−
∑d

l=1(rl/αl)}

2α∗+d

∣∣∣∣Y
)

≤ (log n)d

nξ
.

Remark 4.3. For the isotropic case where αl = α, l = 1, . . . , d, Ar is defined through
max{d/2,∑d

l=1 rl} < α < η + 1.

The proof of Theorem 4.2 is given in Section 6.1, and it has important implication
in frequentist statistics. In particular, the posterior mean as an adaptive point estimator
converges uniformly to f0 at the same rate.

Corollary 4.4. Let r ≥ 0 such that r 6= 0 and rl < η + 1, l = 1, . . . , d, then for any
0 < R ≤ R0 − 1/2,

sup
α∈Ar

sup
f0∈Bα

∞,∞(R)

E0‖E(Drf |Y )−Drf0‖∞ . (n/ logn)−
α∗{1−

∑d
l=1(rl/αl)}

2α∗+d .

We note here that the ‖ · ‖∞-norm is not bounded, and hence the usual route of deriving
this result from Theorem 4.2 based on convex, bounded loss through Jensen’s inequality is
not applicable. To proceed, we compute the expectation on slicing of the function space and
add these polynomially decaying terms to bound the expectation of interest on the entire
space. For more details, see the proof at the end of Section 6.2.

Remark 4.5. For the random case, we assume that X1, . . . ,Xn
i.i.d.∼ U(x), where U is the

cumulative distribution function of a uniform distribution on [0, 1]d. Note that random design
points do not satisfy (3.3) because by Donsker’s theorem, we will have supx∈[0,1]d |Gn(x) −
U(x)| = OP (n

−1/2). However, by following similar calculations performed for the fixed design
case, it turns out that we will get the exact same posterior contraction rates as in Theorem
4.2 for random uniform designs, and the effect of the extra

√
n-factor shows up through a

slightly larger lower bound in Ar.
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4.1 Discussion on (4.1): limits on range of adaptation

Theorem 4.2 in particular shows that there is a certain lower limit in the range of smoothness
that we can adapt to, and this limit is increasing with d the ambient dimension. To see this
point, take r = 0, rearrange the lower bound in (4.1) to 1/d + 1/(2α∗) > 1/αl, and sum
both sides across l = 1, . . . , d to get α∗ > d/2. This lower limit implies that our range of
adaptation shrinks and we can only adapt to smoother functions in higher dimensions.

In our approach, this limit arises when we try to reduce the regression posterior to a
quasi-white noise version, by forcing the regression likelihood based on sums of squares into
component-wise fashion like those encountered in white noise models. The success of this
reduction depends on the truncation point 2

∑d
l=1 Jn,l and also the lower bound on α∗ we are

willing to tolerate. Now suppose 2
∑d

l=1 Jn,l = (n/ logn)m for some m ≤ 1, then Lemma 6.1 in
Section 6.2 below shows that we will be able to perform this reduction and hence establish
our main results in the previous section, if for all α,

α∗ > dmax

{
(m− 1) +

√
(m− 1)2 + 8m2

4m
,

1

2

(
1

m
− 1

)}
.

Note that the first term inside the max operation is increasing m while the second term
is decreasing. Thus the optimal m can be found by equating these two antagonistic terms
and this will yield m = 1/2 giving the smallest lower bound α∗ > d/2, which is ensured
by letting α ∈ Ar ⊆ A in (4.1) for any r ≥ 0. Moreover, this also explains why we chose

2
∑d

l=1 Jn,l =
√
n/ logn as our truncation point in Section 3. From this perspective, (4.1)

arises due to our method of proof.
Interestingly, such lower limit has been observed in the one-dimensional case and in other

settings (see [12, 14, 27, 3]). Based on the current known literature so far, this limit appears
when one tries to establish sup-norm posterior contraction rates for models beyond the
Gaussian white noise, e.g., nonparametric regression and density estimation. On the other
hand, if we look at frequentist procedures such as Lepski’s method and wavelet thresholding,
such lower limit apparently do not exists at least for regression and density estimation
problems, and one can adapt the function smoothness arbitrarily close to 0.

By taking into account both perspectives, we do not know whether this is due to artefacts
of proof methods, or to some deeper reasons such as the incompatibility of fully Bayesian
procedures (which is usually based on intrinsic L2-metric) to the desired L∞-loss. However
since the aforementioned papers and our proposed method all arrived at some lower limits,
despite using different proof techniques and priors, we conjecture that the former reason is
unlikely. Admittedly, this is far from conclusive and further research is needed to verify these
claims.

5 The master theorem of Bayesian nonparametrics

In this section, we explain in detail why we have to develop a new method of deriving
contraction rates by comparing regression posterior with a corresponding quasi-white noise
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version. In Bayesian nonparametrics, the current state-of-the-art method in calculating
posterior contraction rates is the master theorem developed by [10, 26, 11]. As its name
suggests, this master theorem consists of sufficient conditions that are designed to be appli-
cable to general classes of models and prior distributions. Let ǫn be the minimax rate and Π
a general prior distribution, not necessarily the spike-and-slab prior considered in previous
sections. In its most basic version adapted to our present regression model, these conditions
are (C1, C2, C3 > 0 are some constants):

1. The existence of a sequence of tests φn for the hypotheses H0 : f = f0 against H1 : f ∈
{Fn : ‖f − f0‖∞ > Mǫn} with Fn some appropriately chosen sequence of sieve sets of
the function parameter space, such that its Type I error goes to 0 while its Type II
error decreases like e−C1nǫ2n,

2. The prior Π puts at least e−C2nǫ2n mass on certain Kullback-Leibler neighborhoods
around f0 of radius ǫn,

3. The prior Π puts most of its mass in the sieve sets such that Π(F c
n) ≤ e−C3nǫ2n.

Recently however, research in this area has discovered cases that do not fall within the scope
of this master theorem. In our context of L∞-contraction, the works by [12] and [14] found
that the master theorem, which corresponds to verifying the 3 conditions above, can produce
suboptimal contraction rates. In the following, we will investigate this issue in more depth
and give a more thorough explanation in higher dimensions.

Throughout this section, we take σ = σ0 to be known since it does not play a role in
explaining this suboptimality issue, this is done to streamline the proofs and help readers
better understand the cause of this problem, which is driven by the nonparametric part i.e.,
the regression function f of the model.

The root of this problem is the first testing criterion, which requires us to find some
sequence of test functions φn with exponentially decreasing Type II errors, or more precisely,
supf∈Fn:‖f−f0‖∞>Mǫn Ef (1−φn) ≤ e−C1nǫ2n. However, the proposition below shows that for any
test, there exists a function under H1 with Type II error that decreases at least polynomially
in n. Therefore one cannot achieve e−C1nǫ2n, or exponential-type decrease in general if the
null and alternative are separated apart by (a constant multiple of) ǫn in sup-norm.

Proposition 5.1. Let ǫn = (n/ logn)−α∗/(2α∗+d). Consider the hypotheses H0 : f = f0
against H1 : f ∈ {Bα

∞,∞(R) : ‖f − f0‖∞ > Mǫn} with f0 ∈ Bα
∞,∞(R) for any α ∈ A. Let

φn(X1, . . . ,Xn; f0) → {0, 1} be any test function for this problem such that E0φn → 0, then
there exists a constant Q > 0 such that

sup
f∈Bα

∞,∞(R):‖f−f0‖∞>Mǫn

Ef(1− φn) & n−Q. (5.1)

As the likelihood ratio test is uniformly most powerful, its Type II error lower bounds
those from any other tests. Since it is based on the L2-metric due to Gaussian distributed
observations, we can always find functions under H1 such that they are far from f0 in
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L∞-norm (at least Mǫn), but are close to f0 (within
√

log /n) when the same distance
is measured using the intrinsic L2-norm of the likelihood ratio test. This discrepancy in
measured distance caused by these functions is what give rise to polynomially decreasing
Type II errors (see Section 6.3 for a complete proof). In [14], the authors reached similar
conclusions in a different way through minimax theory, by formulating the aforementioned
discrepancy into a modulus of continuity relating the intrinsic L2-norm with the desired
L∞-distance.

Polynomial rates are not unique to testing problems with L∞-separation in the alternative
hypothesis. In fact, posterior probabilities on shrinking L∞ or point-wise ǫn-neighborhoods
around f0 tend to 0 at polynomial rates (up to a logarithmic factor), e.g., see Theorem 4.2
and Lemmas 6.2, 6.3. Exponential rates are only possible for weaker losses, with decay of
the type e−C1nǫ2n corresponding to the L2-loss and its equivalent metrics.

The previous proposition implies that for exponential error tests to exist, the null and the
alternative hypotheses must be further separated in L∞-norm. To that end, let us introduce
a separation factor rn → ∞ as n→ ∞ in the alternative H1 : f ∈ {Bα

∞,∞(R) : ‖f − f0‖∞ >
Mrnǫn}. It is then instructive to ask how large rn should be so that tests with exponential
Type II error start to exist. The following proposition says that rn must be greater than
ǫ
−d/(2α∗+d)
n , and this increase in separation results in the contraction rate being inflated by
the same factor.

Proposition 5.2. For ǫn = (n/ log n)−α∗/(2α∗+d), let ρn = ǫ
−d/(2α∗+d)
n and consider the hy-

potheses H0 : f = f0 versus H1 : f ∈ {Bα
∞,∞(R) : ‖f−f0‖∞ > Mrnǫn} for any f0 ∈ Bα

∞,∞(R)
with α ∈ A. Then for all rn = o(ρn), we have

sup
f∈Bα

∞,∞(R):‖f−f0‖∞>Mrnǫn

Ef (1− φn) & n−Q,

for any test φn with E0φn → 0 and some constant Q > 0. However for rn = ρn, there exists
a test Φn such that for some constants CI , CII > 0,

E0Φn ≤ e−CInǫ
2
n, sup

f∈Bα
∞,∞(R):‖f−f0‖∞>Mρnǫn

Ef (1− Φn) ≤ e−CIInǫ
2
n.

Consequently, if we used the master theorem to prove the first assertion of Theorem 4.2, then
there exists a constant M > 0 such that as n→ ∞,

sup
α∈A

sup
f0∈Bα

∞,∞(R)

E0Π(‖f − f0‖∞ > Mǫ2α
∗/(2α∗+d)

n |Y ) → 0.

The proof of this proposition is given in Section 6.3. Since ǫ
2α∗/(2α∗+d)
n ≫ ǫn and ǫn

is the optimal contraction rate given in Theorem 4.2, we incur an extra polynomial factor
by utilizing the master theorem. Here we use plug-in test in the form of Φn = 1{‖f̂n −
f0‖∞ & ρnǫn} where f̂n is the least squares estimator of f0, and exponential Type I and
II errors are established using techniques of concentration inequalities introduced by [12],
with Talagrand’s inequality replaced by the Borell’s inequality. In [12] and [14], the authors
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obtained suboptimal rate of the form ǫ
1−d/(2α∗)
n when generalized to d-dimensions, and this is

strictly greater than our suboptimal rate ǫ
2α∗/(2α∗+d)
n . The reason for this is that the authors

in the aforementioned papers used the truncation point 2Jn,l(α) = ǫ
−1/αl
n in their calculations

while we used a slightly smaller truncation 2hn,l(α) = ǫ
−2α∗/{αl(2α

∗+d)}
n to construct Φn. The

former balances the variance and bias when there is no separation factor in the rate, while
the latter balances these two quantities at the presence of ρn, and hence gives a slightly
better but albeit suboptimal rate.

Regardless of these suboptimal rates, the preceding discussion and results show the fun-
damental limitation of the master theorem, and in particular, the method of using tests with
exponential errors. In the context of sup-norm posterior contraction, this further suggests
that we need alternative methods of proof to get the correct adaptive rates. It is with these
thoughts in mind that we developed the technique of reducing regression posterior to its
quasi-white noise version, which we will describe in detail in Section 6.2 below. As this
technique depends on our ability to isolate coefficients and control the basis Gram matrix,
it will also hold for a wider class of basis functions such as Fourier or B-splines and also for
other norms such as L2. Moreover, as many models in statistics can be related to the Gaus-
sian white noise model through asymptotic equivalence theory, this new technique should
be applicable to more complex problems such as density estimation. We believe that this
technique will provide statisticians a powerful tool to prove posterior contraction rates in a
simpler setting and translate results back to more realistic models, and hence it would be
interesting to explore these extensions in future research.

6 Proofs

6.1 Proof of main results up to Section 4.1

Proof of Proposition 3.3. Anm = (m1, . . . , md)
T -order tensor product polynomial is a linear

combination of {xi1−1
1 · · ·xid−1

d } for 1 ≤ il ≤ ml, l = 1, . . . , d. Recall the wavelet projection
operator KW (f)(x) =

∫
KW (x,y)f(y)dy with KW (x,y) =

∑
m ϕW ,m(x)ϕW ,m(y). We

will be using two important properties of KW . The first is

KW (P ) = P, (6.1)

for any tensor product polynomial P with order less than or equal to (η+1, . . . , η+1)T , the
regularity of wavelet used at each dimension (see Theorem 4 of [19]). The second is

‖KW (f)‖p ≤ C1‖f‖p, (6.2)

for some constant C1 > 0 and for any f ∈ Lp. This inequality follows from using the
argument discussed in Section 3.1.1 of [12]. As a result, KW is bounded on Lp and it
reproduces polynomials.

Define hypercubes Ik =
∏d

l=1[kl2
−Wl, (kl + 1)2−Wl] for 0 ≤ kl ≤ 2Wl − 1 and note that

the unit cube [0, 1]d is the sum of these smaller cubes over all k. Let f |Ik be the restriction
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of f onto Ik. By Theorem 13.18 of [23], we know that there exists a tensor product Taylor’s
polynomial pk such that

‖(g − pk)|Ik‖p ≤ C2

d∑

l=1

2−αlWl

∥∥∥∥
∂αl

∂xαl
l

g

∣∣∣∣Ik
∥∥∥∥
p

,

for some constant C2 > 0. Then using (6.1), (6.2) and the triangle inequality,

‖ [KW (g)− g] |Ik‖p ≤ ‖(g − pk)|Ik‖p + ‖KW (g − pk)|Ik‖p

. ‖(g − pk)|Ik‖p ≤ C

d∑

l=1

2−αlWl

∥∥∥∥
∂αl

∂xαl
l

g

∣∣∣∣Ik
∥∥∥∥
p

,

for some constant C > 0 depending on the wavelets used. The result follows by summing
both sides over 0 ≤ kl ≤ 2Wl − 1, l = 1, . . . , d and applying Proposition 4.3.8 of [13], in view
of (6.2).

Proof of Proposition 4.1. The result is a consequence of Lemma 7.4, where the posterior of
σ contracts to σ0 at rate (n/ log n)−α∗/(2α∗+d).

For Theorem 4.2, we will only prove the mixed partial derivatives case, as regression
function is a special case by setting r = 0 and interpreting D0f ≡ f . The proof is a
multivariate generalization of the proof of Theorem 3.1 in [14], with some extra new steps
to deal with anisotropic smoothness and the fact that we are also considering mixed partial
derivatives.

Proof of Theorem 4.2. Since the CDV wavelets are compactly supported and their deriva-
tives are uniformly bounded, it follows that for r = (r1, . . . , rd)

T with 0 ≤ rl < η + 1, l =
1, . . . , d,

∥∥∥∥∥
∑

m

|DrϕN ,m|
∥∥∥∥∥
∞

= O(1),

∥∥∥∥∥
∑

k

|Drψj,k|
∥∥∥∥∥
∞

.

d∏

l=1

2(1/2+rl)jl. (6.3)

If f0 ∈ Bα
∞,∞(R), then by using the wavelet characterization of (3.5), it follows that for

αl < η + 1, l = 1, . . . , d,

‖ϑ0‖∞ ≤ R, ‖θ0j‖∞ ≤ R2−
∑d

l=1 αljl( 1
d
+ 1

2α∗ ), (6.4)

for any j. Note that (3.1) implicitly implies that θj,k = 0 when jl > Jn,l for some l = 1, . . . , d.
Denote P = {(j,k) : θj,k 6= 0} the set of nonzero wavelet coefficients. In view of (6.4) above,
we define for some constant γ > 0 the set

Jn(γ) =

{
(j,k) : |θ0j,k| >

d∏

l=1

min

{
2−αljl( 1

d
+ 1

2α∗ ), γ

(
log n

n

) 1
2d

}}
, (6.5)
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and for some constants 0 < γ < γ <∞, the events

A :=

[
sup

(j,k)∈Jn(γ)

|θj,k − θ0j,k| ≤ γ

√
logn

n

]
,

B := [P ∩ Jn(γ)
c = ∅] =

⋂

(j,k)∈Jn(γ)c

[θj,k = 0],

C := [Pc ∩ Jn(γ) = ∅] =
⋂

(j,k)∈Jn(γ)

[θj,k 6= 0]. (6.6)

As discussed in points 1 and 2 in Section 4, getting the correct sup-norm rate involves
showing that A occurs with posterior probability tending to 1, and we do not make any
signal detection errors as represented by events B and C.

Let Vn be a shrinking neighborhood of σ0 such that E0Π(σ ∈ Vn|Y ) → 1. Observe that

for ǫn,r := (n/ logn)−α∗{1−
∑d

l=1(rl/αl)}/(2α
∗+d) and some large enough constant M > 0 to be

specified below, E0Π(‖Drf −Drf0‖∞ > Mǫn,r|Y ) is bounded above by

E0 sup
σ∈Vn

Π(‖Drf −Drf0‖∞ > Mǫn,r|Y , σ) + E0Π(σ /∈ Vn|Y )

≤ E0 sup
σ∈Vn

Π([‖Drf −Drf0‖∞ > Mǫn,r] ∩A ∩ B|Y , σ)

+ E0Π(σ /∈ Vn|Y ) + E0 sup
σ∈Vn

Π(Bc|Y , σ)

+ E0 sup
σ∈Vn

Π(Cc|Y , σ) + E0 sup
σ∈Vn

Π(Ac ∩ C|Y , σ). (6.7)

By Proposition 4.1, the second term tends to 0. By Lemmas 6.2 and 6.3 in Section 6.2
below, the last three terms tend to 0. We then proceed to show that the first term on the
right hand side of (6.7) approaches 0 as n→ ∞. Now for any x ∈ [0, 1]d,

|Drf(x)−Drf0(x)| ≤
2N1−1∑

m1=0

· · ·
2Nd−1∑

md=0

|ϑm − ϑ0m||DrϕN ,m(x)|

+
∞∑

j1=N1

2j1−1∑

k1=0

· · ·
∞∑

jd=Nd

2jd−1∑

kd=0

|θj,k − θ0j,k||Drψj,k(x)|. (6.8)

Writing ϑ = {ϑm : 0 ≤ ml ≤ 2Nl − 1, 1 ≤ l ≤ d} and using the fact that ‖x‖∞ ≤ ‖x‖ for
any x ∈ Rn, the first sum above is bounded by

‖ϑ− ϑ0‖∞

∥∥∥∥∥∥

2N1−1∑

m1=0

· · ·
2Nd−1∑

md=0

|DrϕN ,m|

∥∥∥∥∥∥
∞

. ‖ϑ− ϑ0‖ . ǫn,r, (6.9)

where the last inequality follows from (6.3) and Corollary 7.5.
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To bound the second sum, we first choose Jn,l(α), l = 1, . . . , d such that 2Jn,l(α) ≍
(n/ logn)α

∗/{αl(2α
∗+d)}. By (6.4) with j = (Jn,1(α), . . . , Jn,d(α))

T , we have |θ0j,k| ≤ ‖θ0j‖∞ ≤
C(logn/n)1/2 for some constant C > 0. Therefore, if we choose γ small enough, we will have

|θ0j,k| > γ(log n/n)1/2 for jl ≤ Jn,l(α)− 1, l = 1, . . . , d. In other words,

Jn(γ) ⊂ In(α) := {(j,k) : jl < Jn,l(α), kl < 2jl, l = 1, . . . , d}, (6.10)

for sufficiently small γ. Write the sum
∑

(j,k) as an abbreviation of
∑

j1

∑
k1
· · ·∑jd

∑
kd
.

Using In(α) and its complement, the second sum on the right hand side of (6.8) is


 ∑

(j,k)∈In(α)

+
∑

(j,k)∈In(α)c


 |θj,k − θ0j,k||Drψj,k(x)|. (6.11)

We first bound the second term with summation indices in In(α)
c, which can be further

decomposed as

∑

(j,k)∈In(α)c∩Pc

|θ0j,k||Drψj,k(x)|+
∑

(j,k)∈In(α)c∩P

|θj,k − θ0j,k||Drψj,k(x)|.

Taking complements on both sides of (6.10), we have In(α)
c ⊂ Jn(γ)

c. Thus, the second
sum above is bounded by

∑
Jn(γ)c∩P

|θj,k − θ0j,k||Drψj,k(x)|. This is zero with posterior

probability tending to 1 under event B. In view of (6.5), the first sum with summation
indices in (j,k) ∈ In(α)

c ∩ Pc ⊂ Jn(γ)
c is bounded above by

max{R, γ}
∑

(j,k)∈In(α)c

d∏

l=1

Ujl,n|Drψj,k(x)|. (6.12)

where Ujl,n := min
{
2−αljl( 1

d
+ 1

2α∗ ), (log n/n)1/(2d)
}
. If we define sets Ql, l = 1, . . . , d, where

Ql can be {Nl ≤ jl ≤ Jn,l(α) − 1} or {jl ≥ Jn,l(α)}, but with the constraint that not all
Ql’s are {Nl ≤ jl ≤ Jn,l(α) − 1}. Then the summation in (6.12) is over (j,k) such that j
takes on all 2d − 1 possible combinations of the Ql’s, and each combination has the form

∑

j1∈Q1

2j1−1∑

k1=0

· · ·
∑

jd∈Qd

2jd−1∑

kd=0

d∏

l=1

Ujl,n|Drψj,k(x)|

≤
d∏

l=1

∑

jl∈Ql

Ujl,n

∥∥∥∥∥∥

2j1−1∑

k1=0

· · ·
2jd−1∑

kd=0

|Drψj,k|

∥∥∥∥∥∥
∞

.

d∏

l=1

∑

jl∈Ql

2(rl+1/2)jlUjl,n

where the last inequality follows from (6.3). The two expressions inside the minimum function

of Ujl,n will have the same order if jl = Jn,l(α) and 2−αljl( 1
d
+ 1

2α∗ ) will have a larger order
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when jl < Jn,l(α), while (logn/n)1/(2d) will dominate if jl ≥ Jn,l(α). Therefore under the
regime Ql = {Nl ≤ jl ≤ Jn,l(α)− 1}, we have that

∑

Nl≤jl<Jn,l(α)

2(rl+1/2)jl min

{
2−αljl( 1

d
+ 1

2α∗ ),

(
log n

n

)1/(2d)
}

. 2(rl+1/2)Jn,l(α) (logn/n)1/(2d) . (n/ logn)
− α∗

2α∗+d

(
1
d
+ 1

2α∗−
1

2αl
−

rl
αl

)

;

while under the regime Ql = {jl ≥ Jn,l(α)}, we will have

∑

jl≥Jn,l(α)

2(rl+1/2)jl min

{
2−αljl( 1

d
+ 1

2α∗ ),

(
logn

n

)1/(2d)
}

. 2−[αl( 1
d
+ 1

2α∗ )−rl−1/2]Jn,l(α) . (n/ logn)
− α∗

2α∗+d

(
1
d
+ 1

2α∗−
1

2αl
−

rl
αl

)

,

where the first inequality above is justified since αl

(
1
d
+ 1

2α∗

)
−rl−1/2 > 0 for l = 1, . . . , d on

α ∈ Ar. Putting this bound back and using the fact that there are only 2d−1 combinations
of the Ql’s, it then follows that the right hand side of (6.12) is

O

(
(n/ logn)

− α∗

2α∗+d

∑d
l=1

(
1
d
+ 1

2α∗−
1

2αl
−

rl
αl

))
= O(ǫn,r).

Using a similar decomposition as before, the first sum with summation indices in In(α) =
{(j,k) : Nl ≤ jl ≤ Jn,l(α)− 1, 0 ≤ kl ≤ 2jl − 1} of (6.11) can be decomposed into 3 parts:

∑

(j,k)∈In(α)∩Jn(γ)

+
∑

(j,k)∈In(α)∩Jn(γ)c∩P

+
∑

(j,k)∈In(α)∩Jn(γ)c∩Pc

.

Recalling Jn(γ) ⊂ In(α) for the first sum above, and the second sum in the decomposition
vanishes under event B, the first sum of (6.11) reduces to

∑

(j,k)∈Jn(γ)

|θj,k − θ0j,k||Drψj,k(x)|+
∑

(j,k)∈In(α)∩Jn(γ)c∩Pc

|θ0j,k||Drψj,k(x)|.

By intersecting with A, the right hand side above is further bounded by

max
(j,k)∈Jn(γ)

|θj,k − θ0j,k|
Jn,1(α)−1∑

j1=N1

· · ·
Jn,d(α)−1∑

jd=Nd

2j1−1∑

k1=0

· · ·
2jd−1∑

kd=0

|Drψj,k(x)|

+
∑

(j,k)∈In(α)∩Jn(γ)c

γ

√
logn

n
|Drψj,k(x)|

.

d∏

l=1

∑

Nl≤jl<Jn,l(α)

2(1/2+rl)jl

√
log n

n
. ǫn,r,
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where the last inequality follows from (6.3). Now, combining the above with bounds estab-
lished in (6.9) and (6.12) into (6.8), we conclude that ‖Drf − Drf0‖∞1A∩B ≤ Mǫn,r for
some sufficiently large constant M > 0 under the posterior distribution. Using this fact with
Lemmas 6.2 and 6.3, it follows that the right hand side of (6.7) approaches 0 as n→ ∞.

It now remains to show that the last three terms in (6.7) approach 0 asymptotically, and
this is detailed in Section 6.2 below.

6.2 Regression to quasi-white noise posterior

In view of (6.6) above, it is clear that we need to bound posterior probabilities of events
involving only individual coefficient θj,k. To accomplish this, we bound posterior of θj,k
under the regression model by posterior of θj,k arising from some quasi-white noise model,
where the latter model greatly simplifies calculations through its component-wise structure.

We first define notations. If the rows and columns of a matrix are each indexed by
d-dimensional multi-indices, we assume that these multi-indices are arranged in the lexi-
cographic order. Let i = (i1, . . . , id)

T and j = (j1, . . . , jd)
T . For a matrix A indexed by

2d-dimensional indices, we write ai,j or Ai,j to be the (i, j)th entry, Aj,· to be the jth row
of A, Aj,−j to be the jth row of A such that the jth entry of that row is excluded, and
A−j,−j to be a matrix created as a result of deleting the jth row and jth column of A. For
a vector x, we write xj to be its jth component, and x−j be a vector created from x such
that its jth component is excluded.

Given observations {X1, . . . ,Xn}, we construct the father wavelet matrix B such that
its (h,m)th entry is ϕN ,m(Xh), for 1 ≤ h ≤ n and 0 ≤ ml ≤ 2Nl − 1, l = 1, . . . , d. In
addition, we define the mother wavelet matrix Ψj such that its (h,k)th entry is ψj,k(Xh),
for 1 ≤ h ≤ n and 0 ≤ kl ≤ 2jl − 1, l = 1, . . . , d.

Observe that for d × 1 vectors a, b, c, e, ΨT
aΨb is a matrix indexed by 2d-dimensional

indices, such that (ΨT
aΨb)c,e =

∑n
i=1 ψa,c(X i)ψb,e(X i). Similarly, we also have (ΨT

aB)c,m =∑n
i=1 ψa,c(X i)ϕN ,m(X i). Recall that ϑ = {ϑm : 0 ≤ ml ≤ 2Nl − 1, l = 1, . . . , d} and define

θj = {θj,k : 0 ≤ kl ≤ 2jl − 1, l = 1, . . . , d} for a fixed j. Let θ−(j,k) = {θ : θj,k is excluded},
where θ = {θj : Nl ≤ jl ≤ Jn,l − 1, l = 1, . . . , d}. We write ε = (ε1, . . . , εn)

T and the

truncation error ξ = F 0 −
∑Jn,1−1

j1=N1
· · ·∑Jn,d−1

jd=N1
Ψjθ

0
j, where F 0 = (f0(X1), . . . , f0(Xn))

T .

Write (1.1) as Y = Bϑ0 +
∑Jn,1−1

j1=N1
· · ·∑Jn,d−1

jd=Nd
Ψjθ

0
j + ξ + ε under the true distribution

P0. Then ‖Y −Bϑ−∑Jn,1−1
j1=N1

· · ·∑Jn,d−1
jd=Nd

Ψjθj‖2 is

(θj,k − θ0j,k)
2(ΨT

j Ψj)k,k + 2(θj,k − θ0j,k)βn(Θ̃) +Hn(Θ̃), (6.13)

where we have separated the (j,k)th component out from the rest such that

βn(Θ̃) := (ΨT
j Ψj)k,−k(θj − θ0j)−k +

∑

a 6=j

(ΨT
j Ψa)k,·(θa − θ0a)

+ (ΨT
jB)k,·(ϑ− ϑ0)− (ξTΨj)k − (εTΨj)k,
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for Θ̃ := (ϑ, θ−(j,k)) and Hn(Θ̃) is

(θj − θ0j)T−k(Ψ
T
j Ψj)−k,−k(θj − θ0j)−k

+ 2
∑

a 6=j

(θj − θ0j)T−k(Ψ
T
j Ψa)−k,·(θa − θ0a) + (ϑ− ϑ0)

TBTB(ϑ− ϑ0)

+
∑

a 6=j

∑

b 6=j

(θa − θ0a)TΨT
aΨb(θb − θ0b)− 2ξTB(ϑ− ϑ0)− 2εTB(ϑ− ϑ0)

+ 2
∑

a 6=j

(ϑ− ϑ0)
TBTΨa(θa − θ0a) + 2(ϑ− ϑ0)

T (BTΨj)·,−k(θj − θ0j)−k

− 2(ξTΨj)−k(θj − θ0j)−k − 2
∑

a 6=j

ξTΨa(θa − θ0a)

− 2(εTΨj)−k(θj − θ0j)−k − 2
∑

a 6=j

εTΨa(θa − θ0a) + ‖ξ + ε‖2.

The prior density of Θ̃ is dΠ(Θ̃) = dΠ(ϑ)dΠ(θ−(j,k)) where dΠ(ϑ) =
∏

m p(ϑm) and

dΠ(θ−(j,k)) =
∏

(x,y)6=(j,k)

[(1− ωx,n)dδ0(θx,y) + ωx,np(θx,y)dθx,y].

Let U and W be two measurable sets on the parameter space of (ϑ, θ), and Ω be an event
on ε or equivalently on Y . Then in view of (6.13) and by completing the squares, Π(θj,k ∈
U , (ϑ, θ−(j,k)) ∈ W|Y , σ)1Ω is

∫
W

∫
U
exp {−‖Y −Bϑ−∑r Ψrθr‖2/(2σ2)} dΠ(ϑ, θ)∫

Rq exp {−‖Y −Bϑ−∑r Ψrθr‖2/(2σ2)} dΠ(ϑ, θ) 1Ω

≤
∫
W
In(U , Θ̃)Kn(Θ̃)dΠ(Θ̃)

∫
W
In(R, Θ̃)Kn(Θ̃)dΠ(Θ̃)

1Ω,

where q is the dimension of (ϑ, θ) and

Kn(Θ̃) := exp
{
βn(Θ̃)2/[2σ2(ΨT

j Ψj)k,k]−Hn(Θ̃)/(2σ2)
}
,

In(U , Θ̃) :=

∫

U

exp



−

(ΨT
j Ψj)k,k

2σ2

[
θ − θ0j,k +

βn(Θ̃)

(ΨT
j Ψj)k,k

]2
 dπ(θ). (6.14)

Therefore, if W and Ω are both chosen such that |βn(Θ̃)| has sharp upper bound of the

correct order uniformly over Θ̃, then we can untangle the exponential factor in In(U , Θ̃)

with Kn(Θ̃), and the ratio will look like a posterior from a sequence white noise model, with∫
W
Kn(Θ̃)dΠ(Θ̃) cancelling out each other. Hence, we reduce our posterior to one where we

only have to compare the (j,k)th component at the top and bottom, just like in the case

when we have quasi-white noise model of the form Yj,k = θj,k + σ(ΨT
j Ψj)

−1/2
k,k εj,k.

19



The optimal choices of W and Ω depend on the statistical problem at hand, the assumed
function space for f0, and also implicitly depend on our choice of basis functions through
the entries of ΨT

j Ψj . For orthonormal basis such as the wavelets used in this paper, the
diagonal entries are typically of the order n under some conditions on the truncation level
Jn,l, l = 1, . . . , d (see Lemma 7.2 below). Let us denote β̃n(Θ̃) = βn(Θ̃) + (εTΨj)k. As we
will show below, the appropriate W for our wavelet regression model is

Wn = {Θ̃ : |β̃n(Θ̃)| ≤ τn
√
n logn}, (6.15)

with τn → 0 given in (6.17) of Lemma 6.1; while Ω ≡ Ωn(c) has the form

⋂

Nl≤jl≤Jn,l−1

0≤kl≤2jl−1
l=1,...,d




|βn(Θ̃)− β̃n(Θ̃)|√
σ2
0(Ψ

T
j Ψj)k,k

≤
(
2 log

d∏

l=1

2jl + c logn

)1/2


 . (6.16)

The extent that Wn holds with high posterior probability depends on the choice of the
wavelet truncation 2

∑d
l=1 Jn,l, and also on the lower bound on α∗ that we are able or willing

to impose. The lemma below makes this statement explicit.

Lemma 6.1. Let us take 2
∑d

l=1 Jn,l = (n/ logn)m for some m ≤ 1. Then for any Nl ≤ jl ≤
Jn,l − 1 and 0 ≤ kl ≤ 2jl − 1, l = 1, . . . , d,

sup
f0∈Bα

∞,∞(R)

E0Π
(
|β̃n(Θ̃)| > τn

√
n log n

∣∣∣Y
)
≤ n−P4 ,

for all α such that

α∗ > dmax

{
(m− 1) +

√
(m− 1)2 + 8m2

4m
,

1

2

(
1

m
− 1

)}
,

with τn → 0 given in (6.17) below and P4 > 0 the same constant as in Lemma 7.4. In
particular, m = 1/2 (the default choice of the present paper) minimizes the lower bound on
the right hand side to yield α∗ > d/2.

Proof. Let 2
∑d

l=1 Jn,l = (n/ logn)m for some m ≤ 1. We then need to determine the optimal
m such that the statement in the lemma is true and the lower limit on α∗ (if there is any)
is as small as possible.

Now by the triangle inequality, |β̃n(Θ̃)| is bounded above by

|(ΨT
j Ψj)k,−k(θj − θ0j)−k|+

∑

a 6=j

|(ΨT
j Ψa)k,·(θa − θ0a)|

+ |(ΨT
jB)k,·(ϑ− ϑ0)|+ |(ξTΨj)k|.

Let ǫn = (n/ log n)−α∗/(2α∗+d). By the Cauchy-Schwarz inequality, the first term on the right
hand side is bounded by ‖(ΨT

j Ψj)k,−k‖‖θ−θ0‖. By Lemma 7.2, ‖(ΨT
j Ψj)k,−k‖ .

∏d
l=1 2

3jl/2
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and hence by Corollary 7.5, the first term is OP (2
3
∑d

l=1 jl/2ǫn). Similarly, we can bound
the third term using the same lemma and corollary by ‖(ΨT

jB)k,·‖‖ϑ − ϑ0‖ ≤ C3‖ϑ −
ϑ0‖

∏d
l=1 2

Nl/22jl = OP (2
∑d

l=1 jlǫn).
To bound the last term, observe that |(ξTΨj)k| ≤ ‖ξ‖∞

∑n
i=1 |ψj,k(X i)|. By Proposi-

tion 3.3, we have that ‖ξ‖∞ .
∑d

l=1 2
−αlJn,l for f0 ∈ Bα

∞,∞(R). By (7.2) in Lemma 7.2,∑n
i=1 |ψj,k(X i)| . n

∏d
l=1 2

−jl/2 since 2
∑d

l=1 jl = o(n). Thus we conclude that |(ξTΨj)k| .
n
∏d

l=1 2
−jl/2

∑d
l=1 2

−αlJn,l .
What remains now is to bound the second term. By another application of the Cauchy-

Schwarz inequality, we can bound this term from above by ‖θ − θ0‖
∑

a 6=j ‖(ΨT
j Ψa)k,·‖.

Then by Lemma 7.2,

∑

a 6=j

‖(ΨT
j Ψa)k,·‖ .

∑

a 6=j

d∏

l=1

2al+jl/2.

Define sets Tl, l = 1, . . . , d such that Tl can be {al = jl} or {al 6= jl}, but with the constraint
that not all Tl’s are {al = jl}. Then the sum on the right hand side above consists of 2d − 1
terms of the form

∑

a1∈T1

· · ·
∑

ad∈Td

d∏

l=1

2al+jl/2 =
d∏

l=1

∑

al∈Tl

2al+jl/2.

If Tl = {al = jl}, then
∑

al=jl
2al+jl/2 = 23jl/2; and if Tl = {al 6= jl}, then

∑Jn,l

al 6=jl
2al+jl/2 .

2Jn,l+jl/2. It then follows from Corollary 7.5 that the second term in the upper bound of
|β̃n(Θ̃)| above is OP (2

∑d
l=1(jl/2+Jn,l)ǫn). Combining the bounds obtained, |β̃n(Θ̃)| is for any

Nl ≤ jl ≤ Jn,l − 1, l = 1, . . . , d,

OP

(
2
∑d

l=1(jl/2+Jn,l)ǫn

)
+O

(
n

∏d
l=1 2

jl/2

d∑

l=1

2−αlJn,l

)
.

To optimize this upper bound with respect to jl, l = 1, . . . , d, we will take 2
∑d

l=1 jl =
n2−

∑d
l=1 Jn,lǫ−1

n

∑d
l=1 2

−αlJn,l to balance the two antagonistic terms and conclude that

|β̃n(Θ̃)| = OP

(
√
n2

∑d
l=1 Jn,l/2ǫ1/2n

d∑

l=1

2−αlJn,l/2

)
.

To proceed, we set 2Jn,l = 2J/αl, l = 1, . . . , d for some integer J , and it follows that 2
∑d

l=1 Jn,l =
2dJ/α

∗
and

∑d
l=1 2

−αlJn,l/2 = d2−J/2. Then the above is with posterior probability tending to
1 bounded above by

d
√
n2

∑d
l=1 Jn,l( 1

2
−α∗

2d )ǫ1/2n . n− 2m(α∗)2−d(m−1)α∗−md2

2d(2α∗+d) (logn)κ︸ ︷︷ ︸
τn(m)

√
n logn, (6.17)

21



where κ is some constant not depending on n. For the lemma’s statement to hold, the
numerator in the exponent of n, i.e., 2m(α∗)2−d(m−1)α∗−md2 must be strictly greater than
0. At the same time, we know from minimax theory and also from the proof of Theorem 4.2
that 2Jn,l(α) ≍ (n/ logn)α

∗/{αl(2α
∗+d)} is the optimal number of wavelets at each l = 1, . . . , d

and hence 2
∑d

l=1 Jn,l(α) = (n/ logn)d/(2α
∗+d) must be less than 2

∑d
l=1 Jn,l = (n/ logn)m, or

equivalently α∗ > (d/2)(m−1 − 1). By combining the two lower bound constraints on α∗, we
will have

α∗ > dmax

{
(m− 1) +

√
(m− 1)2 + 8m2

4m
,
1

2

(
1

m
− 1

)}
.

Note that the first term inside the max operation is increasing in m while the second term
is decreasing. Therefore, the optimal m that minimizes the right hand side can be found by
equating these two opposing terms, and the solution to this “minimax” problem on the right
hand side is m = 1/2 giving the smallest lower bound α∗ > d/2. This smallest lower bound
is ensured through letting α ∈ Ar ⊆ A for any r ≥ 0 such that 1/d + 1/(2α∗) > 1/αl, l =
1, . . . , d and hence α∗ > d/2 by summing both sides. Therefore, we can take τn to be τn(1/2)
in (6.17) and τn → 0 by virtue of the established lower bound on α∗.

Using the reduction technique discussed and in view of Lemma 6.1 above, we proceed to
show that the last three terms in (6.7) are negligible under the posterior. We would like to
remind the reader the definitions of Wn in (6.15) and Ωn(c) in (6.16) since they will be used
repeatedly in the proofs below.

Lemma 6.2. For small enough γ and large enough γ, there exist constants P1, P2 > 0 such
that uniformly in f0 ∈ Bα

∞,∞(R) with α ∈ A and any 0 < R ≤ R0 − 1/2,

E0 sup
σ∈Vn

Π(Bc|Y , σ) ≤ (log n)d

nP1
, (6.18)

E0 sup
σ∈Vn

Π(Cc|Y , σ) ≤ (log n)d

nP2
. (6.19)

Proof of Lemma 6.2. We first prove (6.18). By (6.6), we can write Bc = [P ∩ Jn(γ)
c 6= ∅] =

∪(j,k)∈Jn(γ)c [θj,k 6= 0]. Recall that Vn is a shrinking neighborhood of σ0, and σ ∈ Vn implies

that σ2 = σ2
0 + o(1). Using the fact that the posterior probability is bounded by 1, we have

E0 supσ∈Vn
Π(P ∩ Jn(γ)

c 6= ∅|Y , σ) is bounded above by

E0 sup
σ∈Vn

∑

(j,k)∈Jn(γ)c

Π(θj,k 6= 0|Y , σ)1Ωn(γ) + P0[Ωn(γ)
c]. (6.20)

To bound the last term, observe that β̃n(Θ̃) − βn(Θ̃) = (εTΨj)k is Gaussian under P0,
with mean 0 and variance σ2

0(Ψ
T
j Ψj)k,k. Thus, using the fact that P (|∑i εiai| > z) ≤
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2e−z2/(2σ2‖a‖2) for z > 0 and constants a = (a1, . . . , an)
T when εi, i = 1, . . . , n are i.i.d. Gaus-

sian with mean 0 and variance σ2, we have P0[Ωn(γ)
c] is bounded above by

Jn,1−1∑

j1=N1

2j1−1∑

k1=0

· · ·
Jn,d−1∑

jd=Nd

2jd−1∑

kd=0

P0

[
|(εTΨj)k|

σ0(Ψ
T
j Ψj)

1/2
k,k

> (2 log 2
∑d

l=1 jl + γ log n)1/2

]

≤ 2(2d − 1)n−γ/2
d∏

l=1

(Jn,l −Nl) . n−γ/2(log n)d. (6.21)

The right hand side above approaches 0 as n → ∞ for any γ > 0. Recall that in (6.14)
above, we defined

In(U , Θ̃) :=

∫

U

exp



−(ΨT

j Ψj)k,k

2σ2

[
θ − θ0j,k +

βn(Θ̃)

(ΨT
j Ψj)k,k

]2
 dπ(θ).

To bound the first term in (6.20), observe that for (j,k) ∈ Jn(γ)
c, we can upper bound

Π(θj,k 6= 0|Y , σ)1Ωn(γ) by

Π(θj,k 6= 0, (ϑ, θ−(j,k)) ∈ Wn|Y , σ)1Ωn(γ) +Π(Wc
n|Y , σ)

≤
∫
Wn

In([θj,k 6= 0], Θ̃)Kn(Θ̃)dΠ(Θ̃)
∫
Wn

In([θj,k = 0], Θ̃)Kn(Θ̃)dΠ(Θ̃)
1Ωn(γ) +OP0

(
n−B

)
, (6.22)

where OP0

(
n−B

)
for some constant B > 0 follows from Lemma 6.1. When θj,k 6= 0, then

dπ(θj,k) = ωj,np(θj,k)dθj,k. Since pmax = supx∈R p(x) < ∞ by assumption, we can upper

bound In([θj,k 6= 0], Θ̃) by ωj,npmax times

∫ ∞

−∞

exp



−(ΨT

j Ψj)k,k

2σ2

[
x+

βn(Θ̃)

(ΨT
j Ψj)k,k

]2
 dx =

√
2πσ2

√
(ΨT

j Ψj)k,k

.

Therefore, in view of the lower bound in Lemma 7.2,

∫

Wn

In([θj,k 6= 0], Θ̃)Kn(Θ̃)dΠ(Θ̃) . ωj,nn
−1/2σ

∫

Wn

Kn(Θ̃)dΠ(Θ̃). (6.23)

Now,
∫
Wn

In([θj,k = 0], Θ̃)Kn(Θ̃)dΠ(Θ̃) is 1− ωj,n times

∫

Wn

exp



−

(ΨT
j Ψj)k,k

2σ2

[
θ0j,k −

βn(Θ̃)

(ΨT
j Ψj)k,k

]2
Kn(Θ̃)dΠ(Θ̃). (6.24)
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To lower bound the expression above, we proceed by lower bounding the first exponential
factor. By definition, we have |θ0j,k| ≤ γ

√
logn/n for (j,k) ∈ Jn(γ)

c. Under Wn and Ωn(γ),

we can use the triangle inequality to bound
√

(ΨT
j Ψj)k,k

∣∣∣θ0j,k − βn(Θ̃)

(ΨT
j Ψj)k,k

∣∣∣ from above by

√
(ΨT

j Ψj)k,k|θ0j,k|+
|β̃n(Θ̃)|√
(ΨT

j Ψj)k,k

+
|β̃n(Θ̃)− βn(Θ̃)|√

(ΨT
j Ψj)k,k

≤ (
√
C2γ + τn/

√
C1)
√

logn + σ0

√
2 log 2

∑d
l=1 jl + γ log n

≤ 2
√
C2γ

√
log n+ σ0(2 log 2

∑d
l=1 jl + γ log n)1/2,

for large enough n because τn → 0 as n → ∞ (from (6.17)). Note also that by Lemma 7.2,√
C1n ≤ (ΨT

j Ψj)
1/2
k,k ≤

√
C2n for some constants C1, C2 > 0, because 2

∑d
l=1 jl ≤ 2

∑d
l=1 Jn,l =

√
n/ logn = o(n) by assumption. By squaring both sides, (ΨT

j Ψj)k,k

[
θ0j,k − βn(Θ̃)

(ΨT
j Ψj)k,k

]2
is

bounded above by

4C2γ
2 logn + σ2

0(2 log 2
∑d

l=1 jl + γ logn)

+ 4σ0γ
√
C2 log n(2 log 2

∑d
l=1 jl + γ logn) ≤ κ(γ) logn + 2σ2

0 log 2
∑d

l=1 jl,

where κ(γ) = 4C2γ
2 + 4σ0

√
C2γ

3/2 + (4σ0
√
2C2 + σ2

0)γ, and the last inequality follows from√
a+ b ≤ √

a+
√
b. Thus,

∫
Wn

In([θj,k = 0], Θ̃)Kn(Θ̃)dΠ(Θ̃) is bounded below by

(1− ωj,n) exp

(
−κ(γ) logn

2σ2
− σ2

0

σ2
log 2

∑d
l=1 jl

)∫

Wn

Kn(Θ̃)dΠ(Θ̃). (6.25)

By assumption, ωj,n ≤ min{2−
∑d

l=1 jl(1+µl), 1/2} and µmin := min1≤l≤d µl > 1/2. Using the
fact that x/(1 − x) ≤ 2x for 0 ≤ x ≤ 0.5 with the upper and lower bounds of (6.23)
and (6.25), we can upper bound the first term of (6.20) up to some constant multiple by

n
1

2σ2 κ(γ)−
1
2σ times

Jn,1∑

j1=N1

2j1−1∑

k1=0

· · ·
Jn,d∑

jd=Nd

2jd−1∑

kd=0

2
σ2
0

σ2

∑d
l=1 jl2ωj,n . n

1
2σ2 κ(γ)−

1
2σ

d∏

l=1

Jn,l∑

jl=Nl

2
jl

(
σ2
0

σ2−µl

)

.

Now if σ2
0/σ

2 > µl, we have
∑Jn,l

jl=Nl
2jl(σ

2
0/σ

2−µl) . 2Jn,l(σ
2
0/σ

2−µl); while for σ2
0/σ

2 ≤ µl, this
sum is O(1). Therefore, if σ2

0/σ
2 ≤ µl for all l = 1, . . . , d, the right hand side above is

O(nκ(γ)/[2σ2
0+o(1)]−1/2) after uniformizing over σ ∈ Vn, and it will tend to 0 if γ is small

enough. On the other hand, if σ2
0/σ

2 > µl for at least one l = 1, . . . , d, then the right hand
side is bounded above up to some constant by

n
1

2σ2 κ(γ)−1/2σ
d∏

l=1

2Jn,l(σ
2
0/σ

2−µl) . n−µmin−1/2+
σ2
0

σ2+
1

2σ2 κ(γ)σ. (6.26)
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By uniformizing over σ ∈ Vn, the right hand side above is [σ0+o(1)]n
1/2−µmin+o(1)+κ(γ)/[2σ2

0+o(1)]

and it will approach 0 as n → ∞ if γ is chosen small enough, since µmin > 1/2 by our prior
assumption.

We now prove the second assertion (6.19). By (6.10), (j,k) ∈ Jn(γ) ⊂ Jn(γ) ⊂ In(α),

then 2−αljl[d
−1+(2α∗)−1] dominates γ(logn/n)1/(2d) inside the minimum function of (6.5) since

jl ≤ Jn,l(α)− 1, l = 1, . . . , d. Therefore, the definition of event C in (6.6) can be reduced to

C :=
⋂

{|θ0
j,k|>γ

√
logn/n}

[θj,k 6= 0], (6.27)

for large enough γ > 0. Taking complements and using the same decomposition as in (6.20),
E0 supσ∈Vn

Π(Pc ∩ Jn(γ) 6= ∅|Y , σ) is bounded above by

E0 sup
σ∈Vn

∑

{|θ0
j,k|>γ

√
logn/n}

Π(θj,k = 0|Y , σ)1Ωn(1) + P0[Ωn(1)
c]. (6.28)

Using the same argument leading to (6.21) by substituting γ with 1,

P0[Ωn(1)
c] . n−1/2(log n)d → 0 (6.29)

as n → ∞. To bound the first term, note that in the present case Π(θj,k = 0|Y , σ)1Ωn(1) is
bounded above by

∫
Wn

In([θj,k = 0], Θ̃)Kn(Θ̃)dΠ(Θ̃)
∫
Wn

In([θj,k 6= 0], Θ̃)Kn(Θ̃)dΠ(Θ̃)
1Ωn(1) +Π(Wc

n|Y , σ),

and the second term above is OP0

(
n−B

)
for some constant B > 0 by Lemma 6.1. To upper

bound
∫
Wn

In([θj,k = 0], Θ̃)Kn(Θ̃)dΠ(Θ̃), we need to upper bound the first exponential factor

in (6.24). Now, (ΨT
j Ψj)

1/2
k,k ≥ √

C1n by Lemma 7.2 since 2
∑d

l=1 jl = o(n) for jl < Jn,l(α), l =
1, . . . , d. Applying the reverse triangular inequality twice and under Wn and Ωn(1), we have

for any |θ0j,k| > γ
√

log n/n that
√
(ΨT

j Ψj)k,k

∣∣∣θ0j,k − βn(Θ̃)

(ΨT
j Ψj)k,k

∣∣∣ is lower bounded by

≥
√

(ΨT
j Ψj)k,k|θ0j,k| −

|β̃n(Θ̃)|√
(ΨT

j Ψj)k,k

− |β̃n(Θ̃)− βn(Θ̃)|√
(ΨT

j Ψj)k,k

≥
√
C1γ

√
logn− (τn/

√
C1)
√

logn− σ0

(
2 log 2

∑d
l=1 jl + logn

)1/2
,

which is greater than 0.5
√
C1γ

√
logn if γ is large enough since τn → 0 as n→ ∞. Therefore∫

Wn
In([θj,k = 0], Θ̃)Kn(Θ̃)dΠ(Θ̃) is bounded above by

(1− ωj,n) exp

(
−C1γ

2

8σ2
log n

)∫

Wn

Kn(Θ̃)dΠ(Θ̃).
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By (3.2), p(x) ≥ pmin > 0 for |x| ≤ R0. Thus, we bound In([θj,k 6= 0], Θ̃) from below by

= pmin

∫ R0−θ0
j,k

−R0−θ0
j,k

exp



−(ΨT

j Ψj)k,k

2σ2

[
x+

βn(Θ̃)

(ΨT
j Ψj)k,k

]2
 dx

≥ pmin

√
2πσ2

√
(ΨT

j Ψj)k,k


2Φ





√
(ΨT

j Ψj)k,k

σ

(
R0 −

∣∣∣∣∣θ
0
j,k −

βn(Θ̃)

(ΨT
j Ψj)k,k

∣∣∣∣∣

)
− 1




where Φ is the cumulative distribution function of a standard normal. We proceed by lower
bounding the expression inside Φ. By the triangle inequality,

∣∣∣∣∣θ
0
j,k −

βn(Θ̃)

(ΨT
j Ψj)k,k

∣∣∣∣∣ ≤ |θ0j,k|+
|βn(Θ̃)− β̃n(Θ̃)|

(ΨT
j Ψj)k,k

+
|β̃n(Θ̃)|

(ΨT
j Ψj)k,k

. (6.30)

By (6.4), we have |θ0j,k| ≤ R. On the event Ωn(1), the second term above is OP0(
√

logn/n) =

oP0(1) since (Ψ
T
j Ψj)k,k ≥ C1n for any (j,k) ∈ Jn(γ) by Lemma 7.2. Under Wn and applying

Lemma 7.2 again, the third term above is o(
√
log n/n) = o(1). Then under the assumption

R ≤ R0 − 1/2, the right hand side of (6.30) is bounded above by R+ 1
4
≤ R0 − 1

4
for n large

enough. Hence, another application of Lemma 7.2 yields

In([θj,k 6= 0], Θ̃) ≥ pmin

√
2πσ2

(ΨT
j Ψj)k,k

[
2Φ

(√
C1n

4σ

)
− 1

]
.

Using the fact that P (|Z| > z) ≤ 2e−z2/2 for z > 0 and Z ∼ N(0, 1), we will obtain for any
σ ∈ Vn and for n large enough,

2Φ

(√
C1n

4σ

)
− 1 = 1− P

(
|Z| >

√
C1n

4σ

)
≥ 1− 2e−C1n/(32σ2) ≥ 1/

√
2.

Consequently in view of Lemma 7.2, we have for large enough n,
∫

Wn

In([θj,k 6= 0], Θ̃)Kn(Θ̃)dΠ(Θ̃) & ωj,nn
−1/2σ

∫

Wn

Kn(Θ̃)dΠ(Θ̃). (6.31)

By assumption, ωj,n ≥ n−λ for some constant λ > 0. Thus, the first term on the right hand
side of (6.28) is bounded above up to a constant by

sup
σ∈Vn

∑

{|θ0
j,k|>γ

√
logn/n}

1− ωj,n

σωj,n
n

1
2
−

C1γ
2

8σ2 .
1

σ0 + o(1)
n
−

[
C1

8(σ2
0
+o(1))

γ2−λ−1

]

,

where we upper bounded
∑

{|θ0
j,k|>γ

√
logn/n}

by
∏d

l=1

∑Jn,l−1
jl=Nl

∑2jl−1
kl=0 ≤ n1/2 for n > 2. The

right hand side will approach 0 if γ is chosen large enough as n→ ∞.
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Lemma 6.3. For small enough γ and large enough γ, there exists constant P3 > 0 such that
uniformly in f0 ∈ Bα

∞,∞(R) with α ∈ A and any 0 < R ≤ R0 − 1/2,

E0 sup
σ∈Vn

Π(Ac ∩ C|Y , σ) ≤ (log n)d

nP3
.

Proof of Lemma 6.3. By (6.6), we have Ac = ∪
{|θ0

j,k|>γ
√

logn/n}
[|θj,k − θ0j,k| > γ

√
log n/n].

Spilt the union such that Ac = A1 ∪ A2 where A1 is union over {γ
√

log n/n < |θ0j,k| ≤
γ
√

logn/n} and A2 is over its complement {|θ0j,k| > γ
√

log n/n}. Then Ac ∩ C = (A1 ∩
C) ∪ (A2 ∩ C). Define Zj,k := {|θj,k − θ0j,k| > γ

√
logn/n} ∩ {θj,k 6= 0}. In view of (6.27),

observe that A1 ∩ C = ∪
{γ
√

logn/n<|θ0
j,k|≤γ

√
logn/n}

Zj,k while A2 ∩ C = ∪
{|θ0

j,k|>γ
√

logn/n}
Zj,k.

Therefore by using a union bound, we can bound E0 supσ∈Vn
Π(Ac ∩ C|Y , σ) from above by

E0 sup
σ∈Vn

∑

(j,k)∈Jn(γ)

Π (θj,k ∈ Zj,k|Y , σ)1Ωn(1) + P0(Ωn(1)
c). (6.32)

In view of (6.29), the second term is bounded above by n−1/2(log n)d, and it goes to 0 as
n→ ∞. Using the same decomposition as in (6.20), we find that Π (θj,k ∈ Zj,k|Y , σ)1Ωn(1)

is bounded above by

∫
Wn

In(Zj,k, Θ̃)Kn(Θ̃)dΠ(Θ̃)
∫
Wn

In([θj,k 6= 0], Θ̃)Kn(Θ̃)dΠ(Θ̃)
1Ωn(1) +Π(Wc

n|Y , σ),

where Π(Wc
n|Y , σ) = OP0

(
n−B

)
for some constant B > 0 follows from Lemma 6.1. Re-

call that when θj,k 6= 0, its prior density dΠ(θj,k) ≤ ωj,npmaxdθj,k. Hence, it follows that

In(Zj,k, Θ̃) is bounded above by

pmaxωj,n

∫

|x|>γ
√

logn/n

exp



−(ΨT

j Ψj)k,k

2σ2

[
x+

βn(Θ̃)

(ΨT
j Ψj)k,k

]2
 dx.

Since (j,k) ∈ Jn(γ) ⊂ In(α) by (6.10), we will have 2
∑d

l=1 jl = o(n) and (ΨT
j Ψj)

1/2
k,k ≥

√
C1n

by Lemma 7.2. Then if |x| > γ
√

log n/n and under Wn and Ωn(1), we have by twice

application of the reverse triangular inequality that
∣∣∣x+ βn(Θ̃)

(ΨT
j Ψj)k,k

∣∣∣ is lower bounded by

|x| − |β̃n(Θ̃)|
(ΨT

j Ψj)k,k
−
∣∣∣∣∣

β̃n(Θ̃)

(ΨT
j Ψj)k,k

− βn(Θ̃)

(ΨT
j Ψj)k,k

∣∣∣∣∣

> γ

√
log n

n
− τn
C1

√
log n

n
− σ0√

C1n

√
2 log 2

∑d
l=1 jl + log n >

γ

2

√
logn

n
,
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if γ is chosen large enough since τn → 0 as n→ ∞. As a conclusion,

{
|x| > γ

√
log n

n

}
⊂
{∣∣∣∣∣x+

βn(Θ̃)

(ΨT
j Ψj)k,k

∣∣∣∣∣ >
1

2
γ

√
logn

n

}
.

Therefore, In(Zj,k, Θ̃) is further bounded above by pmaxωj,n times

exp

[
−(ΨT

j Ψj)k,kγ
2 logn

16nσ2

]∫

R

exp


−(ΨT

j Ψj)k,k

4σ2

(
x+

βn(Θ̃)

(ΨT
j Ψj)k,k

)2

 dx

. n−1/2σωj,n exp

[
−C1γ

2 logn

16σ2

]
,

again utilizing the bounds in Lemma 7.2. Using the upper bound established above and the
lower bound for

∫
Wn

In([θj,k 6= 0], Θ̃)Kn(Θ̃)dΠ(Θ̃) derived in (6.31), we can upper bound the
first term in (6.32) up to some constant by

sup
σ∈Vn

Jn,1−1∑

j1=N1

· · ·
Jn,d−1∑

jd=Nd

2j1−1∑

k1=0

· · ·
2jd−1∑

kd=0

n−
C1γ

2

16σ2 σ . (σ0 + o(1))n
−

[
C1

16(σ2
0
+o(1))

γ2−1

]

,

and it will approach 0 if γ is large enough as n→ ∞.

Proof of Corollary 4.4. First note that the loss f 7→ ‖f − f0‖∞ is unbounded but convex for
any f0. Let F := {‖Drf −Drf0‖∞ > Mǫn,r}. For u ∈ N, we decompose F = ∪∞

u=1Fu into
slices Fu := {Mǫn,ru < ‖Drf −Drf0‖∞ ≤Mǫn,r(u+ 1)}.

Now, if we introduced an extra u factor in 3 places: the right hand side of the definition
of Jn(γ) in (6.5), A in (6.6) and in (6.16) by replacing c logn with cu2 log n, we see that by
slightly modifying the proof of Theorem 4.2,

E0Π(Fu|Y ) ≤ (log n)d exp{−C log (n)u2},

for some universal constant C > 0. Therefore since F =
⋃∞

u=1Fu,

E0E(‖Drf −Drf0‖∞|Y ) ≤Mǫn,r +

∞∑

u=1

E0E (1Fu‖Drf −Drf0‖∞|Y )

≤Mǫn,r

(
1 + 2(logn)d

∞∑

u=1

ue−C log (n)u2

)
. ǫn,r,

where the sum (log n)d
∑∞

u=1 ue
−C log (n)u2

= (log n)d(n−C + 2n−4C + 3n−9C + · · · ) converges
when n is large enough. By Jensen’s inequality, ‖E(Drf |Y ) − Drf0‖∞ ≤ E(‖Drf −
Drf0‖∞|Y ) and the result follows by taking E0 on both sides.
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6.3 Proof of results in Section 5

For the proofs in this subsection, there is no qualitative difference in distinguishing between
father and mother wavelet coefficients. Hence for notational simplicity, we combine the father
and mother parts into a single sum and write the wavelet projection of f at resolution Jn

of (3.1) as KJn(f)(x) =
∑Jn,1−1

j1=N1−1 · · ·
∑Jn,d−1

jd=Nd−1

∑2j1−1
k1=0 · · ·∑2jd−1

kd=0 θj,kψj,k(x), by delegating
the father wavelets and their coefficients to the level jl = Nl−1, l = 1, . . . , d. Let ‖·‖n be the
L2-norm with respect to the empirical measure of {X1, . . . ,Xn} and 1d be the d-dimensional
vector of ones.

Proof of Proposition 5.1. Let us choose a g ∈ Bα
∞,∞(R) such that ‖g − f0‖∞ > Mǫn and

‖g − f0‖n ≤ C inff∈Bα
∞,∞(R):‖f−f0‖∞>Mǫn ‖f − f0‖n for some constant C ≥ 1. It then suffice

to lower bound Ef=g(1− φn).
Denote φLR to be the likelihood ratio test for the simple hypotheses H0 : f = f0 versus

H1 : f = g. By a change of Gaussian measure and using the Cauchy-Schwarz inequality,
Ef0(1− φLR) is bounded above by

√
Eg(1− φLR)

√∫ (
dP n

f0

dP n
g

)2

dP n
g ≤

√
Eg(1− φLR)e

n‖f0−g‖2n
2σ2

0 ,

where P n
f is the n-multivariate normal distribution with mean vector (f(X1), . . . , f(Xn))

T

and covariance matrix σ2
0In. This inequality and the fact that φLR is the uniformly most

powerful test imply that Ef0(φLR) ≤ Ef0(φn) ≤ δ for any 0 < δ < 1, and Eg(1− φn) is lower
bounded by

Eg(1− φLR) ≥ [Ef0(1− φLR)]
2e−n‖f0−g‖2n/σ

2
0

≥ (1− δ)2 exp

{
−C

2n

σ2
0

inf
f∈Bα

∞,∞(R):‖f−f0‖∞>Mǫn
‖f − f0‖2n

}
, (6.33)

by the definition of g. Note that α ∈ A implies 1/d + 1/(2α∗) > 1/αl and we further
deduce α∗ > d/2 by summing both sides across all l = 1 . . . , d. Take 2Jn,l = n1/(2αl),

and since 2
∑d

l=1 Jn,l = o(n) because of α∗ > d/2, we have by the triangle inequality that
‖f − f0‖n is bounded above by ‖KJn(f)−KJn(f0)‖n + ‖f −KJn(f)‖n + ‖f0 −KJn(f0)‖n .

‖θ − θ0‖ +
∑d

l=1 2
−αlJn,l, where we have used Lemma 7.7 to bound the first term, and

utilized Proposition 3.3 for the second and third terms since f, f0 ∈ Bα
∞,∞(R). By the

continuous embedding of Proposition 4.3.11 in [13] and Remark 3.2, L∞ ⊂ B0

∞,∞ and
hence ‖f − f0‖B0

∞,∞
≤ ‖f − f0‖∞. We then conclude that for Gn := {θ ∈ Bα

∞,∞(R) :

maxj 2
∑d

l=1 jl/2maxk |θj,k − θ0j,k| > Mǫn},

inf
f∈Bα

∞,∞(R):‖f−f0‖∞>Mǫn
‖f − f0‖n . inf

θ∈Gn

‖θ − θ0‖+
d√
n
.

Now let Jn,l(α) be

2Jn,l(α) =

(
R

M

)[∑d
l=1 αl

(
1
d
+ 1

2α∗
− 1

2αl

)]−1 (
n

log n

) α∗

αl(2α
∗+d)

.
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Consider a θ∗ ∈ Bα
∞,∞(R) such that |θ∗j,k−θ0j,k| = R2−

∑d
l=1 αlJn,l(α)( 1

d
+ 1

2α∗ ) for jl = Jn,l(α), l =
1 . . . , d and k = 0, but |θ∗j,k − θ0j,k| = 0 for all the other multi-indices. Then,

max
j

2
∑d

l=1 jl/2 max
k

|θ∗j,k − θ0j,k| = R2
−

∑d
l=1 αlJn,l(α)

(
1
d
+ 1

2α∗ −
1

2αl

)

=Mǫn

and this implies that θ∗ ∈ Gn, but since Jn,l(α) ≤ Jn,l,

‖θ∗ − θ0‖+ d/
√
n = R2−

∑d
l=1 αlJn,l(α)( 1

d
+ 1

2α∗ ) + d/
√
n .

√
log n/n.

Therefore, inff∈Bα
∞,∞(R):‖f−f0‖∞>Mǫn ‖f − f0‖2n . log n/n and plugging this back into (6.33)

gives the result.

Proof of Proposition 5.2. The proof of the first statement follows closely the steps outlined
in the proof of Proposition 5.1. By adapting (6.33) to our present setting, we have

Eg(1− φLR) & exp

{
−C

2n

σ2
0

inf
f∈Bα

∞,∞(R):‖f−f0‖∞>Mrnǫn
‖f − f0‖2n

}
. (6.34)

Hence, we need to upper bound the infimum in the exponent. By using the same argument
as in the paragraph after (6.33), the infimum in question becomes

inf
f∈Bα

∞,∞(R):‖f−f0‖∞>Mrnǫn
‖f − f0‖n . inf

θ∈Gn(rn)
‖θ − θ0‖+

d√
n
,

where Gn(rn) := {θ ∈ Bα
∞,∞(R) : maxj 2

∑d
l=1 jl/2maxk |θj,k − θ0j,k| > Mrnǫn}.

Now let in,l, l = 1, . . . , d such that 2α∗

2α∗+d
Jn,l(α) < in,l < Jn,l(α) where Jn,l(α) is such

that 2Jn,l(α) = (n/ logn)α
∗/{αl(2α

∗+d)}. For the present case, let us consider a θ∗ ∈ Bα
∞,∞(R)

so that |θ∗j,k − θ0j,k| = R2−
∑d

l=1 αlin,l( 1
d
+ 1

2α∗ )(1+ d
2α∗ ) for jl = in,l, l = 1 . . . , d and k = 0, but

|θ∗j,k−θ0j,k| = 0 for all the other multi-indices. Now since rnǫn = o(ρnǫn) and 1/d+1/(2α∗)−
1/(2αl) > 0 for all α ∈ A, we can always find an in,l so that

Mrnǫn < 2
∑d

l=1 in,l2−
∑d

l=1 αlin,l( 1
d
+ 1

2α∗ )(1+ d
2α∗ ) < 2

−
∑d

l=1 αlin,l

(
1
d
+ 1

2α∗ −
1

2αl

)

< 2
−
∑d

l=1

(
1
d
+ 1

2α∗−
1

2αl

)
2α∗

2α∗+d
αlJn,l(α)

= ρnǫn.

The expression immediately right ofMrnǫn is maxj 2
∑d

l=1 jl/2maxk |θ∗j,k−θ0j,k|, and hence we

can conclude that θ∗ ∈ Gn(rn). However since in,l >
2α∗

2α∗+d
Jn,l(α), we will have

‖θ∗ − θ0‖+ d/
√
n = R2−

∑d
l=1 αlin,l( 1

d
+ 1

2α∗ )(1+ d
2α∗ ) + d/

√
n

. 2−
∑d

l=1 αl
2α∗

2α∗+d
Jn,l(α)( 1

d
+ 1

2α∗ )(1+ d
2α∗ ) + 1/

√
n .

√
logn/n

and hence inff∈Bα
∞,∞(R):‖f−f0‖∞>Mrnǫn ‖f − f0‖2n . logn/n. The first statement follows by

substituting this back to (6.34).
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For the second statement, choose hn,l(α), l = 1, . . . , d such that 2hn,l(α) = ǫ
−2α∗/{αl(2α

∗+d)}
n .

Collect hn(α) = (hn,1(α), . . . , hn,d(α))
T and construct ψhn(α)(x) by concatenating ψj,k(x)

across N ≤ j ≤ hn(α) − 1d and all k in lexicographic order. Let us define Ψ :=
(ψhn(α)(X1)

T , · · · ,ψhn(α)(Xn)
T )T to be the wavelet basis matrix. We consider the plug-in

test Φn = 1{‖f̂n,α − f0‖∞ > M0ρnǫn} for some constant 0 < M0 < M , by using the least

squares estimator f̂n,α(x) := ψhn(α)(x)
T (ΨTΨ)−1ΨTY .

For any f0 ∈ Bα
∞,∞(R), we know from (7.6) of Lemma 7.6 that the least squares bias

is ‖E0f̂n,α − f0‖∞ ≤ Cdǫ
2α∗/(2α∗+d)
n . Recall that ρn = ǫ

−d/(2α∗+d)
n . Hence by the triangle

inequality and taking M0 > Cd,

E0Φn ≤ P0

(
‖f̂n,α − E0f̂n,α‖∞ > M0ρnǫn − ‖E0f̂n,α − f0‖∞

)

≤ P0

(
‖f̂n,α − E0f̂n,α‖∞ > (M0 − Cd)ǫ2α

∗/(2α∗+d)
n

)
.

Now apply (7.7) of Lemma 7.6 with x = CInǫ
2
n and since ǫn ≫

√
logn/n,

Q1

√
2
∑d

l=1 hn,l(α) log n

n
+
√

2Q2CI2
∑d

l=1 hn,l(α)/2ǫn ≤ 2
√

2Q2CIǫ
2α∗/(2α∗+d)
n ,

when n is large enough. Therefore, take M0 > 2
√
2Q2CI + Cd and we will have E0Φn ≤

e−CInǫ
2
n.

For the Type II error with f ∈ {Bα
∞,∞(R) : ‖f − f0‖∞ > Mρnǫn} such that M > M0, we

apply the reverse triangle inequality twice to yield

Ef(1− Φn) = Pf

(
‖f̂n,α − f0‖∞ ≤M0ρnǫn

)

≤ Pf

(
‖f̂n,α − Ef f̂n,α‖∞ ≥ ‖f − f0‖∞ −M0ρnǫn − ‖Ef f̂n,α − f‖∞

)
.

Now since f ∈ Bα
∞,∞(R), we apply (7.6) again to conclude ‖Ef f̂n,α − f‖∞ ≤ Cdǫ

2α∗/(2α∗+d)
n .

Hence we are in the same situation as in the Type I error case, and we can use the same argu-
ment to conclude that forM and n large enough, we have supf∈Bα

∞,∞(R):‖f−f0‖∞>Mρnǫn Ef (1−
Φn) ≤ e−CIInǫ

2
n for some constant CII > 0 when ρn = ǫ

−d/(2α∗+d)
n . The last statement is

proved using the master theorem (see Theorem 3 of [11]) once we have tests with expo-
nential errors. The Kullback-Leibler neighborhood and prior complement criteria follow the
same steps as in Lemma 7.4 to prove L2-contraction rate.

7 Technical lemmas

The lemma below quantifies the error in approximating Riemann’s sum with its integral
version, and it is useful to give size estimates of various discrete sums found in this paper.
Let 〈f, g〉 be the inner product of two functions f, g in Hilbert space.
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Lemma 7.1. Suppose ∂df/(∂x1 · · ·∂xd) ∈ L1, then if the fixed design points are chosen such
that (3.3) holds, we have for some constant C > 0,

∣∣∣∣∣

∣∣∣∣∣
1

n

n∑

i=1

f(X i)

∣∣∣∣∣−
∣∣∣∣
∫

[0,1]d
f(x)dx

∣∣∣∣

∣∣∣∣∣ ≤ C
1

n

∫

[0,1]d

∣∣∣∣
∂d

∂x1, · · ·∂xd
f(x)

∣∣∣∣ dx.

Proof. Note that n−1
∑n

i=1 f(X i) =
∫
[0,1]d

f(x)dGn(x) where Gn(x) is the empirical distri-

bution. By the triangle inequality,

∣∣∣∣
∫

[0,1]d
f(x)dGn(x)

∣∣∣∣ ≤
∣∣∣∣
∫

[0,1]d
f(x)dU(x)

∣∣∣∣+
∣∣∣∣
∫

[0,1]d
f(x)d(Gn − U)(x)

∣∣∣∣ ,

where U(x) is the Uniform([0, 1]d) cumulative distribution function. Thus, the first term is
|
∫
[0,1]d

f(x)dx|. To bound the second term, observe that by the multivariate integration by

parts,
∫
[0,1]d

f(x)d(Gn − U)(x) is

f(x)(Gn − U)(x)|1d
0

+

∫

[0,1]d

∂df(x)

∂x1, · · ·∂xd
(Gn − U)(x)dx.

Since (Gn −U)(1d) = (Gn −U)(0) = 0, it follows by assumption (3.3) that the second term
is bounded above by

‖Gn − U‖∞
∫

[0,1]d

∣∣∣∣
∂df(x)

∂x1, · · ·∂xd

∣∣∣∣ dx .
1

n

∫

[0,1]d

∣∣∣∣
∂df(x)

∂x1, · · ·∂xd

∣∣∣∣ dx.

For the other direction, use the reverse triangle inequality. This together with the upper
bound established above will then prove the result.

Lemma 7.2. Under the assumption of (3.3),

∣∣|(ΨT
aΨb)c,e| − n|〈ψa,c, ψb,e〉|

∣∣ .
d∏

l=1

2(al+bl)/2,

|(ΨT
aB)c,m| .

d∏

l=1

2al/2. (7.1)

In particular, for jl ≤ J̃n,l, l = 1, . . . , d where J̃n,l is increasing with n, then if 2
∑d

l=1 J̃n,l =
o(n), this implies that (ΨT

j Ψj)k,k ≍ n by the orthonormality of ψj,k, and

n∑

i=1

|ψj,k(X i)| . n
d∏

l=1

2−jl/2. (7.2)
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Proof. To prove the first statement of (7.1), apply Lemma 7.1 with f(x) = ψa,c(x)ψb,e(x).

Let us denote I(f) :=
∫
[0,1]d

∣∣∣ ∂d

∂x1,···∂xd
f(x)

∣∣∣ dx. Then,

I(f) =

∫

[0,1]d

∣∣∣∣ψa,c(x)
∂d

∂x1 · · ·∂xd
ψb,e(x) + ψb,e(x)

∂d

∂x1 · · ·∂xd
ψa,c(x)

∣∣∣∣ dx.

By construction, the support of the CDV wavelet ψa,c is some compact set Ia such that its

Lebesgue measure is O
(∏d

l=1 2
−al

)
. Therefore, we can restrict the domain of integration

to Ia ∩ Ib, which is the intersection of the supports of ψa,c and ψb,e. Since the wavelets
and their derivatives are uniformly bounded, we can upper bound I(f) up to some constant
multiple by

d∏

l=1

2(al+bl)/2

(∫

Ib

d∏

l=1

2bl‖ψkl‖∞‖ψ′

kl
‖∞dx+

∫

Ia

d∏

l=1

2al‖ψkl‖∞‖ψ′

kl
‖∞dx

)
,

which is of the order
∏d

l=1 2
(al+bl)/2.

For the second assertion of (7.1), we take f(x) = ψa,c(x)ϕN ,m(x). Then 〈ψa,c, ϕN ,m〉 = 0

by orthonormality, and I(f) is of the order of
∏d

l=1 2
al/2
(
1 +

∫
Ia

∏d
l=1 2

aldx
)
.
∏d

l=1 2
al/2.

The assertion then follows by appealing to Lemma 7.1.
To prove (7.2), let f(x) = |ψj,k(x)| and note that

∫
[0,1]d

f(x)dx =
∏d

l=1

∫ 1

0
|ψjk,kl(xl)|dxl.

Then if ψjl,kl is an interior CDV wavelet, we will have by a change of variable

∫ 1

0

|ψjl,kl(xl)|dxl =
∫ 2−jl (Nl+kl)

2−jl (−Nl+1+kl)

2jl/2|ψkl(2
jlxl)|dxl . 2−jl/2,

where the constant in . above does not depend on jl. The same argument holds for
the boundary corrected case, where the lower limit of the integral is replaced by 0 if
the 0-boundary is considered and the upper limit by 1 for the 1-boundary. As a result,∫
[0,1]d

f(x)dx .
∏d

l=1 2
−jl/2. By restricting the domain of integration to the support of ψj,k,

i.e., Ij ,

I(f) .

∫

Ij

∣∣∣∣∣

d∏

l=1

2jl/2+jlψ
′

kl
(2jlxl)sgn[ψkl(2

jlxl)]

∣∣∣∣∣ dx .

d∏

l=1

2jl/2,

with sgn(·) denoting the sign function, i.e., sgn(x) = 1 if x ≥ 0 and is −1 if x < 0. Therefore

if jl ≤ J̃n,l where 2
∑d

l=1 J̃n,l = o(n), then the above is o(1) and the result follows.

Remark 7.3. For uniform random design, the stochastic version of Lemma 7.2 can be
deduced from Bernstein’s inequality (see (3.24) in Theorem 3.1.7 of [13]). In this case, (7.1)
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is:

P

[
∣∣(ΨT

aΨb)c,e − n〈ψa,c, ψb,e〉
∣∣ .

√
n

d∏

l=1

2(al+bl)/2

]
≥ 1− 2e−2

−
∑d

l=1

(

al+bl
2

)

P

[
∣∣(ΨT

aB)c,m
∣∣ .

√
n

d∏

l=1

2al/2

]
≥ 1− 2e−2

∑d
l=1 al

.

The extra
√
n is due to the fact that ‖Gn − U‖∞ = OP (n

−1/2) by Donsker’s theorem in the
random case, instead of the rate O(n−1) for the fixed design case as in (3.3). In particular, for

jl ≤ J̃n,l, l = 1, . . . , d where J̃n,l is increasing with n, then if 2
∑d

l=1 J̃n,l = o(
√
n), this implies

that (ΨT
j Ψj)k,k ≍ n by the orthonormality of ψj,k and

∑n
i=1 |ψj,k(X i)| . n

∏d
l=1 2

−jl/2 with

probability at least 1− 2e−2
∑d

l=1 jl .

The lemma below gives the L2-posterior contraction rate for spike-and-slab prior in non-
parametric regression models. It shows in particular that there is an extra logarithmic factor
in the rate, and is a reflection of the fact that separable selection rules (coefficient-wise spike-
and-slab) will have at least a logarithmic penalty when trying to estimate f adaptively under
a global L2-loss.

Lemma 7.4. Under the hierarchical spike-and-slab prior in (3.1), there exist constants
M,P4 > 0 such that for any 0 < αl < η + 1, l = 1, . . . , d and uniformly over f0 ∈ Bα

∞,∞(R),

E0Π
(
‖f − f0‖n + |σ2 − σ2

0| > M(n/ log n)−α∗/(2α∗+d)
∣∣Y
)
≤ n−P4.

Proof. We will use the master theorem (see Theorem 3 of [11]) by constructing test function
with exponential error probabilities, and verifying that the prior gives sufficient mass on
Kullback-Leibler neighborhood around (f0, σ

2
0). Let ǫn → 0 and nǫ2n → ∞. For l = 1, . . . , d,

we choose Jn,l(α) such that 0.5U(n/ logn)α
∗/{αl(2α

∗+d)} ≤ 2Jn,l(α) ≤ U(n/ logn)α
∗/{αl(2α

∗+d)}

for some large enough constant U > 0. For Θn := {θ : θj,k = θj,k1{j≤Jn(α),k}}, define
sieves Fn := {f : θ ∈ Θn} consisting of functions with wavelet expansion truncated at levels
Jn,l(α)− 1, l = 1, . . . , d.

For any f ∈ Fn and by the property of L2-projection, ‖f − KJn(α)(f0)‖n ≤ ‖f − f0‖n.
Then by the triangle inequality, ‖f − f0‖n ≤ ‖f − KJn(α)(f0)‖n + ‖KJn(α)(f0) − f0‖∞ .

‖f −KJn(α)(f0)‖n +
∑d

l=1 2
−αlJn,l(α), where the last inequality follows from Proposition 3.3

since f0 ∈ Bα
∞,∞(R). In view of Lemma 7.7, ‖f−KJn(α)(f0)‖2n ≍ ‖ϑ−ϑ0‖2+‖θ̃− θ̃0‖2, since

2
∑d

l=1 Jn,l(α) = o(n). Here the tilde in θ̃ represents the truncated mother wavelet coefficients.
We then conclude that there are constants W1,W2 > 0 such that for f ∈ Fn,

W1‖θ̃ − θ̃0‖ ≤ ‖f − f0‖n
≤W2

[
‖ϑ− ϑ0‖+ ‖θ̃ − θ̃0‖+ (log n/n)α

∗/(2α∗+d)
]

(7.3)
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by the definition of Jn,l(α). Let us define sieve slices F j
n = {f ∈ Fn : jǫn < ‖f − f0‖n +

|σ2 − σ2
0| ≤ (j + 1)ǫn} for any integer j ≥M . It follows from (7.3) above that

F j
n ⊂

{
‖θ̃ − θ̃0‖ ≤ (2/W1)jǫn, |σ2 − σ2

0| ≤ 2jǫn

}
.

By calculating the covering number of the Euclidean space on the right hand side, we conclude
that F j

n has a ǫn-net of at most eCjnǫ2n points for some constant C > 0 if 2
∑d

l=1 Jn,l(α) . nǫ2n.
Then by Lemma 1 of [22], there exists a test φn,j with exponentially small error probabilities
for testing f = f0 against f ∈ F j

n, by maximizing over 3 tests corresponding to the cases
where |σ2−σ2

0| ≤ σ2
0/2, σ

2 > 3σ2
0/2 and σ

2 < σ2
0/2. Then using the arguments outlined in the

proof of Theorem 9 in [11], we conclude that φn = supj≥M φn,j is a test with exponentially
small Type I and II errors, thus fulfilling the testing requirement of the master theorem.

To characterize prior concentration, letK(p, q) :=
∫
p log (p/q)dµ be the Kullback-Leibler

divergence and V (p, q) :=
∫
p[log (p/q) − K(p, q)]2dµ, where µ is the Lesbegue measure.

Define the Kullback-Leibler neighborhood Bn(ǫn) := {(f, σ2) : n−1
∑n

i=1K(pf0,i, pf,i) ≤
ǫ2n, n

−1
∑n

i=1 V (pf0,i, pf,i) ≤ ǫ2n} with pg,i being the density of N[g(X i), σ
2]. After some

calculations,

1

n

n∑

i=1

K(pf0,i, pf,i) =
1

2
log

(
σ2

σ2
0

)
− 1

2

(
1− σ2

0

σ2

)
+

‖f − f0‖2n
2σ2

,

1

n

n∑

i=1

V (pf0,i, pf,i) =
1

2

(
1− σ2

0

σ2

)2

+
σ2
0‖f − f0‖2n

σ4
.

Hence, there are constants W3, W̃3 > 0 such that Bn(ǫn) ⊃ {‖f − f0‖n ≤ W3ǫn, |σ2 − σ2
0| ≤

W̃3ǫn}. By (7.3), take ǫn ≥ (3W2/W3)(log n/n)
α∗/(2α∗+d) and we have Bn(ǫn) ⊃ {‖ϑ −

ϑ0‖ ≤ W3ǫn/(3W2), ‖θ̃ − θ̃0‖ ≤ W3ǫn/(3W2), |σ2 − σ2
0 | ≤ W̃3ǫn}. Therefore by the assumed

independence of the priors, Π[Bn(ǫn)] can be lower bounded by

Π

[
‖ϑ− ϑ0‖ ≤ W3

3W2

ǫn

]
Π

[
‖θ̃ − θ̃0‖ ≤ W3

3W2

ǫn

]
Π
(
|σ2 − σ2

0 | ≤ W̃3ǫn

)
. (7.4)

Since πσ is continuous and πσ(·) > 0 by assumption, we have

Π(|σ2 − σ2
0 | ≤ W̃3ǫn) ≥ 2W̃3ǫn inf

|u−σ2
0 |≤W̃3ǫn

πσ(u) = 2W̃3ǫnπσ(σ
2
0)[1 + o(1)],

which is greater than e−H1 logn for some constant H1 > 0, where the last equality follows
since ǫn & n−1/2 by assumption. For a set A in some Euclidean space, we denote vol(A) to
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be the volume of A. Let Ñ =
∏d

l=1 2
Nl. The first prior factor in (7.4) is

Π

[
‖ϑ− ϑ0‖ ≤ W3

3W2
ǫn

]
=

∫

‖ϑ−ϑ0‖≤W3ǫn/(3W2)

2N1−1∏

m1=0

· · ·
2Nd−1∏

md=0

p(ϑm)dϑm

≥ pÑminvol{‖ϑ− ϑ0‖ ≤W3ǫn/(3W2), ‖ϑ‖∞ ≤ R0}

=

(
pminW3

3W2
ǫn

)Ñ
πÑ/2

Γ(Ñ/2 + 1)
≥ e−H2 logn,

for some constant H2 > 0. We lower bound the second factor in (7.4) by

Π
[
‖θ̃ − θ̃0‖ ≤W3ǫn/(3W2)

]
≥ Π

[
‖θ̃ − θ̃0‖ ≤W3ǫn/(3W2)

∣∣∣P̃n

]
Π(P̃n),

where P̃n = {(j,k) : θj,k 6= 0, jl < Jn,l(α) for all l = 1, . . . , d and θj,k = 0 for some l =
1, . . . , d, Jn,l(α) ≤ jl ≤ Jn,l − 1, with 0 ≤ kl ≤ 2jl − 1}. Denote Kn(α) = {(j1, . . . , jd) : Nl ≤
jl ≤ Jn,l(α) − 1, l = 1, . . . , d}. Recall that n−λ ≤ ωj,n ≤ min{∏d

l=1 2
−jl(1+µl), 1/2}. Using

the fact that log (1− x) ≥ −(2 log 2)x for 0 ≤ x ≤ 0.5, we have logΠ(P̃n) is

Jn,1(α)−1∑

j1=N1

· · ·
Jn,d(α)−1∑

jd=Nd

2
∑d

l=1 jl logωj,n +
∑

j∈Kn(α)c

2
∑d

l=1 jl log (1− ωj,n)

≥ −λ log n
d∏

l=1

Jn,l(α)−1∑

jl=Nl

2jl − 2 log 2
∑

j∈Kn(α)c

2
∑d

l=1 jlωj,n. (7.5)

Define sets Ql, l = 1, . . . , d where Ql can be {jl < Jn,l(α)} or {jl ≥ Jn,l(α)}, but with the
constraint that not all Ql’s are {jl < Jn,l(α)}. Then the summation over j ∈ Kn(α)

c is such
that j takes on all 2d − 1 possible combinations of the Ql’s, and each combination has the
form

∑

j1∈Q1

· · ·
∑

jd∈Qd

2
∑d

l=1 jlωj,n ≤
∑

j1∈Q1

· · ·
∑

jd∈Qd

2−
∑d

l=1 jlµl .

Among these 2d − 1 combinations, the configuration with one Qi = {ji ≥ Jn,i(α)} and the
rest Ql = {jl < Jn,l(α)}, l 6= i, l = 1, . . . , d will dominate the sum, and they are exactly d
such configurations. Thus, the sum over j ∈ Kn(α)

c in (7.5) is bounded above up to some
universal constant by

d∑

i=1

∑

ji≥Jn,i(α)

2−jiµi

d∏

l 6=i

∑

jl<Jn,l(α)

2−jlµl .

d∑

i=1

2−Jn,i(α)/2,

since µl > 1/2, l = 1, . . . , d. Hence, (7.5) is bounded below up to some constant multiple by

− log n2
∑d

l=1 Jn,l(α) −∑d
l=1 2

Jn,l(α)/2. We then conclude that Π(P̃n) ≥ e−H3 logn2
∑d

l=1 Jn,l(α)

for
some constant H3 > 0.
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By the assumption in (3.2) and denoting J̃ =
∏d

l=1[2
Jn,l(α) − 2Nl],

Π

[
‖θ̃ − θ̃0‖ ≤ W3

3W2

ǫn

∣∣∣∣P̃n

]
=

∫

‖θ̃−θ̃0‖≤W3ǫn/(3W2)

d∏

l=1

Jn,l(α)−1∏

jl=Nl

2jl−1∏

kl=0

p(θj,k)dθj,k

≥ pJ̃minvol{θ̃ ∈ P̃n : ‖θ̃ − θ̃0‖ ≤W3ǫn/(3W2), ‖θ̃‖∞ ≤ R0}

=

(
pminW3

3W2

ǫn

)J̃
πJ̃/2

Γ(J̃/2 + 1)
≥ e−H4 logn2

∑d
l=1 Jn,l(α)

,

for some constant H4 > 0. Therefore by multiplying all the lower bounds obtained for (7.4),

it follows that Π[Bn(ǫn)] ≥ e−Cnǫ2n for some constant C > 0 only if (logn/n)2
∑d

l=1 Jn,l(α) . ǫ2n.
This implies that ǫn & (log n/n)α

∗/(2α∗+d) for 2Jn,l(α) ≍ (n/ logn)α
∗/{αl(2α

∗+d)}, l = 1, . . . , d.
It now remains to show that E0Π(F c

n|Y ) → 0. By continuous embedding, this is equiva-
lent to showing that E0Π(Θ

c
n|Y ) → 0. Observe that Θc

n =
⋃

j≥Jn(α)[θ(j) 6= 0], with [θ(j) 6= 0]
representing the set such that θj,k 6= 0 for at least one kl at some l = 1, . . . , d. Define

Aj(m) = {θj : exactly m among all 2
∑d

l=1 jl elements are not zero, and the rest are zeroes}.
It follows that [θ(j) 6= 0] is a union of Aj(m) across m = 1, . . . , 2

∑d
l=1 jl and we have

Π(Θc
n|Y ) ≤∑j≥Jn(α)

[
Π(Aj(1)|Y ) + · · ·+Π

(
Aj

(
2
∑d

l=1 jl

)∣∣∣Y
)]

. After some calculations,

it turns out that the first sum is OP0(e
−C logn) while the rest of the terms are oP0(e

−C logn)
for some large enough constant C > 0. We then conclude that E0Π(F c

n|Y ) . e−C logn → 0
as n→ ∞.

Corollary 7.5. As a consequence of Lemma 7.4 above, we have with posterior probability at
least 1− n−P4 that

‖ϑ− ϑ0‖ . (n/ logn)−α∗/(2α∗+d), ‖θ − θ0‖ . (n/ logn)−α∗/(2α∗+d).

Proof. If f has wavelet expansion as in (3.1) at resolution Jn, then by the property of L2-
projection and Lemma 7.2, we have ‖f−f0‖n ≥ ‖f−KJn(f0)‖n & (‖ϑ−ϑ0‖2+‖θ−θ0‖2)1/2
since 2

∑d
l=1 Jn,l = o(n) by assumption. The result follows by applying Lemma 7.4.

Lemma 7.6. Project f unto the wavelet bases at resolution Jn and write the regression
model in (1.1) (assuming known σ = σ0) as Y = Ψθ + ε with Ψ the wavelet basis matrix

and ε ∼ N(0, σ2
0I). Let f̂n(x) := ψJn

(x)T (ΨTΨ)−1ΨTY be the corresponding least squares
estimator with ψJn

(x) being the vector of all wavelet functions at resolution Jn evaluated at

x. Let 2
∑d

l=1 Jn,l = o(n), then for any f ∈ Bα
∞,∞(R), there exist constants C,Q1, Q2 > 0 such

that the following hold:

‖Ef f̂n − f‖∞ ≤ C
d∑

l=1

2−αlJn,l, (7.6)

Pf


‖f̂n − Ef f̂n‖∞ ≥ Q1

√
2
∑d

l=1 Jn,l logn

n
+

√

2Q2
2
∑d

l=1 Jn,l

n
x


 ≤ e−x. (7.7)
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Proof. By Proposition 3.3, for any f ∈ Bα
∞,∞(R), there is a ξ such that ‖f −ψJn

(·)Tξ‖∞ .∑d
l=1 2

−αlJn,l. Therefore by adding and subtracting Ψξ and using the triangle inequality,

‖Ef f̂n − f‖∞ is

‖ψJn
(·)T (ΨTΨ)−1ΨTF − f‖∞
≤ ‖ψJn

(·)T (ΨTΨ)−1ΨT (F −Ψξ)‖∞ + ‖ψJn
(·)Tξ − f‖∞,

where the second term is O(
∑d

l=1 2
−αlJn,l). For a matrix A, let ‖A‖(∞,∞) = maxi

∑
j |aij|

(max of absolute row sums) and ‖A‖(1,1) = maxj
∑

i |aij | (max of absolute column sums).
Using Hölder’s inequality |xTy| ≤ ‖x‖1‖y‖∞ and definition of the induced matrix norm
‖Ax‖1 ≤ ‖A‖(1,1)‖x‖1, the first term is bounded by

sup
x∈[0,1]d

‖ψJn
(x)‖1‖(ΨTΨ)−1‖(1,1)‖ΨT‖(1,1)‖F −Ψξ‖∞. (7.8)

By (6.3) with r = 0, it holds that ‖ψJn
(x)‖1 . 2

∑d
l=1 Jn,l/2 uniformly in x ∈ [0, 1]d.

Note that since each entry of Ψ is a dilated version of the base CDV wavelet with com-
pact support, it follows that ΨTΨ is banded. Furthermore by choosing 2

∑d
l=1 Jn,l = o(n),

all eigenvalues of ΨTΨ are ≍ n by virtue of Lemma 7.7. Therefore by appealing to
Lemma A.4 of [30], we conclude ‖(ΨTΨ)−1‖(∞,∞) . n−1. Since (ΨTΨ)−1 is symmetric,
it follows that ‖(ΨTΨ)−1‖(1,1) = ‖(ΨTΨ)−1‖(∞,∞) . n−1. Now observe that ‖ΨT‖(1,1) =

max1≤i≤n

∑
j,k |ψj,k(Xi)| ≤ supx∈[0,1]d ‖ψJn

(x)‖1, and this is O(2
∑d

l=1 Jn,l/2) as shown above.

It now remains to bound ‖F − Ψξ‖∞, and we know it is O(
∑d

l=1 2
−αlJn,l) by Proposition

3.3. Combine everything and use the assumption that 2
∑d

l=1 Jn,l ≤ n to conclude (7.6).

By construction, f̂n − Ef f̂n ∼ GP(0, σ2
0ΣJn) where the covariance kernel ΣJn(x,y) =

ψJn
(x)T (ΨTΨ)−1ψJn

(y) for any x,y ∈ [0, 1]d. Since the wavelets are uniformly bounded
and applying (6.3) with r = 0, we can deduce that for any x ∈ [0, 1]d, ‖ψJn

(x)‖2 ≤
maxj≤Jn−1d,k |ψj,k(x)|

∑
j≤Jn−1d,k

|ψj,k(x)| .
∏d

l=1 2
Jn,l. Then by appealing to Lemma 7.7,

sup
x∈[0,1]d

ΣJn(x,x) . ‖(ΨTΨ)−1‖(2,2) sup
x∈[0,1]d

‖ψJn
(x)‖2 ≤ Q2n

−12
∑d

l=1 Jn,l

for some constant Q2 > 0. By the Borell’s inequality (see Proposition A.2.1 from [29] or
Theorem 2.5.8 in [13]), we have for any x ≥ 0 that

Pf

(
‖f̂n − Ef f̂n‖∞ ≥ Ef‖f̂n − Ef f̂n‖∞ +

√
2Q2n−12

∑d
l=1 Jn,lx

)
≤ e−x. (7.9)

Define η := ΨTε. Observe that f̂n −Ef f̂n is ψJn
(·)T (ΨTΨ)−1η, and by Hölder’s inequality,

Ef‖f̂n − Ef f̂n‖∞ is bounded above by

sup
x∈[0,1]d

‖ψJn
(x)‖1‖(ΨTΨ)−1‖(∞,∞)E‖η‖∞ . n−12

∑d
l=1 Jn,l/2E‖η‖∞,
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in view of the bounds established in (7.8). Let us index the rows and columns of ΨTΨ with
multi-indices of the form (j,k). Since η ∼ N(0, σ2

0Ψ
TΨ), we can apply Lemma 2.3.4 of [13]

to conclude that for Zj,k ∼ N(0, 1) i.i.d. with (j,k) running across all the indices of the
wavelet series up to resolution Jn,

E‖η‖∞ ≤ max
j≤Jn−1d,k

√
(ΨTΨ)(j,k),(j,k)E

(
max

j≤Jn−1d,k
|Zj,k|

)
.
√
n log n,

where we have utilized Lemma 7.7 to upper bound the diagonals of ΨTΨ, under the assump-
tion that 2

∑d
l=1 Jn,l = o(n). Combine all these established bounds back into (7.9) to deduce

(7.7).

Lemma 7.7. For any vector θ, we have

‖θ‖2
(
n−

d∏

l=1

2Jn,l

)
. n‖KJn(f)‖2n = θTΨTΨθ . ‖θ‖2

(
n +

d∏

l=1

2Jn,l

)
.

In particular if 2
∑d

l=1 Jn,l = o(n), then the maximum eigenvalue of ΨTΨ is O(n), while its
minimum eigenvalue is & n.

Proof. By definition, n−1θTΨTΨθ =
∫
[0,1]d

KJn(f)(x)
2dGn(x). Let us take f in Lemma 7.1

as KJn(f). Then
∫
[0,1]d

KJn(f)(x)
2dx = ‖θ‖2 by orthonormality. By the Cauchy-Schwarz

inequality,

∫

[0,1]d

∣∣∣∣
∂d

∂x1 · · ·∂xd
KJn(f)(x)

2

∣∣∣∣ dx ≤ 2‖KJn(f)‖2
∥∥∥∥

∂d

∂x1 · · ·∂xd
KJn(f)

∥∥∥∥
2

,

where ‖KJn(f)‖2 = ‖θ‖ again by orthonormality, while

∥∥∥∥
∂d

∂x1 · · ·∂xd
KJn(f)

∥∥∥∥
2

.

√√√√
Jn,1−1∑

j1=N1−1

· · ·
Jn,d−1∑

jd=Nd−1

∑

k

22
∑d

l=1 jlθ2j,k

is O
(∏d

l=1 2
Jn,l‖θ‖

)
by applying the third display of Section 5 in [2]. The last statement

follows since the maximum or minimum eigenvalue is the maximization or minimization of
θTΨTΨθ/‖θ‖2 over θ 6= 0.

References

[1] Belitser, E. and Ghosal, S. (2003). Adaptive bayesian inference on the mean of an
infinite-dimensional normal distribution. Ann. Statist., 31(2):536–559.

[2] Cai, T. T. (2002). On adaptive wavelet estimation of a derivative and other related linear
inverse problems. J. Statist. Plann. Inference, 108:329–349.

39



[3] Castillo, I. (2014). On Bayesian supremum norm contraction rates. Ann. Statist.,
42(5):2058–2091.

[4] Castillo, I., Schmidt-Hieber, J., and van der Vaart, A. (2015). Bayesian linear regression
with sparse priors. Ann. Statist., 43(5):1986–2018.

[5] Castillo, I. and van der Vaart, A. (2012). Needles and straw in a haystack: Posterior
concentration for possibly sparse sequences. Ann. Statist., 40(4):2069–2101.

[6] Chipman, H. A., Kolaczyk, E. D., and McCulloch, R. E. (1997). Adaptive bayesian
wavelet shrinkage. Journal of the American Statistical Association, 92(440):1413–1421.

[7] Cohen, A., Daubechies, I., and Vial, P. (1993). Wavelets on the interval and fast wavelet
transforms. Applied and Computational Harmonic Analysis, 1(1):54–81.

[8] F. Abramovich, T. S. and Silverman, B. W. (1998). Wavelet thresholding via a bayesian
approach. Journal of the Royal Statistical Society. Series B (Statistical Methodology),
60(4):725–749.

[9] George, E. I. and McCulloch, R. E. (1993). Variable selection via Gibbs sampling. Journal
of the American Statistical Association, 88(423):881–889.

[10] Ghosal, S., Ghosh, J. K., and van der Vaart, A. W. (2000). Convergence rates of
posterior distributions. Ann. Statist., 28(2):500–531.

[11] Ghosal, S. and van der Vaart, A. W. (2007). Convergence rates of posterior distributions
for noniid observations. Ann. Statist., 35(1):192–223.
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