Supplemental material to 'Statistical deconvolution of the free Fokker-Planck equation at fixed time".

This is the supplement to the article Statistical deconvolution of the free Fokker-Planck equation at fixed time. It gathers the appendices referenced in the main paper namely: Appendix A (Proof of Equation (1.7)), Appendix B (Proof of Theorem 2.6 and Theorem-Definition 2.8), Appendix C (Proof of Lemma 3.4), Appendix D (Proof of Lemma 3.5) and Appendix E (Proof of Corollary 4.3).

Appendix A: Proof of (1.7)

As mentioned in the introduction, a full proof of (1.7) can be found in [1, Theorem 4.3.2]. The proof therein is involved and proceeds backward, showing that the solutions of (1.7) are the eigenvalues of an Hermitian Brownian motion. In this appendix, we use a more direct approach (following for example $[19,34]$) that leads to a non rigorous but more intuitive sketch of proof. Recall that $X^{n}(t)=$ $X^{n}(0)+H^{n}(t)$ where $H^{n}(t)$ is the Hermitian Brownian motion of Definition 2.1. For $k \leq \ell$ and $t>0$, we denote by $\mathbf{x}_{k \ell}(t):=\operatorname{Re} X_{k, \ell}^{n}(t)$ and $\mathbf{y}_{k \ell}(t):=\operatorname{Im} X_{k, \ell}^{n}(t)$ respectively the real and imaginary parts of the entries of the matrix $X^{n}(t)$. The processes $\mathbf{x}_{k \ell}$ and $\mathbf{y}_{k \ell}$ are semi-martingales and we will assume that for any $m \in\{1, \ldots, n\}$, the m-th smallest eigenvalue $\lambda_{m}^{n}(t)$ of $X^{n}(t)$ is a smooth function of $\left(\mathbf{x}_{k \ell}, \mathbf{y}_{k \ell}\right)_{k \leq \ell}$ so that we can apply Itô's formula ${ }^{1}$:

$$
\begin{align*}
\mathrm{d} \lambda_{m}:= & \sum_{k<\ell} \frac{\partial \lambda_{m}}{\partial x_{k \ell}} \mathrm{~d} \mathbf{x}_{k \ell}+\sum_{k<\ell} \frac{\partial \lambda_{m}}{\partial y_{k \ell}} \mathrm{~d} \mathbf{y}_{k \ell}+\sum_{k=1}^{n} \frac{\partial \lambda_{m}}{\partial x_{k k}} \mathrm{~d} \mathbf{x}_{k k}+\frac{1}{4 n} \sum_{k<\ell}\left(\frac{\partial^{2} \lambda_{m}}{\partial x_{k \ell}^{2}}+\frac{\partial^{2} \lambda_{m}}{\partial y_{k \ell}^{2}}\right) \mathrm{d} t \\
& +\frac{1}{2 n} \sum_{k=1}^{n} \frac{\partial^{2} \lambda_{m}}{\partial x_{k k}^{2}} \mathrm{~d} t \tag{A.1}
\end{align*}
$$

where we have used that, in the range of indices we are interested in, $\left\langle\mathbf{x}_{i j}, \mathbf{y}_{k \ell}\right\rangle=0$; if $i \neq j$, $\mathrm{d}\left\langle\mathbf{x}_{i j}, \mathbf{x}_{k l}\right\rangle=\mathrm{d}\left\langle\mathbf{y}_{i j}, \mathbf{y}_{k \ell}\right\rangle=\frac{\mathrm{d} t}{2 n} \delta_{i k} \delta_{j \ell}$, and $\mathrm{d}\left\langle\mathbf{x}_{i i}, \mathbf{x}_{i i}\right\rangle=\frac{\mathrm{d} t}{n}$. We now have to compute the derivatives. It relies on the so-called Hadamard variation formulae, well-known in perturbation theory.

Lemma A.1. Let H be an Hermitian matrix, with entries $\left(h_{k \ell}=x_{k \ell}+\mathrm{i} y_{k \ell}\right)_{1 \leq k<\ell \leq n}$. We assume that H has distinct (real) eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ and corresponding eigenvectors u_{1}, \ldots, u_{n}. Then, denoting by $u_{k m}$ the k-th component of the vector u_{m}, we have for all $m \in\{1, \cdots, n\}$:

$$
\begin{aligned}
\frac{\partial \lambda_{m}}{\partial x_{k \ell}} & =\bar{u}_{k m} u_{\ell m}+\bar{u}_{\ell m} u_{k m}, \text { for } k<\ell \\
\frac{\partial \lambda_{m}}{\partial y_{k \ell}} & =\mathrm{i}\left(\bar{u}_{k m} u_{\ell m}-\bar{u}_{\ell m} u_{k m}\right), \text { for } k<\ell \\
\frac{\partial \lambda_{m}}{\partial x_{k k}} & =\left|u_{k m}\right|^{2} \\
\frac{\partial^{2} \lambda_{m}}{\partial x_{k \ell}^{2}} & =2 \sum_{m^{\prime} \neq m} \frac{1}{\lambda_{m}-\lambda_{m^{\prime}}}\left|\bar{u}_{k m^{\prime}} u_{\ell m}+\bar{u}_{\ell m^{\prime}} u_{k m}\right|^{2}, \text { for } k<\ell
\end{aligned}
$$

[^0]\[

$$
\begin{aligned}
& \frac{\partial^{2} \lambda_{m}}{\partial y_{k \ell}^{2}}=2 \sum_{m^{\prime} \neq m} \frac{1}{\lambda_{m}-\lambda_{m^{\prime}}}\left|\bar{u}_{k m^{\prime}} u_{\ell m}-\bar{u}_{\ell m^{\prime}} u_{k m}\right|^{2}, \text { for } k<\ell \\
& \frac{\partial^{2} \lambda_{m}}{\partial x_{k k}^{2}}=2 \sum_{m^{\prime} \neq m} \frac{1}{\lambda_{m}-\lambda_{m^{\prime}}}\left|u_{k m}\right|^{2}\left|u_{k m^{\prime}}\right|^{2}
\end{aligned}
$$
\]

Proof. Again, we assume here that all the functions that we use hereafter are smooth functions of the real and imaginary parts of the entries of the matrix. For $k \leq \ell$, let us denote by ∂ the derivative $\frac{\partial}{\partial x_{k \ell}}$ or $\frac{\partial}{\partial y_{k \ell}}$. The matrix ∂H corresponds to the matrix whose entries are $\partial h_{k \ell}$.

For any $m, m^{\prime} \in\{1, \ldots, n\}$, we have $H . u_{m}=\lambda_{m} u_{m}$, and $u_{m}^{*} u_{m^{\prime}}=\delta_{m m^{\prime}}$, where in this proof $\delta_{m m^{\prime}}$ is the Kronecker symbol equal to 1 if and only if $m=m^{\prime}$ and 0 otherwise, and where u_{m}^{*} is the adjoint vector of u_{m} defined as the row vector with k-th component $u_{k m}^{*}=\operatorname{Re}\left(u_{k m}\right)-i \operatorname{Im}\left(u_{k m}\right)$. Thus,

$$
\begin{equation*}
\partial H . u_{m}+H . \partial u_{m}=\partial \lambda_{m} \times u_{m}+\lambda_{m} \partial u_{m} \tag{A.2}
\end{equation*}
$$

and for all m and m^{\prime} (possibly equal):

$$
\begin{equation*}
\partial u_{m}^{*} \cdot u_{m^{\prime}}+u_{m}^{*} \partial u_{m^{\prime}}=0 \tag{A.3}
\end{equation*}
$$

Multiplying (A.2) by u_{m}^{*} on the left, we get the first Hadamard formula:

$$
\begin{equation*}
\partial \lambda_{m}=u_{m}^{*} \cdot \partial H \cdot u_{m} \tag{A.4}
\end{equation*}
$$

Now multiplying (A.2) by $u_{m^{\prime}}^{*}$ on the left, we get, for $m \neq m^{\prime}$,

$$
u_{m^{\prime}}^{*} \cdot \partial H \cdot u_{m}=\left(\lambda_{m}-\lambda_{m^{\prime}}\right) u_{m^{\prime}}^{*} \partial u_{m},
$$

so that

$$
\partial u_{m}=\sum_{m^{\prime}=1}^{n}\left(u_{m^{\prime}}^{*} \partial u_{m}\right) u_{m^{\prime}}=\sum_{m^{\prime} \neq m} \frac{u_{m^{\prime}}^{*} \cdot \partial H \cdot u_{m}}{\lambda_{m}-\lambda_{m^{\prime}}} u_{m^{\prime}}+\left(u_{m}^{*} \partial u_{m}\right) u_{m}
$$

From there, taking the derivative of the first Hadamard formula (A.4) and using the above equality with (A.3) leads to the second Hadamard equality:

$$
\begin{equation*}
\partial^{2} \lambda_{m}=u_{m}^{*} \cdot \partial^{2} H \cdot u_{m}+2 \sum_{m^{\prime} \neq m} \frac{\left|u_{m^{\prime}}^{*} \cdot \partial H \cdot u_{m}\right|^{2}}{\lambda_{m}-\lambda_{m^{\prime}}} . \tag{A.5}
\end{equation*}
$$

Now, for $\partial=\frac{\partial}{\partial x_{k \ell}}$ or $\partial=\frac{\partial}{\partial y_{k \ell}}$, we have that $\partial^{2} H=0$. Moreover, $\frac{\partial H}{\partial x_{k \ell}}$ is the matrix full of zeros except for the terms (k, ℓ) and (ℓ, k) that are equal to 1 and $\frac{\partial H}{\partial y_{k \ell}}(k<\ell)$ is the matrix full of zeros except for the terms (k, ℓ) equal to i and (ℓ, k) that are equal to -i . Injecting this information into (A.4) and (A.5) provides the announced derivatives.

Plugging the formulae of Lemma A. 1 into the Itô formula (A.1) above, we get

$$
\partial \lambda_{m}=\frac{1}{\sqrt{n}} \mathrm{~d} \beta_{m}+\frac{1}{n} \sum_{m^{\prime} \neq m} \frac{1}{\lambda_{m}-\lambda_{m^{\prime}}} \mathrm{d} t
$$

with

$$
\mathrm{d} \beta_{m}:=\frac{1}{\sqrt{2}} \sum_{k<\ell}\left(\left(\bar{u}_{k m} u_{\ell m}+\bar{u}_{\ell m} u_{k m}\right) \mathrm{d} B_{k, \ell}+\mathrm{i}\left(\bar{u}_{k m} u_{\ell m}-\bar{u}_{\ell m} u_{k m}\right) \mathrm{d} \tilde{B}_{k, \ell}\right)+\sum_{k=1}^{n}\left|u_{k m}\right|^{2} \mathrm{~d} B_{k k} .
$$

$\beta_{1}, \ldots, \beta_{n}$ are centered semimartingales. Furthermore,

$$
\mathrm{d}\left\langle\beta_{m}, \beta_{m^{\prime}}\right\rangle_{t}=\sum_{k, \ell=1}^{n} \bar{u}_{k m} u_{\ell m} \bar{u}_{\ell m^{\prime}} u_{k m^{\prime}} \mathrm{d} t=\delta_{m m^{\prime}} \mathrm{d} t
$$

so that they are independent standard Brownian motions.

Appendix B: Proof of Theorem 2.6 and Theorem-Definition 2.8

B.1. Proof of Theorem 2.6

The constants of Theorem 2.6 are better than the ones of Arizmendi et al. [2] who work in full generality. We develop here the main steps of the proof in our context, using the explicit formula for the semi-circular distribution. In the whole proof, we consider $z \in \mathbb{C}_{2 \sqrt{t}}$.

Step 1: We first prove that the function $L_{z}(w)=h_{\sigma_{t}}\left(\widetilde{h}_{\mu_{t}}(w)-z\right)+z$ is well-defined and analytic on $\mathbb{C}_{\frac{1}{2} \operatorname{Im}(z)}$. Since $h_{\sigma_{t}}$ is defined on \mathbb{C}^{+}, we need to check that $\widetilde{h}_{\mu_{t}}(w)-z \in \mathbb{C}^{+}$for $w \in \mathbb{C}_{\frac{1}{2} \operatorname{Im}(z)}$. This is satisfied since for such w,

$$
\begin{equation*}
\operatorname{Im}\left(\widetilde{h}_{\mu_{t}}(w)-z\right)=\operatorname{Im}\left(w+F_{\mu_{t}}(w)-z\right) \geq 2 \operatorname{Im}(w)-\operatorname{Im}(z)>0 \tag{B.1}
\end{equation*}
$$

where we have used $\operatorname{Im} F_{\mu_{t}}(w) \geq \operatorname{Im}(w)$ for the first inequality. Indeed, if $w=w_{1}+i w_{2}$, we have

$$
\left(F_{\mu_{t}}(w)\right)^{-1}=G_{\mu_{t}}(w)=\int \frac{d \mu_{t}(x)}{w_{1}+i w_{2}-x}=\int \frac{\left(w_{1}-x\right) d \mu_{t}(x)}{\left(w_{1}-x\right)^{2}+w_{2}^{2}}-i w_{2} \int \frac{d \mu_{t}(x)}{\left(w_{1}-x\right)^{2}+w_{2}^{2}}
$$

and

$$
\begin{align*}
\operatorname{Im}\left(F_{\mu_{t}}(w)\right) & =w_{2} \times \frac{\int \frac{d \mu_{t}(x)}{\left(w_{1}-x\right)^{2}+w_{2}^{2}}}{\left(\int \frac{\left(w_{1}-x\right) d \mu_{t}(x)}{\left(w_{1}-x\right)^{2}+w_{2}^{2}}\right)^{2}+w_{2}^{2}\left(\int \frac{d \mu_{t}(x)}{\left(w_{1}-x\right)^{2}+w_{2}^{2}}\right)^{2}} \\
& \geq w_{2} \times \frac{\int \frac{d \mu_{t}(x)}{\left(w_{1}-x\right)^{2}+w_{2}^{2}}}{\int \frac{\left(w_{1}-x\right)^{2} d \mu_{t}(x)}{\left(\left(w_{1}-x\right)^{2}+w_{2}^{2}\right)^{2}}+w_{2}^{2} \int \frac{d \mu_{t}(x)}{\left(\left(w_{1}-x\right)^{2}+w_{2}^{2}\right)^{2}}}=w_{2} \tag{B.2}
\end{align*}
$$

Step 2: We show that $L_{z}\left(\mathbb{C}_{\frac{1}{2} \operatorname{Im}(z)}\right) \subset \overline{\mathbb{C}_{\frac{1}{2} \operatorname{Im}(z)}}$ and that L_{z} is not a conformal automorphism.

First, let us show that $L_{z}\left(\mathbb{C}_{\frac{1}{2} \operatorname{Im}(z)}\right) \subset \overline{\mathbb{C}_{\frac{1}{2} \operatorname{Im}(z)}}$. Let $w \in \mathbb{C}_{\frac{1}{2} \operatorname{Im}(z)}$, we have:

$$
\begin{equation*}
\operatorname{Im}\left(L_{z}(w)\right)=\operatorname{Im}\left[t \cdot G_{\sigma_{t}}\left(\widetilde{h}_{\mu_{t}}(w)-z\right)+z\right]=\operatorname{Im}\left(\frac{\widetilde{h}_{\mu_{t}}(w)-z-\sqrt{\left(\widetilde{h}_{\mu_{t}}(w)-z\right)^{2}-4 t}}{2}+z\right) . \tag{B.3}
\end{equation*}
$$

To lower bound the right hand side, note that for all $v \in \mathbb{C}^{+}$, one can check that:

$$
\operatorname{Im}\left(\sqrt{v^{2}-4 t}\right) \leq \sqrt{\operatorname{Im}^{2}(v)+4 t}
$$

Therefore, we have:

$$
\operatorname{Im}\left(\sqrt{\left(\widetilde{h}_{\mu_{t}}(w)-z\right)^{2}-4 t}\right) \leq \sqrt{\left[\operatorname{Im}\left(\widetilde{h}_{\mu_{t}}(w)-z\right)\right]^{2}+4 t} .
$$

Hence, (B.3) yields:

$$
\operatorname{Im}\left(L_{z}(w)\right) \geq \frac{1}{2}\left[\operatorname{Im}\left(\widetilde{h}_{\mu_{t}}(w)-z\right)-\sqrt{\left[\operatorname{Im}\left(\widetilde{h}_{\mu_{t}}(w)-z\right)\right]^{2}+4 t}\right]+\operatorname{Im}(z)
$$

The function $g(s)=s-\sqrt{s^{2}+4 t}$ is non-decreasing on \mathbb{R}_{+}and for all $s>0, g(s) \geq-2 \sqrt{t}$. Thus:

$$
\begin{equation*}
\operatorname{Im}\left(L_{z}(w)\right) \geq \operatorname{Im}(z)-\sqrt{t}>\frac{1}{2} \operatorname{Im}(z) \tag{B.4}
\end{equation*}
$$

since $z \in \mathbb{C}_{2 \sqrt{t}}$. This guarantees that $L_{z}(w) \in \mathbb{C}_{\frac{1}{2} \operatorname{Im}(z)}$.
Let us now prove that L_{z} is not an automorphism of $\mathbb{C}_{\frac{1}{2} \operatorname{Im}(z)}$. Consider

$$
\left|L_{z}(w)-z\right|=\left|F_{\sigma_{t}}\left(\widetilde{h}_{\mu_{t}}(w)-z\right)-\left(\widetilde{h}_{\mu_{t}}(w)-z\right)\right|=\left|t G_{\sigma_{t}}\left(\widetilde{h}_{\mu_{t}}(w)-z\right)\right| .
$$

For $v \in \mathbb{C}^{+}$, if $|v|>3 \sqrt{t}$, since the support of σ_{t} is $[-2 \sqrt{t}, 2 \sqrt{t}]$,

$$
\left|t G_{\sigma_{t}}(v)\right|=\left|\int_{-2 \sqrt{t}}^{2 \sqrt{t}} \frac{t}{v-x} \mathrm{~d} \sigma_{t}(x)\right| \leq \sqrt{t}
$$

If $|v| \leq 3 \sqrt{t}$,

$$
\left|t G_{\sigma_{t}}(v)\right|=\left|\frac{v-\sqrt{v^{2}-4 t}}{2}\right| \leq \frac{2|v|+2 \sqrt{t}}{2} \leq 4 \sqrt{t} .
$$

Hence, for all $w \in \mathbb{C}_{\frac{1}{2} \operatorname{Im}(z)}$,

$$
\begin{equation*}
\left|L_{z}(w)-z\right| \leq 4 \sqrt{t} \tag{B.5}
\end{equation*}
$$

This implies that $L_{z}\left(\mathbb{C}_{\frac{1}{2} \operatorname{lm}(z)}\right)$ is included in the ball centered at z with radius $4 \sqrt{t}$. As a result, L_{z} is not surjective and hence is not an automorphism of $\mathbb{C}_{\frac{1}{2} \operatorname{Im}(z)}$.

Step 3: Existence and uniqueness of $w_{f p}$, which is a fixed point of L_{z}.
By Steps 1 and 2, L_{z} satisfies the assumptions of Denjoy-Wolff's fixed-point theorem (see e.g. $[4,2])$. The theorem says that for all $w \in \mathbb{C}_{\frac{1}{2} \operatorname{Im}(z)}$ the iterated sequence $L_{z}^{\circ m}(w)=L_{z} \circ L_{z}^{\circ(m-1)}(w)$ converges to the unique Denjoy-Wolff point of L_{z} which we define as $w_{f p}(z)$. The Denjoy-Wolff point is either a fixed-point of L_{z} or a point of the boundary of the domain. Let us check that $w_{f p}$ is a fixed point of L_{z}. For any $z \in \mathbb{C}_{2 \sqrt{t}}$, there exists $\gamma>2$ such that $z \in \mathbb{C}_{\gamma \sqrt{t}}$ and from (B.4), $L_{z}\left(\mathbb{C}_{\frac{1}{2} \operatorname{Im}(z)}\right) \subset \mathbb{C}_{\left(1-\frac{1}{\gamma}\right) \operatorname{Im}(z)}$. Moreover, from (B.5), $L_{z}\left(\mathbb{C}_{\frac{1}{2} \operatorname{Im}(z)}\right) \subset B(z, 4 \sqrt{t})$. Therefore, $w_{f p}(z) \in \overline{\mathbb{C}_{\left(1-\frac{1}{\gamma}\right) \operatorname{Im}(z)} \cap B(z, 4 \sqrt{t})} \subset \mathbb{C}_{\frac{1}{2} \operatorname{Im}(z)}$, so that it is necessarily a fixed point.

We now define

$$
w_{1}(z):=F_{\mu_{t}}\left(w_{f p}(z)\right)+w_{f p}(z)-z
$$

One can check that

$$
\begin{align*}
F_{\sigma_{t}}\left(w_{1}(z)\right) & =w_{1}(z)-h_{\sigma_{t}}\left(w_{1}(z)\right) \tag{B.6}\\
& =F_{\mu_{t}}\left(w_{f p}(z)\right)+w_{f p}(z)-z-h_{\sigma_{t}}\left(F_{\mu_{t}}\left(w_{f p}(z)\right)+w_{f p}(z)-z\right) \tag{B.7}\\
& =\tilde{h}_{\mu_{t}}\left(w_{f p}(z)\right)-z-h_{\sigma_{t}}\left(\tilde{h}_{\mu_{t}}\left(w_{f p}(z)\right)-z\right) \tag{B.8}\\
& =\tilde{h}_{\mu_{t}}\left(w_{f p}(z)\right)-w_{f p}(z)=F_{\mu_{t}}\left(w_{f p}(z)\right)
\end{align*}
$$

One can therefore rewrite

$$
w_{1}(z)=F_{\sigma_{t}}\left(w_{1}(z)\right)+w_{f p}(z)-z
$$

From (B.5) and the fact that $w_{f p}(z)$ is a fixed point of L_{z}, one easily gets that $\lim _{y \rightarrow+\infty} w_{f p}(i y) /(i y)=$ 1 , which implies that $\lim _{y \rightarrow+\infty} F_{\mu_{t}}\left(w_{f p}(i y)\right) /(i y)=1$, and $\lim _{y \rightarrow+\infty} w_{1}(i y) /(i y)=1$.

Now we connect $F_{\mu_{0}}$ to the previous quantities. For z large enough, all the functions we consider are invertible and we have

$$
F_{\mu_{t}}\left(w_{f p}(z)\right)+w_{f p}(z)=z+w_{1}(z)=z+F_{\sigma_{t}}^{<-1>}\left(F_{\mu_{t}}\left(w_{f p}(z)\right)\right)
$$

On the other hand, for z large enough, using Theorem-definition 2.5 for $\mu_{1}=\sigma_{t}$ and $\mu_{2}=\mu_{0}$, we get
$F_{\mu_{t}}\left(w_{f p}(z)\right)+w_{f p}(z)=\alpha_{1}\left(w_{f p}(z)\right)+\alpha_{2}\left(w_{f p}(z)\right)=F_{\sigma_{t}}^{<-1>}\left(F_{\mu_{t}}\left(w_{f p}(z)\right)\right)+F_{\mu_{0}}^{<-1>}\left(F_{\mu_{t}}\left(w_{f p}(z)\right)\right)$.
Comparing the two equalities gives

$$
F_{\mu_{0}}^{<-1>}\left(F_{\mu_{t}}\left(w_{f p}(z)\right)\right)=z
$$

so that, for z large enough,

$$
F_{\mu_{t}}\left(w_{f p}(z)\right)=F_{\mu_{0}}(z)
$$

The two functions being analytic on $\mathbb{C}_{2 \sqrt{t}}$, the equality can be extended to any $z \in \mathbb{C}_{2 \sqrt{t}}$.
Finally, since

$$
w_{1}(z)=F_{\mu_{t}}\left(w_{f p}(z)\right)+w_{f p}(z)-z=F_{\mu_{0}}(z)+w_{f p}(z)-z
$$

we have, using (B.2) with μ_{0} instead of μ_{t},

$$
\operatorname{Im}\left(w_{1}(z)\right)=\operatorname{Im}\left(F_{\mu_{0}}(z)\right)+\operatorname{Im}\left(w_{f p}(z)\right)-\operatorname{Im}(z) \geq \operatorname{Im}\left(w_{f p}(z)\right) \geq \frac{1}{2} \operatorname{Im}(z)
$$

This ends the proof of Theorem 2.6.

B.2. Proof of Theorem-Definition 2.8

The proof of this theorem follows the steps of the proof of Theorem 2.6. First, $\widehat{L}_{z}(w):=t \widehat{G}_{\mu_{t}^{n}}(w)+z$ is a well-defined and analytic function on \mathbb{C}^{+}. Let us check that $\widehat{L}_{z}\left(\mathbb{C}_{\frac{1}{2} \operatorname{Im}(z)}\right) \subset \mathbb{C}_{\frac{1}{2} \operatorname{Im}(z)}$ for $z \in \mathbb{C}_{2 \sqrt{t}}$. For $w=u+i v \in \mathbb{C}_{\frac{1}{2} \operatorname{Im}(z)}$,

$$
\begin{equation*}
\operatorname{Im}\left(\widehat{G}_{\mu_{t}^{n}}(w)\right)=\frac{1}{n} \sum_{j=1}^{n} \operatorname{Im}\left(\frac{u-\lambda_{j}^{n}(t)-i v}{\left(u-\lambda_{j}^{n}(t)\right)^{2}+v^{2}}\right)>-\frac{1}{v}=-\frac{1}{\operatorname{Im}(w)} \tag{B.9}
\end{equation*}
$$

Thus,

$$
\operatorname{Im}\left(\widehat{L}_{z}(w)\right)=t \operatorname{Im}\left(\widehat{G}_{\mu_{t}^{n}}(w)\right)+\operatorname{Im}(z)>-\frac{t}{\operatorname{Im}(w)}+\operatorname{Im}(z)>-\frac{2 t}{\operatorname{Im}(z)}+\operatorname{Im}(z)>\frac{1}{2} \operatorname{Im}(z)
$$

The second and last inequalities comes from the choice of $w \in \mathbb{C}_{\frac{1}{2} \operatorname{Im}(z)}$, and from $\operatorname{Im}(z)>2 \sqrt{t}$.
Moreover, \widehat{L}_{z} is not an automorphism since:

$$
\begin{equation*}
\left|\widehat{L}_{z}(w)-z\right|=\left|t \widehat{G}_{\mu_{t}^{n}}(w)\right|=\left|\frac{1}{n} \sum_{j=1}^{n} \frac{t}{w-\lambda_{j}^{n}(t)}\right| \leq \frac{t}{\operatorname{Im}(w)} \leq \sqrt{t} \tag{B.10}
\end{equation*}
$$

since $\operatorname{Im}(w)>\frac{1}{2} \operatorname{Im}(z)>\sqrt{t}$. We use again the Denjoy-Wolff fixed-point theorem. Because the inclusion of $\widehat{L}_{z}\left(\mathbb{C}_{\frac{1}{2} \operatorname{Im}(z)}\right)$ into $\mathbb{C}_{\frac{1}{2} \operatorname{Im}(z)}$ is strict, the unique Denjoy-Wolff point of \widehat{L}_{z} is necessarily a fixed point that we denote $\widehat{w}_{f p}(z)$. From the construction, $\operatorname{Im}\left(\widehat{w}_{f p}(z)\right)>\operatorname{Im}(z) / 2$. Finally, the last announced estimate is a straightforward consequence of (B.10).

Appendix C: Proof of Lemma 3.4

Recall that $R_{n, t}(z)$ and $\widetilde{R}_{n, t}(z)$ are defined in (3.4) and (3.9), and that

$$
\begin{equation*}
n \widetilde{A}_{2}^{n}(z)=\sum_{k=1}^{n} \mathbb{E}\left[\left(R_{n, t}(z)\right)_{k k} \mid X^{n}(0)\right]-\left(\widetilde{R}_{n, t}(z)\right)_{k k} . \tag{C.1}
\end{equation*}
$$

Proceeding as in Dallaporta and Février [21], we introduce some notations. Let $R_{n, t}^{(k)}(z)$ be the resolvent of the $(n-1) \times(n-1)$ obtained from $X^{n}(t)$ by removing the k-th row and column and $C_{k, t}^{(k)}$ be the ($n-1$)-dimensional vector obtained from the k-th column of $H^{n}(t)$ by removing its k-th component. Using Schur's complement (see e.g. [3, Appendix A.1]):

$$
\left(\left(R_{n, t}(z)\right)_{k k}\right)^{-1}=z-\left(H^{n}(t)\right)_{k k}-\left(X^{n}(0)\right)_{k k}-C_{k, t}^{(k) *} \cdot R_{n, t}^{(k)}(z) \cdot C_{k, t}^{(k)}
$$

Because $\widetilde{R}_{n, t}(z)$ is a diagonal matrix, we have easily:

$$
\begin{aligned}
\left(R_{n, t}(z)\right)_{k k}=\left(\widetilde{R}_{n, t}(z)\right)_{k k}+\left(\widetilde{R}_{n, t}(z)\right)_{k k} \cdot\left(R_{n, t}(z)\right)_{k k} \cdot(& \left(H^{n}(t)\right)_{k k}+C_{k, t}^{(k) *} \cdot R_{n, t}^{(k)}(z) \cdot C_{k, t}^{(k)} \\
& \left.-\frac{t}{n} \mathbb{E}\left[\operatorname{Tr}\left(R_{n, t}(z) \mid X^{n}(0)\right)\right]\right)
\end{aligned}
$$

Replacing $\left(R_{n, t}(z)\right)_{k k}$ in the right-hand side of the previous formula, we obtain:

$$
\begin{align*}
& \left(R_{n, t}(z)\right)_{k k}-\left(\widetilde{R}_{n, t}(z)\right)_{k k} \\
= & \left(\widetilde{R}_{n, t}(z)\right)_{k k}^{2} \cdot\left(\left(H^{n}(t)\right)_{k k}+C_{k, t}^{(k) *} \cdot R_{n, t}^{(k)}(z) \cdot C_{k, t}^{(k)}-\frac{t}{n} \mathbb{E}\left[\operatorname{Tr}\left(R_{n, t}(z)\right) \mid X^{n}(0)\right]\right) \\
+ & \left(\widetilde{R}_{n, t}(z)\right)_{k k}^{2} \cdot\left(R_{n, t}(z)\right)_{k k} \cdot\left(\left(H^{n}(t)\right)_{k k}+C_{k, t}^{(k) *} \cdot R_{n, t}^{(k)}(z) \cdot C_{k, t}^{(k)}-\frac{t}{n} \mathbb{E}\left[\operatorname{Tr}\left(R_{n, t}(z)\right) \mid X^{n}(0)\right]\right)^{2} . \tag{C.2}
\end{align*}
$$

Since $H^{n}(t)$ and $C_{k, t}^{(k)}$ are independent of $X_{n}(0)$,

$$
\begin{align*}
& \mathbb{E}\left[\left.\left|\left(H^{n}(t)\right)_{k k}+C_{k, t}^{(k) *} \cdot R_{n, t}^{(k)}(z) \cdot C_{k, t}^{(k)}-\frac{t}{n} \mathbb{E}\left[\operatorname{Tr}\left(R_{n, t}(z)\right) \mid X^{n}(0)\right]\right|^{2} \right\rvert\, X^{n}(0)\right] \\
= & \mathbb{E}\left[\left\lvert\,\left(H^{n}(t)\right)_{k k}+C_{k, t}^{(k) *} \cdot R_{n, t}^{(k)}(z) \cdot C_{k, t}^{(k)}-\frac{t}{n} \operatorname{Tr}\left(R_{n, t}^{(k)}(z)\right)+\frac{t}{n} \operatorname{Tr}\left(R_{n, t}^{(k)}(z)\right)-\frac{t}{n} \mathbb{E}\left[\operatorname{Tr}\left(R_{n, t}^{(k)}(z)\right) \mid X^{n}(0)\right]\right.\right. \\
& \left.\left.+\frac{t}{n} \mathbb{E}\left[\operatorname{Tr}\left(R_{n, t}^{(k)}(z)\right) \mid X^{n}(0)\right]-\left.\frac{t}{n} \mathbb{E}\left[\operatorname{Tr}\left(R_{n, t}(z)\right) \mid X^{n}(0)\right]\right|^{2} \right\rvert\, X^{n}(0)\right] \\
= & \mathbb{E}\left[\left(H^{n}(t)\right)_{k k}^{2}\right]+\mathbb{E}\left[\left.\left|C_{k, t}^{(k) *} \cdot R_{n, t}^{(k)}(z) \cdot C_{k, t}^{(k)}-\frac{t}{n} \operatorname{Tr}\left(R_{n, t}^{(k)}(z)\right)\right|^{2} \right\rvert\, X^{n}(0)\right] \\
& +\frac{t^{2}}{n^{2}}\left(\operatorname{Var}\left[\operatorname{Tr}\left(R_{n, t}^{(k)}(z)\right) \mid X^{n}(0)\right]+\left|\mathbb{E}\left[\operatorname{Tr}\left(R_{n, t}^{(k)}(z)\right)-\operatorname{Tr}\left(R_{n, t}(z)\right) \mid X^{n}(0)\right]\right|^{2}\right) . \tag{C.3}
\end{align*}
$$

We now upper bound each of the term in the right-hand side of (C.3). The first term equals to t / n.
Step 1: We upper bound the second term in (C.3). By Lemma 5 of [21],

$$
\begin{equation*}
\mathbb{E}\left[C_{k, t}^{(k) *} \cdot R_{n, t}^{(k)}(z) \cdot C_{k, t}^{(k)} \mid X^{n}(0)\right]=\frac{t}{n} \mathbb{E}\left[\operatorname{Tr}\left(R_{n, t}^{(k)}(z)\right) \mid X^{n}(0)\right] \tag{C.4}
\end{equation*}
$$

Thus, the second term in (C.3) equals to $\operatorname{Var}\left(C_{k, t}^{(k) *} \cdot R_{n, t}^{(k)}(z) \cdot C_{k, t}^{(k)} \mid X^{n}(0)\right)$ and we have:

$$
\begin{aligned}
\operatorname{Var}\left[C_{k, t}^{(k) *} \cdot R_{n, t}^{(k)}(z) \cdot C_{k, t}^{(k)} \mid X^{n}(0)\right] & =\frac{t^{2}}{n^{2}} \mathbb{E}\left[\operatorname{Tr}\left(R_{n, t}^{(k), *}(z) \cdot R_{n, t}^{(k)}(z)\right) \mid X^{n}(0)\right] \\
& \leq \frac{t^{2}}{n^{2}} \mathbb{E}\left[\left.\sum_{j=1}^{n} \frac{1}{\left|z-\lambda_{j}^{(k)}\right|^{2}} \right\rvert\, X^{n}(0)\right]
\end{aligned}
$$

where the $\lambda_{j}^{(k)}$'s are the eigenvalues of the matrix with resolvent $R_{n, t}^{(k)}(z)$. Hence,

$$
\begin{equation*}
\operatorname{Var}\left[C_{k, t}^{(k) *} \cdot R_{n, t}^{(k)}(z) \cdot C_{k, t}^{(k)} \mid X^{n}(0)\right] \leq \frac{t^{2}}{n \operatorname{Im}^{2}(z)} \tag{C.5}
\end{equation*}
$$

Step 2: We now upper bound the third and fourth terms of (C.3). Let us denote in the sequel by \mathbb{E}_{k} the expectation with respect to $\left\{\left(H^{n}(t)\right)_{j k}: 1 \leq j \leq n\right\}$, and by $\mathbb{E}_{\leq k}$ the conditional expectation on the sigma-field $\sigma\left(\left(\left(X^{n}(0)\right)_{i j}, 1 \leq i \leq j \leq n\right),\left(\left(H^{n}(t)\right)_{i j}, 1 \leq i \leq j \leq k\right)\right)$.

We have:

$$
\begin{equation*}
\operatorname{Var}\left[\operatorname{Tr}\left(R_{n, t}^{(k)}(z)\right) \mid X^{n}(0)\right] \leq 2 \operatorname{Var}\left[\operatorname{Tr}\left(R_{n, t}(z)\right) \mid X^{n}(0)\right]+2 \operatorname{Var}\left[\operatorname{Tr}\left(R_{n, t}(z)\right)-\operatorname{Tr}\left(R_{n, t}^{(k)}(z) \mid X^{n}(0)\right] .\right. \tag{C.6}
\end{equation*}
$$

For the first term,

$$
\begin{align*}
\operatorname{Var}\left[\operatorname{Tr}\left(R_{n, t}(z)\right) \mid X^{n}(0)\right] & =\sum_{k=1}^{n} \mathbb{E}\left[\left|\left(\mathbb{E}_{\leq k}-\mathbb{E}_{\leq k-1}\right) \operatorname{Tr}\left(R_{n, t}(z)\right)\right|^{2} \mid X^{n}(0)\right] \\
& =\sum_{k=1}^{n} \mathbb{E}\left[\left|\left(\mathbb{E}_{\leq k}-\mathbb{E}_{\leq k-1}\right)\left(\operatorname{Tr}\left(R_{n, t}(z)\right)-\operatorname{Tr}\left(R_{n, t}^{(k)}(z)\right)\right)\right|^{2} \mid X^{n}(0)\right], \tag{C.7}
\end{align*}
$$

as $\left(\mathbb{E}_{\leq k}-\mathbb{E}_{\leq k-1}\right) \operatorname{Tr}\left(R_{n, t}^{(k)}(z)\right)=0$. The Schur complement formula (see e.g. [3, Appendix A.1]) gives that:

$$
\begin{equation*}
\operatorname{Tr}\left(R_{n, t}(z)\right)-\operatorname{Tr}\left(R_{n, t}^{(k)}(z)\right)=\frac{1+C_{k, t}^{(k) *} \cdot R_{n, t}^{(k)}(z)^{2} \cdot C_{k, t}^{(k)}}{z-\left(H^{n}(t)\right)_{k k}-\left(X^{n}(0)\right)_{k k}-C_{k, t}^{(k) *} \cdot R_{n, t}^{(k)}(z) \cdot C_{k, t}^{(k)}} . \tag{C.8}
\end{equation*}
$$

Then,

$$
\begin{align*}
\left|\operatorname{Tr}\left(R_{n, t}(z)\right)-\operatorname{Tr}\left(R_{n, t}^{(k)}(z)\right)\right| & \leq \frac{\left|1+C_{k, t}^{(k) *} \cdot R_{n, t}^{(k)}(z)^{2} \cdot C_{k, t}^{(k)}\right|}{\left|\operatorname{Im}\left(z-\left(H^{n}(t)\right)_{k k}-\left(X^{n}(0)\right)_{k k}-C_{k, t}^{(k) *} \cdot R_{n, t}^{(k)}(z) \cdot C_{k, t}^{(k)}\right)\right|} \\
& \leq \frac{1+\left|C_{k, t}^{(k) *} \cdot R_{n, t}^{(k)}(z)^{2} \cdot C_{k, t}^{(k)}\right|}{\left|\operatorname{Im}(z)-\operatorname{Im}\left(C_{k, t}^{(k) *} \cdot R_{n, t}^{(k)}(z) \cdot C_{k, t}^{(k)}\right)\right|} \\
& \leq \frac{1+C_{k, t}^{(k) *} \cdot R_{n, t}^{(k)}(z)^{*} \cdot R^{(k)}(z) \cdot C_{k, t}^{(k)}}{\left|\operatorname{Im}(z)+\operatorname{Im}(z) \cdot C_{k, t}^{(k) *} \cdot R_{n, t}^{(k)}(z)^{*} \cdot R_{n, t}^{(k)}(z) \cdot C_{k, t}^{(k)}\right|} \\
& =\frac{1}{\operatorname{Im}(z)} . \tag{C.9}
\end{align*}
$$

The second inequality it due to the fact that $\left(H^{n}(t)\right)_{k k},\left(X^{n}(0)\right)_{k k} \in \mathbb{R}$ and the third inequality comes from the following equality: With $\Psi: M \in \mathcal{H}_{n}(\mathbb{C}) \mapsto C^{*} M C$ with $C \in \mathbb{C}^{n}$, then, for any $z \in \mathbb{C}$ and
any resolvent matrix $R(z)$, we have (see [21, Lemma 1])

$$
\operatorname{Im}(\Psi(R(z)))=-\operatorname{Im}(z) \Psi\left(R(z)^{*} R(z)\right)
$$

The bound (C.9) does not depend on $X^{n}(0)$. Plugging this bound into (C.7), we obtain:

$$
\operatorname{Var}\left[\operatorname{Tr}\left(R_{n, t}(z)\right) \mid X^{n}(0)\right] \leq \frac{4 n}{\operatorname{Im}^{2}(z)}
$$

From there, using (C.6),

$$
\begin{equation*}
\operatorname{Var}\left[\operatorname{Tr}\left(R_{n, t}^{(k)}(z)\right) \mid X^{n}(0)\right] \leq \frac{8 n+2}{\operatorname{Im}^{2}(z)} \tag{C.10}
\end{equation*}
$$

Similarly, (C.9) also provides an upper bound for the fourth term of (C.3):

$$
\begin{equation*}
\left|\mathbb{E}\left[\operatorname{Tr}\left(R_{n, t}^{(k)}(z)\right)-\operatorname{Tr}\left(R_{n, t}(z)\right) \mid X^{n}(0)\right]\right|^{2} \leq \frac{1}{\operatorname{Im}^{2}(z)} \tag{C.11}
\end{equation*}
$$

Step 3: In conclusion, using (C.3), (C.5), (C.10) and (C.11), we obtain that:

$$
\begin{aligned}
& \mathbb{E}\left[\left.\left|\left(H_{n}(t)\right)_{k k}+C_{k, t}^{(k) *} \cdot R_{n, t}^{(k)}(z) \cdot C_{k, t}^{(k)}-\frac{t}{n} \mathbb{E}\left[\operatorname{Tr}\left(R_{n, t}(z)\right) \mid X^{n}(0)\right]\right|^{2} \right\rvert\, X^{n}(0)\right] \\
& \leq \frac{t}{n}+\frac{t^{2}}{n \operatorname{Im}^{2}(z)}+(8 n+3) \frac{t^{2}}{n^{2} \operatorname{Im}^{2}(z)}
\end{aligned}
$$

Going back to (C.2) and using (C.4) to upper-bound the first term in the right-hand side:

$$
\begin{aligned}
&\left|\mathbb{E}\left[\left(R_{n, t}(z)\right)_{k k}-\left(\widetilde{R}_{n, t}(z)\right)_{k k} \mid X^{n}(0)\right]\right| \\
& \leq \frac{t}{n}\left|\left(\widetilde{R}_{n, t}(z)\right)_{k k}\right|^{2} \cdot \mathbb{E}\left[\left|\operatorname{Tr}\left(R_{n, t}^{(k)}(z)\right)-\operatorname{Tr}\left(R_{n, t}(z)\right)\right| \mid X^{n}(0)\right] \\
&+\left|\left(\widetilde{R}_{n, t}(z)\right)_{k k}\right|^{2} \cdot \mathbb{E}\left[\left|\left(R_{n, t}(z)\right)_{k k}\right| \cdot \mid\left(H^{n}(t)\right)_{k k}+C_{k, t}^{(k) *} \cdot R_{n, t}^{(k)}(z) \cdot C_{k, t}^{(k)}\right. \\
&\left.\left.-\left.\frac{t}{n} \mathbb{E}\left[\operatorname{Tr}\left(R_{n, t}(z)\right) \mid X^{n}(0)\right]\right|^{2} \right\rvert\, X^{n}(0)\right] \\
& \leq\left|\left(\widetilde{R}_{n, t}(z)\right)_{k k}\right|^{2} \cdot\left(\frac{t}{n \operatorname{Im}(z)}+\frac{t}{n \operatorname{Im}(z)}+\frac{t^{2}}{n \operatorname{Im}^{3}(z)}+\frac{(8 n+3) t^{2}}{n^{2} \operatorname{Im}^{3}(z)}\right) \\
& \leq\left|\left(\widetilde{R}_{n, t}(z)\right)_{k k}\right|^{2} \cdot \frac{1}{n}\left(\frac{2 t}{\operatorname{Im}(z)}+\frac{12 t^{2}}{\operatorname{Im}^{3}(z)}\right)
\end{aligned}
$$

Using this upper bound in (C.1), we obtain by summation the result and using that for any k,

$$
\left.\mid \widetilde{R}_{n, t}(z)\right)\left._{k k}\right|^{2} \leq \frac{1}{\operatorname{Im}^{2}(z)}
$$

Appendix D: Proof of Lemma 3.5

From (3.7) and introducing $\bar{w}_{1}(z)$ such that:

$$
G_{\mu_{0}^{n} \boxplus \sigma_{t}}(z)=G_{\mu_{0}^{n}}\left(\bar{w}_{f p}(z)\right)=G_{\sigma_{t}}\left(\bar{w}_{1}(z)\right)
$$

We can derive from Theorem-Definition 2.5 that $\bar{w}_{f p}(z)$ solves the equation (i) of Lemma 3.5 and that:

$$
z=\bar{w}_{f p}(z)+t G_{\mu_{0}^{n}}\left(\bar{w}_{f p}(z)\right)
$$

for all $z \in \mathbb{C}^{+}$. The latter equation justifies (ii) of Lemma 3.5.

Appendix E: Proof of Corollary 4.3

Recall that from Proposition 4.2 and Theorem 4.1, the mean integrated square error is

$$
M I S E=\mathbb{E}\left[\left\|\widehat{p}_{0, h}-p_{0}\right\|^{2}\right] \leq L e^{-2 a h^{-r}}+\frac{\gamma^{8}}{\left(\gamma^{2}-4 t\right)^{4}} \frac{C_{v a r} \cdot e^{\frac{2 \gamma}{h}}}{n}
$$

Minimizing in h amounts to solving the following equation obtained by taking the derivative in the right hand side of (4.6):

$$
\begin{equation*}
\psi(h):=\exp \left(\frac{2 \gamma}{h}+\frac{2 a}{h^{r}}\right) h^{r-1}=O(n) \tag{E.1}
\end{equation*}
$$

Consequently for the minimizer h_{*} of (E.1) we get that

$$
\frac{e^{\frac{2 \gamma}{h_{*}}}}{n}=C h_{*}^{1-r} e^{-2 a h_{*}^{-r}}
$$

for some constant $C>0$. Hence, in view of (4.6), when $r<1$ the bias dominates the variance and the contrary occurs when $r>1$. Thus, there are three cases to consider to derive rates of convergence: $r=1, r<1$ and $r>1$. To solve the equation (E.1), we follow the steps of Lacour [25].

Case $r=1$.

The case where $r=1$ provides a window $h_{*}=2(a+\gamma) / \log n$ and we get

$$
M I S E=O\left(n^{-\frac{a}{a+\gamma}}\right)
$$

Case $r<1$.
In this case, and in the case $r>1$, following the ideas in [25], we will look for the bandwidth h expressed as an expansion in $\log (n)$. In this expansion and when $r<1$, the integer k such that $\frac{k}{k+1}<r \leq \frac{k+1}{k+2}$ will play a role. The optimal bandwidth is of the form:

$$
\begin{equation*}
h_{*}=2 \gamma\left(\log (n)+(r-1) \log \log (n)+\sum_{i=0}^{k} b_{i}(\log n)^{r+i(r-1)}\right)^{-1} \tag{E.2}
\end{equation*}
$$

where the coefficients b_{i} 's are a sequence of real numbers chosen so that $\psi\left(h_{*}\right)=O(n)$. The heuristic of this expansion is as follows: the first term corresponds to the solution of $e^{2 \gamma / h}=n$. The second term is added to compensate the factor h^{r-1} in (E.1) evaluated with the previous bandwidth, and the third term aims at compensating the factor $e^{2 a / h^{r}}$. Notice that $r-1<0$ and that the definition of k implies that $r>r+(r-1)>\cdots>r+k(r-1)>0>r+(k+1)(r-1)$. This explains the range of the index i in the sum of the right hand side of (E.2).

Plugging (E.2) into (E.1),

$$
\begin{aligned}
\psi\left(h_{*}\right)= & n(\log n)^{r-1} \exp \left(\sum_{i=0}^{k} b_{i}(\log n)^{r+i(r-1)}\right) \\
& \times \exp \left(\frac{2 a}{(2 \gamma)^{r}}(\log n)^{r}\left(1+\frac{(r-1) \log \log (n)+\sum_{i=0}^{k} b_{i}(\log n)^{r+i(r-1)}}{\log n}\right)^{r}\right) \\
& \times(2 \gamma)^{r-1}(\log n)^{-(r-1)}\left(1+\frac{(r-1) \log \log (n)+\sum_{i=0}^{k} b_{i}(\log n)^{r+i(r-1)}}{\log n}\right)^{-(r-1)} \\
= & (2 \gamma)^{r-1} n\left(1+v_{n}\right)^{1-r} \exp \left(\sum_{i=0}^{k} b_{i}(\log n)^{r+i(r-1)}\right) \\
& \times \exp \left(\frac{2 a}{(2 \gamma)^{r}}(\log n)^{r}\left[1+\sum_{j=0}^{k} \frac{r(r-1) \cdots(r-j)}{(j+1)!} v_{n}^{j+1}+o\left(v_{n}^{k+1}\right)\right]\right)
\end{aligned}
$$

where

$$
v_{n}=\frac{(r-1) \log \log (n)+\sum_{i=0}^{k} b_{i}(\log n)^{r+i(r-1)}}{\log n}=(r-1) \frac{\log \log (n)}{\log n}+\sum_{i=0}^{k} b_{i}(\log n)^{(i+1)(r-1)}
$$

converges to zero when $n \rightarrow+\infty$. We note that

$$
\begin{aligned}
v_{n}^{j+1} & =\sum_{i=0}^{k-j-1} \sum_{p_{0}+\cdots p_{j}=i} b_{p_{0}} \cdots b_{p_{j}}(\log n)^{(i+j+1)(r-1)}+O\left((\log n)^{(k+1)(r-1)}\right) \\
& =\sum_{\ell=j+1}^{k} \sum_{p_{0}+\cdots p_{j}=\ell-j-1} b_{p_{0}} \cdots b_{p_{j}}(\log n)^{\ell(r-1)}+O\left((\log n)^{(k+1)(r-1)}\right) .
\end{aligned}
$$

So

$$
\begin{aligned}
& \psi\left(h_{*}\right)=(2 \gamma)^{r-1} n\left(1+v_{n}\right)^{1-r} \exp \left(\sum_{i=0}^{k} b_{i}(\log n)^{r+i(r-1)}\right) \\
& \times \exp \left\{\frac{2 a}{(2 \gamma)^{r}}(\log n)^{r}\right. \\
& \quad+\frac{2 a}{(2 \gamma)^{r}} \sum_{\ell=1}^{k} \sum_{j=0}^{\ell-1}\left[\frac{r(r-1) \cdots(r-j)}{(j+1)!} \sum_{p_{0}+\cdots p_{j}=\ell-j-1} b_{p_{0}} \cdots b_{p_{j}}\right](\log n)^{r+\ell(r-1)}
\end{aligned}
$$

$$
\begin{gathered}
\left.+O\left((\log n)^{(k+1)(r-1)}\right)\right\} \\
=(2 \gamma)^{r-1} n\left(1+v_{n}\right)^{1-r} \exp \left(\sum_{i=0}^{k} M_{i}(\log n)^{i(r-1)+r}+o(1)\right)
\end{gathered}
$$

The condition $\psi\left(h_{*}\right)=O(n)$ implies the following choices of constants M_{i} 's:

$$
M_{0}=b_{0}+\frac{2 a}{(2 \gamma)^{r}}, \quad \forall i>0, M_{i}=b_{i}+\frac{2 a}{(2 \gamma)^{r}} \sum_{j=0}^{i-1} \frac{r(r-1) \cdots(r-j)}{(j+1)!} \sum_{p_{0}+\cdots p_{j}=i-j-1} b_{p_{0}} \cdots b_{p_{j}}
$$

Since h_{*} solves (E.1) if all the $M_{i}=0$ for $i \in\{0, \cdots k\}$, the above system provides equation by equation the proper coefficients b_{i}^{*}.

$$
\begin{equation*}
b_{0}^{*}=-\frac{2 a}{(2 \gamma)^{r}}, \quad b_{i}^{*}=-\frac{2 a}{(2 \gamma)^{r}} \sum_{j=0}^{i-1} \frac{r(r-1) \cdots(r-j)}{(j+1)!} \sum_{p_{0}+\cdots p_{j}=i-j-1} b_{p_{0}}^{*} \cdots b_{p_{j}}^{*} \tag{E.3}
\end{equation*}
$$

Replacing in (4.6), we get:

$$
M I S E=O\left(\exp \left\{-\frac{2 a}{(2 \gamma)^{r}}\left[\log n+(r-1) \log \log n+\sum_{i=0}^{k} b_{i}^{*}(\log n)^{r+i(r-1)}\right]^{r}\right\}\right)
$$

Case $r>1$.
Here, let us denote by k the integer such that $\frac{k}{k+1}<\frac{1}{r} \leq \frac{k+1}{k+2}$. We look here for a bandwidth of the form:

$$
\begin{equation*}
h_{*}^{r}=2 a\left(\log n+\frac{r-1}{r} \log \log (n)+\sum_{i=0}^{k} d_{i}(\log n)^{\frac{1}{r}-i \frac{r-1}{r}}\right)^{-1} \tag{E.4}
\end{equation*}
$$

where the coefficients d_{i} 's will be chosen so that $\psi\left(h_{*}\right)=O(n)$.
Similar computations as for the case $r<1$ provide that:

$$
\begin{aligned}
\psi\left(h_{*}\right)= & (2 a)^{\frac{r-1}{r}} n\left(1+v_{n}\right)^{-\frac{r-1}{r}} \times \exp \left(\sum_{i=0}^{k} d_{i}(\log n)^{\frac{1}{r}-i \frac{r-1}{r}}\right) \\
& \times \exp \left(\frac{2 \gamma}{(2 a)^{1 / r}}(\log n)^{1 / r}[1+\right. \\
& \left.\left.\sum_{\ell=1}^{k} \sum_{j=0}^{\ell-1} \sum_{p_{0}+\cdots p_{j}=\ell-j-1} \frac{\frac{1}{r}\left(\frac{1}{r}-1\right) \cdots\left(\frac{1}{r}-j\right)}{(j+1)!} d_{p_{0}} \cdots d_{p_{j}}(\log n)^{\ell \frac{1-r}{r}}+O\left((\log n)^{k \frac{1-r}{r}}\right)\right]\right) \\
= & (2 a)^{\frac{r-1}{r}} n\left(1+v_{n}\right)^{-\frac{r-1}{r}} \exp \left(\sum_{i=0}^{k} M_{i}(\log n)^{\frac{1}{r}-i \frac{r-1}{r}}+o(1)\right)
\end{aligned}
$$

where here

$$
v_{n}=\frac{\frac{r-1}{r} \log \log (n)+\sum_{i=0}^{k} d_{i}(\log n)^{\frac{1}{r}-i \frac{r-1}{r}}}{\log n}
$$

and

$$
\begin{equation*}
M_{0}=d_{0}+\frac{2 \gamma}{(2 a)^{1 / r}}, \quad \forall i>0, M_{i}=d_{i}+\frac{2 \gamma}{(2 a)^{1 / r}} \sum_{j=0}^{i-1} \sum_{p_{0}+\cdots p_{j}=i-j-1} \frac{\frac{1}{r}\left(\frac{1}{r}-1\right) \cdots\left(\frac{1}{r}-j\right)}{(j+1)!} d_{p_{0}} \cdots d_{p_{j}} \tag{E.5}
\end{equation*}
$$

Solving $M_{0}=\cdots=M_{k}=0$ provides the coefficients d_{i}^{*} so that (E.1) is satisfied.
Plugging the bandwidth h_{*} with the coefficients d_{i}^{*} into (4.6), we obtain:

$$
M I S E=O\left(\frac{1}{n} \exp \left\{\frac{2 \gamma}{(2 a)^{1 / r}}\left[\log n+\frac{r-1}{r} \log \log n+\sum_{i=0}^{k} d_{i}^{*}(\log n)^{\frac{1}{r}-i \frac{r-1}{r}}\right]^{1 / r}\right\}\right)
$$

This concludes the proof of Corollary 4.3.

[^0]: ${ }^{1}$ This is far from obvious and the actual rigorous proof does not proceed like that.

