Supplemental material to ''Statistical deconvolution of the free Fokker-Planck equation at
fixed time''.

This is the supplement to the article Statistical deconvolution of the free Fokker-Planck equation
at fixed time. It gathers the appendices referenced in the main paper namely: Appendix A (Proof of
Equation (1.7)), Appendix B (Proof of Theorem 2.6 and Theorem-Definition 2.8), Appendix C (Proof
of Lemma 3.4), Appendix D (Proof of Lemma 3.5) and Appendix E (Proof of Corollary 4.3).

Appendix A: Proof of (1.7)

As mentioned in the introduction, a full proof of (1.7) can be found in [1, Theorem 4.3.2]. The proof
therein is involved and proceeds backward, showing that the solutions of (1.7) are the eigenvalues
of an Hermitian Brownian motion. In this appendix, we use a more direct approach (following for
example [19, 34]) that leads to a non rigorous but more intuitive sketch of proof. Recall that X" (t) =
X™(0) + H™(t) where H™(t) is the Hermitian Brownian motion of Definition 2.1. For k < ¢ and
t > 0, we denote by x(t) := ReX]’;g(t) and ype(t) := ImX,?j(t) respectively the real and imaginary
parts of the entries of the matrix X" (¢). The processes xjp and y., are semi-martingales and we will
assume that for any m € {1,...,n}, the m-th smallest eigenvalue A}, (¢) of X" (¢) is a smooth function
of (Xi¢, Yie) < 0 that we can apply Ito’s formula’:
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where we have used that, in the range of indices we are interested in, (X;;,yre) = 0; if 7 # 7,
d{x5,xp1) = d(yij, Yre) = %(Sikéjg, and d(x;;,%;) = %. We now have to compute the derivatives.
It relies on the so-called Hadamard variation formulae, well-known in perturbation theory.

Lemma A.1. Let H be an Hermitian matrix, with entries (hip = e + iYre)1<k<o<n- We assume

that H has distinct (real) eigenvalues A1, ..., \n and corresponding eigenvectors ui,...,ur. Then,
denoting by uy,, the k-th component of the vector wy,, we have for allm € {1,--- ,n}:
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IThis is far from obvious and the actual rigorous proof does not proceed like that.
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Proof. Again, we assume here that all the functions that we use hereafter are smooth functions of the
real and imaginary parts of the entries of the matrix. For k < /, let us denote by O the derivative %M

or % The matrix OH corresponds to the matrix whose entries are Ohpy.
For any m,m’ € {1,...,n}, we have H.umm = Aptm, and u’,u,, = 8,7, Where in this proof
Smm is the Kronecker symbol equal to 1 if and only if m = m’ and 0 otherwise, and where v, is

the adjoint vector of u;, defined as the row vector with k-th component uy, = Re(upyy,) —ilm(ug,, ).
Thus,

OH gy + H.OUp = 0Ny X Um, + A Otm, (A2)

and for all m and m’ (possibly equal):
U gy + U, Oty = 0. (A.3)
Multiplying (A.2) by w;, on the left, we get the first Hadamard formula:
O, = up, OH . (A4)
Now multiplying (A.2) by w* , on the left, we get, for m # m/,

wy r OH U = (A — Ay )y Ot

so that
" w-OH.u
Oupm, = Z (O )ty = Z - mum/ + (uyy, Oum, ) um,
m/=1 m/#m

From there, taking the derivative of the first Hadamard formula (A.4) and using the above equality with
(A.3) leads to the second Hadamard equality:

o -OH. um\

— (A.5)

82)\m—u O?H tyy + 2 Z
/#m

Now, for 0 = 9 ord= i, we have that 92 H = 0. Moreover, 9H g the matrix full of zeros
Oxpy Yo Oy

except for the terms (k,¢) and (¢, k) that are equal to 1 and % (k < ¢) is the matrix full of zeros

except for the terms (k, £) equal to i and (¢, k) that are equal to —i. Injecting this information into (A.4)
and (A.5) provides the announced derivatives. O]

Plugging the formulae of Lemma A.1 into the Itd formula (A.1) above, we get
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B1,- .., Bp are centered semimartingales. Furthermore,
n
d{(Bm, B )t = Z Whon Wen U Whery At = Oy AL,
k=1

so that they are independent standard Brownian motions.

Appendix B: Proof of Theorem 2.6 and Theorem-Definition 2.8

B.1. Proof of Theorem 2.6

The constants of Theorem 2.6 are better than the ones of Arizmendi et al. [2] who work in full gen-
erality. We develop here the main steps of the proof in our context, using the explicit formula for the
semi-circular distribution. In the whole proof, we consider z € (C2 N

Step 1: We first prove that the function L (w) = hg, (hy, (w) — ) + z is well-defined and analytic on
(C%Im(z). Since h, is defined on C™, we need to check that h, (w) — z € CT for w € (C%Im(z). This
is satisfied since for such w,

Im(?zm (w) — z) =Im(w + Fy, (w) — z) > 2Im(w) — Im(z) > 0, (B.1)

where we have used ImF),, (w) > Im(w) for the first inequality. Indeed, if w = w1 + w2, we have

(Fpuy (w) ™1 = G, (w) :/ dpt(x) _/ (w1 — x)dpt(x) —iu)g/ dpt ()

w1 +iw2—x_ (w1*$)2+w% (wl—x)er’w%

and

dut(z
f( pt ()

w1 —)2+w3

(=gt s p (f et )’

Im(Fy, (w)) = w2 %

[ dpt(x) §
> wy X (w1—x)?+w;

I (wi—2)?dp(x) wd [ T du@ 2 (B.2)
(«

((w1—=)2+w3) w1—$)2+w§)2

Step 2: We show that L. (C 1 lm(z)) cC Lim(z) and that L is not a conformal automorphism.



First, let us show that L, ((C;Im(z)> C (C;Im(z). Letw € (C;Im(z), we have:
2 2 2

Eut(w)—z— \/(ﬁm(w) —2)2—425

Im (L (w)) =Im [t.Got (hpy (w) — 2) + z} =1Im
(B.3)
To lower bound the right hand side, note that for all v € CT, one can check that:

Im(V/v2 — 4t) <y/Im?(v) + 4t.

Therefore, we have:

Im <\/(E,M (w) —2)° = 4t> < \/[Im(ﬁm (w) —2)]? + 4.

Hence, (B.3) yields:

1 ~ ~ 2
tm (L. (w)) > 5 {Im(hm () = 2) =/ [0 (g, (w) — 2)]% + 4t | +Im(2).
The function g(s) = s — v/s2 + 4t is non-decreasing on R and for all s > 0, g(s) > —2+/t. Thus:
1
Im(L(w)) >Im(z) — vVt > 5Im(z), (B.4)
since z € C,_/;. This guarantees that L,(w)e (C%Im(z).

Let us now prove that L is not an automorphism of C Lin(z)" Consider

Ly (w) — 2| = ‘th (e (w) = 2) = (e (w) — z)‘ - ‘tGJt (e (w) — z)‘ .

For v € CT, if [v| > 3+/%, since the support of o is [—2+v/%, 2V/1],

2\/2 t \[
= < .
G, (0)] /_Mv_xdat(x) <Vi
If [v] < 3V/4,
_ 2 _
(G, (v)] = | \/;ﬁ §2|”|;2*/Z§4\/E.
Hence, for all w € (C%Im(z),
|La(w) — 2| < 4V (B.5)

This implies that L, ((C 1im (Z)) is included in the ball centered at z with radius 4v/¢. As a result, L, is
2
not surjective and hence is not an automorphism of C1 Im(z)"
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Step 3: Existence and uniqueness of w,,, which is a fixed point of L.

By Steps 1 and 2, L, satisfies the assumptions of Denjoy-Wolff’s fixed-point theorem (see e.g.
[4, 2]). The theorem says that for all w € C Lim(z) the iterated sequence LY (w) =L, o Lz(mfl)(w)
converges to the unique Denjoy-Wolff point of L, which we define as w fp(z). The Denjoy-Wolff

point is either a fixed-point of L, or a point of the boundary of the domain. Let us check that
wyp is a fixed point of L. For any z € C,, NG there exists v > 2 such that z € (CW Vi and from

(B.4), LZ(ClIm(z)) cCq Moreover, from (B.5), LZ(ClIm(z)) C B(z,4v/t). Therefore,
2 2

—%)Im(z)'

wrp(2) € C(l—%)lm(z) N B(z,4vt) C (C%Im(z)7 so that it is necessarily a fixed point.

‘We now define

w1 (2) == Fp, (wrp(2)) +wpp(z) — 2.
One can check that

Fy,(w1(2)) = w1(z) — hoy (w1(2)) (B.6)
= Fpuy (wrp(2)) + wpp(2) = 2 = hoy (Fu (wpp(2) +wpp(z) —2)  (BT)
= by (wpp(2)) = 2 = hoy (i (wp(2)) — 2) (B.8)
= hyy (Wrp(2) — wpp(2) = Fry (wp(2))-

One can therefore rewrite
w1(z) = Fo, (w1(2)) +wpp(2) — 2.

From (B.5) and the fact that w ,,(2) is a fixed point of L, one easily gets that limy—, 1 o w ¢, (iy) /(iy) =

1, which implies that limy— o0 Fj, (wyp(iy))/(iy) = 1, and limy—, 1 oo w1 (iy) / (iy) = 1.
Now we connect F},, to the previous quantities. For z large enough, all the functions we consider
are invertible and we have

Fu (wip(2)) +wpp(2) = 2+ wi(2) = 2+ Fo, 7 (Fpy (wp(2))).
On the other hand, for z large enough, using Theorem-definition 2.5 for ;11 = oy and pug = g, we get
Fuy(wpp(2)) Fwpp(2) = a1 (wpp(2)) +an(wpp(2) = Foy ™ (B (wp(2)) + Fg ™ (B (wp(2)))-
Comparing the two equalities gives
F/fo_1>(Fm (wfp(z)>) =z

so that, for z large enough,

F,ut (wfp(z)) = Fuo(z)'

The two functions being analytic on C,, NG the equality can be extended to any z € C, N
Finally, since

w1 (2) = Fuy (wyp(2)) +wpp(2) = 2= Fuo(2) +wpp(2) - 2,



we have, using (B.2) with pq instead of py¢,

Im(w1(2)) =Im(Fy, (2)) +Im(wp,(2)) — Im(z) > Im(wp,(2)) > %Im(z).

This ends the proof of Theorem 2.6.

B.2. Proof of Theorem-Definition 2.8

The proof of this theorem follows the steps of the proof of Theorem 2.6. First, L. (w):= tG e (w)+ 2z
isa Well-deﬁn.ed and analytic function on C™. Let us check that L, ((C Lim (Z)) cC Lim(z) forz € C, NG
Forw=u+1we C%Im(z),

u— /\”(t) — v 1 1
Im (G, Zlm( TOVRN )>_5:_M' (B.9)
Thus,
m(zz(w)) =t Im(@w (w)) +Im(z) > fﬁ +Im(z) > flrf% +1Im(z) > %Im(z).

The second and last inequalities comes from the choice of w € C1 Im(2)* and from Im(z) > 2+/%.
2

Moreover, L, is not an automorphism since:

’ ~

L(w)—z

. 1 & t
B B S

since Im(w) > %Im(z) > /t. We use again the Denjoy-Wolff fixed-point theorem. Because the in-
clusion of L (C Lim Z)) into C Lm(z) is strict, the unique Denjoy-Wolff point of L, is necessarily a

fixed point that we denote wy,(z). From the construction, Im(w@y,(z)) > Im(z)/2. Finally, the last
announced estimate is a straightforward consequence of (B.10).

Appendix C: Proof of Lemma 3.4

Recall that Ry, ¢(z) and Iémt(z) are defined in (3.4) and (3.9), and that
n ~
nAj (2 Z (Rt (2)) g, | X(0)] = (Bt (2)) - (C.1)

Proceeding as in Dallaporta and Février [21], we introduce some notations. Let Rflkt) (z) be the resolvent

of the (n — 1) x (n — 1) obtained from X" (¢) by removing the k-th row and column and C,gkt) be the

(n — 1)-dimensional vector obtained from the k-th column of H™(¢) by removing its k-th component.
Using Schur’s complement (see e.g. [3, Appendix A.1]):

(Rus)) =2 = " @)~ (X"~ O R (2).0fF.



Because Ent(z) is a diagonal matrix, we have easily:
)* p(k) (k)
P R (Z)'Ck:,t

(Bnt(2) = (Bnt(2) g + (Bt (2)) g (Bt (2)) ( (H™(t) i + C,E,’
f%E[Tr (Rnt(2) | X™(0)) ])

Replacing (Rmt(z)) i1 In the right-hand side of the previous formula, we obtain:

(Rnt(2)) e = (Bnt(2)) 1

=(Fon (&) gy (" (D), + O B (2.0
+(Rnt(2)) 2, (Rnt(2) 1 ( (H™ ()i + O RN (2).00F) — SE[Tr (Rn(2)) | X™(0)] )
(C.2)

Since H"(t) and C,gkt) are independent of X, (0),

9.0 — LB [T (Bus(2) | X" 0) | 1X7(0)]

E[| (H" 0+ O B .0 - -
. t t t "
—E[| (" (1) + ) R (2008 = STe(RU(2)) + —Tr(RY) () — —E[Te(RU (=) | X"(0)]

B(2)) | X™(0)] - %IE [Tt (Rne(2)) | X(0)]

t
+gE|:Tr<Rn7t

; ¢ 2 o
_E [(H“(t))zk} +EHO,§’;) .Rffz(z).qg?—ETr(Rgfz(z))‘ | X (0)]

+ 2—22 (Var[Tr(RE(2))[ X" (0)] + [E[Tr(RE(2)) = Tr (Ruu(2))
(C3)
We now upper bound each of the term in the right-hand side of (C.3). The first term equals to ¢/n.
Step 1: We upper bound the second term in (C.3). By Lemma 5 of [21],
(C4)

* n t n
B[y R (.08 | X70)] = ~E[Tr (R () | x7(0)].

Thus, the second term in (C.3) equals to Var( R,

. n t2 . n
Var [0;5;,2 R)@).of) | x (0)] =E [Tr(Rgfz’ (2).RY)(2)) | x (0)}
g Zn: L xn0)
—n2 j:1 |Z )\‘gk)‘Q



where the /\§-k) ’s are the eigenvalues of the matrix with resolvent Rglkz (z). Hence,

2
(k) p(k) (k) ¢
Var [c,m RE) ). X"(o)} < G (C.5)
Step 2: We now upper bound the third and fourth terms of (C.3). Let us denote in the sequel by Ej, the
expectation with respect to {(H ") 1< < n}, and by E<;, the conditional expectation on the

sigma-field o (((X”(O))Z-j A<i<j<n), (H"(t);,1<i<j< k)).
We have:
Var[Tr(RY) ()| X™(0)] < 2Var [Tr(Rue(2)) | X7 (0)] + 2Var[Tr(Rp,e(2)) — Te(RY) ()| X7(0)].

(C.6)
For the first term,

Var[Tr( R (2)) [X"(0)] = B [| By~ E<y 1) Tr (R (2))[* | X7(0)]
k=1

NE

B {|(Bce - Bcomt) (1R () - WEE )] 1170,

(C7

k=1

as (Egk — Egk_l)Tr (Ré’z(z)) = 0. The Schur complement formula (see e.g. [3, Appendix A.1])
gives that:
(k)x p(k) 2 ~(F)
1+C;/ R, (2)°.C
Tr(Rn,t(Z)) - TI'(R,Eft) (’Z)) = B n7t( ) (k];;t (k) (k)" (C.3)

t

Then,
(k) p(k) 2 ~(K)
1+ RY) ()20
‘Tr(Rn,t(z)) - TY(R;@(Z))‘ < ‘ 7 OGN
Im (Z — (H" () = (X™M0)gg = Oy B 1 (2)-Cpy )‘
e Ater )
~ |Im(z) — Im (Cl(c]ft *Rgfz (2) Cé?)‘
3 1+ 0" R () R®)(2).01
* [mm(e) +1m(2) .Y R () R (). )
1

=t (C.9)

The second inequality it due to the fact that (H™(t))s , (X™(0))x € R and the third inequality comes
from the following equality: With ¥ : M € H,,(C) — C* M C with C € C", then, for any z € C and
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any resolvent matrix R(z), we have (see [21, Lemma 1])
Im(¥(R(z))) = —Im(2) ¥ (R(2)*R(z)).

The bound (C.9) does not depend on X" (0). Plugging this bound into (C.7), we obtain:

n 4n
Var [Tr(Rn,(2)) | X™(0)] < ()’
From there, using (C.6),
8 2
Var[Tr(RY) (2))| X"(0)] < ﬁ (C.10)

Similarly, (C.9) also provides an upper bound for the fourth term of (C.3):

(C.11)

‘E[Tr(Rn’fz(z)) —Tr (Rna(2)) | X™(0)] ‘2 <

Step 3: In conclusion, using (C.3), (C.5), (C.10) and (C.11), we obtain that:

2
|Xn(0)]

SR S S s
-t —— n —_—.
~n nIm?(2) n2Im?(z)

E ’(Hn(t))kk+c,§’ft) RE)=).0 f%]E [Tr (Rpt(2)) | X™(0)]

n,

Going back to (C.2) and using (C.4) to upper-bound the first term in the right-hand side:

‘E[(Rn,t(z)) — (Bnt(z ) e | X7(0) ”
7‘ B t(2)) B [[Tr(R)(2)) = Tr(Rua ()| | X"(0)]
(R t2) e [|<RM Dl [ @)+ 08 R (). o)

_ %E [Tr (Rnt(2)) | X™(0 ‘ X0 }

" ¢ 2 8n + 3)t2

1/ 2 12¢2
<[ (Bnt(2) = (Im(t)—i_lrrl?’t(z)>

Using this upper bound in (C.1), we obtain by summation the result and using that for any £,




Appendix D: Proof of Lemma 3.5
From (3.7) and introducing w1 (z) such that:
Gupdo, (2) = Gun (Wep(2)) = Goy (W1 (2))-
We can derive from Theorem-Definition 2.5 that i 1, (z) solves the equation (i) of Lemma 3.5 and that:
z=Wp(2) + tG%z (Wgp(2)),

for all z € CT. The latter equation justifies (ii) of Lemma 3.5.

Appendix E: Proof of Corollary 4.3

Recall that from Proposition 4.2 and Theorem 4.1, the mean integrated square error is

29
78 Coar.€h

(72 -4t n

MISE =E||[fo,n — pol|*| < Le™2"" +

Minimizing in h amounts to solving the following equation obtained by taking the derivative in the
right hand side of (4.6):

2’)/ 2Cl -1
P(h) ::exp(F—l—ﬁ)hT =0(n). (E.1)
Consequently for the minimizer h, of (E.1) we get that
2y
ehx

— Opl-Te—2ah"
- £ 9
for some constant C' > 0. Hence, in view of (4.6), when r < 1 the bias dominates the variance and
the contrary occurs when r > 1. Thus, there are three cases to consider to derive rates of convergence:
r=1,r <1andr > 1. To solve the equation (E.1), we follow the steps of Lacour [25].
Caser =1.
The case where r = 1 provides a window h, = 2(a + )/ logn and we get
MISE=0 (n~#%7).
Caser < 1.
In this case, and in the case r > 1, following the ideas in [25], we will look for the bandwidth
h expressed as an expansion in log(n). In this expansion and when r < 1, the integer k such that
Tf—l <r< % will play a role. The optimal bandwidth is of the form:
k . -1
hy = 27(log(n) + (r —1)loglog(n) + Z b;(log n)rﬂ(r_l)) , (E.2)

1=0
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where the coefficients b;’s are a sequence of real numbers chosen so that ¢)(hs) = O(n). The heuristic
of this expansion is as follows: the first term corresponds to the solution of e2¥/" = n. The second term
is added to compensate the factor A"~ ! in (E.1) evaluated with the previous bandwidth, and the third
term aims at compensating the factor e2a/h" Notice that 7 — 1 < 0 and that the definition of implies
thatr >r+ (r—1)>--->r+k(r—1)>0>r+ (k+1)(r — 1). This explains the range of the
index ¢ in the sum of the right hand side of (E.2).

Plugging (E.2) into (E.1),

k

P(hs) :Tl( log n) r=1 exp (Z b; (log n)r+i(r71)>

(r — 1) loglog(n) + 3 b;(logn)™+1(r=1) )r)
logn

N (r —1)loglog(n) + Z?:O bi(logn)"+i(r=1) ) —(r=1)

logn
k
=(2v)" 1n(l + vn)1*7” exp (Z bi(logn)rﬂ(’”*l))
=0
2a r kTT—lw-r—' .
X exp ((27)7, (logn) [1 +j§0 ( (j)+ 1)(! ])U%H n O(WZH)D

where

_ k oy ri(r—1) k ,
v — (r —1)loglog(n) +lzz:0 b;(logn) 1) logllog(n) n Z bi(log n)(z+1)(r—1)
ogn ogn g

converges to zero when n — +00. We note that

k—j—1
Wit = Z Z bpo.__bpj(logn)(z‘—&-j-‘,-l)(r—l)+O((10gn)(1€+1)(r—1))
i=0 po+--pj=i

k
=3 X baeby(logm) ) O (logm) CTHT).

l=j+1po+-pj=C—j—1

So
k .
w(h*) = (2*}/)7’ 1n(1 + Un)l_T exp ( E bi(logn)rﬂ(r_l))
=0
2 T
X exp { (27&)r (logn)
k -1

2a rir—1)-(r—j) b
2Ny D bpby | (logmy Y

po+-pj=L—j—1

11



+ 0 (1ogn)*D DY)

k
= (29)" " 'n(1 4 vp) T exp (Z M;(log n)i(r—l)‘*‘r + 0(1)).
=0

The condition % (h.) = O(n) implies the following choices of constants M;’s:

2a ) B 2a r(r=1)---(r—j)
2 A P R R 2. bmeehy
Jj=0 pot-pi=i—j—1

Moy =0bgy+

Since h. solves (E.1) if all the M; =0 for i € {0, - - - k}, the above system provides equation by equa-
tion the proper coefficients b; .

i—1
bg:_(;wa)?” 22;L)TZTT§+1)TJ) 2 By ®Y
Jj=0 po+--pj=i—j—1
Replacing in (4.6), we get:
2a k . r
MISE = O(exp{ — 2 [logn + (r—1)loglogn + gb:(logn)r—i—z(r—l)} })

Case r > 1.

Here, let us denote by k the integer such that k%_l < % < k—+2 We look here for a bandwidth of the
form:

g —1
hl —2a<1ogn—|— loglog( )+Zdi(logn)%7171> , (E4)

where the coefficients d;’s will be chosen so that ¢)(h.) = O(n).
Similar computations as for the case r < 1 provide that:

k
() =(20) T (14 0) 77 xexp (Y dilogn) T )

=0

2y 1/r
X exp (W(logn) / {1—1—

k ¢—1 1/1 1 .
Lol qy...(1_ _ y
ZZ Z T(r (')+ 1)(|T ]>dpo dpj(log”) T +O((logn)le)D
=1 j=0po+-p;=b—j—1 J b
k
=(2a)%n(1 + Un)i% exp (ZMi(logn)%fi%l + 0(1))
=0

where here
1

1 Lp—
—Lloglog(n) + S°F  d;(logn)r ~"+
logn

Un =

12



and

M0:d0_|_27’y Vi>0, M; = Z Z %(%_U(%_j)d cood,
(2a)1/" 1/7" G+t
J=0po+--pj=i—j—1
(E.5)
Solving My = - -- = M}, = 0 provides the coefficients d; so that (E.1) is satisfied.

Plugging the bandwidth h. with the coefficients d; into (4.6), we obtain:

k

r—111/7
1oglogn+§d* logn) G ] })

MISE = 0( exp{ [1ogn +

2
(2a)1/r

This concludes the proof of Corollary 4.3.
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