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Abstract

Hawkes processes are a form of self-exciting process that has been used in numerous

applications, including neuroscience, seismology, and terrorism. While these self-exciting

processes have a simple formulation, they can model incredibly complex phenomena. Tra-

ditionally Hawkes processes are a continuous-time process, however we enable these mod-

els to be applied to a wider range of problems by considering a discrete-time variant of

Hawkes processes. We illustrate this through the novel coronavirus disease (COVID-19) as

a substantive case study. While alternative models, such as compartmental and growth

curve models, have been widely applied to the COVID-19 epidemic, the use of discrete-time

Hawkes processes allows us to gain alternative insights. This paper evaluates the capability

of discrete-time Hawkes processes by modelling daily mortality counts as distinct phases in

the COVID-19 outbreak. We first consider the initial stage of exponential growth and the

subsequent decline as preventative measures become effective. We then explore subse-

quent phases with more recent data. Various countries that have been adversely affected

by the epidemic are considered, namely, Brazil, China, France, Germany, India, Italy,

Spain, Sweden, the United Kingdom and the United States. These countries are all unique

concerning the spread of the virus and their corresponding response measures. However,

we find that this simple model is useful in accurately capturing the dynamics of the process,

despite hidden interactions that are not directly modelled due to their complexity, and differ-

ences both within and between countries. The utility of this model is not confined to the cur-

rent COVID-19 epidemic, rather this model could explain many other complex phenomena.

It is of interest to have simple models that adequately describe these complex processes

with unknown dynamics. As models become more complex, a simpler representation of the

process can be desirable for the sake of parsimony.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0250015 April 9, 2021 1 / 28

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Browning R, Sulem D, Mengersen K,

Rivoirard V, Rousseau J (2021) Simple discrete-

time self-exciting models can describe complex

dynamic processes: A case study of COVID-19.

PLoS ONE 16(4): e0250015. https://doi.org/

10.1371/journal.pone.0250015

Editor: Dan Braha, University of Massachusetts,

UNITED STATES

Received: November 3, 2020

Accepted: March 29, 2021

Published: April 9, 2021

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0250015

Copyright: © 2021 Browning et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The data used in this

analysis are available on Github: https://github.

com/RaihaTuiTaura/covid-hawkes-paper. This data

was obtained from Johns Hopkins University:

https://orcid.org/0000-0002-6175-2244
https://doi.org/10.1371/journal.pone.0250015
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0250015&domain=pdf&date_stamp=2021-04-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0250015&domain=pdf&date_stamp=2021-04-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0250015&domain=pdf&date_stamp=2021-04-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0250015&domain=pdf&date_stamp=2021-04-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0250015&domain=pdf&date_stamp=2021-04-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0250015&domain=pdf&date_stamp=2021-04-09
https://doi.org/10.1371/journal.pone.0250015
https://doi.org/10.1371/journal.pone.0250015
https://doi.org/10.1371/journal.pone.0250015
http://creativecommons.org/licenses/by/4.0/
https://github.com/RaihaTuiTaura/covid-hawkes-paper
https://github.com/RaihaTuiTaura/covid-hawkes-paper


Introduction

The outbreak of the novel 2019 coronavirus disease (COVID-19) was declared a Global Health

Emergency of International Concern on 30th January 2020, and pronounced a Pandemic on

11th March 2020. It has since spread rapidly with over 116 million confirmed cases and more

than 2.5 million deaths as of 7th March 2021 [1]. Since the first reported case in December

2019, countries around the world have fought to contain the virus. In the absence of a vaccine,

countries implemented a range of non-pharmaceutical interventions and strategies to reduce

the spread of the virus, from measures such as social distancing, mask-wearing and contact

tracing, to complete city lockdowns and stay at home orders. These recommendations are

guided by mathematical and statistical modelling to quantify the efficacy of these measures

[2–9].

There is now an expansive collection of research dedicated to understanding the virus

from all perspectives, including its biological, epidemiological, clinical, economic and social

impacts. There is also a wealth of knowledge around prevention strategies to control the out-

break. In all of these, statistical and mathematical models are an essential aspect to gaining

meaningful insights into how the virus spreads and quantifying its various impacts. A popular

choice is compartmental models, with some considering the standard SIR (Susceptible-

Infected-Recovered) model [10–12], and further extensions in which additional states are

introduced [13–18]. As an alternative to compartmental models, others have used methods

such as branching processes to capture the spread of the virus through individual networks

[2, 3, 5], log-linear Poisson autoregressive models [19], and other probabilistic models of the

infection cycle of the virus [20]. Various models based on growth curves have also been pro-

posed, for example [21–23], who use logistic, exponential and Richards growth curves respec-

tively. More detailed approaches such as agent-based modelling have also been considered by

numerous authors [24–27].

A Hawkes process [28] is a stochastic, self-exciting process in which past events influence

the short-term probability of future events occurring. They are often used to explain many

phenomena that exhibit self-exciting properties, including neuroscience [29–31], crime and

terrorism [32–34], seismic activity [35] and social media [36]. Similarly, due to their conta-

gious nature it is also natural to represent infectious diseases, such as the current COVID-19

pandemic, as a Hawkes process.

Hawkes processes have been successfully applied to model epidemics and infectious dis-

eases. For example, for the Ebola outbreaks in West Africa and the Democratic Republic of

Congo [37, 38], the Hawkes process is found to outperform the SEIR (Susceptible-Exposed-

Infected-Recovered) mechanistic model in terms of short term prediction. Another study

employs an extension of the multivariate Hawkes process to understand the transmission

routes and regional connectivity for the dengue fever outbreak across regions in Australia

[39]. Rocky Mountain Spotty Fever has also been modelled using a recursive Hawkes process,

with the expected number of transmissions based on the current conditional intensity of the

Hawkes process [40]. Moreover [41], model invasive meningococcal disease using a spatiotem-

poral extension to the Hawkes process.

The spread of COVID-19 is an extremely complex process, with unknown disease dynamics

and huge variations in the preventative measures and responses of different countries. We pro-

pose a parsimonious model for COVID-19 deaths, namely discrete-time Hawkes processes

(DTHP) [32, 33, 42], to describe the complicated dynamics of the COVID-19 epidemic. In its

original form, the Hawkes process is a continuous-time point process; however, the DTHP

observes the occurrence of events at a discrete time resolution. Due to this construction, the

DTHP can directly model the available data (i.e. daily counts), without artificially imputing the
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data onto a continuous timeline, as is generally done in studies using continuous-time Hawkes

processes. We also introduce deterministic change points in this study, since the dynamics

of the spread vary abruptly as the pandemic progresses and preventative interventions are

introduced.

Alternative models, such as the mechanistic and growth curve models discussed previously,

primarily focus on estimating the model parameters that govern the system. Hawkes processes,

however, are more detailed, as individual events and their respective occurrence times directly

influence the likelihood of future events occurring. Hawkes processes also provide additional

insights into the infection dynamics of diseases by estimating the level of external cases

through the baseline parameter and the triggering kernel, which models the decay in infectivity

through time.

Hawkes processes and compartmental models are based on different mathematical princi-

ples and rely on different assumptions. However, their connection was explored by [43]. These

authors show that, via a modified, finite population variant of the Hawkes model for a particu-

lar choice of triggering kernel, the rate of events is equivalent to the SIR model’s infection rate.

While the SIR family of models is useful if more is known about the system dynamics, a sim-

pler model is often useful for phenomena where there are many unknowns. We show in this

study that our model is helpful for this purpose. Additionally, we explore the differences

between Hawkes, compartmental models and other approaches further in the discussion.

Related work

An approach to modelling the COVID-19 pandemic using self-exciting branching processes

has been suggested by [44]. These authors employ a continuous-time Hawkes model with a

nonparametric estimate of the reproduction number, R(t), the average number of secondary

cases produced by a single case of the virus. Both death counts and the number of confirmed

cases in the early stage of the epidemic, before April 1st, are modelled in three states of the

U.S., several European countries and China. Compared to SIR and SEIR models with a fixed

reproduction number, their Hawkes model with a dynamic parameter leads to lower estimates

of the basic reproduction number, R0. In the same line of work [45], consider several datasets

for the state of Indiana in the early stage of the epidemic. They also compare a nonparametric

estimate of the reproduction number, R(t), with an exponentially decreasing function and a

step-function, and find that the estimation of R is very sensitive to the type of input data (i.e.

deaths or cases), the data source, and the model choice. Similarly [46], adopt a continuous-

time Hawkes model with spatial covariates to model both the number of confirmed COVID-

19 cases and the number of deaths, for the U.S. at the county level. This study also considers a

time-varying reproduction number. Finally [47], also use the continuous-time Hawkes process

to illustrate the severity of the virus in France if no preventative action were to be taken.

Two similar approaches to ours are that of [48, 49]. The former proposes a two-phase con-

tagion model based on an extension of the Hawkes process. This study considers a continu-

ous-time Hawkes process, assume the rate of external events varies through time, and estimate

the change point in their model. The authors also assume there is no external excitation after

the change point. The latter of these is, to the authors’ knowledge, the most similar approach

to ours. These authors consider a discrete-time Hawkes process to describe the current

COVID-19 epidemic. This study focusses on estimating a time-varying reproduction number,

ignoring the influence of external activity and considering a fixed excitation kernel.

Several other approaches for modelling COVID-19 that incorporate change points have

been proposed to capture the dynamic nature of the pandemic. [50, 51] find that using com-

partmental models with time-varying infection rates, the estimated change points for Germany
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and South Africa, respectively, align with various government interventions in these countries.

[52] do not directly estimate the change points; instead, they propose a compartmental model

for Italy with piecewise model parameters partitioned into regular time intervals. Alternatively

[53], consider a combination of exponential and polynomial regression models to estimate the

optimal change points for the COVID-19 outbreak in India. While these studies consider only

a single country [54], examine several countries and introduce a single stochastic change point

into their compartmental model. [55] present a widespread study across 55 countries using a

partially observed Markov process with piecewise transmission rates.

Contributions

In the current literature, the continuous-time Hawkes process requires artificial imputation of

the daily count data onto a continuous time resolution, adding a significant computational

burden to the implementation and adding additional, potentially unnecessary, noise to the

model. We develop a multi-phase approach for the DTHP to directly model the reported daily

counts of the number of deaths caused by the virus.

The dynamics of the process before and after the enactment of preventative measures and

policy interventions to reduce the spread of the virus are inherently different. The majority of

the existing literature on modelling the COVID-19 pandemic using Hawkes processes con-

sider only the early stages of the pandemic. In this work, we develop a variant of the DTHP to

model the distinct phases of the COVID-19 epidemic. We modify the traditional Hawkes pro-

cess to account for this change in dynamics by including deterministic change points in the

model.

While [49] also study more recent data, these authors limit parameter estimation to the

reproduction number, and fix the remaining parameters of the Hawkes model. In our study,

we estimate the excitation kernel for additional flexibility. Regarding external events [48], also

assume there is no external excitation in the second phase of their two-phase model. We make

no such assumption, and believe considering external excitation throughout the entire course

of the pandemic is a valuable consideration. There are still travellers arriving from abroad, and

thus exogenous activity is still occurring in later phases at a lower rate. This is particularly rele-

vant as many countries have relatively relaxed quarantine requirements, which means that

travellers from abroad are still capable of spreading the virus. Although we study mortality

data in this analysis, we are able to make a connection between mortalities and infections. In

particular, we show in S1 Appendix that the rate of external events in our model can roughly

be interpreted as external infections, times the probability of death given infection. This link is

particularly useful in the absence of reliable infection data.

Change point models for Hawkes processes have been considered in other applications

[56]. However, these authors assume independence of the observed data between change

points, prohibiting events that occur within a time period to influence events in future time

periods. This type of model is inappropriate for this application, as the time periods are not

independent. While the behaviour of the process varies between time periods, the influence of

past events remains active in the memory of the process. Thus, the baseline parameters become

artificially inflated if events from different time periods are assumed to be independent. For

the current COVID-19 pandemic [49], introduce a method for detecting change points in the

reproduction number through augmenting their Hawkes model with state-space methods.

In particular for the COVID-19 epidemic, while other studies directly estimate the change

points or partition the timeline into regular intervals to reflect the evolving dynamics of the

epidemic, we propose a simple method that incorporates fixed change points. We do not esti-

mate the change points for our model, as it was fairly obvious where a reasonable change point
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was in these data, and this avoids complexity arising from different interventions being intro-

duced in each country, with varying levels of restrictions. Furthermore, the delays before tangi-

ble results are observed, in addition to the complex and hidden interactions underlying the

process, complicate the interpretation of estimated change points. We instead opt for this con-

sistent and simplistic definition of the change point for each country. The change points could

however be estimated for more complex trajectories.

We illustrate in this study how a simple model can be used to describe exceedingly complex

natural phenomena such as epidemics, and in particular the COVID-19 pandemic. Although

it is the same underlying phenomenon, all countries are unique concerning the spread of the

virus and the resultant response measures. Our simple model can capture these dynamics.

Additionally, while many other studies consider small-scale regions, such as individual coun-

ties in the U.S., we are also able to gain insights into the dynamics of the process at a higher-

level across entire countries.

Outline

First we define a general form of the DTHP, and contrast this with its continuous-time equiva-

lent. We then introduce the particular model used in the initial stage of this analysis for model-

ling COVID-19, incorporating a change point into the construction of the DTHP. Next, a brief

description of the data and inference methods are provided. Finally, the results for the ten

countries of interest are presented, and we also show the results from fitting our model to

more recent data. This is followed by a discussion and concluding remarks.

Methods

Discrete-time Hawkes process

The discrete-time Hawkes process is a self-exciting stochastic process whereby events occur at

regular intervals on a discrete-time scale. It follows a similar construction to the continuous-

time Hawkes process [28]. The conditional intensity function λ(t) characterises a Hawkes pro-

cess, and herein lies the difference between the continuous-time and discrete-time variants.

For the DTHP, λ(t) represents the expected number of events that occur at time interval t,
conditionally on the past. In contrast, for the continuous-time Hawkes process, λ(t) is the

instantaneous rate of an event occurring at time t. The DTHP model also has an extra layer of

flexibility compared to its continuous-time counterpart as the underlying data generating pro-

cess can be selected as any counting distribution with conditional mean λ(t).
Consider a linear univariate discrete-time Hawkes process N, where N(t) represents the

number of events up to time interval t. N(t) is dependent on the history of events up to but not

including time t, denoted by Ht−1 = {ys: s� t − 1}, where ys represents the observed number of

events in a given time interval s. Furthermore, N(t) − N(t − 1) represents the number of event

occurrences at time t, and thus,

lðtÞ ¼ EfNðtÞ � Nðt � 1ÞjHt� 1g

¼ mþ a
X

i:ti<t

yti gðt � tiÞ ð1Þ

where μ represents the baseline mean of the process and the second term represents the self-

exciting component of the Hawkes process, describing the expected number of events during a

particular interval t given previous events. The triggering kernel g(t − ti) describes the influ-

ence of past events on the intensity of the process, given the time elapsed since event i, where

t> ti. In this study, we specify the triggering kernel to be a proper probability mass function
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with strictly positive integer-valued support. Since the sum of the excitation kernel over Zþ is

equal to 1, one can interpret the non-negative magnitude parameter a 2 R�0 as the expected

number of subsequent events produced by a single event [33].

Model

Daily counts of the reported number of deaths of the novel coronavirus COVID-19 are mod-

elled using the discrete-time Hawkes process, where the number of events observed on day t,
namely yt, are distributed according to the random variable, Y(t), which has conditional mean

E(Y(t)|Ht−1) = λ(t) as defined in Eq (1). In this analysis Y(t) is assumed Poisson distributed,

thus YðtÞ � PðlðtÞÞ. The Poisson distribution is selected as it has an intuitive interpretation

regarding the generation of daily death counts on a given day, and because it is a natural

approximation of a binomial distribution with a large population and low death rate. More

detail is given in S1 Appendix. Thus, for the proposed DTHP model, the probability that day t
has y events is,

PðYðtÞ ¼ yjlðtÞÞ ¼
lðtÞye� lðtÞ

y!

First we consider an initial period up to 25th July 2020, to determine some initial modelling

assumptions and study the model performance in the early stages of the pandemic. The condi-

tional intensity function λ(t) is altered from Eq (1) to allow for a change point in the process,

since the DTHP with fixed parameters is unable to capture the complex dynamics for an epi-

demic of this scale. The parameters of the DTHP implicitly incorporate environmental and

social characteristics that are significant for the spread of the disease, and these characteristics

change after preventative measures are introduced. Thus, if the dynamic nature of the epi-

demic is not taken into account, the model averages the estimated parameters, combining the

effects of the initial explosive phase of the pandemic with the downward trend that follows

after the implementation of preventative measures.

In the initial period of analysis, to accommodate this shape, we assume in our analysis that

two phases can adequately separate the underlying dynamics. Namely, these phases are the ini-

tial period where the virus is spreading rapidly and the following period of reduced contagion

resulting from the introduction of preventative measures and policies. Many complex interac-

tions are occurring in the deaths process. For example, as medical professionals become more

familiar with the virus and treatments are improved, medical facilities are better equipped to

deal with COVID-19 patients in critical condition requiring ICU [57, 58]. However, this can

be offset by increased demand for hospital beds, resulting in medical facilities becoming over-

whelmed and unable to care for all patients that require hospital treatment. Therefore, rather

than making explicit assumptions about the underlying processes driving the death dynamics,

we link our Hawkes model on the death dynamics to a similar infection model, as we discuss

in S1 Appendix.

Thus, we first retrospectively define a single change point at time T1, where T1 is the maxi-

mum value of deaths, to capture the different dynamics of the epidemic at two distinct stages

of the outbreak.

The triggering kernel g(t − ti) is selected as a geometric excitation kernel, g(t − ti;β) = β(1 −
β)t − ti−1. The exponential distribution is one of the most commonly used triggering kernels for

continuous-time processes. Thus we choose the geometric kernel as it can be shown to

be equivalent to the exponential distribution in the context of discrete time. The parameter β
represents the success probability in the geometric distribution, and thus the average of the
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excitation kernel is 1

b
. We also express the expectation of the maximum excitation time in

terms of the parameters of the model in S2 Appendix.

The conditional intensity function before T1 is calculated using one set of model parame-

ters, (μ1, α1, β1). After T1, the intensity function is calculated using a new set of parameters,

(μ2, α2, β2) for the second phase in the epidemic. Thus for one change point at time T1, λ(t) is

given by,

lðtÞ ¼

(
m1 þ a1

P
i:ti<t

yti g1ðt � tiÞ; t � T1

m2 þ a2

P
i:ti<t

yti g2ðt � tiÞ; t > T1

ð2Þ

It is straightforward to extend Eq (2) to allow for additional change points. While the

majority of this paper considers only the initial stage of the pandemic up to 25th July 2020, we

consider subsequent phases after this date as a set of additional analysis. This is to demonstrate

how our model can be extended beyond the initial phases of the pandemic, as new data will

continue to become available each day for the foreseeable future.

Although we consider the deceased population rather than the infected population, there is

a connection between the two under some simplifications. Thus studying deaths is useful for

understanding the infection dynamics as well. This is advantageous particularly in the early

stages of a pandemic, when no reliable data on infections are available. We do not go into the

details here, but the key outcome of this is that α, β and a function of μ are interpreted with

respect to infections, not deaths. The full derivation is available in S1 Appendix. As this

approximation relies on the assumption of a large population and a low death rate, we would

not expect this model to be reasonable for other time series where the rate of occurrence is

high, such as COVID-19 recoveries.

For a time series of T days and a given country, the log-likelihood function for this DTHP

model with retrospective change point, T1, up to an additive constant K, is then,

logLðyjμ;α; βÞ ¼

K þ
XT1

t¼1

yt log ðm1 þ a1

X

i:ti<t

ytib1ð1 � b1Þ
t� ti� 1
Þ � m1 þ a1

X

i:ti<t

ytib1ð1 � b1Þ
t� ti � 1

 !" #

þ
XT

t¼T1þ1

yt log ðm2 þ a2

X

i:ti<t

ytib2ð1 � b2Þ
t� ti � 1
Þ � m2 þ a2

X

i:ti<t

ytib2ð1 � b2Þ
t� ti � 1

 !" #

Data

We use data gathered by the Johns Hopkins University [59] in this work. These data come in

the form of daily counts of confirmed cases or deaths by country and region. In this analysis,

the number of daily reported deaths for a selection of countries, namely Brazil, China, France,

Germany, India, Italy, Spain, Sweden, the United Kingdom and the United States, are consid-

ered. We select these countries to represent a global sample of countries that have been

adversely affected by the coronavirus outbreak. It is important to note that the definition of

deaths due to COVID-19 varies between countries. These differences are ignored in our

modelling.

The reported number of deaths was considered a more reliable response variable than the

reported number of cases. This is due to data issues that can arise when considering the num-

ber of confirmed cases, such as lack of testing or differing testing rates between countries, dif-

ferences in definitions and differences in the timing for reporting of cases. Additionally, to
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mitigate the effect of systematic influences in reporting, such as lower reporting on weekends

[50], the data is smoothed over a rolling window of seven days. The start of the observation

window, t1, for each country is defined as the time the number of deaths exceeds ten. Fig 1

shows the smoothed volume of daily deaths for the countries under consideration up to 25th

July 2020.

For the initial stage of this analysis, we consider data up to 25th July 2020. We define a sin-

gle change point, T1, as the time where the maximum number of deaths occurs, for the coun-

tries with sufficient data in the downward phase of the epidemic by the end of the initial study

period. Where there is insufficient evidence for the downward trend, for example, in India and

Brazil, no change point was introduced, and only a single phase was modelled. Moreover, the

trend for Brazil showed evidence of the curve flattening; however, there was insufficient data

for this second phase. Thus the end of the observation window for Brazil is fixed on 1st June

2020. Additionally, as China, India, Spain and the United States experienced large deviations

from the current trend towards the end of the observed data, earlier endpoints of 13th April

2020, 12th June 2020, 15th June 2020 and 21st June 2020 were imposed respectively. This

avoids the anomalous spikes at the end of these series, since it was not clear whether these

aberrations were real or due to reporting definitions or other errors. The endpoint for the

remaining countries was set as 25th July 2020. We later extend our analysis to include more

recent data, to demonstrate the utility of our model in later phases of the pandemic. A descrip-

tion of the data processing for this is in the relevant Results section.

Fig 1. Observed data. Daily volume of deaths due to COVID-19 for the countries selected in this analysis.

https://doi.org/10.1371/journal.pone.0250015.g001
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Parameter inference

Parameter estimation is undertaken using Bayesian methods. We consider a range of prior

choices for the baseline parameters μ1 and μ2, and perform leave-future-out cross validation

with Pareto smoothed importance sampling [60] to assess the performance of each prior

choice. The priors considered are,

m1; m2 �

logNð1; 1Þ

logNð5; 1:5Þ

Gammað2; 2Þ

Gammað5; 1Þ

Uð0;1Þ;

8
>>>>>>>>>><

>>>>>>>>>>:

where the first term of the log-normal priors represents the mean of the random variable itself,

as opposed to the mean of the variable’s natural logarithm.

Cross validation with Pareto smoothed importance sampling relies on the expected log pre-

dictive density (ELPD), for which a larger value indicates a better model fit. We calculate the

ELPD in each country for each of the baseline parameter prior choices, and these results are

provided in S1 Table. Based on this analysis, there is no obvious choice of prior that consis-

tently outperforms the rest for each country. On the contrary, the difference in the ELPD is

marginal between priors. The remainder of this paper presents the results for μ1, μ2� Gamma

(5, 1), as this is most frequently the highest ELPD, and if not the maximum, is generally very

comparable.

Flat priors are selected for α1, α2, β1 and β2 such that,

• pða1; a2Þ / Ið0;1Þ2ða1; a2Þ

• β1, β2� U(0, 1)

A Metropolis-adjusted Langevin step [61] is used to jointly update α1 and β1, and also to

jointly update α2 and β2. Denoting the parameters at iteration t by α(t), β(t), the proposals α�, β�

are simulated from,
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where Dα(.) and Dβ(.) are the gradients of logL with respect to α and β respectively, G is a pre-

conditioning matrix accounting for covariance between parameters and � is the step size in the

Metropolis-adjusted Langevin algorithm.

The MCMC chain was run for 60,000 iterations discarding the first 20,000. The pre-condi-

tioning matrix G was taken as the covariance matrix from an implementation of the standard

Metropolis-Hastings algorithm for each country. The R code and data required to replicate

this study are available on Github (https://github.com/RaihaTuiTaura/covid-hawkes-paper).

Results

We first present results from the initial analysis considering data up to 25th July 2020. Fig 2

presents the 95% posterior intervals around the estimated conditional intensity function λ(t)
against the observed data for each country. The estimated intensity function on day t,
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represents the expected number of events on day t and very closely follows the observed num-

ber of deaths. It is also extremely reactive to minor deviations from the observed trend, and

more volatile times in the observed data result in wider posterior intervals to account for

increased uncertainty in the trend of the data.

Diagnostic plots, including MCMC trace plots, autocorrelation between the MCMC sam-

ples and pairwise correlation between parameters were examined and suggest the algorithm

has converged. Further details on the posterior distributions of the model parameters, conver-

gence and model diagnostics are provided in S3 Appendix.

Fig 2. Observed deaths versus estimated deaths. The observed number of deaths (black dots) compared to the 95% posterior interval for the estimated

expected number of events, i.e. λ(t) (solid red ribbon).

https://doi.org/10.1371/journal.pone.0250015.g002
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Tables 1–3 present the posterior median and corresponding 80% posterior intervals for the

model parameters. Further details for the other baseline parameter priors considered can be

found in S4 Appendix. In most countries, the posterior interval for μ2 is consistently lower

than μ1, indicating a reduction in the baseline rate of events from the beginning to later stages

of the epidemic. The exception to this is the U.S. The results for the U.S. are highly sensitive

to the prior choice; thus, wider priors return higher posterior estimates than expected when

Table 1. Phase 1 versus Phase 2 median and 80% intervals for baseline parameters, μ1 and μ2.

Country μ1 μ2

Italy 4.39 (3.18,5.71) 1.17 (0.69,1.8)

France 4.57 (3.38,5.91) 1.57 (0.97,2.28)

Spain 5.78 (4.06,7.6) 0.49 (0.28,0.76)

Germany 4.17 (2.89,5.54) 0.95 (0.59,1.39)

Sweden 4.05 (2.88,5.44) 1.79 (1.05,2.68)

U.K. 4.51 (3.08,6) 2.42 (1.32,3.75)

U.S. 4.08 (3.13,5.15) 4.1 (2.16,7.12)

China 8.92 (6.29,11.73) 0.82 (0.48,1.22)

Brazil 4.18 (2.98,5.52) -

India 2.81 (2.02,3.72) -

https://doi.org/10.1371/journal.pone.0250015.t001

Table 2. Phase 1 versus Phase 2 median and 80% intervals for magnitude parameters, α1 and α2.

Country α1 α2

Italy 1.07 (1.05,1.09) 0.94 (0.93,0.95)

France 1.1 (1.08,1.11) 0.92 (0.91,0.93)

Spain 1.11 (1.09,1.13) 0.96 (0.95,0.97)

Germany 1.06 (1.03,1.09) 0.91 (0.89,0.93)

Sweden 1.07 (1.01,1.13) 0.92 (0.89,0.95)

UK 1.14 (1.11,1.17) 0.95 (0.95,0.96)

US 1.07 (1.06,1.07) 0.97 (0.97,0.98)

China 1.07 (1.01,1.15) 0.8 (0.76,0.84)

Brazil 1.03 (1.02,1.04) -

India 1.1 (1.07,1.13) -

https://doi.org/10.1371/journal.pone.0250015.t002

Table 3. Phase 1 versus Phase 2 median and 80% intervals for triggering kernel parameters, β1 and β2 and the means of their respective geometric distributions, β� 11

and β� 12 .

Country β1 β2 β� 11 β� 12

Italy 0.88 (0.8,0.95) 0.55 (0.48,0.63) 1.136 (1.053,1.25) 1.818 (1.587,2.083)

France 0.97 (0.92,0.99) 0.64 (0.58,0.7) 1.031 (1.01,1.087) 1.562 (1.429,1.724)

Spain 0.96 (0.9,0.99) 0.91 (0.85,0.95) 1.042 (1.01,1.111) 1.099 (1.053,1.176)

Germany 0.65 (0.57,0.75) 0.51 (0.45,0.59) 1.538 (1.333,1.754) 1.961 (1.695,2.222)

Sweden 0.42 (0.32,0.54) 0.5 (0.39,0.62) 2.381 (1.852,3.125) 2 (1.613,2.564)

UK 0.79 (0.68,0.91) 0.56 (0.5,0.62) 1.266 (1.099,1.471) 1.786 (1.613,2)

US 0.99 (0.98,1) 0.77 (0.66,0.89) 1.01 (1,1.02) 1.299 (1.124,1.515)

China 0.4 (0.28,0.56) 0.43 (0.35,0.54) 2.5 (1.786,3.571) 2.326 (1.852,2.857)

Brazil 0.83 (0.73,0.93) - 1.205 (1.075,1.37) -

India 0.33 (0.26,0.41) - 3.03 (2.439,3.846) -

https://doi.org/10.1371/journal.pone.0250015.t003
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compared to other countries. In an earlier analysis, this behaviour was also prevalent for Swe-

den and the U.K., although it disappeared when considering a longer time series. This implies

that there may be insufficient information in the data for the U.S. to reliably learn the model

parameters for the second phase. However, without alternative data, it is not possible to

improve modelling for the U.S. by considering a longer time series. This is due to a large

anomaly at the end of the series, as discussed in the Data section. Nonetheless, it highlights the

importance of having sufficient training data and being cautious when interpreting parameter

estimates.

The magnitude parameter in the second phase, α2, is also consistently lower than the

parameter for the first phase, α1. With a posterior probability (greater than 80%), it can be said

for all countries that α1 > 1 and α2 < 1. This implies the process is explosive before the change

point and becomes stationary after the change point, likely driven by the introduction of inter-

ventions to reduce the rate of infection.

The parameters for the geometric triggering kernel, β1 and β2, are similar for Sweden and

China. However, for the remaining countries where two phases are considered, the kernel

parameter for the first phase, β1, is larger than β2, indicating that the self-excitation has a lon-

ger memory in the second phase. For reference, β = 0.4 in the geometric kernel corresponds to

an average of 2.5 days for the self-excitation, with the majority of the mass occurring within

one week, whereas β = 0.9 is shorter, corresponding to an average self-excitation of just over 1

day with approximately 2 days of total memory.

Model fit

Several measures are used to assess model fit. First, the model’s capability to interpolate miss-

ing data is evaluated. Then in-sample and out-of-sample posterior predictive checks are con-

sidered. The purpose of prediction in this study is to assess model fit and to discover what can

be learned about the process retrospectively.

The first measure of model fit considers how accurately the model can recover missing

data. We randomly remove 10% of observations across the entire time series and treat the

missing data as parameters in the model to estimate. Table 4 describes the number of interpo-

lated data points for which the observed value lies within both the 95% and 80% credible inter-

vals (CrI) of the posterior distributions for the missing data. Further details can be found in S5

and S6 Appendices. The proportion of data points correctly interpolated is generally high

when considering the 95% credible intervals. This reduces when considering the 80% interval,

however, is still high for most countries, capturing at least half of the missing data points.

Table 4. Number of missing data points with actual value within 95% and 80% CrIs, out of the total number of

missing data points.

Country 95% CrI (average) 80% CrI (average)

France 11/14 7.4/14

Italy 13/15 11/15

Germany 13.4/14 10.2/14

Spain 8/11 6.2/11

Sweden 12.6/13 10.4/13

U.K. 11.8/14 9.2/14

China 8.6/9 7.2/9

U.S. 8.6/11 5.4/11

Brazil 6.6/8 4.6/8

India 7.8/9 6.8/9

https://doi.org/10.1371/journal.pone.0250015.t004
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The exception to this is the U.S., with just less than half of the missing data points accurately

interpolated.

Prediction is a difficult task, particularly for complex phenomena such as the COVID-19

pandemic. For this particular model, more recent events have a larger impact on the intensity

of the process. Thus prediction performed at a time where abnormal behaviour is occurring

will be highly uncertain and often unreliable. Moreover, a prediction is only realistic in the

short term and generally only at times where there is no evidence of abnormal behaviour. This

is consistent with other models in the literature [37, 38, 62–64]. Thus we consider in-sample

and out-of-sample posterior predictive checks in this study as a measure of model fit only.

In-sample prediction is performed by generating sample paths of the process for the range

of model parameters obtained and comparing these to the observed time series. In particular, a

random selection of posterior samples is taken, and the entire time series is simulated from

these draws. The posterior predictive intervals from these simulations compared to the

observed data are given in Fig 3. In general, the intervals for these simulations encapsulate or

are very close to the observed data, however, they can be extremely wide and often underesti-

mate the volume of events in the initial phase of the outbreak. This is likely due to variation in

the assumed Poisson data generating distribution, and relatively wide priors on the baseline

parameters for the first phase, resulting in a wide range of possible sample paths. Additionally,

these sample paths did not adequately capture the observed trend in the U.S. However, we find

that including the data from the first phase in the model and predicting the second phase

results in improved accuracy of the posterior predictive intervals for all countries. These results

are presented in Fig 4.

Out-of-sample (O.O.S.) validation is also performed for each country as a measure of

model fit. First, we consider the initial phase of the epidemic before the change point. The

model is trained on data from the first 15 days of the sample, followed by a 5-day O.O.S. pre-

diction. We then repeat this process, increasing the length of the training period by 5 days

until the change point. As shown in Fig 5, these predictions are reliable only in the short term,

and become more unreliable as the end of the first phase approaches. The first phase predic-

tions grow exponentially and quickly surpass the actual growth of the process, as the observed

curve flattens due to the effects of preventative measures that have been implemented.

O.O.S. prediction is also considered for the second phase of the model, after the change

point. We first train the model on data from the first phase and 15 days of the second phase.

We then repeat the same procedure as described above with 10-day O.O.S. predictions. The

downward trajectory of the infection cycle is more stable than the upward trajectory, so we

consider a longer prediction duration. The posterior predictive intervals are generally very

accurate for all countries, as seen in Fig 5. Compared to the O.O.S. validation performed for

the first phase, the improvements in accuracy observed in the second phase are likely due to

the stationarity of the process in the second phase, resulting in more predictable trends. For

both phases, the accuracy of O.O.S. predictions depends on the endpoint of the training period

for the model, and the type of behaviour preceding any predictions.

While we do not attempt to predict the course of the epidemic in this study, we do find that

O.O.S. predictions may indicate when the peak in the number of events is approaching. This

could be useful in countries that have not yet experienced a decline in the number of daily

events, for example, Brazil and India in this study. Posterior predictive intervals that surpass

the growth rate in the observed data indicate, and could pre-empt, the downward phase of the

epidemic. Conversely, where the predictive intervals do encapsulate the observed data, it is

unlikely that the peak is being approached. This is evident in Fig 5, where the curve for Brazil

is flattening, resulting in unreliable O.O.S. predictions, compared to the more reliable predic-

tions in India due to the strong upward trend.
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Fitting subsequent phases

As the pandemic progresses further waves of infection, and thus deaths, are inevitable and will

continue to be of interest for the foreseeable future, particularly as a vaccine is rolled out and

new variants of the virus are discovered. There is no obvious endpoint to the pandemic, how-

ever it is of interest to investigate subsequent waves of infection as well. To address this, we

extend our main analysis to determine whether our proposed model is applicable over a longer

time period.

Fig 3. In-sample validation. The observed number of deaths (black dots) compared to the 95% posterior predictive interval for the estimated expected

number of events, i.e. λ(t) (grey ribbon).

https://doi.org/10.1371/journal.pone.0250015.g003
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We consider mortality data from the endpoint of our initial analysis, up to 4th February

2021. Countries with inadequate data to inform another phase were cut short. As such, the

observation period for Brazil, U.K and U.S end on 7th January 2021, 24th January 2021 and

12th January 2021 respectively. Furthermore, for many countries there is a period of very low

mortality in between the first and second waves of infection, and we do not consider this

period. Additionally, China has not experienced a second wave, and thus it is excluded from

this subsequent analysis.

Fig 4. In-sample validation, conditioned on data from the first phase. The observed number of deaths (black dots) compared to the 95% posterior

predictive interval for the estimated expected number of events, i.e. λ(t) (grey ribbon).

https://doi.org/10.1371/journal.pone.0250015.g004

PLOS ONE Simple discrete-time self-exciting models can describe complex dynamic processes

PLOS ONE | https://doi.org/10.1371/journal.pone.0250015 April 9, 2021 15 / 28

https://doi.org/10.1371/journal.pone.0250015.g004
https://doi.org/10.1371/journal.pone.0250015


Change points were selected where there were obvious changes in the trajectory, in a similar

fashion as the main analysis. The starting point of the second wave was selected as the time

where either the 2 week or 4 week rolling average increases by 50% in a single week. The choice

between a 2 or 4 week rolling average is chosen based on which more closely aligns to the start

of the second wave upon visual inspection. We note that automatic change point detection

algorithms such as the CUSUM algorithm [65] were considered, however, they are not appro-

priate for our model. These algorithms are generally based on the mean of the time series.

Given the self-exciting nature of our model, changes in the intensity of the process do not

Fig 5. Out-of-sample validation. The observed number of deaths (black dots) compared to the 95% posterior predictive interval for the estimated

expected number of events, i.e. λ(t) using various training datasets (grey ribbons).

https://doi.org/10.1371/journal.pone.0250015.g005
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necessarily indicate changes in the underlying model parameters. The change points selected

can be found in S7 Appendix.

Comparing the parameter estimates between the initial analysis and this subsequent analy-

sis, several observations can be made. The full table of estimates can be found in S2 Table. Gen-

erally, while the baseline parameter μ in the initial analysis shows a reduction between the first

and second phases, in subsequent phases the baseline mean begins to increase again. This is

potentially due to the relaxing of restrictions and the opening of international borders. The

magnitude parameter α acts as expected, in other words it is less than 1 for phases with a

downward trajectory and greater than 1 for phases with an upward trajectory. In the initial

analysis, β is generally close to 1 in the first phase and reduces in subsequent phases.

Fig 6 shows the estimated intensity function against the observed data for the subsequent

analysis. We find that the estimated intensity follows very closely to the observed data, as is

also seen in the main analysis. We also consider in-sample (Fig 7) and out-of-sample validation

(Fig 8), in the same manner as the main analysis. These both show promising results, with

both in-sample and out-of-sample predictions aligning very closely to the observed data. The

residuals, in this case referring to the difference between the observed data and the estimated

intensity, for all phases in both the initial and subsequent analysis are provided in S8 Appendix,

and show that the models for both sets of analyses are reasonable.

Discussion

There are many strengths to our work, and some important considerations that needed to be

made. We first discuss the main findings of this analysis. This is followed by detailing the limi-

tations and potential extensions. Lastly we compare our model methodology to several popular

approaches for modelling this type of phenomena.

DTHP model

Infectious diseases have previously been studied using Hawkes processes. However, the scale,

severity and uncertainty of the current COVID-19 pandemic make it a very challenging prob-

lem, providing a unique opportunity to evaluate the capacity of Hawkes processes in describ-

ing an incredibly complex process. Another source of complexity arises from the definition of

what constitutes a COVID-19 death, which differs between countries. This analysis finds that

by modifying the DTHP to incorporate change points, our model can adequately capture the

overall process as distinct phases, while quickly reacting to and accommodating for some level

of abnormal behaviour.

The findings of this work can also quantify the dynamics of these distinct phases in the pan-

demic. Our results from the initial analysis show that for the baseline parameters, the back-

ground rate in the second phase, μ2, is lower than that for the first phase, μ1. This is analogous

to a reduction in the baseline level of exogenous events, possibly related to reduced travel and

general mobility. Another factor could be increased levels of community transmission, affect-

ing the self-exciting component of the intensity function, and thus placing less emphasis on

the baseline component. In subsequent phases, μ begins to increase again, which suggests an

increase in movement between countries. The exception to this is the U.S., for the reasons

stated in previous sections. The baseline parameter could also be affected by the definition of a

reported COVID-19 death, as this differs between countries. For example, when the criteria

for reporting a death excludes cases where the person suffers from other illnesses in addition

to the virus, this could result in an inflated baseline rate, as secondary events from unreported

cases could be present in the data.
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Our initial results for the magnitude parameters show, with a high degree of certainty, that

for the first phase α1 is greater than 1, and for the second phase α2 is less than 1. This exhibits

the distinct differences between phases, as a magnitude parameter greater than 1 indicates the

process itself is non-stationary, and similarly a magnitude parameter less than 1 suggests a sta-

tionary process. This pattern is also evident in the analysis of subsequent phases. We discuss

Fig 6. Observed deaths versus estimated deaths (subsequent analysis). The observed number of deaths (black dots) compared to the 95% posterior

interval for the estimated expected number of events, i.e. λ(t) (solid red ribbon), for the subsequent analysis.

https://doi.org/10.1371/journal.pone.0250015.g006
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below the similarities between the magnitude parameters in our model and the reproduction

number in standard epidemiological models.

The triggering kernel parameter in the first phase, β1, is higher than that for the second

phase, namely β2, for all countries except Sweden and China. This could suggest that in later

stages of the epidemic when preventative measures have been implemented, the time between

transmission is longer, as there is less opportunity for transmission. The two exceptions to

this, Sweden and China, are on opposite ends of this spectrum. While China enforced very

Fig 7. In-sample validation for subsequent analysis, conditioned on data from the initial analysis. The observed number of deaths (black dots)

compared to the 95% posterior predictive interval for the estimated expected number of events, i.e. λ(t) (grey ribbon), for the subsequent analysis.

https://doi.org/10.1371/journal.pone.0250015.g007
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strict lockdown and quarantine requirements, Sweden adopted a soft approach to lockdown.

Large β1 values could also be an indication of instability in the initial phase of the pandemic,

leading to difficulty in predicting and discerning patterns in the data. Additionally, this could

be a result of death data being less reliable in early phases, as the process of counting COVID-

19 deaths was not yet established.

Fig 8. Out-of-sample validation (subsequent analysis). The observed number of deaths (black dots) compared to the 95% posterior predictive interval

for the estimated expected number of events, i.e. λ(t) using various training datasets (grey ribbons) for the subsequent analysis.

https://doi.org/10.1371/journal.pone.0250015.g008
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Throughout the initial stage of this analysis, we have found difficulty in fitting the proposed

model for the U.S. In particular, the posterior estimates for the baseline parameter are uncer-

tain as they are heavily influenced by the prior choice. Additionally, in-sample posterior pre-

dictive checks found that the sample paths produced by the estimated model parameters do

not resemble the observed trend. We consider the U.S. an anomaly, as their response to the

virus by the relevant state-level authorities varied widely between states. While this is also true

to an extent for other countries, the heterogeneity across the country was arguably more signif-

icant for the U.S., implying that the proposed model may need to be applied at a more granular

level of regions to obtain more reliable results.

Despite our approach being able to accurately capture the dynamics of this complex pro-

cess, we now address some limitations and extensions that could be considered. As the epi-

demic is still ongoing, new data is becoming available each day, and the model must be re-fit

and tuned each time the data is updated. While we somewhat manually select change points in

this analysis, an algorithm suitable to this model with automatic selection of the number of

change points and their respective locations could also be considered. Additional change

points need to be determined carefully as there must be sufficient information in each time

series to inform parameter estimation. Another consideration is flexible Bayesian nonparamet-

ric splines [66] or other methods to provide time-varying parameters. However, the identifia-

bility and existence of this model would need to be established. One could also consider

different triggering kernels, including nonparametric kernels in order to improve the flexibil-

ity of the model. Another possible extension is considering covariates related to COVID-19

deaths, such as the number of people travelling and number of hospitals per capita.

Comparison with other approaches

Here we discuss several of the many approaches that have been considered to model the ongo-

ing COVID-19 epidemic, and the different perspectives they provide compared to our DTHP

model. Compartmental models such as the SIR family of models are among the most popular

methods for epidemic modelling. They are more detailed and consider the mechanics of the

infection cycle, separating the population into categories such as susceptible, infected and

recovered or deceased. Our DTHP model is simplified in the sense that we consider only death

events. We chose to model deaths instead of infection numbers as the latter data was very

unreliable in the beginning due to lack of testing and different testing policies across countries.

However, as we show in S1 Appendix, as a first-order approximation, the death dynamics are

helpful to understand the infection dynamics. This approximation is convenient when the

infection data are unreliable, as occurred in the early stages of the COVID-19 pandemic. In the

presence of data uncertainty such as this, the SIR model requires additional terms to account

for this measurement error.

To compare the two frameworks, it is helpful to consider a stochastic variation of the SIR

model as a bivariate Poisson process, comprised of infection and recovery events. Infection

events are then governed by a Poisson process where the rate is based on the transmission rate

and the current size of the susceptible and infected populations, corresponding to the rate of

infection in the deterministic SIR model. Our model differs as we consider a discrete time

scale, the daily number of events is Poisson-distributed and, conditioned on past events, the

rate of events each day is given by Eq (2).

Another significant difference between our model and standard compartmental models is

that the latter considers a finite population. In its original form, the Hawkes model assumes

that there will be immigrant events arriving at a rate of the baseline mean μ indefinitely, imply-

ing an infinite population. However, finite population variants of the Hawkes model do exist
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[43]. This differs from the SIR model, which naturally considers a finite population whereby

the infection dies out once herd immunity is achieved. The impact of this difference is negligi-

ble in our modelling because we predominantly model the pandemic’s initial phases, where

not enough of the population has been infected or vaccinated to achieve herd immunity. This

may not be the case for more prevalent diseases such as the flu, however both models are rea-

sonable. As the flu season ends, there will still be new infections throughout the year, however

on a smaller scale.

Hence our approach provides a simple model for unknown and volatile phenomena such

as the COVID-19 pandemic, particularly in the early stages of the outbreak. Unlike the com-

mon flu, where the dynamics and course of infection are well understood and relatively pre-

dictable, COVID-19 is a new and unexplored domain. The various interventions that take

place simultaneously result in complex interactions that complicate the dynamics of the pro-

cess. Our focus is on the early stages of the epidemic where there is a great deal of uncertainty

and volatility. The SIR model family is useful for phenomena where the mechanics are well

known. However, complicated variants of these models are required to capture the complexity

of this pandemic. Our simple model is useful in describing this early stage in the pandemic

when there are still many unknowns. Our model also introduces randomness and flexibility

that is not afforded in standard compartmental models. This allows our model to adapt to sys-

tem changes induced by government interventions quickly.

The family of SIR models naturally follow the pattern of infections and deaths rising to a

peak and then falling due to a reduction in the susceptible population. However, this is not the

cause of the fall observed in the early stage of the pandemic. Instead, the fall is driven by exter-

nal factors such as social distancing measures, temperature, and improvement in treatments,

to name a few. SIR family models have also incorporated change points or time-varying

parameters to account for these alternative drivers [51, 52]. Given our analysis’s retrospective

nature, the change points were quite obvious, and we did not estimate them. However, our

Hawkes model can be easily augmented to induce this shape naturally. For example, we

could consider a mixture of Hawkes processes for each of these distinct phases, estimate the

unknown (or known) change points, or incorporate time-varying parameters.

Another more complex approach is that of agent-based modelling. These are more detailed

than compartmental models, and are very useful if you have an understanding of the underly-

ing mechanisms. Recent papers using this approach for the COVID-19 epidemic, referenced

in the introduction, reveal the non-random nature of the underlying stochastic processes.

Based on fluctuations in social participation and certain biological factors, they lead to the

infection spreading, hospitalisation, and eventually to fluctuations of the fatality rate.

Alternatively, one could consider an even more straightforward approach, such as a piece-

wise exponential model. However, the Hawkes process allows for uncertainty in the model

that is not possible with the exponential growth model, which is very strict and captures only

the data trend. Allowing fluctuations in the data—particularly for volatile phenomena such as

the current pandemic—is an essential aspect of providing a realistic model. The exponential

model also becomes less appropriate as the pandemic progresses. In later phases, there are

complex interactions that result in trajectories that are inherently not exponential. These are

uncertain times, and our model strikes a balance between modelling the dynamics of the

whole infection cycle and fitting a generic exponential model. We model some fluctuations

motivated by the physical process, but with a simpler model than many others considered in

the literature.

While there are many alternative approaches available, the Hawkes model is also a natural

model for describing self-exciting phenomena. It provides a flexible and stochastic framework

for modelling, and the parameters in our model provide interesting insights into the
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pandemic. Namely, α is the average number of secondary infections and is related to the repro-

duction number, a
b

is related to the average time an infected individual has infected someone,

and μ relates to the occurrence of external excitations, or rather contaminations weighted by

the probability of death given contamination. The β parameter on its own also indicates how

the time between infections changes throughout time.

The reproduction number, defined as the number of secondary infections from a single

case, is a crucial parameter in epidemiological models. Similarly, the magnitude parameters in

our model, given by α, also represent the expected number of secondary cases caused by a sin-

gle parent event. While their respective interpretations are similar at a superficial level, α is not

directly comparable to reproduction numbers in epidemiological models. This is due to differ-

ences in model assumptions and the underlying mathematical frameworks, as our model’s

magnitude parameters do not provide the same information as the effective reproduction

number. The effective reproduction number informs the level of herd immunity that will

bring the virus under control, and the proportion of new infections that must be prevented to

change the trend of events from increasing to decreasing [67], whereas our model parameters

do not. However, we note that, similarly to reproduction numbers, if α> 1 in our model there

is exponential growth in the number of events and α< 1 leads to a stationary model, which

translates into a decrease in the number of deaths if the phase begins at a time with a high

event intensity. We also consider a static variable that fundamentally averages over the whole

period, rather than varying through time as the effective reproduction number would. We do

this as reasonable change points were fairly obvious in the dataset used for this analysis. How-

ever, for more complex trajectories, other authors [44, 45] consider a Hawkes model with a

time-varying magnitude parameter, which they refer to as a dimensionless reproduction num-

ber. This approach could inform the change point’s location by observing when the magnitude

parameter goes below 1. The change points could also be estimated, for example using the

method suggested in [68].

Other key epidemiological parameters are generation times and serial intervals, which

describe the time between infection and development of symptoms, respectively, for a pair of

individuals. Our model does not capture this type of information, as we do not consider the

relationship between specific pairs of individuals. As a result, it is not possible to obtain param-

eters such as growth rates, which are often of interest in epidemiological models. However, we

can gain insight into an alternative temporal aspect of the contagion. The geometric triggering

kernel in our model describes how the probability of contagion changes as time elapses. More

precisely, we can determine, for a given day, the influence of past events on the expected num-

ber of events for that day.

Conclusion

The utility of our model is not restricted to the current coronavirus epidemic, and could be

used as a simple model to describe a much broader range of complex phenomena. We have

demonstrated through this study that the proposed model is a simple, yet powerful tool for

explaining an incredibly complex process. In general, models that attempt to describe complex

processes can become increasingly complicated, as more intricate details are embedded and

accounted for in the modelling. Thus having a parsimonious model that is flexible enough to

competently capture the dynamics of a complex process, without adding too much additional

complexity, is very desirable.

In particular for the current pandemic, this study shows that our simple discrete-time

Hawkes process can capture the dynamics for different countries, despite the complexities

involved with each country’s unique response to the virus. The same underlying biological
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process is affecting countries in different ways, and there is a significant difference in the

impact and severity of the pandemic across different countries. Additionally, the actions that

have been taken to stop the spread, and the timing of these also vary widely. These different

behaviours between countries mean that the evolution of the pandemic for an individual coun-

try is very intricate within itself, and involves many unseen and complex hidden interactions

that we cannot model directly. However, the proposed model, while being very simple, can

capture these trends surprisingly well.

To adequately model the entire course of the pandemic, we find that we must make provi-

sions as there are multiple distinct phases. Initially, there is exponential growth as the virus

spreads, followed by a period of reduced infection rates as actions are taken to slow the spread.

These distinct behavioural differences throughout the evolution of the epidemic must be

acknowledged, as a single DTHP applied to the entire time series provides uninformative and

uninterpretable parameter estimates. Hence a model that accounts for these different phases,

such as the model presented in this work, is required.

Fitting a DTHP to the epidemic has led to some other unique insights. Our results show

that a discrete-time model is appropriate for this application, avoiding unnecessary computa-

tional burden as well as additional noise due to artificial data imputation, as is required for the

continuous-time model. This model also provides to an extent, interpretable parameters and

an indication of the changing dynamics between distinct phases of the pandemic. We show

that despite unique circumstances for individual countries, including the type and timing of

non-pharmaceutical interventions, population demographics, and the overall impact of the

virus, the model is flexible and can also accomodate some level of volatility in the data. Fur-

thermore, one of the most surprising outcomes of this analysis is that, at the country level, a

very simple DTHP model fits remarkably well to the number of deaths, thus capturing the

dynamics of the COVID-19 pandemic.
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