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Abstract

We study maxisets for linear procedures in the framework of the heteroscedastic
white noise model. This enables us to point out the nature of the spaces naturally
connected to these procedures and to compare the performance of linear and non

linear estimates by comparing their respective maxisets.
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1 Introduction

One of the most traditional methods to measure the performance of an esti-
mation procedure consists in investigating its minimax rates of convergence
over large function classes. However, this minimax approach has undoubtedly
two drawbacks: the choice for the function class is quite subjective and pro-

viding an estimator well adapted to the worst functions of this class seems
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too pessimistic for practical purposes. Among others, these are the reasons
why Kerkyacharian and Picard (2000, 2002) focused on an alternative to the
minimax setting: the maxiset approach that consists in investigating the max-
imal space (called maxiset) where an estimation procedure achieves a given
rate of convergence. For instance, these authors applied this theory for two
well known efficient procedures: wavelet thresholding and local bandwidth se-
lection. Under some conditions, since the maxiset for the first procedure is
embedded in the maxiset for the second one, they could conclude that local
bandwidth selection is at least as efficient as the thresholding procedure. For
the statistical model considered in this paper (see below), Rivoirard (2002)
proved that the Bayesian procedures for the mean and the median associated
to a very general Bayesian model, achieve the same performance as the thresh-
olding procedure for the maxiset approach. We can note that this approach is
less pessimistic and, above all, it provides function spaces directly connected
to the estimation procedure. For instance, Kerkyacharian and Picard (1993)
who pointed out a maxiset-type result for linear estimates under the model
of density estimation, underlined the strong link between Besov spaces B; ,
and linear estimates for this statistical model.

In this paper, and as Kerkyacharian and Picard (2000) for thresholding proce-
dures or Rivoirard (2002) for Bayesian procedures, we consider the following

heteroscedastic white noise model:
ry = O + copés, fk%l/\/(oal)a ke N, (1)

where 6 = (0;)ren+ is a sequence to be estimated and ¢ > 0. This heteroscedas-
tic white noise model has extensively been used, for instance, as a sequence
space framework for statistical inverse problems where (o}, %)sen» is the eigen-

values sequence of a known operator (see the references cited in section 2).



So, along this paper, we assume that o = (o4 )ren+ is a known sequence of
positive real numbers.

We can add that for inverse problems considered in the framework of the het-
eroscedastic white noise model, many authors consider linear estimates of the

form
0 () = (\wwr)en, (2)

where (A;)rews, that can be interpreted as a smoothing parameter, is a se-
quence of non random weights that may depend on the parameters of the
problem. Consequently, under the heteroscedastic white noise model, it seems
relevant to determine maxisets for this linear procedure. It will be the main

goal of this paper. Another goal will be to answer the following questions:

- is the nature of the maxisets obtained in the framework of the heteroscedas-
tic white noise model the same as the one associated to the density estima-
tion model 7

- can we compare the performances of linear and non linear procedures by

comparing their respective maxisets 7

The results we obtain are the following. We consider the model (1) and we
evaluate the risk for linear estimates for a weighted [,-norm (1 < p < o0),
that can be the [,-norm, a Sobolev norm or a Besov norm. The maxisets
are obtained under very general assumptions on the A;’s that are verified by
commonly used weights. Furthermore, if we consider the [,-risk and a rate of
convergence of the form (g,/log(1/£))?*/(3s*1) and if 3, o} < oc or if ¢ has a
polynomial growth or decay, the maxisets for the linear procedures are strictly
embedded in the maxisets for the thresholding procedure. It means that lin-

ear estimators are outperformed by non linear ones. Then, we study maxisets



associated to the problem of the L,-estimation (1 < p < oo) with projection
weights of functions f decomposed on a basis (¢¥x)ken+: f = 3 pen+ Oxtor. Once
more, we prove from the maxiset point of view that if we have o, = 1, k € IN*,
linear estimates are outperformed by thresholding ones. Let us note that in a
different context (see Donoho, Johnstone, Kerkyacharian and Picard (1996)),
the minimax approach allowed us to draw the same conclusion.

Finally, this paper precisely describes the nature of the function spaces nat-
urally linked to linear procedures under the model (1). Indeed, whatever the
choice of the risk, the maxisets that we obtain are of the same type. And
for the L,-risk, under some conditions on the basis, the maxisets are exactly
Besov spaces B; , « as for the model of density estimation.

The paper is organized as follows. Section 2 is devoted to the description of
the statistical model and the function spaces involved in this paper and in

section 3, we describe the maxisets obtained for linear estimates.

2 Model and function spaces

In the following, we assume that we are given the model (1) where o =
(0k)kew= is a known sequence of positive real numbers. This heteroscedas-
tic white noise model can be viewed as a generalization of the classical white
noise model (for which we have o = 1, k£ € IN") often considered by statis-
ticians. Such a statistical model naturally appears when we have to estimate
the solution of a linear operator equation ¢ = Af, with noisy observations of
g. Indeed, most of the time, to deal with such a problem, the singular value
decomposition of A is used and the sequence (o} *)zen+ is then the eigenvalues

sequence of the operator A*A, where A* is the adjoint of A. Some well-posed



inverse problems with noise can be reduced to (1) with o — 0 (as & — 400).
The condition ¢, — +oo characterizes ill-posed problems. For instance, the
sequences (o )ren+ associated to operators such as the Radon transform or the
convolution (see Cavalier and Tsybakov (2002)) or operators for some ellip-
tic differential equations (see Mair and Ruymgaart (1996)) have a polynomial
growth. But, the o;’s may grow exponentially. See for instance Pereverzev and
Schock (1999) who considered the problem of satellite geodesy or the inverse
problems associated to partial differential equations such as the heat equation
(see Mair and Ruymgaart (1996)).

As explained in Introduction, the final outcome of the maxiset approach is a
function space where an estimation procedure achieves a given rate of conver-
gence. S0, let us introduce the following function spaces that will be useful

throughout this paper.

Definition 1 Forall 1 < p < oo and 0 < n < oo, and for any non negative
measure p on IN*, we set:

B;,oo(lu) = {0 = (Hk)kelN* : sup AP Z /,L(k‘)|0k|p < OO} .

A>0 k>

When D is an interval of R, d > 1, and £ = (g)ren+ is an unconditional
basis of L,(D), 1 < p < oo, we set

Bl oo(D,E) = f =D 0ktn s sup N[ D Oy, < o0

k A>0 k>

Under some conditions on D and on the basis &, the space B} (D,€) is
a Besov space (see section 3). We shall see that the spaces B (u) and
B’ (D, €), that are of the same nature, are strongly connected to linear proce-
dures. Now, let us give here the maxisets associated to a classical thresholding

procedure that are very different from the spaces introduced previously. We



still consider the model (1) and for any ¢ > 0, we assume that we are given a

real number A, > 0 only depending on ¢ with A, — 400 as ¢ — 0, and we set:

. .?fk]l ENELET if £ < AE,
0y (zx) =

0 otherwise,

where k; is a constant and t,. = oxe\/log(1/e) is the universal threshold.
The maxiset for this procedure has been obtained by Kerkyacharian and Pi-
card (2000):

Theorem 1 Letl < p < 0o and 0 < r < oo be two fized real numbers.

We suppose that A, = (&/log (1/5)) - , for 0 < & < g where &g is such that
eoy/log(1/eg) = 1, and there exists a positive constant Cy, such that

5
oo

1
1/5 i EO’ <Ct, 0<€§50.
k<A

Let 0 < v < oo be a fized real number. Then, if Ky > \/2p, there exists a

positive constant C' such that for any 0 < e < &g

L 20)(20+1)
(16— o7 )" < 0<5,/1og(1/5)) ’

if and only if
0 € Wl 241y (0) N B (),

where p ts the counting measure on IN* and for any 0 < g < p,

A>0

wlpe(0) = {9 = (Op)kenr © sup A7 pz]l |€k|</\ak|0k| < OO}

Notations: In the sequel, we shall note [m] the integer such that m — 1 <
[m] < m. Given two sets A; and Aj, the notation A; C A; means that A; is

embedded in A;, the notation A; & A; means that this embedding is strict.



3 Maxisets and linear estimates

Along this section, we study linear estimators of the form given in (2) which

risk is evaluated under weighted [,-norms (1 < p < oo): for any non negative

measure ;¢ on IN*, we set:

1

Ry (0) = (0 — 017 ,)) " = (zu 1E|Akxk—ek|p).

keIN*
Of course, if p is the counting measure on IN*, then the risk is studied under
the [,-norm. Other choices for p and p allow us to consider Sobolev or Besov

norms. The maxisets obtained in this framework are the following:

Theorem 2 Letl < p < oo and 0 < s < oo be two real numbers. For any
m > 0, we suppose we are given (Ap(m))rens, @ non increasing sequence of

weights lying in [0, 1] such that

o (Ay): there exists C < 1 such that for all m >0 and k > m, Ak(m) < C,
o (Ay): there exists Cs € IR such that for any m > 1, with A\g = 1,
EN"”
3 (enalm) = w1 =t (£) T <
1<k<m m

Then, for any ¢ > 0, we suppose we are given m. > 0 such that

o (M): there exists ¢ such that m. <1,
o (My): e = m. is continuous,

o (Ms): m.— 400 ase — 0.

We consider the model (1) and the estimator grome) — (Ae(me) X xp)pen. We

suppose that there exists a positive constant Ty such that for any e > 0

P Y u(k)o(A(me)) < T (3)

keIN*



Then, there exists a positive constant C such that for any ¢ > 0
Ry u(6)) < € m (4)
if and only if 0 € B} _ ().
Proof of Theorem 2: We have:
ZM (1= Xe)P[0k]P < 2071 EM J(E[A; 2 — 0x]” + E|Ar (2 — 0)]")
< 27t 10 =0l +  BIGP Y uk) k.
Therefore, under (3), if (4) is true, for ¢ > 0,

Y0 uk)l < EM (L= A)" 10k )" < Km ",
k>me
where K is a positive constant. This implies that 6 € B> _(u).

Conversely, let us assume that § € B> (), then, there exists a positive

constant (', such that for & > 1, 37,5, p(1)|6:[F < C k7P°. We have, for & > 0:

[me]
S (k)1 = AP0 < pC S (Mpet — Ae)(1 = A )P kP < pCCam">.

k<me k=1

Then, for ¢ > 0,

B o7, < 27 [Zm)(l SRR WG RTINS ekw]

k
Bl DY LR TR it wkv‘l
k< k>me
+2P B[P Y p(k)No}
k
< Km_P?
where K is a positive constant. Theorem 2 is proved. O

To shed light on this result, we consider the /,-norm (we note p the count-



ing measure on IN*) and o = k°, b > —1/p. To check (3), we take m. =

g—p/(ps—}—pb-}—l)’ and with )\k(m) =1 k<m, WE obtaln:
for any € > 0, RID,M(@AA(W)) < Cemtmtl = f ¢ B, (1)

In particular, when p = 2, £2¢/(2s+2%41) {5 the minimax rate achieved on the
balls of the Sobolev space W; (see Cavalier and Tsybakov (2002)) but also on
the balls of B; () that contains W;. Let us note that B; _(p) can be iden-
tified with the Besov space B;2 «([0,1]), and when b = 0 (o, = 1, k € IN¥),

2s/(2s+1

we obtain the classical rate ¢ ). Of course, this theorem can be applied

with the most commonly used weights, such as

- the projection weights: )\S)(m) =1 r<r(m);

- the Tikhonov-Phillips weights: )\f)(m) = m,

- the Pinsker weights: A;CS)(m) = (1= (k/T(m))*)s,
where the function 7" and the parameter a > 0 can be chosen to ensure that
the weights )\gf)(m) verify assumptions (A;) and (Az) of Theorem 2.
Now, let us compare linear estimates with adaptive thresholding estimates
from the maxiset point of view for the [,-norm and with the rate of conver-
gence (5\/10g(71/5))25/(25+1), (0 < s < o). Most of the time, the thresholding
procedure of Theorem 1 is applied with r = 2. Nevertheless, we shall use the
results of Theorem 1 with r > 2 and x; > /2p and those of Theorem 2 with the
projection weights Ag(m) = 1 <., and we take m, = (5\/10,@;(71/@)_2/(25“).
We note p the counting measure on IN*.

First, let us assume that Y, o) < oo. This assumption yields that condition

(3) of Theorem 2 is fulfilled and straightforward computations show that

2s

B (1) G Bt (1) Nwly yas41)(0) = Boaa™ (),



which means that linear estimators are outperformed by non linear ones.

Now, let us suppose that there exist ¢; > 0, ¢ > 0 and b € IR such that,
ok <o < Cka, k e IN".

This case includes the homoscedastic case (o, = 1, k € IN*). Condition (3) of

Theorem 2 is fulfilled if and only if 2(bp + 1) < p and we take

K¢ > \/maX(Zp; 167(pb + 1)).

Lemma 1 Sincer > 2 and 2(bp+1) < p,

B (1) @ Bp&s™ (1) Nwlypyastny(0).

Proof of Lemma 1: When bp < —1, ¥, 0} < 00, so we assume that bp > —1.

Then, for 8 = (0)ren+, 0 < A <1, Ny > 1,

AT ST <o [0kl S ATERT ST (047 4 GAEE S R
k

k>N k<Ny

With N, = )\_2/(23+1)7 and if € B;,oo(ﬁb)’

_ 2ps
sup A~ 2 E]l |9k|§0k/\|9k|p < 0.
A<1 k

Furthermore, for 6 = (0;)ren-,

2ps
SUp 77T YT g <o [0l < D [64[”.
k k

A>1

So, By (1) C wlyp/2s41y(0). Now, since & — pb > 1, there exists u > 0
such that
(pb + u_l)(Zs +1) - (2s + 1)

p 2

1
— <
5 =

so we set

(upb+1)(2s + 1) [u u(2s + 1))
v = Elgy— =1
p 2 2

10



and for [ € IN* 0; = oy x - if there exists k € IN* such that / = [k* + 1], and
0, = 0 otherwise. It is easy to see that 6 € B“iz—“)(u) N wly p2s41)(0), but
0 ¢ By (1), which proves the lemma. O
The result of Lemma 1 means that linear estimators are outperformed by non
linear ones. Let us note that the assumption r > 2 is essential to claim this
statement. Indeed, if r < 2 and for small values of s, B;féjf—i” (1) & By (1)
Finally, if o has an exponential growth, then we could apply neither the thresh-
olding procedure, nor the linear one with m, = (g1/log(1/£))~2/(3st1) But with
a logarithmic rate of convergence and by adapting the results of Theorem 1, we
expect from the maxiset point of view, thresholding procedures to be prefer-
able to linear ones. Let us also note that these last results remain valid for
Pinsker and Tikhonov-Phillips weights for an appropriate choice of a.

Now, we estimate functions of L,(D), where D = [0,1] or D = IR®. For this
purpose, we use a wavelet basis of Ly(D) noted € = (¢k)ren+. More precisely,
we assume that &€ is a wavelet-tensor product basis constructed on compactly
supported wavelets. So, if 1 < p < oo, Meyer (1992) proved that £ is an un-
conditional basis of L,(D). Furthermore, we assume that (oxt)ren* verifies

the following superconcentration inequality: for any 0 < r < oo, there exists

a constant C'(p,r) such that for any F C IN,

sup |ox|
keF kel

[E |Uk1/’k|r] <C(p,r)
Ly

Remark 1 Kerkyacharian and Picard (2000) noted that if the o) ’s depend
only on the resolution levels and if at level 7, the noise level is proportional to

259 with b > —%, then (okYr)ren+ verifies this superconcentration inequality.

Under these hypotheses, we can get the maxiset associated to the linear pro-

cedure with projection weights for the L,-risk. We have:

11



Theorem 3 Let 0 < s < oo be a fized real number. For any ¢ > 0, we
suppose we are given me > 0 such that Assumptions (My), (Mz) and (M3) are
checked (see Theorem 2). To estimate the function f =3+ Oxtr under the
model (1), we suppose that there exists a positive constant Ty such that
(em2)P > /|¢k|pa£ <T,, forany e>0.
k<me
If Ae(m) = 1 oy, there exists a positive constant C' such that for any e > 0

1/p
<Cm>*

€

[JEH S elma)es — 0,
k
if and only if f =34 Opthr € B (D, E).

Remark 2 The proof of Theorem 3 uses the particular form of the pro-
jection weights that can take only two values: 0 or 1. To obtain a similar
result for other weights Ag(m.), it is enough to check that for any ¢ > 0,

(Ae(me)ortr) ke verifies the superconcentration inequality.

The proof of this theorem only requires some of the arguments of the proof
of Theorem 2 and some of the arguments used by Kerkyacharian and Picard
(2000) for proving Theorems 5.1 and 5.2. So, it is omitted. To shed light on
this result, we assume until the end of this section that o, = 1, &k € IN*,
and £ is a wavelet-tensor basis on [0,1]%, denoted & = (¥;1)jen1e4,, Where
for any j € IN, A; is a set with cardinality proportional to 2/¢. Then, under
standard properties of regularity and moment vanishing of the wavelet (see

Meyer (1992)), Bg/oi([(), 1]¢,€) can be identified with the Besov space

Bypoo([0,1]7) = {f =33 Bavp: sup2” 0N Bavallr, < 00}7
JENI1EA,; J20 i>J 1EA,

and this shows that whatever the choice of the model (density estimation or

heteroscedastic white noise model), Besov spaces B, , -, are strongly connected

12



to linear procedures. Furthermore, using [ [¢;|" ~ 2451 the upper bound
obtained for B, ([0, 1]%) and with the L,-risk is £2*/{4+25) What is more, and
as previously, using Theorems 5.1, 5.2 and 6.2 of Kerkyacharian and Picard
(2000), we show that linear estimators are outperformed by non linear ones
for the rate (q/log(il/&:))%/(dﬁs). With the classical calibration ¢ ~ n=/2,
this rate is, up to a logarithmic term, the minimax rate that appears for the
model of density estimation (see Donoho, Johnstone, Kerkyacharian and Pi-
card (1996)) or for the model of non parametric regression (see Donoho, John-
stone, Kerkyacharian and Picard (1997)). Let us note that for the model (1),

Kerkyacharian and Picard (2000) provided an adaptive thresholding procedure

that achieves the rate (gy/log(1/))?/{4+25) on the balls of B, , ([0, 1]?).
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