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Abstract

High dimensional Poisson regression has become a standard framework for the analysis of
massive counts datasets. In this work we estimate the intensity function of the Poisson
regression model by using a dictionary approach, which generalizes the classical basis ap-
proach, combined with a Lasso or a group-Lasso procedure. Selection depends on penalty
weights that need to be calibrated. Standard methodologies developed in the Gaussian
framework can not be directly applied to Poisson models due to heteroscedasticity. Here
we provide data-driven weights for the Lasso and the group-Lasso derived from concen-
tration inequalities adapted to the Poisson case. We show that the associated Lasso and
group-Lasso procedures satisfy fast and slow oracle inequalities. Simulations are used
to assess the empirical performance of our procedure, and an original application to the
analysis of Next Generation Sequencing data is provided.

Keywords: Functional Poisson regression, adaptive lasso, adaptive group-lasso, calibra-
tion, concentration

Introduction

Poisson functional regression has become a standard framework for image or spectra anal-
ysis, in which case observations are made of n independent couples (Yi, Xi)i=1,...,n, and can
be modeled as

Yi|Xi ∼ Poisson(f0(Xi)).
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The Xi’s (random or fixed) are supposed to lie in a known compact support of Rd (d ≥ 1),
say [0, 1]d, and the purpose is to estimate the unknown intensity function f0 assumed
to be positive. Wavelets have been used extensively for intensity estimation, and the
statistical challenge has been to propose thresholding procedures in the spirit of Donoho
and Johnstone (1994), that were adapted to the variance’s spatial variability associated
with the Poisson framework. An early method to deal with high dimensional count data
has been to apply a variance stabilizing-transform (see Anscombe (1948)) and to treat
the transformed data as if they were Gaussian. More recently, the same idea has been
applied to the data’s decomposition in the Haar-wavelet basis, see Fryzlewicz and Nason
(2004) and Fryzlewicz (2008), but these methods rely on asymptotic approximations and
tend to show lower performance when the level of counts is low (see Besbeas et al. (2004)).
Dedicated wavelet thresholding methods were developed in the Poisson setting by Kolaczyk
(1999) and Sardy et al. (2004), and a recurrent challenge has been to define an appropriate
threshold like the universal threshold for shrinkage and selection, as the heteroscedasticity
of the model calls for component-wise thresholding.

In this work we first propose to enrich the standard wavelet approach by considering
the so-called dictionary strategy. We assume that log f0 can be well approximated by a
linear combination of p known functions, and we reduce the estimation of f0 to the estima-
tion of p coefficients. Dictionaries can be built from classical orthonormal systems such as
wavelets, histograms or the Fourier basis, which results in a framework that encompasses
wavelet methods. Considering overcomplete (ie redundant) dictionaries is efficient to cap-
ture different features in the signal, by using sparse representations (see Chen et al. (2001)
or Tropp (2004)). For example, if log f0 shows piece-wise constant trends along with some
periodicity, combining both Haar and Fourier bases will be more powerful than separate
strategies, and the model will be sparse in the coefficients domain. To ensure sparse es-
timations, we consider the Lasso and the group-Lasso procedures. Group estimators are
particularly well adapted to the dictionary framework, especially if we consider dictionar-
ies based on a wavelet system, for which it is well known that coefficients can be grouped
scale-wise for instance (see Chicken and Cai (2005)). Finally, even if we do not make any
assumption on p itself, it may be larger than n and methodologies based on `1-penalties,
such as the Lasso and the group-Lasso appear appropriate.

The statistical properties of the Lasso are particularly well understood in the context of
regression with i.i.d. errors, or for density estimation for which a range of oracle inequal-
ities have been established. These inequalities, now widespread in the literature, provide
theoretical error bounds that hold on events with a controllable (large) probability. See for
instance Bertin et al. (2011), Bickel et al. (2009), Bunea et al. (2007a,b) and the references
therein. For generalized linear models, Park and Hastie (2007) studied `1-regularization
path algorithms and van de Geer (2008) established non-asymptotic oracle inequalities.
The sign consistency of the Lasso has been studied by Jia et al. (2013) for a very specific
Poisson model. Finally, we also mention than the Lasso has also been extensively consid-
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ered in survival analysis. See for instance Gäıffas and Guilloux (2012), Zou (2008), Kong
and Nan (2014), Bradic et al. (2011), Lemler (2013) and Hansen et al. (2014).

Here we consider not only the Lasso estimator but also its extension, the group-Lasso
proposed by Yuan and Lin (2006), which is relevant when the set of parameters can be par-
titioned into groups. The analysis of the group-Lasso has been led in different contexts. For
instance, consistency has been studied by Bach (2008), Obozinski et al. (2011) and Wei and
Huang (2010). In the linear model, Nardi and Rinaldo (2008) derived conditions ensuring
various asymptotic properties such as consistency, oracle properties or persistence. Still for
the linear model, Lounici et al. (2011) established oracle inequalities and, in the Gaussian
setting, pointed out advantages of the group-Lasso with respect to the Lasso, generalizing
the results of Chesneau and Hebiri (2008) and Huang and Zhang (2010). We also mention
Meier et al. (2008) who studied the group-Lasso for logistic regression, Blazere et al. (2014)
for generalized linear model with Poisson regression as a special case and Dalalyan et al.
(2013) for other linear heteroscedastic models.

As pointed out by empirical comparative studies (see Besbeas et al. (2004)), the cal-
ibration of any thresholding rule is of central importance. Here we consider Lasso and
group-Lasso penalties of the form

pen(β) =

p∑
j=1

λj |βj |

and

peng(β) =
K∑
k=1

λgk‖βGk‖2,

where G1 ∪ · · · ∪GK is a partition of {1, . . . , p} into non-overlapping groups (see Section 1
for more details). By calibration we refer to the definition and to the suitable choice of the
weights λj and λgk, which is intricate in heteroscedastic models, especially for the group-
Lasso. For functional Poissonian regression, the ideal shape of these weights is unknown,
even if for the group-Lasso, the λgk’s should of course depend on the groups size. As for
the Lasso, most proposed weights in the literature are non-random and constant such that
the penalty is proportional to ‖β‖1, but when facing variable selection and consistency
simultaneously, Zou (2006) showed the interest in considering non-constant data-driven `1-
weights even in the simple case where the noise is Gaussian with constant variance. This
issue becomes even more critical in Poisson functional regression in which variance shows
spatial heterogeneity. As Zou (2006), our first contribution is to propose here adaptive
procedures with weights depending on the data. Weights λj for the Lasso are derived by
using sharp concentration inequalities, in the same spirit as Bertin et al. (2011), Gäıffas and
Guilloux (2012), Lemler (2013) and Hansen et al. (2014), but adapted to the Poissonian
setting. To account for heteroscedasticity, weights λj are component-specific and depend
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on the data (see Theorem 1). We propose a similar procedure for the calibration of the
group-Lasso. In most proposed procedures, the analogs of the λgk’s are proportional to the√
|Gk|’s (see Nardi and Rinaldo (2008), Bühlmann and van de Geer (2011) or Blazere et al.

(2014)). But to the best of our knowledge, adaptive group-Lasso procedures (with weights
depending on the data) have not been proposed yet. This is the purpose of Theorem 2,
which is the main result of this work, generalizing Theorem 1 by using sharp concentration
inequalities for infinitely divisible vectors. We show the shape relevance of the data-driven
weights λgk by comparing them to the weights proposed by Lounici et al. (2011) in the
Gaussian framework. In Theorem 2, we do not impose any condition on the groups size.
However, whether |Gk| is smaller than log p or not highly influences the order of magnitude
of λgk.

Our second contribution consists in providing the theoretical validity of our approach
by establishing slow and fast oracle inequalities under RE-type conditions in the same spirit
as Bickel et al. (2009). Closeness between our estimates and f0 is measured by using the
empirical Kullback-Leibler divergence. We show that classical oracle bounds are achieved.
We also show the relevance of considering the group-Lasso instead of the Lasso in some
situations. Our results, that are non-asymptotic, are valid under very general conditions on
the design (Xi)i=1,...,n and on the dictionary. However, to shed some light on our results, we
illustrate some of them in the asymptotic setting with classical dictionaries like wavelets,
histograms or Fourier bases. Our approach generalizes the classical basis approach and
in particular block wavelet thresholding which is equivalent to group-Lasso in that case
(see Yuan and Lin (2006)). We refer the reader to Chicken and Cai (2005) for a deep
study of block wavelet thresholding in the context of density estimation whose framework
shows some similarities with ours in terms of heteroscedasticity. Note that sharp estimation
of variance terms proposed in this work can be viewed as an extension of coarse bounds
provided by Chicken and Cai (2005). Finally, we emphasize that our procedure differs from
Blazere et al. (2014)’s one in several aspects: First, in their Poisson regression setting, they
do not consider a dictionary approach. Furthermore, their weights are constant and not
data-driven, so are strongly different from ours. Finally, rates of Blazere et al. (2014) are
established under much stronger assumptions than ours (see Section 3.1 for more details).

Finally, we explore the empirical properties of our calibration procedures by using
simulations. We show that our procedures are very easy to implement, and we compare
their performance with variance-stabilizing transforms and cross-validation. The calibrated
Lasso and group-Lasso are associated with excellent reconstruction properties, even in the
case of low counts. We also propose an original application of functional Poisson regres-
sion to the analysis of Next Generation Sequencing data, with the denoising of a Poisson
intensity applied to the detection of replication origins in the human genome (see Picard
et al. (2014)).

This article is organized as follows. In Section 1, we introduce the Lasso and group-
Lasso procedures we propose in the dictionary approach setting. In Section 2, we derive
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data-driven weights of our procedures that are extensively commented. Theoretical per-
formance of our estimates are studied in Section 3 in the oracle approach. In Section 4,
we investigate the empirical performance of the proposed estimators using simulated data,
and an application is provided on next generation sequencing data in Section 5.

1. Penalized log-likelihood estimates for Poisson regression and
dictionary approach

We consider the functional Poisson regression model, with n observed counts Yi ∈ N
modeled such that:

Yi|Xi ∼ Poisson(f0(Xi)), (1.1)

with the Xi’s (random or fixed) supposed to lie in a known compact support, say [0, 1]d.
Since the goal here is to estimate the function f0 assumed to be positive on [0, 1]d, a
natural candidate is a function f of the form f = exp(g). Then, we consider the so-
called dictionary approach which consists in decomposing g as a linear combination of the
elements of a given finite dictionary of functions denoted by Υ = {ϕj}j∈J , with ‖ϕj‖2 = 1
for all j. Consequently, we choose g of the form:

g =
∑
j∈J

βjϕj ,

with p = card(J ) that may depend on n (as well as the elements of Υ). Without loss
of generality we will assume in the following that J = {1, . . . , p}. In this framework,
estimating f0 is equivalent to estimating the vector of regression coefficients β = (βj)j∈J ∈
Rp. In the sequel, we write gβ =

∑
j∈J βjϕj , fβ = exp(gβ), for all β ∈ Rp. Note that we

do not require the model to be true, that is we do not suppose the existence of β0 such
that f0 = fβ0

.
The strength of the dictionary approach lies in its ability to capture different features

of the function to estimate (smoothness, sparsity, periodicity,...) by sparse combinations
of elements of the dictionary so that only few coefficients need to be selected, which lim-
its estimation errors. Obviously, the dictionary approach encompasses the classical basis
approach consisting in decomposing g on an orthonormal system. The richer the dictio-
nary, the sparser the decomposition, so p can be larger than n and the model becomes
high-dimensional.

We consider a likelihood-based penalized criterion to select β, the coefficients of the
dictionary decomposition. We denote by A the n × p-design matrix with Aij = ϕj(Xi),
Y = (Y1, . . . , Yn)T and the log-likelihood associated with this model is

l(β) =
∑
j∈J

βj(A
TY)j −

n∑
i=1

exp
(∑
j∈J

βjAij

)
−

n∑
i=1

log(Yi!),

which is a concave function of β. Next sections propose two different ways to penalize
−l(β).
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1.1 The Lasso estimate

The first penalty we propose is based on the (weighted) `1-norm and we obtain a Lasso-type
estimate by considering

β̂
L
∈ argmin

β∈Rp

−l(β) +

p∑
j=1

λj |βj |

 . (1.2)

The penalty term
∑p

j=1 λj |βj | depends on positive weights (λj)j∈J that vary according to
the elements of the dictionary and are chosen in Section 2.1. This choice of varying weights
instead of a unique λ stems from heteroscedasticity due to the Poisson regression, and a
first part of our work consists in providing theoretical data-driven values for these weights,
in the same spirit as Bertin et al. (2011) or Hansen et al. (2014) for instance. From the

first order optimality conditions (see Bühlmann and van de Geer (2011)), β̂
L

satisfies
AT
j (Y − exp(Aβ̂

L
)) = λj

β̂Lj

|β̂Lj |
if β̂Lj 6= 0,

|AT
j (Y − exp(Aβ̂

L
))| ≤ λj if β̂Lj = 0,

where exp(Aβ) = (exp((Aβ)1), . . . , exp((Aβ)n))T and Aj is the j-th column of the matrix

A. Note that the larger the λj ’s, the sparser the estimates. In particular β̂
L

belongs to
the set of the vectors β ∈ Rp that satisfies for any j ∈ J ,

|AT
j (Y − exp(Aβ))| ≤ λj . (1.3)

The Lasso estimator of f0 is now easily derived.

Definition 1 The Lasso estimator of f0 is defined as

f̂L(x) := exp(ĝL(x)) := exp

(
p∑
j=1

β̂Lj ϕj(x)

)
.

We also propose an alternative to f̂L by considering the group-Lasso.

1.2 The group-Lasso estimate

We also consider the grouping of coefficients into non-overlapping blocks. Indeed, group
estimates may be better adapted than their single counterparts when there is a natural
group structure. The procedure keeps or discards all the coefficients within a block and
can increase estimation accuracy by using information about coefficients of the same block.
In our setting, we partition the set of indices J = {1, . . . , p} into K non-empty groups:

{1, . . . , p} = G1 ∪G2 ∪ · · · ∪GK .
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For any β ∈ Rp, βGk stands for the sub-vector of β with elements indexed by the elements
of Gk, and we define the block `1-norm on Rp by

‖β‖1,2 =
K∑
k=1

‖βGk‖2.

Similarly, AGk is the n×|Gk| submatrix of A whose columns are indexed by the elements of

Gk. Then the group-Lasso β̂
gL

is a solution to the following convex optimization problem:

β̂
gL
∈ argmin

β∈Rp

{
− l(β) +

K∑
k=1

λgk‖βGk‖2
}
,

where the λgk’s are positive weights for which we also provide a theoretical data-driven
expression in Section 2.2. This group-estimator is constructed similarly to the Lasso, with
the block `1-norm being used instead of the `1-norm. In particular, note that if all groups

are of size one then we recover the Lasso estimator. Convex analysis states that β̂
gL

is a solution of the above optimization problem if the p-dimensional vector 0 is in the

subdifferential of the objective function. Therefore, β̂
gL

satisfies:
AT
Gk

(Y − exp(Aβ̂
gL

)) = λgk
β̂
gL

Gk

‖β̂
gL

Gk
‖2

if β̂
gL

Gk
6= 0,

‖AT
Gk

(Y − exp(Aβ̂
gL

))‖2 ≤ λgk if β̂
gL

Gk
= 0.

This procedure naturally enhances group-sparsity as analyzed by Yuan and Lin (2006),
Lounici et al. (2011) and references therein.

Obviously, β̂
gL

belongs to the set of the vectors β ∈ Rp that satisfy for any k ∈
{1, . . . ,K},

‖AT
Gk

(Y − exp(Aβ))‖2 ≤ λgk. (1.4)

Now, we set

Definition 2 The group Lasso estimator of f0 is defined as

f̂gL(x) := exp(ĝgL(x)) := exp

(
p∑
j=1

β̂gLj ϕj(x)

)
.

In the following our results are given conditionally on the Xi’s, and E (resp. P) stands
for the expectation (resp. the probability measure) conditionally on X1, . . . , Xn. In some
situations, to give orders of magnitudes of some expressions, we will use the following
definition:
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Definition 3 We say that the design (Xi)i=1,...,n is regular if either the design is deter-
ministic and the Xi’s are equispaced in [0, 1] or the design is random and the Xi’s are i.i.d.
with density h, with

0 < inf
x∈[0,1]d

h(x) ≤ sup
x∈[0,1]d

h(x) <∞.

2. Weights calibration using concentration inequalities

Our first contribution is to derive theoretical data-driven values of the weights λj ’s and
λgk’s, specially adapted to the Poisson model. In the classical Gaussian framework with
noise variance σ2, weights for the Lasso are chosen to be proportional to σ

√
log p (see Bickel

et al. (2009) for instance). The Poisson setting is more involved due to heteroscedasticity
and such simple tuning procedures cannot be generalized easily. Sections 2.1 and 2.2 give
closed forms of parameters λj and λgk. They are based on concentration inequalities specific
to the Poisson model. In particular, λj is used to control the fluctuations of AT

j Y around

its mean, which enhances the key role of Vj , a variance term (the analog of σ2) defined by

Vj = Var(AT
j Y) =

n∑
i=1

f0(Xi)ϕ
2
j (Xi). (2.1)

2.1 Data-driven weights for the Lasso procedure

For any j, we choose a data-driven value for λj as small as possible so that with high
probability, for any j ∈ J ,

|AT
j (Y − E[Y])| ≤ λj . (2.2)

Such a control is classical for Lasso estimates (see the references above) and is also a key
point of the technical arguments of the proofs. Requiring that the weights are as small as
possible is justified, from the theoretical point of view, by oracle bounds depending on the
λj ’s (see Corollaries 1 and 2). Furthermore, as discussed in Bertin et al. (2011), choosing
theoretical Lasso weights as small as possible is also a suitable guideline for practical
purposes. Finally, note that if the model were true, i.e. if there existed a true sparse
vector β0 such that f0 = fβ0

, then E[Y] = exp(Aβ0) and β0 would belong to the set
defined by (1.3) with large probability. The smaller the λj ’s, the smaller the set within

selection of β̂
L

is performed. So, with a sharp control in (2.2), we increase the probability
to select β0. The following theorem provides the data-driven weights λj ’s. The main
theoretical ingredient we use to choose the weights λj ’s is a concentration inequality for
Poisson processes and to proceed, we link the quantity AT

j Y to a specific Poisson process,
as detailed in the proofs Section 7.1.
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Theorem 1 Let j be fixed and γ > 0 be a constant. Define V̂j =
∑n

i=1 ϕ
2
j (Xi)Yi the

natural unbiased estimator of Vj and

Ṽj = V̂j +

√
2γ log pV̂j max

i
ϕ2
j (Xi) + 3γ log pmax

i
ϕ2
j (Xi).

Set

λj =

√
2γ log pṼj +

γ log p

3
max
i
|ϕj(Xi)|, (2.3)

then

P
(
|AT

j (Y − E[Y])| ≥ λj
)
≤ 3

pγ
. (2.4)

The first term
√

2γ log pṼj in λj is the main one, and constitutes a variance term depending

on Ṽj that slightly overestimates Vj (see Section 7.1 for more details about the derivation

of Ṽj). Its dependence on an estimate of Vj was expected since we aim at controlling
fluctuations of AT

j Y around its mean. The second term comes from the heavy tail of the
Poisson distribution, and is the price to pay, in the non-asymptotic setting, for the added
complexity of the Poisson framework compared to the Gaussian framework.

To shed more lights on the form of the proposed weights from the asymptotic point of
view, assume that the design is regular (see Definition 3). In this case, it is easy to see
that under mild assumptions on f0, Vj is asymptotically of order n. If we further assume
that

max
i
|ϕj(Xi)| = o(

√
n/ log p), (2.5)

then, when p is large, with high probability, V̂j (and then Ṽj) is also of order n (using
Remark 2 in the proofs Section 7.1), and the second term in λj is negligible with respect
to the first one. In this case, λj is of order

√
n log p. Note that Assumption (2.5) is quite

classical in heteroscedastic settings (see Bertin et al. (2011)). By taking the hyperparameter
γ larger than 1, then for large values of p, (2.2) is true for any j ∈ J , with large probability.

2.2 Data-driven weights for the group Lasso procedure

Current group-Lasso procedures are tuned by choosing the analog of λgk proportional to√
|Gk| (see Nardi and Rinaldo (2008), Chapter 4 of Bühlmann and van de Geer (2011) or

Blazere et al. (2014)). A more refined version of tuning group-Lasso is provided by Lounici
et al. (2011) in the Gaussian setting (see below for a detailed discussion). To the best of
our knowledge, data-driven weights (with theoretical validation) for the group-Lasso have
not been proposed yet. It is the purpose of Theorem 2. Similarly to the previous section,
we propose data-driven theoretical derivations for the weights λgk’s that are chosen as small
as possible, but satisfying for any k ∈ {1, . . . ,K},

‖AT
Gk

(Y − E[Y])‖2 ≤ λgk (2.6)
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with high probability (see (1.4)). Choosing the smallest possible weights is also recom-
mended by Lounici et al. (2011) in the Gaussian setting (see in their Section 3 the discus-
sion about weights and comparisons with coarser weights of Nardi and Rinaldo (2008)).
Obviously, λgk should depend on sharp estimates of the variance parameters (Vj)j∈Gk . The
following theorem is the equivalent of Theorem 1 for the group-Lasso. Relying on specific
concentration inequalities established for infinitely divisible vectors by Houdré et al. (2008),
it requires a known upper bound for f0, which can be chosen as max

i
Yi in practice.

Theorem 2 Let k ∈ {1, . . . ,K} be fixed and γ > 0 be a constant. Assume that there exists
M > 0 such that for any x, |f0(x)| ≤M . Let

ck = sup
x∈Rn

‖AGkA
T
Gk

x‖2
‖AT

Gk
x‖2

. (2.7)

For all j ∈ Gk, still with V̂j =
∑n

i=1 ϕ
2
j (Xi)Yi, define

Ṽ g
j = V̂j +

√
2(γ log p+ log |Gk|)V̂j max

i
ϕ2
j (Xi) + 3(γ log p+ log |Gk|) max

i
ϕ2
j (Xi). (2.8)

Let γ > 0 be fixed. Define bik =
√∑

j∈Gk ϕ
2
j (Xi) and bk = max

i
bik. Finally, we set

λgk =

(
1 +

1

2
√

2γ log p

)√∑
j∈Gk

Ṽ g
j + 2

√
γ log pDk, (2.9)

where Dk = 8Mc2
k + 16b2kγ log p. Then,

P

(
‖AT

Gk
(Y − E[Y])‖2 ≥ λgk

)
≤ 2

pγ
. (2.10)

Similarly to the weights λj ’s of the Lasso, each weight λgk is the sum of two terms. The

term Ṽ g
j is an estimate of Vj so it plays the same role as Ṽj . In particular, Ṽ g

j and Ṽj are
of the same order since log |Gk| is not larger than log p. The first term in λgk is a variance
term, and the leading constant 1 + 1/(2

√
2γ log p) is close to 1 when p is large. So, the first

term is close to the square root of the sum of sharp estimates of the (Vj)j∈Gk , as expected
for a grouping strategy (see Chicken and Cai (2005)).

The second term, namely 2
√
γ log pDk, is more involved. To shed light on it, since bk

and ck play a key role, we first state the following proposition controlling values of these
terms.

Proposition 1 Let k be fixed. We have

bk ≤ ck ≤
√
nbk. (2.11)
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Furthermore,

c2
k ≤ max

j∈Gk

∑
j′∈Gk

∣∣∣ n∑
l=1

ϕj(Xl)ϕj′(Xl)
∣∣∣. (2.12)

The first inequality of Proposition 1 shows that 2
√
γ log pDk is smaller than ck

√
log p+

bk log p ≤ 2ck log p up to a constant depending on γ and M . At first glance, the second
inequality of Proposition 1 shows that ck is controlled by the coherence of the dictionary
(see Tropp (2004)) and bk depends on (maxi |ϕj(Xi)|)j∈Gk . In particular, if for a given
block Gk, the functions (ϕj)j∈Gk are orthonormal, then for fixed j 6= j′, if the Xi’s are
deterministic and equispaced on [0, 1] or if the Xi’s are i.i.d. with a uniform density on
[0, 1]d, then, when n is large

1

n

n∑
l=1

ϕj(Xl)ϕj′(Xl) ≈
∫
ϕj(x)ϕj′(x)dx = 0

and we expect

c2
k . max

j∈Gk

n∑
l=1

ϕ2
j (Xl).

In any case, by using the Cauchy-Schwarz Inequality, Condition (2.12) gives

c2
k ≤ max

j∈Gk

∑
j′∈Gk

(
n∑
l=1

ϕ2
j (Xl)

)1/2( n∑
l=1

ϕ2
j′(Xl)

)1/2

. (2.13)

To further discuss orders of magnitude for the ck’s, we consider the following condition

max
j∈Gk

n∑
l=1

ϕ2
j (Xl) = O(n), (2.14)

which is satisfied for instance for fixed k if the design is regular, since ‖ϕj‖2 = 1. Under
Assumption (2.14), Inequality (2.13) gives

c2
k = O(|Gk|n).

We can say more on bk and ck (and then on the order of magnitude of λgk) by considering
classical dictionaries of the literature to build the blocks Gk, which is of course realized in
practice. In the subsequent discussions, the balance between |Gk| and log p plays a key role.
Note also that log p is the group size often recommended in the classical setting (p = n)
for block thresholding (see Theorem 1 of Chicken and Cai (2005)).
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2.2.1 Order of magnitude of λgk by considering classical dictionaries.

Let Gk be a given block and assume that it is built by using only one of the subsequent
systems. For each example, we discuss the order of magnitude of the term Dk = 8Mc2

k +
16b2kγ log p. For ease of exposition, we assume that f0 is supported by [0, 1] but we could
easily generalize the following discussion to the multidimensional setting.

Bounded dictionary. Similarly to Blazere et al. (2014), we assume that there exists a
constant L not depending on n and p such that for any j ∈ Gk, ‖ϕj‖∞ ≤ L. For instance,
atoms of the Fourier basis satisfy this property. We then have

b2k ≤ L2|Gk|.

Finally, under Assumption (2.14),

Dk = O(|Gk|n+ |Gk| log p). (2.15)

Compactly supported wavelets. Consider the one-dimensional Haar dictionary: For
j = (j1, k1) ∈ Z2 we set ϕj(x) = 2j1/2ψ(2j1x− k1), ψ(x) = 1[0,0.5](x)− 1]0.5,1](x). Assume
that the block Gk depends on only one resolution level j1: Gk = {j = (j1, k1) : k1 ∈ Bj1},
where Bj1 is a subset of {0, 1, . . . , 2j1 − 1}. In this case, since for j, j′ ∈ Gk with j 6= j′, for
any x, ϕj(x)ϕj′(x) = 0,

b2k = max
i

∑
j∈Gk

ϕ2
j (Xi) = max

i,j∈Gk
ϕ2
j (Xi) = 2j1

and Inequality (2.12) gives

c2
k ≤ max

j∈Gk

n∑
l=1

ϕ2
j (Xl).

If, similarly to Condition (2.5), we assume that maxi,j∈Gk |ϕj(Xi)| = o(
√
n/ log p), then

b2k = o(n/ log p),

and under Assumption (2.14),

Dk = O(n),

which improves (2.15). This property can be easily extended to general compactly sup-
ported wavelets ψ, since, in this case, for any j = (j1, k1)

Sj =
{
j′ = (j1, k

′
1) : k′1 ∈ Z, ϕj × ϕj′ 6≡ 0

}
is finite with cardinal only depending on the support of ψ.

12



Adaptive Lasso and Group-Lasso for Functional Poisson Regression

Regular histograms. Consider a regular grid of the interval [0, 1], {0, δ, 2δ, . . .} with
δ > 0. Consider then (ϕj)j∈Gk such that for any j ∈ Gk, there exists ` such that ϕj =
δ−1/21(δ(`−1),δ`]. We have ‖ϕj‖2 = 1 and ‖ϕj‖∞ = δ−1/2. As for the wavelet case, for
j, j′ ∈ Gk with j 6= j′, for any x, ϕj(x)ϕj′(x) = 0, then

b2k = max
i

∑
j∈Gk

ϕ2
j (Xi) = max

i,j∈Gk
ϕ2
j (Xi) = δ−1.

If, similarly to Condition (2.5), we assume that maxi,j∈Gk |ϕj(Xi)| = o(
√
n/ log p), then

b2k = o(n/ log p),

and under Assumption (2.14),
Dk = O(n).

The previous discussion shows that we can exhibit dictionaries such that c2
k and Dk

are of order n and the term b2k log p is negligible with respect to c2
k. Then, if similarly to

Section 2.1, the terms (Ṽ g
j )j∈Gk are all of order n, λgk is of order

√
n×max(log p; |Gk|) and

the main term in λgk is the first one as soon as |Gk| ≥ log p. In this case, λgk is of order√
|Gk|n.

2.2.2 Comparison with the Gaussian framework.

Now, let us compare the λgk’s to the weights proposed by Lounici et al. (2011) in the
Gaussian framework. Adapting their notations to ours, Lounici et al. (2011) estimate the
vector β0 in the model Y ∼ N (Aβ0, σ

2In) by using the group-Lasso estimate with weights
equal to

λ̃gk = 2

√
σ2
(
Tr(AT

Gk
AGk) + 2|||AT

Gk
AGk |||(2γ log p+

√
|Gk|γ log p)

)
,

where |||AT
Gk

AGk ||| denotes the maximal eigenvalue of AT
Gk

AGk (see (3.1) in Lounici et al.
(2011)). So, if |Gk| ≤ log p, the above expression is of the same order as√

σ2Tr(AT
Gk

AGk) +
√
σ2|||AT

Gk
AGk |||γ log p. (2.16)

Neglecting the term 16b2kγ log p in the definition of Dk (see the discussion in Section 2.2.1),
we observe that λgk is of the same order as√∑

j∈Gk

Ṽ g
j +

√
Mc2

kγ log p. (2.17)

Since M is an upper bound of Var(Yi) = f0(Xi) for any i, strong similarities can be
highlighted between the forms of the weights in the Poisson and Gaussian settings:

13
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- For the first terms, Ṽ g
j is an estimate of Vj and

∑
j∈Gk

Vj ≤M
∑
j∈Gk

n∑
i=1

ϕ2
j (Xi) = M × Tr(AT

Gk
AGk).

- For the second terms, in view of (2.7), c2
k is related to |||AT

Gk
AGk ||| since we have

c2
k = sup

x∈Rn

‖AGkA
T
Gk

x‖22
‖AT

Gk
x‖22

≤ sup
y∈R|Gk|

‖AGky‖22
‖y‖22

= |||AT
Gk

AGk |||.

These strong similarities between the Gaussian and the Poissonian settings strongly support
the shape relevance of the weights we propose.

2.2.3 Suboptimality of the naive procedure

Finally, we show that the naive procedure that considers
√∑

j∈Gk λ
2
j instead of λgk is

suboptimal even if, obviously due to Theorem 1, with high probability,

‖AT
Gk

(Y − E[Y])‖2 ≤
√∑
j∈Gk

λ2
j .

Suboptimality is justified by following heuristic arguments. Assume that for all j and k, the
first terms in (2.3) and (2.9) are the main ones and Ṽj ≈ Ṽ g

j ≈ Vj . Then by considering λgk

instead of
√∑

j∈Gk λ
2
j , we improve our weights by the factor

√
log p, since in this situation,

λgk ≈
√∑
j∈Gk

Vj

and √∑
j∈Gk

λ2
j ≈

√
log p

∑
j∈Gk

Vj ≈
√

log p λgk.

Remember that our previous discussion shows the importance to consider weights as small
as possible as soon as (2.6) is satisfied with high probability. The next section will confirm
this point.

3. Oracle inequalities

In this section, we establish oracle inequalities to study theoretical properties of our estima-
tion procedures. The Xi’s are still assumption-free, and the performance of our procedures
will be only evaluated at the Xi’s. To measure the closeness between f0 and an estimate,
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we use the empirical Kullback-Leibler divergence associated with our model, denoted by
K(·, ·). Straightforward computations (see for instance Leblanc and Letué (2006)) show
that for any positive function f ,

K(f0, f) = E
[
log

(
L(f0)

L(f)

)]
=

n∑
i=1

[(f0(Xi) log f0(Xi)− f0(Xi))]− [(f0(Xi) log f(Xi)− f(Xi))] ,

where L(f) is the likelihood associated with f . We speak about empirical divergence to
emphasize its dependence on the Xi’s. Note that we can write

K(f0, f) =
n∑
i=1

f0(Xi)(e
ui − ui − 1), (3.1)

where ui = log f(Xi)
f0(Xi)

. This expression clearly shows that K(f0, f) is non-negative and

K(f0, f) = 0 if and only if for all i ∈ {1, . . . , n}, we have ui = 0, that is f(Xi) = f0(Xi)
for all i ∈ {1, . . . , n}.

Remark 1 To weaken the dependence on n in the asymptotic setting, an alternative, not
considered here, would consist in considering n−1K(·, ·) instead of K(·, ·).

If the classical L2-norm is the natural loss-function for penalized least squares criteria,
the empirical Kullback-Leibler divergence is a natural alternative for penalized likelihood
criteria. In next sections, oracle inequalities will be expressed by using K(·, ·).

3.1 Oracle inequalities for the group-Lasso estimate

In this section, we state oracle inequalities for the group-Lasso. These results can be viewed
as generalizations of results by Lounici et al. (2011) to the case of the Poisson regression
model. They will be established on the set Ωg where

Ωg =
{
‖AT

Gk
(Y − E[Y])‖2 ≤ λgk ∀ k ∈ {1, . . . ,K}

}
. (3.2)

Under assumptions of Theorem 2, we have P(Ωg) ≥ 1 − 2K
pγ ≥ 1 − 2p1−γ . By considering

γ > 1, we have that P(Ωg) goes to 1 at a polynomial rate of convergence when p goes to +∞.
Even if our procedure is applied with weights defined in Section 2.2, note that subsequent
oracle inequalities would hold for any weights (λgk)k=1,...,K such that the associated set Ωg

has high probability. For any β ∈ Rp, we denote by

fβ(x) = exp

(
p∑
j=1

βjϕj(x)

)
,
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the candidate associated with β to estimate f0. We first give a slow oracle inequality (see
for instance Bunea et al. (2007a), Gäıffas and Guilloux (2012) or Lounici et al. (2011))
that does not require any assumption.

Theorem 3 On Ωg,

K(f0, f̂
gL) ≤ inf

β∈Rp

{
K(f0, fβ) + 2

K∑
k=1

λgk‖βGk‖2
}
. (3.3)

Note that
K∑
k=1

λgk‖βGk‖2 ≤ max
k∈{1,...,K}

λgk × ‖β‖1,2

and (3.3) is then similar to Inequality (3.9) of Lounici et al. (2011). We can improve
the rate of (3.3) at the price of stronger assumptions on the matrix A. We consider the
following assumptions:

Assumption 1. We assume that

m := max
i∈{1,...,n}

|log f0(Xi)| <∞.

This assumption is equivalent to assuming that f0 is bounded from below and from
above by positive constants. We do not assume that m is known in the sequel.

Assumption 2. For some integer s ∈ {1, . . . ,K} and some constant r, the following
condition holds:

0 < κn(s, r) := min

{
(βTGβ)1/2

‖βJ‖2
: |J | ≤ s, β ∈ Rp \ {0},

∑
k∈Jc

λgk‖βGk‖2 ≤ r
∑
k∈J

λgk‖βGk‖2

}
,

where G is the Gram matrix defined by G = ATCA, where C is the diagonal matrix
with Ci,i = f0(Xi). With a slight abuse, βJ stands for the sub-vector of β with elements
indexed by the indices of the groups (Gk)k∈J .

This assumption is the natural extension of the classical Restricted Eigenvalue condition
introduced by Bickel et al. (2009) to study the Lasso estimate where the `1-norm is replaced
with the weighted ‖ · ‖1,2-norm. In the Gaussian setting, Lounici et al. (2011) considered
similar conditions to establish oracle inequalities for their group-Lasso procedure (see their
Assumption (3.1)). RE-type assumptions are among the mildest ones to establish oracle
inequalities (see van de Geer and Bühlmann (2009)). In particular, if the Gram matrix G
has a positive minimal eigenvalue, say dG,min, then Assumption 2 is satisfied with κ2

n(s, r) ≥
dG,min. Assumption 2 can be connected to stronger coherence type conditions involving
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the ratio
maxk λ

g
k

mink λ
g
k

(see Appendix B.3. of Lounici et al. (2011)). Furthermore, if c0 is a

positive lower bound for f0, then for all β ∈ Rp,

βTGβ = (Aβ)TC(Aβ) ≥ c0‖Aβ‖22 = c0

n∑
i=1

( p∑
j=1

βjϕj(Xi)
)2

= c0

n∑
i=1

g2
β(Xi),

with gβ =
∑p

j=1 βjϕj . If (ϕj)j∈J is orthonormal on [0, 1]d and if the design is regular, then
the last term is the same order as

n

∫
g2
β(x)dx = n‖β‖22 ≥ n‖βJ‖22

for any subset J ⊂ {1, . . . ,K}. Under these assumptions, κ−2
n (s, r) = O(n−1).

We now introduce for any µ > 0

Γ(µ) =

β ∈ Rp : max
i∈{1,...,n}

∣∣∣∣∣∣
p∑
j=1

βjϕj(Xi)

∣∣∣∣∣∣ ≤ µ
 .

In the sequel, we restrict our attention to estimates belonging to the convex set Γ(µ). Of
course, if m were known we would take µ = m (or µ a bit larger than m). Note that we do
not impose any upper bound on µ so this condition is quite mild. The role of Γ(µ) consists
in connecting K(., .) to some empirical quadratic loss functions (see the proof of Theorem
4). Alternative stronger assumptions have been considered by Lemler (2013) relying on
van de Geer (2008) and Kong and Nan (2014). The value of µ only influences constants in
subsequent oracle inequalities.

We consider the slightly modified group-Lasso estimate. Let α > 1 and let us set

β̂
gL

µ,α ∈ argmin
β∈Γ(µ)

{
− l(β) + α

K∑
k=1

λgk‖βGk‖2
}
, f̂gLµ,α(x) = exp

(
p∑
j=1

(β̂
gL

µ,α)jϕj(x)

)
for which we obtain the following fast oracle inequality.

Theorem 4 Let ε > 0 and s a positive integer. Let Assumption 2 be satisfied with s and

r =
α+ 1 + 2α/ε

α− 1
.

Then, under Assumption 1, there exists a constant B(ε,m, µ) depending on ε, m and µ
such that, on Ωg,

K(f0, f̂
gL
µ,α) ≤ (1 + ε) inf

β∈Γ(µ)
|J(β)|≤s

{
K(f0, fβ) +B(ε,m, µ)

α2|J(β)|
κ2
n

×
(

max
k∈{1,...,K}

λgk

)2
}
, (3.4)

where κn stands for κn(s, r), and J(β) is the subset of {1, . . . ,K} such that βGk = 0 if
and only if k /∈ J(β).
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The estimate β̂
gL

µ,α studied in Theorem 4 slightly differs from the estimate β̂
gL

introduced
in Section 1.2 since it depends on α and minimization is only performed on Γ(µ). Both
estimates coincide when µ = +∞ and when α = 1. An examination of the proof of
Theorem 4 shows that limµ→+∞B(ε,m, µ) = +∞. In practice, we observe that most of

the time, with α = 1 and µ large enough, β̂
gL

µ,α and β̂
gL

coincide. So, when α is close to 1
and µ is large, Theorem 4 gives a good flavor of theoretical performances satisfied by our
group-Lasso procedure.

Let us comment each term of the right-hand side of (3.4). The first term is an approxi-
mation term, which can vanish if f0 can be decomposed on the dictionary. The second term
is a variance term, according to the usual terminology, which is proportional to the size of
J(β). Its shape is classical in the high dimensional setting. See for instance Theorem 3.2
of Lounici et al. (2011) for the group-Lasso in linear models, or Theorem 6.1 of Bickel et al.
(2009) and Theorem 3 of Bertin et al. (2011) for the Lasso. If the order of magnitude of λgk
is
√
n×max(log p; |Gk|) (see Section 2.2.1) and if κ−2

n = O(n−1), the order of magnitude
of this variance term is not larger than |J(β)| ×max(log p; |Gk|). Finally, if f0 can be well
approximated (for the empirical Kullback-Leibler divergence) by a group-sparse combina-
tion of the functions of the dictionary, then the right hand side of (3.4) will take small
values. So, the previous result justifies our group-Lasso procedure from the theoretical
point of view. Note that (3.3) and (3.4) also show the interest of considering weights as
small as possible.

Blazere et al. (2014) established rates of convergence under stronger assumptions,
namely all coordinates of the analog of A are bounded by a quantity L, where L is viewed
as a constant. Rates depend on L in an exponential manner and would highly deteriorate
if L depended on n and p. So, this assumption is not reasonable if we consider dictionaries
such as wavelets or histograms (see Section 2.2.1).

3.2 Oracle inequalities for the Lasso estimate

For the sake of completeness, we provide oracle inequalities for the Lasso. Theorems 3 and
4 that deal with the group-Lasso estimate can be adapted to the non-grouping strategy
when we take groups of size 1. Subsequent results are similar to those established by
Lemler (2013) who studied the Lasso estimate for the high-dimensional Aalen multiplicative
intensity model. The block `1-norm ‖ · ‖1,2 becomes the usual `1-norm and the group
support J(β) is simply the support of β. As previously, we only work on the probability
set Ω defined by

Ω =
{
|AT

j (Y − E[Y])| ≤ λj ∀j ∈ {1, . . . , p}
}
. (3.5)

Theorem 1 asserts that P(Ω) ≥ 1 − 3
pγ−1 that goes to 1 as soon as γ > 1. As previously,

subsequent oracle inequalities would hold for any weights (λj)j=1,...,p such that the asso-
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ciated probability set Ω has high probability. We obtain a slow oracle inequality for f̂L:

Corollary 1 On Ω,

K(f0, f̂
L) ≤ inf

β∈Rp

{
K(f0, fβ) + 2

p∑
j=1

λj |βj |
}
.

Now, let us consider fast oracle inequalities. In this framework, Assumption 2 is replaced
with the following:

Assumption 3. For some integer s ∈ {1, . . . , p} and some constant r, the following
condition holds:

0 < κn(s, r) := min

(βTGβ)1/2

‖βJ‖2
: |J | ≤ s, β ∈ Rp \ {0},

∑
j∈Jc

λj |βj | ≤ r
∑
j∈J

λj |βj |

 ,

where G is the Gram matrix defined by G = ATCA, where C is the diagonal matrix with
Ci,i = f0(Xi).

As previously, we consider the slightly modified Lasso estimate. Let α > 1 and let us
set

β̂
L

µ,α ∈ argmin
β∈Γ(µ)

{
− l(β) + α

p∑
j=1

λj |βj |
}
, f̂Lµ,α(x) = exp

(
p∑
j=1

(β̂
L

µ,α)jϕj(x)

)
for which we obtain the following fast oracle inequality.

Corollary 2 Let ε > 0 and s a positive integer. Let Assumption 3 be satisfied with s and

r =
α+ 1 + 2α/ε

α− 1
.

Then, under Assumption 1, there exists a constant B(ε,m, µ) depending on ε, m and µ
such that, on Ω,

K(f0, f̂
L
µ,α) ≤ (1 + ε) inf

β∈Γ(µ)
|J(β)|≤s

{
K(f0, fβ) +B(ε,m, µ)

α2|J(β)|
κ2
n

( max
j∈{1,...,p}

λj
2)

}
,

where κn stands for κn(s, r), and J(β) is the support of β.

This corollary is derived easily from Theorem 4 by considering all groups of size 1. Com-
paring Corollary 2 and Theorem 4, we observe that the group-Lasso can improve the Lasso
estimate when the function f0 can be well approximated by a function fβ so that the num-
ber of non-zero groups of β is much smaller than the total number of non-zero coefficients.
The simulation study of the next section illustrates this comparison from the numerical
point of view.
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4. Simulation study

Simulation settings. Even if our theoretical results do not concern model selection
properties, we propose to start the simulation study by considering a simple toy example
such that log(f0) = Aβ0 is generated from a true sparse vector of coefficients of size p = 2J

in the Haar basis, such that J = 10 and scales j = 1, 3, 4 have all non-null coefficients.
More details on this function can be found in our code that is freely available 1. In this
setting, log(f0) can be decomposed on the dictionary and we can assess the accuracy of
selection of different methods.

We then explore the empirical performance of the Lasso and the group Lasso strategies
using simulations. By performance we mean the quality of reconstruction of simulated
signals as our theoretical results concern reconstruction properties. We considered different
forms for intensity functions by taking the standard functions of Donoho and Johnstone
(1994): blocks, bumps, doppler, heavisine, to set g0. These functions do not have an
exact decomposition on any dictionary considered below. The signal to noise ratio was
increased by multiplying the intensity functions by a factor α taking values in {1, . . . , 7},
α = 7 corresponding to the most favorable configuration. Observations Yi were generated
such that Yi|Xi ∼ Poisson(f0(Xi)), with f0 = α exp(g0), and (X1, . . . , Xn) was set as the
regular grid of length n = 210. Each configuration was repeated 20 times. Our method
was implemented using the grpLasso R package of Meier et al. (2008) to which we provide
our concentration-based weights (the code is fully available 1).

The basis and the dictionary frameworks. The dictionary we consider is built on
the Haar basis, on the Daubechies basis with 6 vanishing moments, and on the Fourier
basis, in order to catch piece-wise constant trends, localized peaks and periodicities. Each
orthonormal system has n elements, which makes p = n when systems are considered
separately, and p = 2n or 3n depending on the considered dictionary. For wavelets, the
dyadic structure of the decomposition allows us to group the coefficients scale-wise by
forming groups of coefficients of size 2q. As for the Fourier basis, groups (also of size 2q)
are formed by considering successive coefficients (while keeping their natural ordering).
When grouping strategies are considered, we set all groups at the same size.

Weights calibration in practice. First for both the Lasso and the group Lasso in-
troduced in Section 1, following the arguments at the end of Section 2.1 that provide
some theoretical guarantees, we take γ larger than 1. More precisely, we take γ = 1.01.
Our theoretical results do not provide any information about values smaller than 1, so
we conduct an empirical study on a very simple case, namely we estimate f0 such that
log(f0) = 1[0,1] on the Haar basis, so that only one parameter should be selected. Fig. 1
shows that when γ is too small, the risk of the selected models explodes (left panel), because
too many coefficients are selected (right panel). Taking γ = 1.01 actually corresponds to
a conservative choice avoiding the explosion of the MSE and of the number of selected

1. http://pbil.univ-lyon1.fr/members/fpicard/software.html
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Figure 1: Tuning of the hyperparameter γ for the Lasso penalty. The simulated function
is log(f0) = 1[0,1], so that only one parameter should be selected on the Haar basis. For
different values of n, the left/right panels represent the mean square error / the number of
estimated parameters with respect to γ (averaged over 20 simulations). The vertical line
corresponds to γ = 1.

parameters. Furthermore this automatic choice provides good results in practice, as shown
by our simulation study that considers many shapes of intensity functions (see below).

Then we estimate Vj (resp V g
j ) by Ṽj (resp Ṽ g

j ). Note that V̂j (resp V̂ g
j ) can also be

used: these variances are easier to compute in practice, and this slight modification does
not significantly change the performance of the procedures (not shown). The parameter γ
being fixed, we use the expression (2.3) for Lasso weights. As for the group Lasso weights

(Theorem 2), the first term is replaced by
√∑

j∈Gk Ṽj , as it is governed by a quantity that

tends to one when p is large. We conducted a preliminary numerical study (not shown) to
calibrate the second term, that depends on quantities M , ck and bk defined in Theorem
2. The best empirical performance were achieved so that the left- and right-hand terms
of (2.9) were approximatively equal. This resumes to group-Lasso weights of the form

2
√∑

j∈Gk Ṽj .

Competitors. We compete our Lasso procedure (Lasso.exact in the sequel), with the
Haar-Fisz transform (using the haarfisz package), applied to the same data followed by
soft-thresholding. Here we mention that we did not perform cycle-spinning (that is often
included in denoising procedures) in order to focus on the effects of thresholding only. We
also implemented the half-fold cross-validation proposed by Nason (1996) in the Poisson
case to set the weights in the penalty, with the proper scaling (2s/2λ, with s the scale of
the wavelet coefficients) as proposed by Sardy et al. (2004). Briefly, this cross-validation
procedure is used to calibrate λ by estimating f0 on a training set made of even positions
(for different values of λ), and by measuring the reconstruction error on the test set made
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by odd positions (see Nason (1996)). This procedure is referred to cross-validation in the
sequel. Then we compare the performance of the group-Lasso with varying group sizes
(2,4,8) to the Lasso, to assess the benefits or grouping wavelet coefficients.

Performance measurement. For any estimate f̂ , reconstruction performance were
measured using the (normalized) mean-squared error MSE = ‖f̂ − f0‖22/‖f0‖22. When
there is a true sparse β0, model selection performance were measured by the standard in-
dicators: accuracy on support recovery, sensitivity (proportion of true non-null coefficients
among selected coefficients) and specificity of detection (proportion of true null coefficients
among non-selected coefficients), based on the support of β0 and on the support of its
estimate.

Model selection performance with a true sparse β0. The simple toy example de-
scribed above for model selection perfectly shows the performance of our Lasso procedure
(Figure 2). Even if our theoretical results do not concern support recovery, our theoret-
ically calibrated weights provide the best accuracy in support selection, along with the
best sensitivity, specificity and reconstruction errors. This example also shows the interest
of the theoretical weights calibration compared with the cross-validation procedure that
shows bad performance, and also compared with the Haar-Fisz transform. Also, this toy
example illustrates the need of scaling for the cross-validated vanilla Lasso: if the procedure
proposed by Sardy et al. (2004) is not used, the cross-validated vanilla Lasso lacks of adap-
tation to heteroscedasticity, which leads to poor results on selection (lack of accuracy and
specificity, or too many selected coefficients), and thus to overfitted reconstruction (Fig.
3). Thus, in further simulations we only considered the scaled version of the cross-validated
Lasso, in order to compare methods that account for heteroscedasticity.

Performance in the basis setting. Here we focus on wavelet basis (Haar for blocks and
Daubechies for bumps, doppler and heavisine) and not on a dictionary approach (considered
in a second step) in order to compare our calibrated weights with other methods that rely
on penalized strategy. It appears that, except for the bumps function, the Lasso with
exact weights shows the lowest reconstruction error whatever the shape of the intensity
function (Figure 4). Moreover, better performance of the Lasso with exact weights in cases
of low intensity emphasize the interest of theoretically calibrated procedures rather than
asymptotic approximations (like the Haar-Fisz transform). In the case of bumps, cross-
validation seems to perform better than the Lasso, but when looking at reconstructed
average function (Figure 5a) this lower reconstruction error of cross-validation is associated
with higher local variations around the peaks. Compared with Haar-Fisz, the gain of using
exact weights is substantial even when the signal to noise ratio is high, which indicates
that even in the validity domain of the Haar-Fisz transform (large intensities), the Lasso
combined with exact thresholds is more suitable (Figure 5a). As for the group Lasso,
its performance highly depend on the group size: while groups of size 2 show similar
performance as the Lasso, groups of size 4 and 8 increase the reconstruction error (Figure
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Figure 2: Average (over 20 repetitions) accurracy in support recovery for the toy function f0

with a true sparse β0 and the Haar basis, specificity and sensitivity of selection, and Mean
Square Error of reconstruction. Lasso.exact: Lasso penalty with our data-driven theoret-
ical weights, Lasso.cv: Lasso penalty with weights calibrated by cross validation without
scaling, Lasso.cvj: Lasso penalty with weights calibrated by cross validation with scaling
2s/2λ, group.Lasso.2/4/8: group Lasso penalty with our data-driven theoretical weights
with group sizes 2/4/8, HaarFisz: Haar-Fisz tranform followed by soft-thresholding. Alpha
(α) stands for the signal strength.
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Figure 3: Example of reconstruction for the toy function f0 with a true sparse β0 and the
Haar basis. The reconstruction with the vanilla-lasso is based on too many coefficients
which leads to over-fitting. Lasso.exact: Lasso penalty with our data-driven theoretical
weights, Lasso.cv: Lasso penalty with weights calibrated by cross validation without
scaling, Lasso.cvj: Lasso penalty with weights calibrated by cross validation with scaling
2s/2λ
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Figure 4: Average (over 20 repetitions) Mean Square Error of reconstruction of different
methods for the estimation of simulated intensity functions according to function shapes
(blocks, bumps, doppler, heavisine) and signal strength (α). Lasso.exact: Lasso penalty
with our data-driven theoretical weights, Lasso.cvj: Lasso penalty with weights calibrated
by cross validation with scaling 2s/2λ, group.Lasso.2/4/8: group Lasso penalty with our
data-driven theoretical weights with group sizes 2/4/8, HaarFisz: Haar-Fisz tranform
followed by soft-thresholding.

4 and 5b), since they are not scaled to the size of the irregularities in the signal. This
trend is not systematic as the group Lasso appears to be adapted to functions that are
more regular (Heavisine), and seems to avoid edge effects in some situations.

Performance in the dictionary framework. Lastly, we explored the performance of
the dictionary approach, by considering different dictionaries to estimate each function:
Daubechies (D), Fourier (F), Haar (H), or their combinations (Figure 6). Rich dictionaries
can be very powerful to catch complex shapes in the true intensity function (like the notch
in the heavisine case Figure 6b), and the richest dictionary (DFH) often leads to the lowest
reconstruction error (MSE) on average. However the richest dictionary (DFH) is not always
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the best choice in terms of reconstruction error, which is stricking in the case of the blocks
function. In this case the Haar system only would be preferable for the Lasso (Figure 6a).
For the group-Lasso and the blocks intensity function, the combination of the Daubechies
and the Haar systems provides the best MSE, but when looking at the reconstructed
intensity (Figure 6b-blocks), the Daubechies system introduces wiggles that are not relevant
for blocks. Also, richer dictionaries do not necessarily lead to more selected parameters
(Figure 6a), which illustrates that selection depends on the redundancies between the
systems elements of the dictionary. In practice we often do not have any prior knowledge
concerning the elements that shape the signal, and these simulations suggest that the
blind use of the richest dictionary may not be the best strategy in terms of reconstructed
functions. Consequently, in the following application, we propose to adapt the half-fold
cross validation of Nason (1996) to choose the best combinations of systems.

5. Applications

The analysis of biological data has faced a new challenge with the extensive use of next gen-
eration sequencing (NGS) technologies. NGS experiments are based on the massive parallel
sequencing of short sequences (reads). The mapping of these reads onto a reference genome
(when available) generates counts data (Yt) spatially organized (in 1D) along the genome
(at position Xt). These technologies have revolutionized the perspectives of many fields
in molecular biology, and among many applications, one is to get a local quantification
of DNA or of a given DNA-related molecule (like transcription factors for instance with
chIP-Seq experiments, Furey (2012)). This technology has recently been applied to the
identification of replication origins along the human genome. Replication is the process by
which a genome is duplicated into two copies. This process is tightly regulated in time and
space so that the duplication process takes place in the highly regulated cell cycle. The
human genome is replicated at many different starting points called origins of replication,
that are loci along the genome at which the replication starts. Until very recently, the
number of such origins remained controversial, and thanks to the application of NGS tech-
nologies, first estimates of this number could be obtained. The signal is made of counts
along the human genome such that reads accumulations indicate an origin activity (see Pi-
card et al. (2014)). Scan statistics were first applied to these data, to detect significant local
enrichments reads accumulation, but there is currently no consensus on the best method
to analyze such data. Here we propose to use the Poisson functional regression to estimate
the intensity function of the data on a portion of the human chromosomes X and 20. Half-
fold cross-validation was used to select the appropriate dictionary between Daubechies,
Fourier, Haar (and their combinations), and our theoretical weights were used to calibrate
the Lasso (Figure 7). Our results are very promising as the sparse dictionary approach is
very efficient for denoising (Chromosome X, Figure 7b) and produces null intensities when
the signal is low (higher specificity). Another aspect of our method is that it seems to
be more powerful in the identification of peaks that are more precise (Chromosome 20,
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(a) Average reconstructed functions for the Lasso and competitors.
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(b) Average reconstructed functions for the group strategies.

Figure 5: Average (over 20 repetitions) reconstructed functions by different methods of
estimation according to function shapes (blocks, bumps, doppler, heavisine). Top panel
corresponds to non-grouped strategies (5a) and bottom panel compares group-strategies
to the Lasso (5b). Lasso.exact: Lasso penalty with our data-driven theoretical weights,
Lasso.cvj: Lasso penalty with weights calibrated by cross validation with scaling 2s/2λ,
group.Lasso.2/4/8: group Lasso penalty with our data-driven theoretical weights with
group sizes 2/4/8, HaarFisz: Haar-Fisz tranform followed by soft-thresholding, f0: simu-
lated intensity function.
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(a) Average Mean Square Error for different dictionaries with respect to the average
number of selected coefficients (df).
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(b) Reconstructed functions for the dictionaries with the smallest MSE.

Figure 6: Average (over 20 repetitions) Mean Square Errors and number of selected coef-
ficients (df) (6a), and reconstructed functions (6b) for different dictionaries: Daubechies
(D), Fourier (F), Haar (H) and their combinations. Lasso.exact: Lasso penalty with
our data-driven theoretical weights, group.Lasso.2: group Lasso penalty with our data-
driven theoretical weights with group sizes 2, HaarFisz: Haar-Fisz tranform followed by
soft-thresholding.

28



Adaptive Lasso and Group-Lasso for Functional Poisson Regression

positions 0.20 and 0.25Mb, Figure 7a), which indicates that the dictionary approach may
be more sensitive to detect peaks. Given the spread of NGS data and the importance of
peak detection in the analysis process, for chIP-Seq Furey (2012), FAIRE-Seq Thurman
et al. (2012), OriSeq Picard et al. (2014), our preliminary results suggest that the sparse
dictionary approach will be a very promising framework for the analysis of such data.

6. Conclusion

We proposed new adaptive Lasso and group-Lasso procedures to estimate the regression
function in high dimensional Poisson regression, with a special focus on the calibration of
weights involved in the penalties. Inspired from the adaptive Lasso procedure proposed by
Zou (2006) in the context of model selection, we derived data-driven component-specific
weights, whose shape appears to be relevant from both theoretical and practical points of
view. In the dictionary approach, which extends the classical basis approach, we obtain
slow and fast oracle inequalities under RE-type conditions. These theoretical results are
enhanced by a numerical study that illustrates the good performance of our procedure
on simulated and experimental data. Moreover, even if our main objective is functional
reconstruction (that is different from model selection), a numerical toy example shows
very promising results of our Lasso and group-Lasso procedures for model selection. The
theoretical study of this problem is an exciting challenge we wish to investigate in further
works.

The purpose of our data-driven weights is to control the random fluctuations of the
normalized observations, namely (AT

j Y)j and (AT
Gk

Y)k, around their expectation. To ob-
tain controls as sharp as possible, we use concentration inequalities for infinitely divisible
vectors, which allows us to account for the heteroscedasticity that characterizes the Poisson
setting. So, our approach is very different from Zou (2006) who considered weights propor-
tional to the inverse of preliminary estimates (ordinary least squares estimates or maximum
likelihood estimates). But both approaches confirm that random weighting schemes can
provide suitable procedures for inference in regression models.

Finally, we mention that the constants of our procedure were tuned by using theoret-
ical arguments, and our numerical studies show that they are suitable. Other values for
these constants would probably be appropriate for some signals. Even if our empirical
results show that the performance with γ = 1.01 are excellent, whatever the form of f0 we
considered, our procedure could be enriched by an additional calibration step for γ, with
associated extra computational time.
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Figure 7: Estimation of the intensity function of Ori-Seq data (chromosomes 20 7a and
X 7b). Grey bars indicate the number of reads that match genomic positions (x-axis, in
MegaBases). The red line corresponds to the estimated intensity function, and vertical
dotted lines stand for the detected origins by scanning statistics.
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7. Proofs

7.1 Proof of Theorem 1

We denote by µ the Lebesgue measure on Rd and we introduce a partition of the set [0, 1]d

denoted ∪ni=1Si so that for any i = 1, . . . , n, Xi ∈ Si and µ(Si) > 0. Let h the function
defined for any t ∈ [0, 1]d by

h(t) =

n∑
i=1

f0(Xi)

µ(Si)
1Si(t).

Finally, we introduce N the Poisson process on [0, 1]d with intensity h (see Kingman
(1993)). Therefore, for any i = 1, . . . , n, N(Si) is a Poisson variable with parameter∫
Si
h(t)dt = f0(Xi) and since ∪ni=1Si is a partition of [0, 1]d, (N(S1), . . . , N(Sn)) has the

same distribution as (Y1, . . . , Yn). We observe that if for any j = 1, . . . , p,

ϕ̃j(t) =

n∑
i=1

ϕj(Xi)1Si(t),

then ∫
ϕ̃j(t)dN(t) ∼

n∑
i=1

ϕj(Xi)Yi = AT
j Y.

We use the following exponential inequality (see Inequality (5.2) of Reynaud-Bouret (2003)).
If g is bounded, for any u > 0,

P

(∫
g(x)(dN(x)− h(x)dx) ≥

√
2u

∫
g2(x)h(x)dx+

u

3
||g||∞

)
≤ exp(−u). (7.1)

By taking successively g = ϕ̃j and g = −ϕ̃j , we obtain

P

(
|AT

j (Y − E[Y])| ≥

√
2u

∫
ϕ̃2
j (x)h(x)dx+

u

3
‖ϕ̃j‖∞

)
≤ 2e−u.

Since ∫
ϕ̃2
j (x)h(x)dx =

n∑
i=1

ϕ2
j (Xi)f0(Xi) = Vj ,

we obtain

P

(
|AT

j (Y − E[Y])| ≥
√

2uVj +
u

3
‖ϕ̃j‖∞

)
≤ 2e−u. (7.2)

To control Vj , we use (7.1) with g = −ϕ̃2
j and we have:

P

(
Vj − V̂j ≥

√
2u

∫
ϕ̃4
j (t)h(t)dt+

u

3
‖ϕ̃j‖2∞

)
≤ e−u.
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We observe that ∫
ϕ̃4
j (t)h(t)dt ≤ ‖ϕ̃j‖2∞

∫
ϕ̃2
j (t)h(t)dt = ‖ϕ̃j‖2∞Vj .

Setting vj = u‖ϕ̃j‖2∞, we have:

P

(
Vj −

√
2vjVj −

vj
3
− V̂j ≥ 0

)
≤ e−u.

Let αj =
√
V̂j + 5

6vj+
√

vj
2 , such that αj is the positive solution to α2

j−
√

2vjαj−(V̂j+
vj
3 ) =

0. Then
P
(
Vj ≥ α2

j

)
= P

(√
Vj ≥ αj

)
≤ e−u. (7.3)

We choose u = γ log p and observe that α2
j ≤ Ṽj . Then, by combining (7.2) and (7.3), we

have

P

(
|AT

j (Y − E[Y])| ≥
√

2γ log pṼj +
γ log p

3
‖ϕ̃j‖∞

)
≤ 3

pγ
.

As ‖ϕ̃j‖∞ = maxi |ϕj(Xi)|, the theorem follows. �

Remark 2 By slightly extending previous computations, we easily show that for u > 0,

P

(
|Vj − V̂j | ≥

√
2uVj‖ϕ̃j‖2∞ +

u

3
‖ϕ̃j‖2∞

)
≤ 2e−u,

which leads to

P

(
|Vj − V̂j | ≥

Vj
2

+
4γ log p

3
‖ϕ̃j‖2∞

)
≤ 2

pγ
.

7.2 Proof of Theorem 2

For each k ∈ {1, . . . ,K}, we recall that bik =
√∑

j∈Gk ϕ
2
j (Xi), so bik = ‖AT

Gk
ei‖2, where

ei is the vector whose i-th coordinate is equal to 1 and all others to 0. We first state the
following lemma:

Lemma 1 Let k be fixed. Assume that there exists some M > 0 such that ∀x, |f0(x)| ≤M .
Assume further that there exists some ck ≥ 0 such that ∀y ∈ Rn, ‖AGkA

T
Gk

y‖2 ≤ ck‖AT
Gk

y‖2.
Then, ∀x > 0, ∀ ε > 0,

P

(
‖AT

Gk
(Y − E[Y])‖2 ≥ (1 + ε)

√∑
j∈Gk

Vj + x

)
≤ exp

(
x

bk
−
( x
bk

+
Dε
k

b2k

)
log
(

1 +
bkx

Dε
k

))
,

where Dε
k = 8Mc2

k + 2
ε2
b2k.
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Proof With k ∈ {1, . . . ,K} being fixed, we define f : Rn → R by f(y) =
(
‖AT

Gk
y‖2−E

)
+

,

where E > 0 is a constant chosen later. We use Corollary 1 from Houdré et al. (2008),
applied to the infinitely divisible vector Y−E[Y] ∈ Rn, whose components are independent,
and to f . First note that for any t > 0,

Eetb
i
k|Yi−EYi| ≤ Eetb

i
k(Yi+f0(Xi))

= exp
(
f0(Xi)(e

tbik + tbik − 1)
)
<∞.

Furthermore, for any i ∈ {1, ..., n}, any y ∈ Rn and any u ∈ R,

|f(y + uei)− f(y)| ≤
∣∣∣‖AT

Gk
(y + uei)‖2 − ‖AT

Gk
y‖2
∣∣∣

≤ ‖AT
Gk

(uei)‖2
= |u|bik.

Therefore, for all x > 0,

P
(
f(Y − E[Y])− E[f(Y − E[Y])] ≥ x

)
≤ exp

(
−
∫ x

0
h−1
f (s)ds

)
,

where hf is defined for all t > 0 by

hf (t) = sup
y∈Rn

n∑
i=1

∫
R
|f(y + uei)− f(y)|2 e

tbik|u| − 1

bik|u|
ν̃i(du)

and ν̃i is the Lévy measure associated with Yi−E[Yi]. It is easy to show that ν̃i = f0(Xi)δ1,
and so

hf (t) = sup
y∈Rn

n∑
i=1

f0(Xi)
(
f(y + ei)− f(y)

)2 etb
i
k − 1

bik
.

Furthermore, writing Ai =
{
‖AT

Gk
(y + ei)‖2 ≥ E or ‖AT

Gk
y‖2 ≥ E

}
, we have

|f(y + ei)− f(y)| ≤
∣∣∣‖AT

Gk
(y + ei)‖2 − ‖AT

Gk
y‖2
∣∣∣1Ai

=
1Ai

∣∣∣‖AT
Gk

(y + ei)‖22 − ‖AT
Gk

y‖22
∣∣∣

‖AT
Gk

(y + ei)‖2 + ‖AT
Gk

y‖2

=
1Ai

∣∣∣2 < AT
Gk

ei,A
T
Gk

y > +‖AT
Gk

ei‖22
∣∣∣

‖AT
Gk

(y + ei)‖2 + ‖AT
Gk

y‖2

≤ 2

∣∣∣ < AT
Gk

ei,A
T
Gk

y >
∣∣∣

‖AT
Gk

y‖2
+
‖AT

Gk
ei‖22

E
,
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with < ·, · > the usual scalar product. We now have(
f(y + ei)− f(y)

)2
≤ 8

< AT
Gk

ei,A
T
Gk

y >2

‖AT
Gk

y‖22
+ 2
‖AT

Gk
ei‖42

E2
.

The first term can be rewritten as 8
<ei,AGk

AT
Gk

y>2

‖AT
Gk

y‖22
and the second one is equal to 2

bik
4

E2 , so

we can now bound hf (t) as follows.

hf (t) ≤ sup
y

∑
i

f0(Xi)
etb

i
k − 1

bik

(
8
< ei,AGkA

T
Gk

y >2

‖AT
Gk

y‖22
+ 2

bik
4

E2

)

≤ etbk − 1

bk
sup
y

(
8M
‖AGkA

T
Gk

y‖22
‖AT

Gk
y‖22

+
2

E2

∑
i

f0(Xi)b
i
k

4

)

≤ etbk − 1

bk

(
8Mc2

k +
2

E2

∑
i

f0(Xi)b
i
k

4

)
.

Now, we set

E = ε

√∑
j∈Gk

Vj .

So we have:

E2 = ε2
∑
j∈Gk

n∑
i=1

f0(Xi)ϕ
2
j (Xi)

= ε2
n∑
i=1

f0(Xi)
∑
j∈Gk

ϕ2
j (Xi)

= ε2
n∑
i=1

f0(Xi)b
i
k

2
.

Thus, we can finally bound the function hf by the increasing function h defined by

h(t) = Dε
k

etbk − 1

bk
,

with Dε
k = 8Mc2

k +
2b2k
ε2

. Therefore,

exp
(
−
∫ x

0
h−1
f (s)ds

)
≤ exp

(
−
∫ x

0
h−1(s)ds

)
= exp

(
x

bk
−
( x
bk

+
Dε
k

b2k

)
log
(

1 +
bkx

Dε
k

))
.
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Now,

f(Y − E[Y])− E[f(Y − E[Y])] =
(
‖AT

Gk
(Y − E[Y])‖2 − E

)
+
− E

(
‖AT

Gk
(Y − E[Y])‖2 − E

)
+

≥ ‖AT
Gk

(Y − E[Y])‖2 − E − E‖AT
Gk

(Y − E[Y])‖2.

Furthermore, by Jensen’s inequality, we have

E‖AT
Gk

(Y − E[Y])‖2 ≤
√
E‖AT

Gk
(Y − E[Y])‖22

=

√∑
j∈Gk

E[(AT
j (Y − EY))2]

=

√∑
j∈Gk

Var(AT
j Y)

=

√∑
j∈Gk

Vj .

Recalling that E = ε
√∑

j∈Gk Vj , we thus have

P
(
f(Y − E[Y])− Ef(Y − E[Y]) ≥ x

)
≥ P

(
‖AT

Gk
(Y − E[Y])‖2 − (1 + ε)

√∑
j∈Gk

Vj ≥ x
)
,

which concludes the proof.

We apply Lemma 1 with

ε =
1

2
√

2γ log p
and x = 2

√
γ log pDε

k.

Then,

bkx

Dε
k

=
2bk
√
γ log p√
Dε
k

=
2bk
√
γ log p√

8Mc2
k +

2b2k
ε2

≤ ε
√

2γ log p =
1

2
.
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Finally, using the fact that log(1 + u) ≥ u− u2

2 , we have:

exp

(
x

bk
−
( x
bk

+
Dε
k

b2k

)
log
(

1 +
bkx

Dε
k

))
≤ exp

(
x

bk
−
( x
bk

+
Dε
k

b2k

)(bkx
Dε
k

−
b2kx

2

2Dε
k

2

))

= exp

(
−x2

2Dε
k

+
bkx

3

2Dε
k

2

)

= exp

(
−x2

2Dε
k

(
1− bkx

Dε
k

))

≤ exp
(−x2

4Dε
k

)
=

1

pγ
.

We obtain

P

(
‖AT

Gk
(Y − E[Y])‖2 ≥ (1 + ε)

√∑
j∈Gk

Vj + 2
√
γ log pDε

k

)
≤ 1

pγ
.

We control Vj as in the proof of Theorem 1, but we take u = γ log p+ log |Gk|. The analog
of (7.3) is

P
(
Vj > Ṽ g

j

)
≤ e−u =

1

|Gk|pγ

and thus

P
(
∃ j ∈ Gk, Vj > Ṽ g

j

)
≤ 1

pγ
.

This concludes the proof of Theorem 2. �

7.3 Proof of Proposition 1

For the first point, we write:

‖AGkA
T
Gk

x‖22 =
n∑
l=1

( ∑
j∈Gk

ϕj(Xl)
n∑
i=1

ϕj(Xi)xi

)2

.
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Then, we apply the Cauchy-Schwarz inequality:

‖AGkA
T
Gk

x‖22 ≤
n∑
l=1

( ∑
j∈Gk

ϕ2
j (Xl)

)( ∑
j∈Gk

( n∑
i=1

ϕj(Xi)xi

)2
)

= ‖AT
Gk

x‖22
n∑
l=1

( ∑
j∈Gk

ϕ2
j (Xl)

)

= ‖AT
Gk

x‖22
n∑
l=1

(blk)
2

≤ nb2k‖AT
Gk

x‖22,

which proves the upper bound of (2.11). For the lower bound, we just observe that for any
i = 1, . . . , n, with ei the vector whose i-th coordinate is equal to 1 and all others to 0,

bik
2

= ‖AT
Gk

ei‖22
= < AT

Gk
ei,A

T
Gk

ei >

= < ei,AGkA
T
Gk

ei >

≤ ‖ei‖2‖AGkA
T
Gk

ei‖2
≤ ck‖AT

Gk
ei‖2

= ckb
i
k,

which obviously entails bk ≤ ck. For the last point, we observe that

‖AT
Gk

x‖22 =
∑
j∈Gk

K2
j ,
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where Kj =
∑n

i=1 ϕj(Xi)xi. By expressing ‖AGkA
T
Gk

x‖22 with respect to the Kj ’s, we
obtain:

‖AGkA
T
Gk

x‖22 =
n∑
l=1

( ∑
j∈Gk

ϕj(Xl)
n∑
i=1

ϕj(Xi)xi

)2

=
n∑
l=1

∑
j∈Gk

ϕj(Xl)
n∑
i=1

ϕj(Xi)xi
∑
j′∈Gk

ϕj′(Xl)
n∑

i′=1

ϕj′(Xi′)xi′

=
∑
j∈Gk

∑
j′∈Gk

n∑
l=1

ϕj(Xl)ϕj′(Xl)
n∑
i=1

ϕj(Xi)xi

n∑
i′=1

ϕj′(Xi′)xi′

=
∑
j∈Gk

∑
j′∈Gk

n∑
l=1

ϕj(Xl)ϕj′(Xl)KjKj′

≤ 1

2

∑
j∈Gk

∑
j′∈Gk

∣∣∣ n∑
l=1

ϕj(Xl)ϕj′(Xl)
∣∣∣(K2

j +K2
j′)

=
∑
j∈Gk

∑
j′∈Gk

∣∣∣ n∑
l=1

ϕj(Xl)ϕj′(Xl)
∣∣∣K2

j ,

from which we deduce (2.12). �

7.4 Proof of Theorem 3

For any β ∈ Rp, we have

K(f0, fβ) =

n∑
i=1

f0(Xi)
(

log f0(Xi)− log fβ(Xi)
)

+ fβ(Xi)− f0(Xi)

=

n∑
i=1

Yi
(

log f0(Xi)− log fβ(Xi)
)

+ fβ(Xi)− f0(Xi)

+

n∑
i=1

(f0(Xi)− Yi)
(

log f0(Xi)− log fβ(Xi)
)

= logL(f0)− logL(fβ) +

n∑
i=1

(f0(Xi)− Yi)
(

log f0(Xi)− log fβ(Xi)
)
.
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Therefore, for all β ∈ Rp,

K(f0, f̂
gL)−K(f0, fβ) = l(β)− l(β̂

gL
) +

n∑
i=1

(
f0(Xi)− Yi

)(
log fβ(Xi)− log f̂gL(Xi)

)
= l(β)− l(β̂

gL
) +

n∑
i=1

(
f0(Xi)− Yi

) p∑
j=1

(βj − β̂gLj )ϕj(Xi)

= l(β)− l(β̂
gL

) +

p∑
j=1

(β̂gLj − βj)
n∑
i=1

ϕj(Xi)(Yi − f0(Xi)).

Let us write ηj =
∑n

i=1 ϕj(Xi)(Yi − f0(Xi)) = AT
j (Y − E[Y]). We have

K(f0, f̂
gL) = K(f0, fβ) + l(β)− l(β̂

gL
) + (β̂

gL
− β)Tη. (7.4)

By definition of β̂
gL

,

−l(β̂
gL

) +

K∑
k=1

λgk‖β̂
gL

Gk
‖2 ≤ −l(β) +

K∑
k=1

λgk‖βGk‖2.

Furthermore, on Ωg,

|(β̂
gL
− β)Tη| =

∣∣∣ p∑
j=1

(β̂gLj − βj)(A
T
j (Y − EY))

∣∣∣
≤

K∑
k=1

∑
j∈Gk

|β̂gLj − βj ||A
T
j (Y − EY)|

≤
K∑
k=1

( ∑
j∈Gk

(β̂gLj − βj)
2
)1/2( ∑

j∈Gk

(AT
j (Y − EY))2

)1/2

=

K∑
k=1

‖β̂
gL

Gk
− βGk‖2‖A

T
Gk

(Y − EY)‖2

≤
K∑
k=1

λgk‖β̂
gL

Gk
− βGk‖2. (7.5)

Therefore, for all β ∈ Rp,

K(f0, f̂
gL) ≤ K(f0, fβ) +

K∑
k=1

λgk

(
‖β̂

gL

Gk
− βGk‖2 − ‖β̂

gL

Gk
‖2 + ‖βGk‖2

)
,

from which we deduce (3.3). �
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7.5 Proof of Theorem 4

To avoid too tedious notations, we denote f̂gL instead of f̂gLµ,α and β̂
gL

instead of β̂
gL

µ,α. We
start from Equality (7.4) combined with Inequality (7.5). Then, we have that on Ωg, for
any β ∈ Γ(µ),

K(f0, f̂
gL)+(α−1)

K∑
k=1

λgk‖β̂
gL

Gk
−βGk‖2 ≤ K(f0, fβ)+

K∑
k=1

αλgk

(
‖β̂

gL

Gk
−βGk‖2−‖β̂

gL

Gk
‖2+‖βGk‖2

)
.

On J(β)c, ‖β̂
gL

Gk
− βGk‖2 − ‖β̂

gL

Gk
‖2 + ‖βGk‖2 = 0 and

K(f0, f̂
gL) + (α− 1)

K∑
k=1

λgk‖β̂
gL

Gk
− βGk‖2 ≤ K(f0, fβ) + 2α

∑
k∈J(β)

λgk‖β̂
gL

Gk
− βGk‖2. (7.6)

By applying the Cauchy-Schwarz inequality we also have

K(f0, f̂
gL)+(α−1)

K∑
k=1

λgk‖β̂
gL

Gk
−βGk‖2 ≤ K(f0, fβ)+2α|J(β)|1/2

( ∑
k∈J(β)

(λgk)
2‖β̂

gL

Gk
−βGk‖

2
2

)1/2
.

(7.7)

If we write ∆ = D(β̂
gL
−β), where D is a diagonal matrix with Dj,j = λgk if j ∈ Gk, then

we can rewrite (7.6) as

K(f0, f̂
gL) + (α− 1)‖∆‖1,2 ≤ K(f0, fβ) + 2α‖∆J(β)‖1,2 (7.8)

and we deduce from (7.7)

K(f0, f̂
gL) ≤ K(f0, fβ) + 2α(|J(β)|)1/2‖∆J(β)‖2. (7.9)

Now, on the event
{

2α‖∆J(β)‖1,2 ≤ εK(f0, fβ)
}

, the theorem follows immediately from
(7.8). We now assume that εK(f0, fβ) ≤ 2α‖∆J(β)‖1,2. Since K is non-negative, we
deduce from (7.8) that

(α− 1)‖∆‖1,2 ≤ 2α
(

1 +
1

ε

)
‖∆J(β)‖1,2,

(α− 1)‖∆J(β)c‖1,2 ≤

(
2α
(

1 +
1

ε

)
− (α− 1)

)
‖∆J(β)‖1,2

and

‖∆J(β)c‖1,2 ≤

(
α+ 1 + 2α/ε

α− 1

)
‖∆J(β)‖1,2.
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This is equivalent to

∑
k∈J(β)c

λgk‖(β̂
gL
− β)Gk‖2 ≤

(
α+ 1 + 2α/ε

α− 1

) ∑
k∈J(β)

λgk‖(β̂
gL
− β)Gk‖2.

From Assumption 2 we have that, if β is such that |J(β)| ≤ s, then

‖(β̂
gL
− β)J(β)‖2 ≤

1

κn

(
(β̂

gL
− β)TG(β̂

gL
− β)

)1/2
.

Since

Gj,j′ =
n∑
i=1

ϕj(Xi)ϕj′(Xi)f0(Xi),

by setting

ui = log fβ(Xi)− log f0(Xi) and ûgLi = log f
β̂
gL(Xi)− log f0(Xi),

we have

(β̂
gL
− β)TG(β̂

gL
− β) =

p∑
j=1

p∑
j′=1

(β̂gLj − βj)(β̂
gL
j′ − βj′)Gj,j′

=
n∑
i=1

f0(Xi)
( p∑
j=1

(β̂gLj − βj)ϕj(Xi)
)2

=
n∑
i=1

f0(Xi)(û
gL
i − ui)

2.

We set h(f0, fβ) =
∑n

i=1 f0(Xi)u
2
i and h(f0, f̂

gL) =
∑n

i=1 f0(Xi)(û
gL
i )2. From (7.9) and

since

‖∆J(β)‖2 ≤ (max
k

λgk)‖(β̂
gL
− β)J(β)‖2

≤
maxk λ

g
k

κn

(
(β̂

gL
− β)TG(β̂

gL
− β)

)1/2
,

we have

K(f0, f̂
gL) ≤ K(f0, fβ) +

2α

κn
|J(β)|1/2(max

k
λgk)
(√

h(f0, f̂gL) +
√
h(f0, fβ)

)
.

To conclude, we use arguments similar to Lemler (2013). We recall them for the safe of
completeness. To connect h(f0, fβ) to K(f0, fβ), we use Lemma 1 of Bach (2010) that is
recalled now.
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Lemma 2 Let g be a convex three times differentiable function g : R → R such that for
all t ∈ R, |g′′′(t)| ≤ Sg′′(t) for some S ≥ 0. Then, for all t ≥ 0,

g′′(0)

S2
φ(−St) ≤ g(t)− g(0)− g′(0)t ≤ g′′(0)

S2
φ(St),

where φ(x) = ex − x− 1.

Let h be a real function. We set

G(h) =
n∑
i=1

(
eh(Xi) − f0(Xi)h(Xi)

)
and

g(t) = G(h+ tk),

where h and k are functions and t ∈ R. We have :

g′(t) =

n∑
i=1

(
k(Xi)e

h(Xi)+tk(Xi) − f0(Xi)k(Xi)
)
,

g′′(t) =
n∑
i=1

(
k2(Xi)e

h(Xi)+tk(Xi)
)

and

g′′′(t) =
n∑
i=1

(
k3(Xi)e

h(Xi)+tk(Xi)
)
.

Therefore |g′′′(t)| ≤ Sg′′(t) with S = maxi |k(Xi)|. We choose h(Xi) = log f0(Xi) and
k(Xi) = ui = log fβ(Xi)−log f0(Xi) and we apply Lemma 2 to g with t = 1. Computations
yield that g(1) − g(0) = K(f0, fβ), g′(0) = 0 and g′′(0) =

∑n
i=1 f0(Xi)u

2
i = h(f0, fβ).

Therefore
φ(−S)

S2
h(f0, fβ) ≤ K(f0, fβ) ≤ φ(S)

S2
h(f0, fβ).

Finally, for β ∈ Γ(µ), S = maxi |ui| ≤ µ + m. Furthermore, x −→ φ(x)
x2

is a nonnegative
increasing function and therefore we have

µ′h(f0, fβ) ≤ K(f0, fβ) ≤ µ′′h(f0, fβ),

where µ′ = φ(−µ−m)
(µ+m)2

and µ′′ = φ(µ+m)
(µ+m)2

. It follows that, for β ∈ Γ(µ) such that |J(β)| ≤ s,

K(f0, f̂
gL) ≤ K(f0, fβ) +

2α

κn
√
µ′
|J(β)|1/2(max

k
λgk)
(√

K(f0, f̂gL) +
√
K(f0, fβ)

)
.
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We use twice the inequality 2uv ≤ bu2+v2

b for any b > 0, applied to u = α
κn

√
|J(β)|(maxk λ

g
k)

and v being either
√

1
µ′K(f0, f̂gL) or

√
1
µ′K(f0, fβ). We have

(
1− 1

µ′b

)
K(f0, f̂

gL) ≤
(

1 +
1

µ′b

)
K(f0, fβ) + 2b

α2|J(β)|
κ2
n

(max
k

λgk)
2.

Finally,

K(f0, f̂
gL) ≤

(µ′b+ 1

µ′b− 1

)
K(f0, fβ) + 2

µ′b2

µ′b− 1

α2|J(β)|
κ2
n

(max
k

λgk)
2.

We choose b > 1/µ′ such that µ′b+1
µ′b−1 = 1 + ε and we set B(ε,m, µ) = 2(1 + ε)−1 µ′b2

µ′b−1 .
Finally, we have, for any β ∈ Γ(µ) such that |J(β)| ≤ s,

K(f0, f̂
gL) ≤ (1 + ε)

(
K(f0, fβ) +B(ε,m, µ)

α2|J(β)|
κ2
n

(max
k

λgk)
2

)
.

This completes the proof of Theorem 4. �
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