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In this paper, our aim is to estimate sparse sequences in the framework of the heteroscedastic
white noise model. To model sparsity, we consider a Bayesian model composed of a mixture of
a heavy-tailed density and a point mass at zero. To evaluate the performance of the Bayes rules
(the median or the mean of the posterior distribution), we exploit an alternative to the minimax
setting developed in particular by Kerkyacharian and Picard: we determine the maxisets for each
of these estimators. Using this approach, we compare the performance of Bayesian procedures
with thresholding ones. Furthermore, the maxisets obtained can be viewed as weighted versions
of weak lq spaces that naturally model sparsity. This remark leads us to investigate the following
problem: how can we choose the prior parameters to build typical realizations of weighted weak
lq spaces?
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1. Introduction
1.1. Model. In this paper, we consider the following heteroscedastic white

noise model:

(1) xk = θk + εσkξk, k = 1, 2, . . . ,

where θ = (θk)k≥1 is an unknown sequence to be estimated by using observations
(xk)k≥1, ε > 0 is a small parameter, and (ξk)k≥1 is an independent and identi-
cally distributed (i.i.d.) sequence of Gaussian variables with mean zero and unit
variance. Along this paper, we assume that σ = (σk)k≥1 is a known sequence of
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positive real numbers. This heteroscedastic white noise model, that appears as
a generalization of the classical white noise model (for which, we have ∀ k ≥ 1,
σk = 1), is extensively used by statisticians. Let us briefly recall the reasons for
this large use and provide references. Given a known linear operator A, we use
the heteroscedastic white noise model when we have to estimate the solution f of
the linear equation g = Af , with noisy observations of g. Most of the time, to
deal with such a problem, we exploit the singular value decomposition of A and
the sequence (σ−2

k )k≥1 is then the eigenvalues sequence of the operator A∗A, with
A∗ the adjoint of A. There is a considerable literature about statistical inverse
problems. Let us cite Korostelev and Tsybakov [28], Donoho [14], Golubev and
Khasminskii [19], Goldenshluger and Pereverzev [18], Cavalier, Golubev, Picard
and Tsybakov [7] and the references cited below. Some well-posed inverse prob-
lems with noise can be reduced to (1) with σk

k→∞−→ 0. The condition σk
k→∞−→ +∞

characterizes ill-posed problems. For instance, the sequences (σk)k≥1 associated
with operators such as integration considered by Ruymgaart [35], the Radon trans-
form (see Cavalier and Tsybakov [8]), convolution for the case studied by Cavalier
and Tsybakov [8] or operators for some elliptic differential equations (see Mair and
Ruymgaart [29]) have a polynomial growth. But, the σk’s may grow exponentially.
See, for instance, Pereverzev and Schock [32] who considered the problem of satel-
lite geodesy or the inverse problems associated with partial differential equations
such as the heat equation (see Mair and Ruymgaart [29]).

In the wavelet context, Johnstone [21] and Johnstone and Silverman [22] ex-
plained that the heteroscedastic white noise model can also be used to represent
direct observations with correlated structure. More precisely, let us assume that we
are given the following nonparametric regression model:

(2) Yi = f(i/n) + ei, i ∈ {1, 2, . . . , n},
where n is an integer, f is the signal to be estimated, and the ei’s are drawn from
a stationary Gaussian process. By studying the autocorrelation function of the
ei’s, Johnstone [21] and Johnstone and Silverman [22] showed that under a good
choice of ε and σ = (σk)k≥1, the model (1) appears as a good approximation of the
model (2) when n is large.

1.2. Bayesian model and Bayes rules. In this paper, we suppose that
the sequence θ to be estimated is sparse. It means that only a small proportion of
the θk’s are non-negligible. When the θk’s are wavelet coefficients, this assumption
is natural since the underlying property of wavelets is that a function can be well
approximated by a function with a relatively small proportion of nonzero wavelet
coefficients. In this paper, we model the sparsity by using a Bayesian approach.
For this purpose, we assume that the θk’s are random and the distribution of θ is
such that the θk’s are independent and for any k ≥ 1, there exist a fixed parameter
wk,ε ∈ (0, 1) depending on ε and k and a fixed density γ, such that, with probability
1−wk,ε, θk is equal to 0 and with probability wk,ε, the density of θk is γk,ε, where

γk,ε(θ) = sk,εγ(sk,εθ), ∀ θ ∈ R
and

sk,ε = (εσk)−1.
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If δ0 denotes the Dirac mass at 0, this model is written as follows:

(M1) θk ∼ (1− wk,ε)δ0(θk) + wk,εγk,ε(θk), k ≥ 1.

So, roughly speaking, the first term models the negligible components and the
second one non-negligible ones.

Bayesian procedures have now become very popular in signal estimation, since
they often outperform classical procedures and in particular thresholding proce-
dures from the practical point of view. See the very complete review paper of
Antoniadis, Bigot and Sapatinas [4] who provide descriptions and practical com-
parisons of various Bayesian wavelet shrinkage and wavelet thresholding estimators.
It is relevant to note that most of works about Bayesian procedures take place in
the practical framework. However, we can cite Johnstone and Silverman [24, 25]
and Abramovich, Amato and Angelini [1] who studied Bayesian procedures from
the minimax point of view.

Most of the authors consider quite similar Bayesian models and often, priors
are based on normal distributions. For instance, in the wavelet framework, John-
stone and Silverman [23] following Abramovich, Sapatinas and Silverman [3] and
Clyde, Parmigiani and Vidakovic [10] consider a mixture of a normal component
and a point mass at zero for the wavelet coefficients. Chipman, Kolaczyk and
McCulloch [9] impose a mixture of two Gaussian distributions with different vari-
ances for negligible and non-negligible wavelet coefficients. Let us add that, often,
properties of conjugate families enable statisticians to point out easily Bayes rules
when Gaussian priors are considered in the classical Gaussian white noise model.
However, Johnstone and Silverman [24, 25] did not use Gaussian distributions and
showed the advantages from the minimax point of view in considering heavy-tailed
distributions. In the maxiset framework, we shall draw similar conclusions concern-
ing γ.

The posterior distribution of θk given xk is

(3) γφ
k,ε(θk | xk) =

φk(xk − θk)[wk,εγk,ε(θk) + (1− wk,ε)δ0(θk)]

wk,ε

∫ +∞
−∞ φk(xk − θ)γk,ε(θ) dθ + (1− wk,ε)φk(xk)

,

where φk denotes the density of εσkξk, using notations of Section 1.1. For all
ε > 0, we assume that we are given a real number Λε > 1 depending only on ε and
tending to +∞ as ε → 0. We estimate each θk by θ̂b1

k (xk) or by θ̂b2
k (xk) defined by

the following procedure.
• If k < Λε, θ̂b1

k (xk) (respectively θ̂b2
k (xk)) is the median (respectively the mean)

of the posterior distribution of θk given xk. Therefore, these rules satisfy: for any
θ̂k < θ̂b1

k (xk),

Fγφ
k,ε

(θ̂k) < 0.5 ≤ Fγφ
k,ε

(θ̂b1
k (xk)), θ̂b2

k (xk) =
∫

θkγφ
k,ε(θk | xk) dθk,

where Fγφ
k,ε

denotes the cumulative distribution function of γφ
k,ε(· | xk).

• If k ≥ Λε, then θ̂b1
k (xk) = θ̂b2

k (xk) = 0.
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The values of the hyperparameters wk,ε, γ, and Λε will be chosen later. Other
properties of these Bayes rules are given in Section 2.1. So, the choice for Bayes
rules is very classical. Indeed, most of the time, in practice, the Bayes rules used
by statisticians are the median, and more frequently the mean of the posterior
distribution, which are generally better estimates than the mode (see Berger [5],
p. 101). Note that the posterior mean and the posterior median are built by using
the posterior distribution on its whole support. For instance, let us cite Chipman,
Kolaczyk and McCulloch [9] and Clyde, Parmigiani and Vidakovic [10] who used
the posterior mean. But Abramovich, Sapatinas and Silverman [3] considered the
posterior median under a Bayesian model that has the same form as (M1). In
their Bayesian framework, unlike the posterior mean, the posterior median is a true
thresholding rule. In the wavelet context, they showed several simulated examples
for which this approach improves most of the traditional methods. If from the
practical point of view, the median seems preferable to the mean, what happens
under a theoretical approach? From the minimax point of view, Theorem 1 of
Johnstone and Silverman [24] showed that the posterior median of their Bayes model
achieves optimal rates of convergence under Besov body constraints and for lq-
losses, with 0 < q ≤ 2. If the posterior mean is used, optimal rates are also achieved
but only if 1 < q ≤ 2 (see Section 7.3 of [24]). This provides some theoretical
justification for preferring the posterior median over the posterior mean. In this
paper, to evaluate the performance of θ̂b1 = (θ̂b1(xk))k≥1 and θ̂b2 = (θ̂b2(xk))k≥1,
we use neither a practical approach nor the minimax theory, which have been
extensively considered, but the maxiset theory that we describe now.

1.3. The maxiset theory and functional spaces. Let us first moti-
vate the introduction of the maxiset point of view. When nonparametric problems
are explored, the minimax theory is the most popular point of view: it consists in
ensuring that the used procedure θ̂ = (θ̂k(xk))k≥1 achieves the best rate on a given
sequence space S. But, at first, the choice of S is arbitrary (what kind of spaces has
to be considered: Sobolev spaces? Besov spaces? why?), secondly, S could contain
sequences very difficult to estimate. Since the unknown quantity θ = (θk)k≥1 could
be easier to estimate, the used procedure could be too pessimistic and not adapted
to the data. More embarrassing in practice, several minimax procedures may be
proposed and the practitioner has no way to decide but his experiment. To answer
these issues, another point of view has recently appeared: the maxiset point of view
introduced by Cohen, DeVore, Kerkyacharian and Picard [12] and Kerkyacharian
and Picard [26]. Given an estimate θ̂, it consists in assessing the accuracy of θ̂ by
fixing a prescribed rate ρε and pointing out the set of all the sequences θ that can
be estimated by the procedure θ̂ at the target rate ρε. So, under the statistical
model (1), we introduce the following definition.

Definition 1. Let 1 ≤ p < ∞ and let θ̂ = (θ̂k(xk))k≥1 be an estimator. The
maxiset of θ̂ associated with the rate ρε and the lp-loss is

MS(θ̂, ρε, p) =
{

θ = (θk)k≥1 : sup
ε

[(
E

∑

k≥1

|θ̂k(xk)− θk|p
)1/p

ρ−1
ε

]
< ∞

}
.
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The maxiset point of view brings answers to the previous issues. Indeed, there is
no a priori assumption on θ and then, the practitioner does not need to restrict his
study to an arbitrary sequence space. The practitioner states the desired accuracy
and then, knows the quality of the used procedure. Obviously, he chooses the
procedure with the largest maxiset. Let us give first examples of maxiset results in
the statistical framework of this paper. For this purpose, we need to introduce the
following sequence spaces.

Definition 2. For all 1 ≤ p < ∞ and 0 < η < ∞, we set

Bη
p,∞ =

{
θ = (θk)k≥1 : sup

λ>0
λpη

∑

k≥λ

|θk|p < ∞
}

,

and if q is a real number such that 0 < q < p, we set

wlp,q(σ) =
{

θ = (θk)k≥1 : sup
λ>0

λq
∑

k

1|θk|>λσk
σp

k < ∞
}

.

Now, let us focus on thresholding rules associated with the universal threshold
λk,ε = σkε

√
| log ε| (see Donoho and Johnstone [16]): for all ε > 0, we assume that

we are given a real number Λ∗ε > 0 only depending on ε and tending to +∞ as
ε → 0, and we set

θ̂t
k(xk) =

{
xk1|xk|≥κ∗λk,ε

if k < Λ∗ε,
0 otherwise,

where κ∗ is a constant. Kerkyacharian and Picard [26] have studied the maxisets
for this procedure. They obtained the following result for θ̂t = (θ̂t

k(xk))k≥1 (Theo-
rems 3.1 and 3.2 of Kerkyacharian and Picard [26]):

Theorem 1. Let 1 ≤ p < ∞ be a fixed real number and 0 < r < ∞. We suppose
that

(4) ∀ ε, Λ∗ε =
(
ε
√
| log ε| )−r

,

and there exists a positive constant T such that ∀ ε

(5) εκ
2
∗/16| log ε|−1/4−p/2

∑

k<Λ∗ε

σp
k ≤ T.

Let q be a fixed positive real number such that q < p. Then, if κ∗ ≥
√

2p,

MS
(
θ̂t,

(
ε
√
| log ε|)(1−q/p)

, p
)

= wlp,q(σ) ∩B
1
r (1−q/p)
p,∞ .

Remark 1. In this last result, of course, to avoid problems of definitions in (4)
and (5), it is implicitly assumed, without loss of generality, that ε remains smaller
than a positive constant ε0 strictly smaller than 1 (equal to 1/2 for instance).
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For the model (1), we can prove that under some conditions, the maxisets associ-
ated with linear estimates of the form (lkxk)k≥1, where (lk)k≥1 is a non-increasing
sequence of weights lying in [0, 1], are the spaces Bη

p,∞, called Besov bodies. These
conditions are satisfied, for instance, by projection weights, Tikhonov–Phillips
weights or Pinsker weights. For further details see Theorem 2 of Rivoirard [34]. We
can add that Lemma 1 of Rivoirard [34] proves that for the rate (ε

√
| log ε|)(1−q/p),

the maxisets of linear estimates are strictly contained in the maxisets of thresh-
olding rules. It means that from the maxiset point of view, linear estimates are
outperformed by thresholding ones. Kerkyacharian and Picard [27] also applied
the maxiset theory for local bandwidth selection in the framework of the Gauss-
ian white noise model. Under some conditions, they proved that local bandwidth
selection is at least as good as the thresholding procedure (see Section 5 of [27]).

The comparison of procedures based on maxisets is not as widely used as mini-
max comparison. However the results that have been obtained up to now are very
promising since they generally show that the maxisets of well-known procedures
are spaces that are well established and easily interpretable. Indeed, in the maxiset
approach, the Besov bodies (the spaces Bη

p,∞) control the θk’s for the large values
of k. As for the spaces wlp,q(σ), they can be viewed as weighted weak lq spaces.
The weak lq space is the space wlp,q(σ) when σk = 1 for any k ≥ 1, so we denote it
wlp,q(1), and it was considered in statistics by Johnstone [20], Donoho and John-
stone [17] or Abramovich, Benjamini, Donoho and Johnstone [2]. This space was
also studied in approximation theory and coding by DeVore [13], Donoho [15], or
Cohen, DeVore and Hochmuth [11]. Abramovich, Benjamini, Donoho and John-
stone [2] proved that if we order the components of a sequence θ according to their
size:

|θ|(1) ≥ |θ|(2) ≥ · · · ≥ |θ|(n) ≥ . . . ,

then
θ ∈ wlp,q(1) ⇐⇒ sup

n
n1/q|θ|(n) < ∞

(see Section 1.2 of [2]). So, wlp,q(1) spaces naturally measure the sparsity of a
signal. Of course, the weighted versions of these spaces, the wlp,q(σ) spaces, share
the same property.

So, since Bayesian Procedures, commonly used in practice, have been barely
studied from a theoretical point of view, it seems relevant to investigate the maxiset
results for the Bayesian procedures θ̂b1 and θ̂b2 introduced in Section 1.2 and our
first two goals in this paper will be the following:

1. to point out the maxisets of the Bayesian procedures θ̂b1 and θ̂b2 ,
2. to compare these estimators with traditional procedures in the maxiset ap-

proach by comparing their respective maxisets.
We shall draw interesting conclusions from the maxiset results of these classical
Bayes rules that are extensively used in practice.

1.4. Maxiset results. Given 1 ≤ p < ∞ and ρε the prescribed rate,
our first issue is to determine for i ∈ {1, 2}, MS(θ̂bi , ρε, p) once we have fixed
assumptions on the hyperparameters wk,ε, γ, and Λε. First, throughout this paper,
we take the density γ to be unimodal, symmetric about 0, positive, and absolutely
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continuous on R. We also assume that there exist two positive constants M and
M1 such that

(H1) sup
θ≥M1

∣∣∣∣
d

dθ
log γ(θ)

∣∣∣∣ = M < ∞.

It implies that the tails of γ have to be exponential or heavier. This enables
us to establish asymptotic properties of θ̂b1

k (xk) and θ̂b2
k (xk). We prove that the

posterior median θ̂b1
k (xk) is a thresholding rule. The posterior mean does not have

this thresholding property, but is a shrinkage rule (see Propositions 1, 2, and 3 in
Section 2). We also assume that wk,ε = wε depends only on ε and we set

πε = (1− wε)w−1
ε .

Then, the maxisets for these procedures can be pointed out if we take in addition
ρε and Λε of the form

ρε = (ε
√

log πε)1−q/p, Λε = (ε
√

log πε)−r,

with 0 < r < ∞ and 0 < q < p. Corollaries 1 and 2 show that under mild
assumptions on πε and on the size of the σk’s (see Assumptions (7), (8), (10),
and (11), for i ∈ {1, 2},

MS
(
θ̂bi , (ε

√
log πε)1−q/p, p

)
= wlp,q(σ) ∩B1/r(1−q/p)

p,∞ .

In particular, it is possible to choose wε = εν , as soon as ν is great enough to
satisfy Assumptions (7), (8), (10), and (11). So, as far as the maxiset point of
view is concerned, and roughly under the same conditions, both Bayesian proce-
dures achieve exactly the same performance as the thresholding one for the rate
(ε

√
| log ε|)(1−q/p). And for this last rate, we can then claim that each of the

Bayesian procedures outperforms the linear algorithm. We note in Section 2.4 that
Assumption (H1) on the tails of γ is essential to get maxisets as large as possible.
Finally, in Section 2.5, the previous results are readily extended to the case where
we want to estimate functions f decomposed in an appropriate unconditional fixed
basis B = {ψk, k ≥ 1} as f =

∑
k≥1 θkψk. We assume that θ is still observed

through the model (1) and still estimated by Bayes rules. In this case, the maxisets
are no longer sequence spaces but real functional spaces. See Section 2.5 for more
details.

1.5. Connections between the proposed Bayesian model and the
spaces pointed out. Starting from a Bayesian model, the outcomes of the
study of the associated natural Bayes rules under the maxiset approach are the
spaces wlp,q(σ). Thus, the Bayesian model (M1) and wlp,q(σ) spaces are connected
throughout the maxiset approach. We can wonder whether or not this connection
is “artificial”. It is worthwhile to observe that the Bayesian model has been con-
structed to model the sparsity of the sequences to be estimated. And as recalled in
Section 1.3, wlp,q(σ) spaces are natural spaces to measure the sparsity of a sequence
by controlling the proportion of non-negligible θk’s. The third goal of this paper is
then the following.

3. Can we establish a “direct” connection between (M1) and wlp,q(σ) spaces?



8 V. Rivoirard

Actually, we would like to prove a result similar to the one obtained by Ab-
ramovich, Sapatinas and Silverman [3] and exploited by Abramovich, Amato and
Angelini [1]. Abramovich, Sapatinas and Silverman considered in the wavelet frame-
work a Bayesian model (denoted (M∗

1 )) similar to (M1), where γ is fixed in advance
and is the density of a Gaussian variable with mean zero and unit variance. Then,
they established a necessary and sufficient condition on the other hyperparame-
ters of (M∗

1 ) to ensure that the signal built from the wavelet coefficients coming
from (M∗

1 ) belongs, almost surely, to a prescribed Besov space (see Theorem 1
of Abramovich, Sapatinas and Silverman [3]). We would like to do the same job
with (M1) and wlp,q(σ) spaces, but without fixing γ in advance. Theorem 7 of
Section 3 gives answers to this issue. In particular, we point out the condition
supλ>0 λq

∫ +∞
λ

γ(x) dx < ∞, which means that the tails of γ cannot be heavier
than those of a Pareto(q)-variable. Consequently, similarly to the result presented
in Section 2.2 of Rivoirard [33], this result illustrates the strong connections between
Pareto(q)-distributions and wlp,q(σ) spaces. Theorem 7 is proved by using results
on weighted empirical distribution process established by Marcus and Zinn [30].

1.6. Contents. In Section 2, we give some properties of the Bayes
rules and evaluate the maxisets obtained for the Bayesian procedures θ̂b1 and θ̂b2 .
Section 3 investigates the relationships between the Bayesian model and wlp,q(σ)
spaces. Finally, in Section 4, we prove the results concerning the asymptotic prop-
erties of the Bayes rules.

2. Maxisets for Bayesian Procedures
2.1. Properties of the Bayes rules. In the Introduction, we defined

the Bayes procedures θ̂b1 and θ̂b2 used in this paper. Recall that for k < Λε,
θ̂b1

k (xk) (respectively θ̂b2
k (xk)) is the median (respectively the mean) of the posterior

distribution of θk given xk given by (3). We also mention that if γ̃k,ε denotes the
prior distribution of θk, then for any 1 ≤ p < ∞ and any estimator θ̂k(xk) of θk, the
Bayes risk B(θ̂k, γ̃k,ε, p) of θ̂k(xk) with respect to γ̃k,ε associated with the lp-loss
defined by

B(θ̂k, γ̃k,ε, p) =
∫∫

γ̃k,ε(θk)|θ̂k(xk)− θk|pφk(xk − θk) dθk dxk,

where φk still denotes the density of εσkξk, satisfies:

B(θ̂b1
k , γ̃k,ε, 1) ≤ B(θ̂k, γ̃k,ε, 1),

and
B(θ̂b2

k , γ̃k,ε, 2) ≤ B(θ̂k, γ̃k,ε, 2).

These Bayes rules are shrinkage rules. In particular, they satisfy the following
property, which will be capital for description of their maxisets. For further details,
see Lemma 2, inequality (62), and Section 5.5 of Johnstone and Silverman [25].

Proposition 1. For all k ≥ 1, since γ is symmetric, absolutely continuous,
positive, and unimodal, we have for i ∈ {1, 2},
• θ̂bi

k (x1
k) ≤ θ̂bi

k (x2
k) for any (x1

k, x2
k) such that x1

k ≤ x2
k,
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• θ̂bi

k (−xk) = −θ̂bi

k (xk) for any xk,
• 0 ≤ θ̂bi

k (xk) ≤ xk for any xk ≥ 0,
• |θ̂bi

k (xk)− θk| ≤ max(|θk|; |xk − θk|) for any (xk, θk).

Assumptions imposed on the Bayesian model enable us to deduce other proper-
ties. Assumption (H1) implies that

∀ u ≥ M1, γ(u) ≥ γ(M1) exp(−M(u−M1)).

It means that the tails of γ have to be exponential or heavier. We shall see below
(see Section 2.4) that this assumption is essential to get maxisets as large as possible.
Furthermore, wk,ε = wε depends only on ε and we shall assume throughout this
paper that πε = (1 − wε)w−1

ε satisfies the following mild assumptions, globally
denoted (H2):

1. ε −→ πε is continuous,
2. infε>0 πε > 1,
3. π1 = exp(1),
4. πε

ε→0−→ +∞,
5. ε

√
log πε

ε→0−→ 0.
Then, we deduce the asymptotic behavior of θ̂b1

k (xk).

Proposition 2. Assume that (H1) and (H2) hold. For all k < Λε, θ̂b1
k (xk) is a

thresholding rule, i.e., there exists a uniquely defined t(πε) such that

θ̂b1
k (xk) = 0 ⇐⇒ sk,ε|xk| ≤ t(πε),

where the threshold t(πε) satisfies t(πε) ≥
√

2 log(πε) for πε large enough, and

lim
πε→+∞

t(πε)√
2 log(πε)

= 1.

Furthermore, there exists a positive constant C such that

lim sup
πε→+∞

|sk,εxk − sk,εθ̂
b1
k (xk)|1|sk,εxk|>2t(πε) ≤ C.

Remark 2. The threshold t(πε) introduced in Proposition 2 will be used
throughout this paper, even though it is only implicitly defined.

The proof of this proposition is given in the Appendix. Since ∀ k < Λε, θ̂b1
k (xk)

is a thresholding rule, it will be easy to evaluate the maxiset for θ̂b1 . As for the
posterior mean, we have the following useful result.

Proposition 3. Assume that (H1) and (H2) hold. Let k < Λε be fixed. There
exist two functions ε1 and ε2 bounded on [1, +∞) such that ε1(x) x→∞−→ 0, and

(6) θ̂b2
k (xk) = xk

1 + ε1(sk,εxk)
1 + πεφ(sk,εxk)γ(sk,εxk)−1ε2(sk,εxk)

,
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where φ denotes the density of a (0, 1) Gaussian variable. If t(πε) is the threshold
introduced in Proposition 2, there exists a positive constant C such that

lim sup
πε→+∞

|sk,εxk − sk,εθ̂
b2
k (xk)|1|sk,εxk|>2t(πε) ≤ C.

Proposition 3 is proved in the Appendix.

Remark 3. By using the results of Proposition 3, we have for πε large enough,
∣∣∣∣θ̂b2

k

(
s−1

k,ε

t(πε)
2

)∣∣∣∣ ≤ π
− 1

2
ε s−1

k,ε

√
log πε.

Unlike θ̂b1
k (xk), for all k < Λε, θ̂b2

k (xk) is not a thresholding rule, since θ̂b2
k (xk) 6= 0

if xk 6= 0, and we can easily prove that under (H1),

lim
sk,εxk→0

(
xk

∫ +∞
−∞ u2 exp(− 1

2u2)γ(u) du
∫ +∞
−∞ exp(− 1

2u2)γ(u) du + πε

)−1

θ̂b2
k (xk) = 1.

Now, we are ready to evaluate the maxisets for both Bayesian rules. In Sections 2.2
and 2.3, for i ∈ {1, 2}, the risk of θ̂bi studied under the lp-norm (1 ≤ p < ∞), will
be denoted Rp(θ̂bi). We have:

Rp(θ̂bi) = (E ‖θ̂bi − θ‖p
lp

)1/p =
( ∑

k≥1

E |θ̂bi

k (xk)− θk|p
)1/p

.

2.2. Maxisets for the posterior median. Since ∀ k < Λε, θ̂b1
k (xk) is a

thresholding rule, it is easy to evaluate the maxiset for θ̂b1 . On the one hand, we
have:

Theorem 2. Assume that (H1) and (H2) hold. Let 0 < r < ∞ and 1 ≤ p < ∞
be two fixed real numbers. Suppose that ∀ ε > 0,

Λε = (ε
√

log πε)−r

and there exist two positive constants T1 and T2 such that ∀ ε > 0,

ε−p π−1
ε (log πε)−

1
2− p

2 ≤ T1,(7)

π
− 1

8
ε (log πε)−

1
4− p

2

∑

k<Λε

σp
k ≤ T2.(8)

Let q be a fixed positive real number such that q < p. If θ ∈ B
1
r (1−q/p)
p,∞ ∩ wlp,q(σ),

then there exists a positive constant C such that

∀ ε > 0, Rp(θ̂b1) ≤ C(ε
√

log πε)1−q/p.
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The proof of this theorem that uses Proposition 2 is omitted since it is inspired
by the proof of Theorem 3.1 of Kerkyacharian and Picard [26] and is very similar
to the proof of Theorem 4 of Section 2.3.

On the other hand, we have:

Theorem 3. Assume that (H1) and (H2) hold. Let 0 < r < ∞ and 1 ≤ p < ∞
be two fixed real numbers. Suppose that ∀ ε > 0,

Λε = (ε
√

log πε)−r.

Let q be a fixed positive real number such that q < p. If there exists a positive
constant C such that

∀ ε > 0, Rp(θ̂b1) ≤ C(ε
√

log πε)1−q/p,

then θ ∈ B
1
r (1−q/p)
p,∞ ∩ wlp,q(σ).

Before proving Theorem 3, let us recall the following result (Lemma 2.2 of Kerky-
acharian and Picard [26]):

Proposition 4. For any 1 ≤ p < ∞ and 0 < q < p,

wlp,q(σ) =
{

θ = (θk)k≥1 : sup
λ>0

λq−p
∑

k

1|θk|≤λσk
|θk|p < ∞

}
.

Proof of Theorem 3. Since π1 = exp(1), we have Λ1 = 1 and ‖θ‖p
lp
≤ Cp. For

any ε > 0, ∑

k≥Λε

|θk|p ≤ E ‖θ̂b1 − θ‖p
lp
≤ CpΛ−(p−q)/r

ε ,

and since ε → Λε is continuous with limε→0 Λε = +∞, we have:

sup
λ>0

λ
p
r (1− q

p )
∑

k≥λ

|θk|p ≤ Cp,

and θ ∈ B
1
r (1− q

p )
p,∞ .

In the following, we shall use t(πε) (denoted t if there is no risk of confusion)
introduced in Proposition 2 and the following inequality: for any m > 0, with
Z ∼ N (0, 1), for ε small enough,

P
(
|sk,εxk − sk,εθk| ≥ t

m

)
≤ P

(
|Z| ≥ 1

m

√
2 log πε

)
(9)

≤ 2
∫ ∞

1
m

√
2 log πε

e−u2/2 du√
2π

≤ 2 exp
(
− 1

2

( 1
m

√
2 log πε

)2
) ∫ ∞

0

e−u 1
m

√
2 log πε

du√
2π

≤ K(log πε)−1/2 π−1/m2

ε ,
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where K depends only on m. So, for k < Λε, and for ε small enough,

|θk|p1|sk,εθk|≤ t
2

= |θk|pE (1|sk,εθk|≤ t
2
1|sk,εxk|≥t) + E (|θk|p1|sk,εθk|≤ t

2
1|sk,εxk|<t)

≤ |θk|p1|sk,εθk|≤ t
2
P
(
|sk,εxk − sk,εθk| ≥ t

2

)
+ E |θ̂b1

k (xk)− θk|p

≤ 1
2
|θk|p1|sk,εθk|≤ t

2
+ E |θ̂b1

k (xk)− θk|p.

Therefore, for ε small enough,

∑

k

|θk|p1|sk,εθk|≤ t
2
≤ 2E ‖θ̂b1 − θ‖p

lp
≤ 2Cp(ε

√
log πε)p−q.

Since ε → πε is continuous, it implies that there exists λ0 > 0 such that

sup
λ<λ0

λq−p
∑

k

|θk|p1|θk|≤σkλ < ∞.

Since θ ∈ B
1
r (1− q

p )
p,∞ ,

sup
λ≥λ0

λq−p
∑

k

|θk|p1|θk|≤σkλ ≤ λq−p
0

∑

k

|θk|p < ∞.

Using Proposition 4, we have proved that θ ∈ B
1
r (1− q

p )
p,∞ ∩ wlp,q(σ). ¤

Finally, from Theorems 2 and 3, we deduce easily:

Corollary 1. Assume that (H1) and (H2) hold. Let 0 < r < ∞ and 1 ≤ p < ∞
be two fixed real numbers. Suppose that ∀ ε > 0,

Λε = (ε
√

log πε)−r

such that (7) and (8) are satisfied. Let q be a fixed positive real number such that
q < p. Then,

MS
(
θ̂b1 , (ε

√
log πε)1−q/p, p

)
= wlp,q(σ) ∩B

1
r (1−q/p)
p,∞ .

We can conclude that the spaces B
1
r (1− q

p )
p,∞ ∩ wlp,q(σ) appear as maximal spaces

where θ̂b1 attains specific rates of convergence.

2.3. Maxisets for the posterior mean. As in Section 2.2, we prove
the following results:

Theorem 4. Assume that (H1) and (H2) hold. Let 0 < r < ∞ and 1 ≤ p < ∞
be two fixed real numbers. Suppose that ∀ ε > 0,

Λε = (ε
√

log πε)−r
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and there exist two positive constants T1 and T2 such that ∀ ε > 0,

ε−p π
− 1

4
ε (log πε)−

1
2− p

2 ≤ T1,(10)

π
− 1

32
ε (log πε)−

1
4− p

2

∑

k<Λε

σp
k ≤ T2.(11)

Let q be a fixed positive real number such that q < p. If θ ∈ B
1
r (1−q/p)
p,∞ ∩ wlp,q(σ),

then there exists a positive constant C such that

∀ ε > 0, Rp(θ̂b2) ≤ C(ε
√

log πε)1−q/p.

Proof. In the following, K will denote a constant independent of ε that may be
different at each line. Let t = t(πε) be the threshold introduced in Proposition 2.
For all k < Λε,

E |θ̂b2
k (xk)− θk|p = A + B + C,

with

A = E |θ̂b2
k (xk)− θk|p1|sk,εxk|≤ t

2
, B = E |θ̂b2

k (xk)− θk|p1 t
2 <|sk,εxk|≤2t,

and
C = E |θ̂b2

k (xk)− θk|p1|sk,εxk|>2t.

For the first term, we have, using Remark 3 and (9),

A = E |θ̂b2
k (xk)− θk|p1|sk,εxk|≤ t

2

≤ 2p−1E |θ̂b2
k (xk)|p1|sk,εxk|≤ t

2
+ 2p−1|θk|pE1|sk,εxk|≤ t

2

≤ Ks−p
k,επ

− p
2

ε (log πε)
p
2 + 2p−1|θk|p E [1|sk,εxk|≤ t

2
1|sk,εθk|>t]

+ 2p−1|θk|p E [1|sk,εxk|≤ t
2
1|sk,εθk|≤t]

≤ Kσp
kεpπ

− p
2

ε (log πε)
p
2 + 2p−1|θk|p P

(
|sk,εxk − sk,εθk| ≥ t

2

)

+ 2p−1|θk|p 1|sk,εθk|≤t

≤ Kσp
kεpπ

− p
2

ε (log πε)
p
2 + K|θk|pπ−

1
4

ε (log πε)−
1
2 + 2p−1|θk|p1|sk,εθk|≤t.

The second term can be split into B = B1 + B2 + B3, with

B1 = E |θ̂b2
k (xk)− θk|p1 t

2 <|sk,εxk|≤2t1|sk,εθk|>3t,

B2 = E |θ̂b2
k (xk)− θk|p1 t

2 <|sk,εxk|≤2t1 t
4 <|sk,εθk|≤3t,

B3 = E |θ̂b2
k (xk)− θk|p1 t

2 <|sk,εxk|≤2t1|sk,εθk|≤ t
4
.

Using Proposition 1 and (9),

B1 = E |θ̂b2
k (xk)− θk|p1 t

2 <|sk,εxk|≤2t1|sk,εθk|>3t
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≤ E |xk − θk|p1|xk−θk|≥|θk|1 t
2 <|sk,εxk|≤2t1|sk,εθk|>3t

+ |θk|pE1|xk−θk|<|θk|1 t
2 <|sk,εxk|≤2t1|sk,εθk|>3t

≤ (E |xk − θk|2p)
1
2P(|sk,εxk − sk,εθk| ≥ t)

1
2 + |θk|p P(|sk,εxk − sk,εθk| ≥ t)

≤ Kεpσp
kπ
− 1

2
ε (log πε)−

1
4 + K|θk|pπ−1

ε (log πε)−
1
2 ,

B2 = E |θ̂b2
k (xk)− θk|p1 t

2 <|sk,εxk|≤2t1 t
4 <|sk,εθk|≤3t

≤ E |xk − θk|p1|xk−θk|≥|θk|1 t
4 <|sk,εθk| + |θk|p E1|xk−θk|<|θk|1|sk,εθk|≤3t

≤ Kεpσp
k P

(
|sk,εxk − sk,εθk| ≥ t

4

) 1
2

+ |θk|p1|sk,εθk|≤3t

≤ Kεpσp
kπ
− 1

32
ε (log πε)−

1
4 + |θk|p1|sk,εθk|≤3t,

B3 = E |θ̂b2
k (xk)− θk|p1 t

2 <|sk,εxk|≤2t1|sk,εθk|≤ t
4

≤ E |xk − θk|p1|sk,εxk−sk,εθk|≥ t
4

≤ (E |xk − θk|2p)
1
2P

(
|sk,εxk − sk,εθk| ≥ t

4

) 1
2

≤ Kεpσp
kπ
− 1

32
ε (log πε)−

1
4 .

For the last term, we denote τ(k, ε) = sk,εxk − sk,εθ̂
b2
k (xk) and recall that ξk is the

noise. Using Proposition 3 and (9), we have

C = E |θ̂b2
k (xk)− θk|p1|sk,εxk|>2t

= E |θ̂b2
k (xk)− θk|p1|sk,εxk|>2t1|sk,εθk|≤t + E |θ̂b2

k (xk)− θk|p1|sk,εxk|>2t1|sk,εθk|>t

≤ s−p
k,εE (|ξk − τ(k, ε)|2p1|sk,εxk|>2t)

1
2P(|sk,εxk − sk,εθk| ≥ t)

1
2

+ s−p
k,εE |ξk − τ(k, ε)|p1|sk,εxk|>2t1|sk,εθk|>t

≤ Ks−p
k,εP(|sk,εxk − sk,εθk| ≥ t)

1
2 + Ks−p

k,ε1|sk,εθk|>t

≤ Kεpσp
k(π−

1
2

ε (log πε)−
1
4 + 1|sk,εθk|>t).

Finally, for ε small enough, and ∀ k < Λε,

E |θ̂b2
k (xk)− θk|p ≤ K

[
εpσp

kπ
− 1

32
ε (log πε)−

1
4 + εpσp

k1|θk|>εσk

√
2 log πε

+ |θk|p1|θk|≤4εσk

√
2 log πε

+ |θk|pπ−
1
4

ε (log πε)−
1
2

]
.

We conclude by using Proposition 4 and by observing that

E ‖θ̂b2 − θ‖p
lp

=
∑

k<Λε

E |θ̂b2
k (xk)− θk|p +

∑

k≥Λε

|θk|p ≤ K(ε
√

log πε)p−q,

since θ ∈ B
1
r (1− q

p )
p,∞ ∩ wlp,q(σ) and Λε = (ε

√
log πε)−r. ¤
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As in Section 2.2, we have a converse result, but unlike Theorem 3, we need to
control the size of the σk’s.

Theorem 5. Assume that (H1) and (H2) hold. Let 0 < r < ∞ and 1 ≤ p < ∞
be two fixed real numbers. Suppose that ∀ ε > 0,

Λε = (ε
√

log πε)−r.

Let q be a fixed positive real number such that q < p. If there exists a positive
constant C such that

∀ ε > 0, Rp(θ̂b2) ≤ C(ε
√

log πε)1−q/p,

then θ ∈ B
1
r (1− q

p )
p,∞ ∩wlp,q(σ) as soon as there exists a positive constant T such that

(12) ∀ ε > 0, π
− p

2
ε

∑

k<Λε

σp
k ≤ T.

Proof. To prove that θ ∈ B
1
r (1− q

p )
p,∞ , we refer the reader to the proof of Theorem 3.

Then, we want to show that

sup
λ>0

λq−p
∑

k

|θk|p1|θk|≤λσk
< ∞.

For this, we still use the threshold t = t(πε) of Proposition 2. Using (9), for any
k < Λε and for ε small enough,

|θk|p1|sk,εθk|≤ t
4

= |θk|pE (1|sk,εθk|≤ t
4
1|sk,εxk|≥ t

2
) + |θk|pE (1|sk,εθk|≤ t

4
1|sk,εxk|< t

2
)

≤ |θk|p1|sk,εθk|≤ t
4
P
(
|sk,εxk − sk,εθk| ≥ t

4

)

+ |θk|p1|sk,εθk|≤ t
4
P
(
|sk,εxk| < t

2

)

≤ 1
2
|θk|p1|sk,εθk|≤ t

4
+ |θk|p1|sk,εθk|≤ t

4
P
(
|sk,εxk| < t

2

)
.

By using Remark 3, we have for ε small enough,
∣∣∣θ̂b2

k

(
s−1

k,ε

t

2

)∣∣∣ ≤ π
− 1

2
ε s−1

k,ε

√
log πε.

Therefore,
∑

k

|θk|p1|sk,εθk|≤ t
4
≤ 2

∑

k

|θk|p1|sk,εθk|≤ t
4
P
(
|sk,εxk| < t

2

)

≤ 2p
∑

k

E
[
|θ̂b2

k (xk)− θk|p + |θ̂b2
k (xk)|p

]
1|sk,εxk|< t

2

≤ 2p
∑

k

E |θ̂b2
k (xk)− θk|p + 2p

∑

k<Λε

E |θ̂b2
k (xk)|p1|sk,εxk|< t

2

≤ 2p E ‖θ̂b2 − θ‖p
lp

+ 2p
∑

k<Λε

s−p
k,επ

− p
2

ε (log πε)
p
2

≤ 2p Cp(ε
√

log πε)p−q + 2pεpπ
− p

2
ε (log πε)

p
2

∑

k<Λε

σp
k.
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Consequently, under condition (12), for ε small enough,
∑

k

|θk|p1|θk|≤ 1
4 σkε

√
log πε

≤ 2p(Cp + T )(ε
√

log πε)p−q.

Using the same arguments as for the proof of Theorem 3, the last inequality implies
that θ ∈ wlp,q(σ). ¤

Finally, from Theorems 4 and 5, observing that condition (12) is less restrictive
than condition (11) since p/2 ≥ 1/2 > 1/32, we deduce easily:

Corollary 2. Assume that (H1) and (H2) hold. Let 0 < r < ∞ and 1 ≤ p < ∞
be two fixed real numbers. Suppose that ∀ ε > 0,

Λε = (ε
√

log πε)−r

such that (10) and (11) are satisfied. Let q be a fixed positive real number such that
q < p. Then,

MS
(
θ̂b2 , (ε

√
log πε)1−q/p, p

)
= wlp,q(σ) ∩B

1
r (1−q/p)
p,∞ .

Once more, we can conclude that the spaces B
1
r (1− q

p )
p,∞ ∩wlp,q(σ) appear as max-

imal spaces where θ̂b2 attains specific rates of convergence.

2.4. First conclusions. Before going further, let us compare the various
procedures involved in this paper. We recall that unlike θ̂b1

k (xk), θ̂b2
k (xk) does not

possess the advantage of being a thresholding rule (k < Λε) and this explains the
differences between the assumptions that are needed to determine the respective
maxisets associated with the Bayesian procedures θ̂b1 and θ̂b2 . For instance, this
explains why, unlike θ̂b1 , if θ̂b2 achieves the given rate of convergence, we need

a condition on the σk’s to prove that θ ∈ B
1
r (1− q

p )
p,∞ ∩ wlp,q(σ). Furthermore, to

obtain the upper bound for Rp(θ̂b2), we use a decomposition into eleven terms for
E |θ̂b2

k (xk) − θk|p. Since it is a thresholding rule, the corresponding decomposition
for θ̂b1

k is simpler. This explains why the assumptions of Theorem 4 are a bit
more restrictive than those of Theorem 2. Actually, to obtain the assumptions of
Theorem 4, we just have to replace πε with π

1/4
ε in the assumptions of Theorem 2.

But, since we consider a rate of the form ε
√

log πε without focusing on the optimal
constant, the Bayesian procedures achieve exactly the same performance from the
maxiset point of view. When πε is a power of ε, then, by using Theorem 1, we can
compare the Bayesian procedures θ̂b1 and θ̂b2 with the thresholding one. We can
conclude that each of them achieves the same performance as the thresholding one.
Finally, since linear estimates are outperformed by thresholding ones, they are also
outperformed by θ̂b1 and θ̂b2 .

Let us show now the importance of Assumption (H1). Section 7.2 of Johnstone
and Silverman [24] proves that if γ is a normal density, whatever the value of wk,ε,
the posterior median satisfies

|θ̂b1(xk)| ≤ (1− α)|xk|,
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for some α > 0 and the same inequality holds for the posterior mean. It yields for
θk > 0,

E |θ̂b1
k (xk)− θk|p ≥ 1

2
αpθp

k.

Moreover, when γ has tails equivalent to exp(−C|t|λ) for some λ ∈ (1, 2), Johnstone
and Silverman showed that for large θk,

|θ̂b1
k (xk)− θk| ≥ C|θk|λ−1.

Thus (H1) cannot be essentially relaxed without obtaining smaller maxisets.

2.5. Maxisets of Bayesian procedures for estimating functions
of Lp spaces. In this section, we estimate functions of Lp(D) =

{
f : ‖f‖Lp =

(
∫

D
|f(x)|pdx)1/p < ∞}

, where D = [0, 1]d or D = Rd. For this purpose, we exploit
a wavelet basis of L2(D) denoted B = {ψk, k ≥ 1}. More precisely, we assume that
(ψk)k≥1 is the wavelet-tensor product constructed on compactly supported wavelets
(see Meyer [31]). So, if 1 < p < ∞, Meyer [31] proved that B is an unconditional
basis of Lp(D), which means that:
• for any f ∈ Lp(D), there exists a unique sequence θ such that f =

∑
k θkψk,

• there exists an absolute constant K such that if ∀ k ≥ 1, |θk| ≤ |θ′k|, then

∥∥∥∥
∑

k

θkψk

∥∥∥∥
Lp

≤ K

∥∥∥∥
∑

k

θ′kψk

∥∥∥∥
Lp

.

Remark 4. The restriction 1 < p < ∞ is due to the fact that there is no
unconditional basis if p /∈ (1,∞).

Furthermore, we assume that {σkψk, k ≥ 1} satisfies the following inequality,
called a superconcentration inequality: for any 0 < r1 < ∞, there exists a constant
C(p, r1) such that for all F ⊂ {1, 2, . . . },

∥∥∥∥
[ ∑

k∈F

|σkψk|r1

] 1
r1

∥∥∥∥
Lp

≤ C(p, r1)
∥∥ sup

k∈F
|σkψk|

∥∥
Lp

.

Remark 5. Theorem 4.2 of Kerkyacharian and Picard [26] gives conditions on
the σk’s and on B to satisfy the above superconcentration inequality.

We consider the model (1), and the function f =
∑

k θkψk is estimated by
f̂ b1 =

∑
k θ̂b1

k (xk)ψk or f̂ b2 =
∑

k θ̂b2
k (xk)ψk. In this framework, we set:

Definition 3. For 1 < p < ∞ and any i ∈ {1, 2}, the maxiset of f̂ bi associated
with the rate ρε and the Lp-loss is

MS(f̂ bi , ρε, p) =
{

f =
∑

k

θkψk : sup
ε

[
(E ‖f̂ bi − f‖p

Lp
)

1
p ρ−1

ε

]
< ∞

}
.
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To study maxisets of f̂ b1 and f̂ b2 , we introduce for any η > 0 and any 0 < q < p:

Bη
p,∞(B) =

{
f =

∑

k

θkψk : sup
λ>0

λη
∥∥∥

∑

k≥λ

θkψk

∥∥∥
Lp

< ∞
}

,

wlp,q(σ)(B) =
{

f =
∑

k

θkψk : sup
λ>0

λq
∑

k

1|θk|>λσk
σp

k ‖ψk‖p
Lp

< ∞
}

.

If B is a standard wavelet basis regular enough, the space Bη
p,∞(B) can be identified

with a real Besov space. See Meyer [31] for further details.

Theorem 6. Assume that (H1) and (H2) hold. Let 0 < r < ∞ be a fixed real
number. Suppose that

∀ ε > 0, Λε =
(
ε
√

log πε

)−r
,

and there exist two positive constants T1 and T2 such that for any ε > 0,

ε−p
[
π−1

ε (log πε)−
1
2
] 1

2 min(p;2)(log πε)−
p
2 ≤ T1

and
π
− 1

8
ε (log πε)−

1
4− p

2

∑

k<Λε

σp
k‖ψk‖p

Lp
≤ T2.

Let q be a fixed positive real number such that q < p. Then, under the model (1),

MS
(
f̂ b1 , (ε

√
log πε)1−q/p, p

)
= wlp,q(σ)(B) ∩B

1
r (1−q/p)
p,∞ (B).

The analogous result for f̂ b2 is obtained if we assume that for any ε > 0,

ε−p
[
π
− 1

4
ε (log πε)−

1
2
] 1

2 min(p;2)(log πε)−
p
2 ≤ T3,

and
π
− 1

32
ε (log πε)−

1
4− p

2

∑

k<Λε

σp
k‖ψk‖p

Lp
≤ T4,

where T3 and T4 are two positive constants.

Once more, when πε is a power of ε (i.e., for the rate ε
√

log(1/ε)), by using
Theorems 5.1 and 5.2 of Kerkyacharian and Picard [26] we can conclude that each
of the Bayesian procedures achieves the same performance as the thresholding one.

Proof. Again, we only give the proof for the procedure associated with the mean.
Recall that B is an unconditional basis of Lp(D) if and only if there exists M > 0
such that for any set F ⊂ {1, 2, . . . } and any choice of the coefficients ck’s

(13) M−1

∥∥∥∥
∑

k∈F

ckψk

∥∥∥∥
Lp

≤
∥∥∥∥
( ∑

k∈F

|ckψk|2
) 1

2
∥∥∥∥

Lp

≤ M

∥∥∥∥
∑

k∈F

ckψk

∥∥∥∥
Lp

.
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Furthermore, since {σkψk, k ≥ 1} satisfies a superconcentration inequality, there
exist two positive constants cp and Cp such that for any F ⊂ {1, 2, . . . }, we have:

(14) cp

∫ ∑

k∈F

|σkψk|p ≤
∫ ( ∑

k∈F

|σkψk|2
) p

2

≤ Cp

∫ ∑

k∈F

|σkψk|p.

In the following, K will denote a constant independent of ε that may be different
at each line. We use the threshold t = t(πε) introduced in Proposition 2 and the

results of Proposition 1. Let us assume that f ∈ wlp,q(σ)(B)∩B
1
r (1−q/p)
p,∞ (B). Then,

E ‖∑
k(θ̂b2

k − θk)ψk‖p
Lp

is bounded by K
∑11

i=1 Ai, with the Ai’s defined as follows:

A1 =
∥∥∥

∑

k≥Λε

θkψk

∥∥∥
p

Lp

≤ K
(
ε
√

log πε

)(p−q)
,

since f ∈ B
1
r (1−q/p)
p,∞ (B). Next,

A2 = E
∥∥∥

∑

k<Λε

θkψk1|sk,εxk|≤ t
2
1|sk,εθk|>t

∥∥∥
p

Lp

≤ KE
∫ ( ∑

k<Λε

θ2
kψ2

k1|sk,εxk−sk,εθk|≥ t
2

) p
2
,

by using (13).
If p ≤ 2, by using (9), the Jensen inequality, and (13),

A2 ≤ K

∫ ( ∑

k<Λε

θ2
kψ2

kP
(|sk,εxk − sk,εθk| ≥ t/2

)) p
2

≤ K
(
π−1/4

ε (log πε)−
1
2
) p

2

∥∥∥
∑

k<Λε

θkψk

∥∥∥
p

Lp

.

If p ≥ 2, by using (9), the generalized Minkowski inequality, and (13)

A2 ≤ K

∫ ( ∑

k<Λε

θ2
kψ2

kP
(|sk,εxk − sk,εθk| ≥ t/2

) 2
p

) p
2

≤ Kπ−1/4
ε (log πε)−

1
2

∥∥∥
∑

k<Λε

θkψk

∥∥∥
p

Lp

and

A3 = E
∥∥∥

∑

k<Λε

θkψk1|sk,εxk|≤ t
2
1|sk,εθk|≤t

∥∥∥
p

Lp

≤ K

∫ ( ∑

k<Λε

θ2
kψ2

k1|sk,εθk|≤t

) p
2
,

by using (13). Further,

A4 = E
∥∥∥

∑

k<Λε

θ̂b2
k ψk1|sk,εxk|≤ t

2

∥∥∥
p

Lp

≤ KE
∫ ( ∑

k<Λε

(θ̂b2
k )21|sk,εxk|≤ t

2
ψ2

k

) p
2

≤ Kεpπ−p/2
ε (log πε)

p
2

∫ ( ∑

k<Λε

σ2
kψ2

k

) p
2 ≤ Kεpπ−p/2

ε (log πε)
p
2

∑

k<Λε

σp
k‖ψk‖p

Lp
,
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by using (13), Remark 3, and (14). Using (13), we have:

A5 = E
∥∥∥

∑

k<Λε

(θ̂b2
k − θk)ψk1 t

2 <|sk,εxk|≤2t1 t
4 <|sk,εθk|≤3t1|xk−θk|≥|θk|

∥∥∥
p

Lp

≤ KE
∫ ( ∑

k<Λε

(xk − θk)2ψ2
k1|sk,εxk−sk,εθk|≥ t

4

) p
2
.

If p ≤ 2,

A5 ≤ K

∫ ∑

k<Λε

|ψk|pE
(|xk − θk|p1|sk,εxk−sk,εθk|≥ t

4

)

≤ Kεpπ
− 1

32
ε (log πε)−

1
4

∫ ∑

k<Λε

|ψk|pσp
k,

by using (9) and the Cauchy–Schwarz inequality.
If p ≥ 2, by using (9), the generalized Minkowski inequality, and (14),

A5 ≤ K

∫ ( ∑

k<Λε

ψ2
k

(
E |xk − θk|p1|sk,εxk−sk,εθk|≥ t

4

) 2
p

) p
2

≤ Kεpπ−132
ε (log πε)−

1
4

∑

k<Λε

∫
|ψk|pσp

k.

Now we have

A6 = E
∥∥∥

∑

k<Λε

(θ̂b2
k − θk)ψk1 t

2 <|sk,εxk|≤2t1 t
4 <|sk,εθk|≤3t1|xk−θk|<|θk|

∥∥∥
p

Lp

≤ K

∫ ( ∑

k<Λε

θ2
kψ2

k1|sk,εθk|≤3t

) p
2
,

by using (13). By using (13), the following terms:

A7 = E
∥∥∥

∑

k<Λε

(θ̂b2
k − θk)ψk1 t

2 <|sk,εxk|≤2t1|sk,εθk|>3t1|xk−θk|≥|θk|
∥∥∥

p

Lp

≤ KE
∫ ( ∑

k<Λε

(xk − θk)2ψ2
k1|sk,εxk−sk,εθk|≥t

) p
2
,

A8 = E
∥∥∥

∑

k<Λε

(θ̂b2
k − θk)ψk1 t

2 <|sk,εxk|≤2t1|sk,εθk|>3t1|xk−θk|<|θk|
∥∥∥

p

Lp

≤ KE
∫ ( ∑

k<Λε

θ2
kψ2

k1|sk,εxk−sk,εθk|≥t

) p
2
,

A9 = E
∥∥∥

∑

k<Λε

(θ̂b2
k − θk)ψk1 t

2 <|sk,εxk|≤2t1|sk,εθk|≤ t
4

∥∥∥
p

Lp

≤ KE
∫ ( ∑

k<Λε

(xk − θk)2ψ2
k1|sk,εxk−sk,εθk|≥ t

4

) p
2



Maxisets for Bayes Rules 21

are bounded, up to a constant, by the upper bounds of A2 or A5. Next,

A10 = E
∥∥∥

∑

k<Λε

(θ̂b2
k − θk)ψk1|sk,εxk|>2t1|sk,εθk|≤t

∥∥∥
p

Lp

≤ KE
∫ ( ∑

k<Λε

(θ̂b2
k − θk)2ψ2

k1|sk,εxk|>2t1|sk,εxk−sk,εθk|>t

) p
2
,

by using (13).
If p ≤ 2, by using (9), the Cauchy–Schwarz inequality, and Proposition 3,

A10 ≤ K

∫ ∑

k<Λε

|ψk|pE |θ̂b2
k − θk|p1|sk,εxk|>2t1|sk,εxk−sk,εθk|>t

≤ K

∫ ∑

k<Λε

|ψk|pεpσp
kP

(|sk,εxk − sk,εθk| > t
) 1

2

≤ Kεpπ−1/2
ε (log πε)−

1
4

∑

k<Λε

σp
k

∫
|ψk|p.

If p ≥ 2, by using the generalized Minkowski inequality, the Cauchy–Schwarz in-
equality, (9), (14), and Proposition 3,

A10 ≤ K

∫ ( ∑

k<Λε

ψ2
k

(
E |θ̂b2

k − θk|p1|sk,εxk|>2t1|sk,εxk−sk,εθk|>t

) 2
p

) p
2

≤ K

∫ ( ∑

k<Λε

ψ2
kσ2

kε2P(|sk,εxk − sk,εθk| > t)
1
p

) p
2

≤ Kεpπ−1/2
ε (log πε)−1/4

∑

k<Λε

∫
|ψk|pσp

k.

Finally,

A11 = E
∥∥∥

∑

k<Λε

(θ̂b2
k − θk)ψk1|sk,εxk|>2t1|sk,εθk|>t

∥∥∥
p

Lp

≤ KE
∫ ( ∑

k<Λε

(θ̂b2
k − θk)2ψ2

k1|sk,εxk|>2t1|sk,εθk|>t

) p
2
.

If p ≤ 2, by using Proposition 3,

A11 ≤ K

∫ ∑

k<Λε

|ψk|pE |θ̂b2
k − θk|p1|sk,εxk|>2t1|sk,εθk|>t

≤ Kεp
∑

k<Λε

∫
|ψk|pσp

k1|sk,εθk|>t.
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If p ≥ 2, by using (14) and Proposition 3,

A11 ≤ K

∫ ( ∑

k<Λε

ψ2
k1|sk,εθk|>t

(
E |θ̂b2

k − θk|p1|sk,εxk|>2t

) 2
p

) p
2

≤ Kεp

∫ ( ∑

k<Λε

ψ2
kσ2

k1|sk,εθk|>t

) p
2 ≤ Kεp

∑

k<Λε

∫
|ψk|pσp

k1|sk,εθk|>t.

Thus we conclude that there exists a positive constant C such that

∀ ε > 0, E
∥∥∥

∑

k

(θ̂b2
k (xk)− θk)ψk

∥∥∥
p

Lp

≤ Cp
(
ε
√

log πε

)(p−q)
,

by using the following result proved by Kerkyacharian and Picard [26] (upper bound
of the term B2, p. 311): if f =

∑
k θkψk ∈ wlp,q(σ)(B), then ∀ λ > 0,

∫ ( ∑

k

θ2
kψ2

k1|θk|≤σkλ

) p
2 ≤ Kλp−q.

Now, let us assume that there exists a positive constant C such that

∀ ε > 0, E
∥∥∥

∑

k

(θ̂b2
k (xk)− θk)ψk

∥∥∥
p

Lp

≤ Cp
(
ε
√

log πε

)(p−q)
.

To bound the following term, we just use (13):

A12 =
∥∥∥

∑

k≥Λε

θkψk

∥∥∥
p

Lp

= E
∥∥∥

∑

k≥Λε

(θ̂b2
k − θk)ψk

∥∥∥
p

Lp

≤ KE
∫ ( ∑

k

(θ̂b2
k − θk)2ψ2

k

) p
2

≤ KE
∥∥∥

∑

k

(θ̂b2
k − θk)ψk

∥∥∥
p

Lp

≤ K
(
ε
√

log πε

)p−q
,

which proves that f =
∑

k θkψk ∈ B
1
r (1−q/p)
p,∞ (B). Now, using (13),

∥∥∥
∑

k

θkψk1|sk,εθk|≤ t
4

∥∥∥
p

Lp

≤ K(A12 + A13),

with

A13 =
∥∥∥

∑

k<Λε

θkψk1|sk,εθk|≤ t
4

∥∥∥
p

Lp

≤ 2p−1E
∥∥∥

∑

k<Λε

θkψk1|sk,εθk|≤ t
4
1|sk,εxk|> t

2

∥∥∥
p

Lp

+ 2p−1A14

≤ 1
2

∥∥∥
∑

k<Λε

θkψk1|sk,εθk|≤ t
4

∥∥∥
p

Lp

+ 2p−1A14 ≤ 1
2
A13 + 2p−1A14 ≤ 2pA14,
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for ε small enough (see the upper bound of A2), where

A14 = E
∥∥∥

∑

k<Λε

θkψk1|sk,εθk|≤ t
4
1|sk,εxk|≤ t

2

∥∥∥
p

Lp

.

But, using (13), we obtain

A14 ≤ KE
∥∥∥

∑

k

(θ̂b2
k − θk)ψk

∥∥∥
p

Lp

+ KE
∥∥∥

∑

k<Λε

θ̂b2
k ψk1|sk,εxk|≤ t

2

∥∥∥
p

Lp

≤ KE
∥∥∥

∑

k

(θ̂b2
k − θk)ψk

∥∥∥
p

Lp

+ KA4 ≤ K
(
ε
√

log πε

)(p−q)
,

which implies that
∥∥∥

∑

k

θkψk1|sk,εθk|≤ t
4

∥∥∥
p

Lp

≤ K
(
ε
√

log πε

)(p−q)
.

Now, we use Lemma 5.1 of Kerkyacharian and Picard [26], which ends the proof of
the theorem. ¤

3. Relationships between (M1) and wlp,q(σ) Spaces
In this paper, our aim is to estimate sparse sequences, and we model sparsity

within a Bayes approach, and more precisely, by using the model (M1). We noticed
that under this model, the maxisets for the previous Bayes rules are defined by using
wlp,q(σ) spaces. To some extent, this result is not surprising, since we recalled in the
Introduction that these spaces are weighted versions of weak lq spaces that naturally
measure sparsity. Then, the model (M1) and wlp,q(σ) spaces are connected via a
maxiset approach. So, it is natural to wonder whether we can establish other more
natural connections between our Bayesian approach to model sparsity and wlp,q(σ)
spaces. The following result gives a positive answer.

Theorem 7. Suppose that we are given 1 ≤ p < ∞ and 0 < q < p. We
again consider the model (M1) with ε = 1. Denote wk = wk,1 and ∀ λ ≥ 0,
F̃ (λ) = 2

∫ +∞
λ

γ(x) dx. If there exists a constant C such that

sup
λ>0

λq
∑

k

σp
k1|θk|>σkλ ≤ Cq a.s.,

then
sup
λ>0

λqF̃ (λ)
∑

k

wkσp
k ≤ Cq.

Conversely, if there exists a constant C such that

(15) sup
λ>0

λqF̃ (λ)
∑

k

wkσp
k ≤ Cq,

then
sup
λ>0

λq
∑

k

σp
k1|θk|>σkλ < ∞ a.s.
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Proof. If
sup
λ>0

λq
∑

k

σp
k1|θk|>σkλ ≤ Cq a.s.,

we have:

sup
λ>0

λqF̃ (λ)
∑

k

wkσp
k = sup

λ>0
E

(
λq

∑

k

σp
k1|θk|>σkλ

)

≤ E
(

sup
λ>0

λq
∑

k

σp
k1|θk|>σkλ

)
≤ Cq.

Conversely, suppose that (15) is true. To establish the required inequality, we ex-
ploit Theorem 0.3 of Marcus and Zinn [30]. Let (rk)k≥1 be a Rademacher sequence
(i.e., a sequence of i.i.d. random variables taking values +1 and −1 with probability
1/2 each) independent of (θk)k≥1 and let Sn be the partial sum of the symmetrized
random variables (σp−q

k |θk|q)k≥1:

Sn =
n∑

k=1

Yk,

where
Yk = rk σp−q

k |θk|q.
We have

E (Yk1|Yk|≤1) = 0,

P(|Yk| > 1) = P
(∣∣∣∣

θk

σk

∣∣∣∣
q

> σ−p
k

)
= wkF̃ (σ−p/q

k ) ≤ Cq
( ∑

k

wkσp
k

)−1

wkσp
k,

var(Yk1|Yk|≤1) = E (Y 2
k 1|Yk|≤1) = σ2p

k E
[
(σ−1

k |θk|)2q1
σ−1

k
|θk|≤σ

−p/q

k

]

= 2wkσ2p
k

∫ σ
−p/q

k

0

x2qγ(x) dx ≤ 2wkσ2p
k

∫ σ
−p/q

k

0

qx2q−1F̃ (x) dx

≤ 2Cq
( ∑

k

wkσp
k

)−1

wkσ2p
k

∫ σ
−p/q

k

0

qxq−1 dx

≤ 2Cq
( ∑

k

wkσp
k

)−1

wkσp
k.

Using the three series theorem (see Theorem 22.8 of Billingsley [6]), Sn converges
with probability 1 as n → +∞. Therefore, if µ is a fixed positive real number, we
have for any increasing sequence of positive real numbers (bn)n with limn→+∞ bn =
+∞,

lim sup
n→+∞

1
bn
|Sn| ≤ µ a.s.
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Obviously,

lim sup
n→+∞

sup
1≤j≤n

sup
λ>0

1
bn

λq
∣∣∣

j∑

k=1

σp
kE (1|θk|>σkλ)

∣∣∣ ≤ µ a.s.

Then, we can apply Theorem 0.3 of Marcus and Zinn [30], which shows that

lim sup
n→+∞

1
bn

sup
λ>0

λq
∣∣∣

n∑

k=1

σp
k

(
1|θk|>σkλ − P(|θk| > σkλ)

)∣∣∣ ≤ 1160 µ.

Since

lim sup
n→+∞

1
bn

sup
λ>0

λq
n∑

k=1

σp
kP(|θk| > σkλ) = 0,

it yields

lim sup
n→+∞

1
bn

sup
λ>0

λq
n∑

k=1

σp
k1|θk|>σkλ ≤ 1160 µ.

With µ → 0, we have proved that for any increasing sequence of positive real
numbers (bn)n with limn→+∞ bn = +∞,

lim
n→+∞

1
bn

sup
λ>0

λq
n∑

k=1

σp
k1|θk|>σkλ = 0 a.s.

If the random sequence An = supλ>0 λq
∑n

k=1 σp
k1|θk|>σkλ were not bounded, we

could construct an increasing function Φ, with limn→+∞ Φ(n) = +∞, such that
AΦ(n) > n. By considering an increasing sequence (bn)n, with bΦ(n) = n, we obtain
a contradiction. So, there exists a finite random variable Y such that

∀ n ≥ 1, An ≤ Y, a.s.

It implies that
sup
λ>0

λq
∑

k

σp
k1|θk|>σkλ < ∞ a.s.

The result is proved. ¤
So, to ensure that a sequence coming from the Bayesian model (M1) belongs to

wlp,q(σ) almost surely, we should not consider densities γ having tails heavier than
those of Pareto(q)-distributions. In the wavelet framework, with special values for
the σk’s, Rivoirard [33] has already noted the strong connections between Pareto(q)-
distributions and wlp,q(σ) spaces, since in Section 2.2 of that paper, least favorable
priors for these spaces are presented and it is explained how these priors are built
from Pareto(q)-variables.

Concluding remarks. In this paper, we discussed the modelling of sparsity.
The form of our Bayesian model was the following:

θk ∼ wk,εγk,ε(θk) + (1− wk,ε)δ0(θk), k ≥ 1.
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Provided the tails of γk,ε are exponential or heavier, the maxisets of the Bayes rules
are wlp,q(σ) spaces that naturally measure the sparsity of a signal. So, our choice
for the Bayesian modelling seems appropriate. It is all the more appropriate since
this model enables us to build typical realizations of wlp,q(σ) spaces.

The main goal of this paper was to compare in the maxiset approach the per-
formances of classical Bayes estimators: the posterior median and mean of our
Bayesian model. We proved that for a large range of loss functions, the maxisets
of these estimators coincide with the maxisets associated with thresholding esti-
mators. These results have been established for the heteroscedastic white noise
model (1), where the ξk’s are assumed to be Gaussian and independent. It would
be interesting to study the maxisets of the Bayes rules without these assumptions.
It would also be interesting to try to find Bayes estimators that outperform θ̂b1

and θ̂b2 under the maxiset approach, if possible. Note that if the maxiset theory
seems to provide advantages, the problem of optimality in this approach remains
an entirely open issue. Can we introduce a meaningful notion of optimality? If yes,
what are optimal estimators? Other natural questions arise: what do the maxisets
become when the σk’s are unknown and they are, for instance, estimated by using
a Bayes approach? Do we obtain larger maxisets when the θk’s are gathered in
non-overlapping blocks, each of which is provided with a prior?

Since the outcome of the maxiset approach is a functional space (or a sequence
space), we have not focused on the Bayes risks of the estimators. But, inspired
by the maxiset point of view used in this paper, we could investigate the maximal
set of prior distributions such that the associated Bayes risk of a given estimator
achieves a prescribed rate. This provides an interesting topic for further research.

4. Appendix
In this section, Ox(1) will denote any function of x that is bounded as x → +∞.

We write oπε(1) for any function that is bounded by a function depending only on
πε and that tends to 0 as πε tends to +∞. Furthermore, φ denotes the density of a
(0, 1) Gaussian variable and γ is the density introduced in (M1). We shall exploit
the following lemma:

Lemma 1. For any x > 0 and 0 < τ < x, define:

Kτ (x) =
∫ x

τ

exp
(
− 1

2
v2

)
γ(x− v) dv

and

I(x) =
∫ +∞

0

exp
(
− 1

2
v2 + xv

)
γ(v) dv.

Under (H1), there exist four positive constants M2, M3, C1, and C2 such that

M2

∫ x

τ

exp
(
− 1

2
v2 −Mv

)
dv ≤ Kτ (x)γ(x)−1 ≤ M3

∫ +∞

τ

exp
(
− 1

2
v2 + Mv

)
dv,

and
C1 ≤ lim inf

x→+∞
I(x)γ(x)−1φ(x) ≤ lim sup

x→+∞
I(x)γ(x)−1φ(x) ≤ C2 < ∞.
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Proof. Under (H1), since γ is positive, absolutely continuous, symmetric, and
unimodal, it is easy to show that there exist two constants M2 and M3 such that,

∀ (a, b) ∈ R2, M2 exp(−M |a− b|) ≤ γ(a)γ(b)−1 ≤ M3 exp(M |a− b|).

We immediately get the first inequality. Now, let us define ∀ x > 0,

J(x) =
∫ +∞

0

exp
(
− 1

2
v2

)
γ(x + v) dv.

As before,

M2

∫ +∞

0

exp
(
− 1

2
v2 −Mv

)
dv ≤ J(x)γ(x)−1 ≤ M3

∫ +∞

0

exp
(
− 1

2
v2 + Mv

)
dv.

By simple computations, we have:

I(x) = exp
(1

2
x2

)(
J(x) + K0(x)

)
,

which implies the result. ¤
Now, let us give the proof of Propositions 2 and 3.

Proof of Proposition 2. Without loss of generality, we can assume that xk > 0.
Then, using Proposition 1,

θ̂b1
k (xk) = 0 ⇐⇒ P(θk > 0 | xk) <

1
2

⇐⇒ 2wε

∫ +∞

0

sk,εφ
(
sk,ε(xk − θ)

)
sk,εγ(sk,εθ) dθ

< wε

∫ +∞

−∞
sk,εφ

(
sk,ε(xk − θ)

)
sk,εγ(sk,εθ) dθ + (1− wε)sk,εφ(sk,εxk)

⇐⇒
∫ +∞

0

sk,εφ
(
sk,ε(xk − θ)

)
sk,εγ(sk,εθ) dθ

−
∫ 0

−∞
sk,εφ

(
sk,ε(xk − θ)

)
sk,εγ(sk,εθ) dθ < πεsk,εφ(sk,εxk).

Then θ̂b1
k (xk) = 0 ⇐⇒ sk,εxk ≤ t, with t such that

∫ +∞

0

exp
(
− 1

2
u2

)
γ(u)

(
exp(tu)− exp(−tu)

)
du = πε.

We have that t is a function depending only on πε and as πε −→ +∞,

∫ +∞

0

exp
(
− 1

2
u2

)
γ(u) exp(tu) du = πε(1 + oπε(1)).
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Using Lemma 1, we have, for πε large enough,
√

2 log(πε) ≤ t(πε) ≤
√

2 log(πε)(1 + oπε(1)),

and the first statement of Proposition 2 is proved.
For the second statement, we assume that sk,εxk > 2t, which implies that

θ̂b1
k (xk) > 0. Using (13), we have:

P
(
θk ≤ θ̂b1

k (xk) | xk

)
=

1
2
⇐⇒ 2wε

∫ θ̂
b1
k

−∞
φk(xk − θ)γk,ε(θ) dθ + (1− wε)φk(xk)

= wε

∫ +∞

−∞
φk(xk − θ)γk,ε(θ) dθ

⇐⇒ 2
∫ sk,εθ̂

b1
k

−∞
exp

(
sk,εxku− 1

2
u2

)
γ(u) du + πε

=
∫ +∞

−∞
exp

(
sk,εxku− 1

2
u2

)
γ(u) du.

Using Lemma 1, since sk,εxk ≥ 2t, we prove easily that

πεI(sk,εxk)−1 = oπε(1).

Therefore,

2
∫ sk,εθ̂

b1
k

−∞
exp

(
sk,εxku− 1

2
u2

)
γ(u) du = I(sk,εxk)(1 + oπε(1)).

By using again Lemma 1, it implies that there exists a positive constant V such
that for πε large enough,

∫ sk,εθ̂
b1
k
−sk,εxk

−∞
exp

(
− 1

2
v2

)
γ(v + sk,εxk) dv · γ(sk,εxk)−1 ≥ V

⇐⇒ K
sk,εxk−sk,εθ̂

b1
k

(sk,εxk)γ(sk,εxk)−1 ≥ V,

in notations of Lemma 1. Finally, there exists a positive constant C such that

lim sup
πε→+∞

|sk,εxk − sk,εθ̂
b1
k (xk)|1|sk,εxk|>2t(πε) ≤ C. ¤

Proof of Proposition 3. Without loss of generality, we can assume that xk > 0.
We have:

θ̂b2
k (xk) =

∫ +∞

−∞
θγφ

k,ε(θ | xk) dθ

=

∫ +∞
−∞ sk,εθφ(sk,ε(xk − θ))sk,εγ(sk,εθ) dθ

∫ +∞
−∞ sk,εφ(sk,ε(xk − θ))sk,εγ(sk,εθ) dθ + πεsk,εφ(sk,εxk)

=
1

sk,ε

∫ +∞
−∞ u exp

(− 1
2u2 + sk,εxku

)
γ(u) du

∫ +∞
−∞ exp

(− 1
2u2 + sk,εxku

)
γ(u) du + πε

.
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Set

I1(x) =
∫ +∞

−∞
u exp

(
− 1

2
u2 + xu

)
γ(u) du

and

I2(x) =
∫ +∞

−∞
exp

(
− 1

2
u2 + xu

)
γ(u) du,

which implies that

(16) θ̂b2
k (xk) =

1
sk,ε

I1(sk,εxk)
I2(sk,εxk) + πε

.

On the one hand, as x → +∞, using Lemma 1,

(17) C1 ≤ lim inf
x→+∞

I2(x)γ(x)−1φ(x) ≤ lim sup
x→+∞

I2(x)γ(x)−1φ(x) ≤ C2.

On the other hand, Lemma 1 yields,

exp
(
− 1

2
x2

)
I1(x) =

∫ +∞

−∞
u exp

(
− 1

2
(x− u)2

)
γ(u) du

=
∫ +∞

−∞
(v + x) exp

(
− 1

2
v2

)
γ(v + x) dv

= x exp
(
− 1

2
x2

)
I2(x) +

∫ +∞

−∞
v exp

(
− 1

2
v2

)
γ(v + x) dv.

But it is easy to prove that
∫ +∞

0

v exp
(
− 1

2
v2

)
γ(v + x) dv = γ(x)Ox(1),

∫ 0

−x

v exp
(
− 1

2
v2

)
γ(v + x) dv = γ(x)Ox(1),

and obviously,

lim
x→∞

γ(x)−1

∫ −x

−∞
v exp

(
− 1

2
v2

)
γ(v + x) dv = 0.

Therefore,

(18) exp
(
− 1

2
x2

)
I1(x) = x exp

(
− 1

2
x2

)
I2(x) + γ(x)Ox(1).

Using (17), we obtain equation (6). Now, let us prove the second statement of
Proposition 3. Suppose that sk,εxk ≥ 2t(πε). Using (16) and (18),

0 ≤ sk,εxk − sk,εθ̂
b2
k (xk) = sk,εxk − I1(sk,εxk)

I2(sk,εxk) + πε

=
πεsk,εxk + I2(sk,εxk)T (sk,εxk)

I2(sk,εxk) + πε
,
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where T is a bounded function. But we suppose that sk,εxk ≥ 2t(πε). So, (17)
implies that for πε large enough

I2(sk,εxk) ≥ C1γ(sk,εxk)φ(sk,εxk)−1.

Therefore, by using again sk,εxk ≥ 2t(πε),

lim sup
πε→∞

πεsk,εxk

I2(sk,εxk)
< ∞,

which ends the proof of the proposition. ¤
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