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Abstract: This paper explores the estimation of ff2 where f is a functional pa-
rameter in the white noise model. To compare different estimation procedures, we
adopt the maxiset point of view, i.e., we point out the entire set of functions on
which a given procedure achieves a given target rate. Quadratic and soft (local and
global) thresholding wavelet procedures are considered. We compute the maxisets
for these procedures and prove that, most of the time, thresholding procedures out-
perform the quadratic one. The comparison of performances in the maxiset setting
of local and global thresholding depends on the target rate; none of them is always

preferable.
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1. Introduction.
Our aim, in this paper, is to investigate the estimation of 6(f) = [ %, where f

is the functional parameter of the classical white noise model

Y. (t) :/Otf(u)du—l-eB(t), teo,1], (1.1)

B(t) is a standard Brownian motion on [0,1], Y. = (Y.(¢),0 < t < 1) is the
observed variable, and € — 0.

In a general way, for the non-parametric framework there are three steps to
take when estimating 6(f): the choice of the method (kernel, series, wavelet,...);
the determination of parameters of the method (the bandwidth k, the number
N, the level j,...); the evaluation of the quality of the procedure 0. (the word
”procedure” fixes the method/parameter) by computing its rate. It is well known
that the rate has to be associated with a function space. More precisely, for the
procedure 6. and function space F C Lg, we point out the associated (quadratic)

rate p. that results from the computation of sup,cE[(f. — 6(g))?].
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When non-parametric problems are explored, the minimax theory is the
most popular point of view: it consists in ensuring that the procedure 6. to be
used achieves the best rate on a given function space F. But the rate might
be unknown (in an adaptive framework) and the choice of F is arbitrary (what
kind of spaces has to be considered: Sobolev spaces? Besov spaces? why?).
Moreover, F could contain very bad functions g (in the sense that 8(g) is difficult
to estimate). Since §(f) might be easier to estimate, the procedure could be
too pessimistic and not adapted to the data. More embarrassing in practice,
several minimax procedures may be proposed and the practitioner has no way
to decide between them. To answer these questions, another point of view has
recently appeared: the maxiset point of view (see for instance Kerkyacharian,
and Picard (2000)). It consists in deciding the accuracy of the estimate by
fixing a prescribed rate p. and pointing out all functions ¢ such that #(g) can
be estimated by the procedure 0. at the target rate p.. Roughly speaking, the
maxiset of the procedure ée for the rate p. is the set of all such functions. The
maxiset point of view brings answers to the previous questions. Indeed, there
is no a priori functional assumption and then, the practitioner does not need
to restrict his study to an arbitrary function space. The practitioner states the
desired accuracy and fixes the quality of the used procedure. Obviously, he
chooses the procedure with the largest maxiset.

Let us come back to the problem of estimating 6(f) = fo This problem
has been intensively studied in the minimax theory and is now completely solved.
Generally, f is assumed to belong to the Besov space B for a > 0, p > 1.
One gets different rates according to the regularity « of the function f. If f
is regular, it is possible to estimate #(f) with the parametric rate. Otherwise,
the (non-parametric) rates depend on « and on p when p < 2. Moreover, as in
the problem of estimating the entire function f, two forms of rates have been
pointed out when f is dense (p > 2) or f is sparse (p < 2). Procedures have
been proposed to achieve the minimax rate in each case. Under some conditions,
in the case where p > 2, quadratic methods or global thresholding methods are
shown to be minimax or adaptive minimax (see Tribouley (2000)); in the case
p < 2, Cai and Low (2005) prove that a local thresholding method is minimax.

In this paper, we study wavelet estimation methods and focus on thresholding
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methods. We consider soft local thresholding, soft global thresholding, and no
thresholding (the resulting method is then called the quadratic procedure). Our

aim is to answer the following questions.
e [s the use of Besov spaces arbitrary in the minimax point of view?

o If [ is supposed to be regular, the usual quadratic estimate is optimal in
the minimax sense. But why not use a non-quadratic procedure? Could it
be better?

e The soft local thresholding procedure has been proposed by Cai and Low
(2005) to obtain minimax procedures in the non-regular sparse case. The
global thresholding procedure proposed by Tribouley (2000) solves the prob-
lem of adaptation in the dense case. Is it judicious to use these procedures

instead of the quadratic one in a more general context?

e If the practitioner is convinced about the performances of the thresholding

methods, is it preferable to use global or local thresholding procedures?

For each procedure, we compute the maxiset associated with a target rate.
We prove that the classical regularity assumptions of the minimax theoreticians
make sense in that the maxiset of the quadratic procedures for polynomial rates
is exactly a Besov space (see Theorem 1). Next, Theorem 2 states that the
maxisets of the thresholding procedures are weak Besov spaces; they are at least
as large as classical Besov spaces. These spaces are directly connected to the
thresholding methods, and we define a weak local version and a weak global
version. Actually, they appear in a quite natural way in the context of the
functional estimation using wavelet methods, see for instance Donoho (1993) or
Johnstone (1994). See also Kerkyacharian, and Picard (2000) for a precise study
of the links between wavelet thresholding methods and weak Besov spaces in the
functional estimation framework. Given a target rate and estimation procedures,
we compute their maxisets as a basis for comparisons. For polynomial rates, and
with an optimal choice of parameters, we establish that the local thresholding
procedure is always best in the sense that it achieves the given target rate on the
largest set of functions. We also prove that the maxiset of the global thresholding

procedure is the maxiset of the quadratic procedure and we deduce that both
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have the same performance. With a different choice for the parameters, the global
thresholding procedure outperforms the quadratic one and is not comparable with
the local thresholding procedure since neither maxiset is included in the other.
In this case, we point out the shape of the functions (sparse or dense) for which
each procedure is adapted. Finally, we study the case where the target rate is
more general than the polynomial one. In particular, we focus on rates of the

|27"; such rates appear in the minimax adaptive framework. With

form €| log(e)
these rates, the maxiset conclusions are different according to the value of r'.
This proves the influence of the target rate when we compare procedures in the
maxiset framework.

The paper is organized as follows. In Section 2, we present the model and
introduce the maxiset setting. In Section 3, we define the function spaces that
are candidates for maxisets of procedures presented in Section 4. All the results
are given in Section 5. Section 6 is devoted to the connections with the minimax

results. The proofs concerning the properties of the function spaces are postponed

to Section 7, and those concerning maxisets are postponed to Section 8.

2. Model and problem.

As usual, we translate the original functional model (1.1) into the sequence space
model. For this purpose, let us take a wavelet function ¢ and an associated scaling
function denoted 1_;. We assume that these functions are compactly supported,
see for example the Daubechies wavelets (Daubechies (1992)). By translations
and dilations, we obtain a Ly-orthonormal wavelet basis denoted (¢jk)jz—1,k627

which enables us to translate (1.1) into the following sequence space model:
Yik = Bik + € zjr, j €E{-1}UN, k€ Z,

where (zjx) is a sequence of i.i.d. standard Gaussian variables, (y;x) is the se-
quence of observed variables, and (8_1 %) (respectively (5;x) for j # —1) are the
coefficients of f on the scaling function (respectively on the wavelet function):
f= E;’:ﬁl >k Bikjk. Let us note that at each level j > —1, the number of non-
zero wavelet coeflicients is smaller or equal to [max(27, 1) 41, — 1], where [y is the
maximal size of the supports of b and ¥_;. Since the wavelet basis is an orthonor-
mal basis of Ly, the parameter to be estimated is § = 8(f) = E;i—1 >k ﬁ;‘)k
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Definition 1. Let R > 0 and let p. > 0 be the target rate. If 6 denotes an esti-
mator of 8, the mawiset of 6 of radius R for the rate p, is denoted MS(é, pe)(R),
and is defined by

MS(6,p)(R) = {f €Ly(0.1]): supp'E [(é - 9)2] < R?} .

We write MS(8,p.) = A to mean that YR, 3R', MS(8,p.)(R) C A(R')
and VR', 3R, A(R') ¢ MS(8,p.)(R), where R, R’ > 0 are the radii of balls of
MS(é, pe) and A respectively.

3. Function spaces.

In Section 3.1, we recall the definitions of the function spaces that play an impor-
tant role in the sequel. Note that, here, they appear with definitions depending
on the wavelet basis. However, as noted by Meyer (1990) and Cohen, DeVore,
and Hochmuth (2000), most of them also have different definitions, so this de-
pendence on the basis is not crucial. Next, in Section 3.2, we explore the links

between the spaces that we have introduced.

3.1. Definitions.

Recall the definition of the Besov spaces in terms of wavelet coefficients.

Definition 2. Let s > 0 and R > 0. A funclion f = j:il Yo Biktik €
L([0,1]) belongs to the Besov ball B, . (R) if and only if

1/p
sup 2j(s+%_%)p2|ﬁjk|p < R.
i>-1 -

Since we focus on the estimation of 8 = E]->_1 Dok ﬁ?k, the space B3 ., has

s
2,00

specific interest. Note that, when p = 2, f belongs to 55 __ if and only if

sup 22J522ﬁ]2-k < 4o00.
J>-1 -
= i2J k

This characterization is often used in the sequel. We now introduce spaces in the
class of Lorentz spaces that are directly connected to the estimation procedures

considered in this paper.

Definition 3. Let 0 < r < 2 and R > 0. A function [ = j:il Y op Birtik €
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L3([0, 1]) belongs to the weak local Besov ball WT%(R) if and only if

1/2

r—2 2
sup A Yoo D Bl <R

AP0 > oayleg, () K
and to the weak global Besov ball W,%(R) if and only if

1/2

R

Actually, to check that a function decomposed on the wavelet basis belongs
to one of these weak Besov spaces, it is enough to verify that f € L3([0, 1]) and to
evaluate the supremum for A < 1. For weak local Besov spaces, we focus on the
number of the wavelet coefficients that are smaller than a prescribed threshold.
For weak global Besov spaces, we do the same job, but level by level and for
a function of the wavelet coefficients. In fact, weak Besov spaces have already
been introduced in the maxiset context in statistics (see Cohen, DeVore, Kerky-
acharian, and Picard (2001), Kerkyacharian, and Picard (2000, 2002), Rivoirard
(2004), or Autin, Picard, and Rivoirard (2004)) and in approximation theory
(see Cohen, DeVore, and Hochmuth (2000) for instance). The main difference
lies in the level j’s we consider: we do not care about wavelet coefficients when
J < —27vlog,(A), and this difference is crucial in the sequel. These spaces play
an important role in approximation theory (see DeVore and Lorentz (1993)).
We show in the next section that they are strongly connected to classical Besov

spaces and they appear as weak versions of Besov spaces.

3.2. Links between function spaces.

Recall the inclusions between the Besov spaces.

Property 1. Let s,s' > 0 and p > 1. Then, we have

B;,oo C B;,oo Zf P> 2,
B;OOCB;:OO if p<2, s—1/p>s—1/2.

We establish links between the weak Besov spaces.
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Property 2. Let 0 < r,ry,r9 < 2 and v,71,72 > 0. Suppose W* is either the

weak local Besov space or the weak global Besov space. Then

wr _ c Wk

1Y T2,y

f0<ri<ry<2 and WI CW if0<y <7v2.(3.1)
Let 0 <r <2 If0<vy<2—r, we have
Wh ¢ WS, ad WE, ¢ WE, 32)
Ifvy=2-r
Wi aer CWilia,. (3.3)
We now establish links between weak Besov spaces and Besov spaces.
Property 3. If0 <r <2 and~vy >0,

B/ cwy, (3.4)

7’y7

where W* is either the weak local Besov space W or the weak global Besov space
WE. We also have, for s > 0 and p > 1,

B} CWILJ if p<2, ands>1/(2p), orifp>2, and s > 1/4;
B} CW& if p<2 ands>1/p—1/4, orifp>2, and s > 1/4.

To compare the estimation procedures from the maxiset point of view, it is

crucial to know whether the inclusion (3.4) is strict or not.
Property 4. When 0 < r < 2, and v > 0,
B cwl ify<2-r and By Ccwg, L iry < 2-13.5)
but
BUET —wg (3.6)

Proofs are postponed to Section 7. The proofs of the strict inclusions or the
non-inclusions are interesting because they are constructive: we build explicit

functions belonging to a specified space, but not belonging to another.

4. Procedures of estimation.
We present different estimation procedures that are essentially thresholding pro-

cedures. For local thresholding, we refer to Cai and Low (2005), and for global
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thresholding to Tribouley (2000). Let jo, ji be levels such that jo < ji, and let 7

be a threshold to be chosen (eventually depending on j, €). We consider estimates

~ ]1_1 ~
D3PI
=1 k

where for j = —1,...,j9— 1, and all k&, éjk = y?-k — €2, and for all § > jg, and all
k,

N _ ZL 2 2 2 2 ’
O = 05 = (Yjn — 1) Ly ser = €E (2 — 1) 11,57
or
7 _ G _ o9—j 2 2
0]k = ij =277 Zk: (y]k — )€ ) 1Ek(yjzk_62)>62‘/2]7—7

where p, A are real parameters (eventually depending on € or 7). We recall their
minimax properties.

Remark 1. In the sequel, 270 and 27t are powers of € but, since jy and j; are
integers, integer parts should be used. To avoid tedious notation, and without

loss of generality, we ignore this point.

4.1. The quadratic procedures.
If 50 = j1, 6 is the classical quadratic estimator. In this case, we note 6=06%9 1f
J[isin By forp>2,a>0o0rp<2 a>1/p—1/4,it achieves the optimal

minimax rate

o € if a>1/4,p>2o0ra>1/p—1/4,p<2,
Pe = € = l6a/(1+4a) 3¢ 4 < 1/47]7 > 2,

as soon as the smoothing parameter jg is chosen such that

oo _ €2 if a>1/4,p>2o0ra>1/p—1/4,p<2,
e/ (t40) if o < 1/4,p> 2.

4.2. The local thresholding procedures.

When j; > jo, the estimate 6 built with the sequence éfk is a local thresholding

estimator. In this case, we note § = . The choice i = 0 is associated with

hard thresholding procedures, while yx = 7 is associated with soft thresholding
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procedures. Cai and Low (2005) proved that the soft local procedure is minimax

on B2 when p < 2. More precisely, set s = a+ 1/2 — 1/p. The minimax rates

p7oo

Pe = 627’ — 62 if a> 1/(2]?),]7 S 2’
. A=2/(14205)  if o < 1/(2p),p < 2,

are achieved if jgo satisfies

oio _ ) € if  a>1/(2p),p<2,
e /(420s)  §f 4 < 1/(2p),p < 2,

and 271 = |loge|e™1/?5, 1 = k(j—jo), k a constant. If non-limited procedures are

allowed, we take j; = +o0o0 and 7 = kj, and the procedure is adaptive minimax
on By  for a >1/(2p),p < 2.

4.3. The global thresholding procedures.

When j; > jo, the estimate 6 built with the sequence é% is a global thresholding
estimator. In this case, we note 6 = 6. The choice A = 1 leads to a hard thresh-
olding procedure, and A = 1 + 2_j/2\/F is associated with a soft thresholding
procedure. For A = 1, Tribouley (2000) proved that if 270 = ¢72, 2/1 = ¢=* and
T = kj, the procedure is adaptive minimax on the space By, for p > 2, a > 0.

This means that the adaptive minimax rate

B €? if a>1/4,p> 2,
PeZ\ (loge|tae)i6a/+10)  if o < 1/4,p> 2,

is achieved. Note that the logarithmic term is the price to pay for adaptation.

5. Main results.

In this section, we apply the maxiset theory for the procedures defined previ-
ously. As mentioned earlier, use of a ”procedure” means that we fix the method
(quadratic, local thresholding, global thresholding) and the parameters of the
method (jo,j1,7). Let p. be the target rate of convergence. First we focus on
polynomial rates p. = ¢2", 0 < r < 1. In Section 5.1, we determine the maxisets
associated with the procedures described earlier. In Section 5.2, for the same
rates, we compare procedures by comparing maxisets. Finally, we study the case
where general rates are considered: the maxiset computations are in Section 5.3

and comparisons between procedures are in Section 5.4.
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5.1. Maxisets when the target rate is polynomial.

Theorem 1 deals with quadratic procedures, which means that we consider the
case jo = 71. In Theorem 2, we establish results about the thresholding pro-
cedures for non-limited procedures and for limited procedures. The smoothing
parameter jo is proportional to |log, €¢|. We always consider the case 7 = kj for

some k large enough.

Theorem 1. Lel0<r<land 0 <y <2—r. If 69 is the quadratic estimate
with 270 = 271 — €2, then MS(éQ7€2r) _ B;/(4w)‘

,00

Next, we focus on the soft thresholding procedures: we take p = 7 for the
local thresholding, and A—1 = m2_j/2\/F for some constant m > 0 for the global
thresholding.

Theorem 2. Let0 <r<land0<~y<2-—r. IféL is the soft local thresholding
estimate and 6% is the soft global thresholding estimate, with 270 = ¢~V 200 =
400 and T = kj for k great enough, ]\%S’(HAL7 €r) = WQL—r,w and ]\45(0AG7 €r) =
Wi, . 120 = 2" for some y' > v, the mazisets are MS (L, ¢2r) = Wi, .n

Br/(4w') and MS(éG, €2r) _ WZG—rw N Bg/(élw/) )

2,00 ,00

Note that Theorems 1 and 2 are special cases of Theorems 4 and 5. Note
also that each procedure depends only on the choice of v (and 7' for limited

procedures), but the larger v, the larger the maxiset.

5.2. Maxiset comparisons of procedures when the target rate is poly-
nomial.

We compare our estimation procedures for polynomial rates of convergence.
For this purpose, assume that the rate is of the form p, = €2 with 0 < r < 1.
We still consider the quadratic, local thresholding and global thresholding pro-
cedures (denoted 69, =, §) with thresholds introduced in Theorem 2. For each
of them we take 2/0 = €727, v < 2 — r and 27! = ¢27'| where 7/ € [v,+0o0] is
assumed to be a large enough constant (see Remark 3). Using the properties of

Section 3.2 and Theorems 1 and 2, we immediately deduce:

Theorem 3. When v < 2—r, the quadratic procedure is oulperformed by the lo-
cal and global thresholding ones since MS (89, ¥") C MS(0%,¢*") and MS(69, ) C

MS(HAG,GQT). Moreover, local and global thresholding are not comparable since
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MS (6%, ) ¢ MS(0°,e¥) and MS(C,€) ¢ MS(6",€"). When v =2 —r,
the quadratic procedure and global thresholding achieve the same performance
since MS(éQ,e%) = MS(éG,GQT). Moreover, the local thresholding procedure

outperforms global thresholding and the quadralic procedure since MS(éQ, ) =
MS (G, ey C MS(0%, ¢%r).

Non-comparability of local and global thresholding when v < 2 — r could
appear as an illustration of a drawback of the maxiset setting where the order
is not total. However, we can draw interesting conclusions from these maxiset
results in the lights of counter-examples of Section 7. Indeed, in Section 7, we
point out what are the functions that belong to the maxiset of one procedure
and not to the maxiset of the other one, according to their sparsity. And as a
conclusion, roughly speaking, local thresholding is convenient when estimating
sparse functions, global thresholding for dense ones. The last point shows that,
from the maxiset point of view, local thresholding is the best choice for an ap-
propriate choice of v, and global thresholding should be avoided when 7 is taken

as large as possible.

5.3. Extensions of previous results for general rates.
To generalize results of Section 5.1 for quadratic and thresholding procedures,

consider a continuous function u : [0, 1] — R such that
36>0,AM>0,Yzel0,1],Vyele,1], uly)y’?<Mu(z)2’2 (5.1
The following theorem is a generalization of Theorem 1.

Theorem 4. Let v > 0. If 69 is the quadratic estimate with 270 = 201 = =27,
and if (5.1) is satisfied for some § > max(y, 1), then MS(62,u?(€)) = Ba .00 (u),

where
Bonel)(B) =3 f: supu)™ Y Y gk < R?
A>0 .
i>—2vlogy(A) k

Theorem 2 is generalized as follows.

Theorem 5. Let v > 0. Let 0L be the soft local thresholding estimate, and 6%
the soft global thresholding estimate, with 270 = €272t = 400, and T = kj for
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K large. If (5.1) is satisfied for § > max(vy,1), then MS(0F, u*(e)) = Wk(u),
and MS(6%,u?(¢)) = WS (u), where

Wf(u)(R) =< f: supu(A)? Z Zﬁ?kllﬁjklﬁkﬁ < R*},

A>0 i>=27logy(\) K

Wf(u)(R) =¢ f: supu(N)7? Z Zﬁ?klzk 2, <x221/2, /7 S R?
A>0 . J
J>=2vlogy(N) k
If 210 = " for some v > v, the mazisets are MS (6" u?(e)) = WWL(U) N
By 00 (u) and MS(6%,u?(e)) = W.E (u) N By oo (u).

Theorems 4 and 5 are proved in Section 8. Note that u(e) = € for r > 0
corresponds to the particular case studied before with M = 1 and § = 2 — r.
Theorem 5 is especially interesting when the target rate is non-parametric. In
this case, rates like u2(e) = €| log(€)|*"" for ' > 0 are of interest because they
appear in the minimax adaptive framework. Here (5.1) is still satisfied with
M =1 and é = 2 — r. For instance, to study the adaptive global thresholding
procedure, u(e) = /(1449 og()[22/(1+42) (0 < o < 1/4). In the lights of
these results, it is of particular interest to compare thresholding and quadratic

procedures when the rate is of this form. That is the goal of the following section.

5.4. Maxiset comparison.

Here we compare thresholding (with thresholds introduced in Theorem 5) and
quadratic procedures for the rate u?(e), where u(e) = ¢"|log(e)|”". We still con-
sider 69, 8~ and 6%: the quadratic, local thresholding and global thresholding
procedures. First, we have to state properties on the links between the function
spaces (that are the maxisets of the procedures). Using similar arguments as for

Property 2, it is easy to state the following result.

Property 5. Let 0 < r <2, "> 0. If0 < v <2 —r, then WWL(u) ¢ Wf(u)
and WS (u) ¢ Wk(u).

We now establish the links between generalized Besov spaces and generalized
weak Besov spaces. Note that the power of the logarithmic term plays a role for

weak global Besov spaces.
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Property 6. Let 0 < r < 2 and r' > 0. Then, B o (u) C WWL(u) if 0 <y <
2—r. IfO<y<2—rorify=2—-r,r" >1/2,

Baneo() € WO(w), WE(u) ¢ WE(u). 6.2
Fr=2-rr<1/2,
Basro() = WS, (u). 53)
Ify=2—r, 1" =1/2, for any R < (4 — 2r)'/* there exists R' such that
Bas-ro(0) (B) C WE (w)(R) C By oo (1) (R).

Theorem 6. When v < 2 — r, the first two conclusions of Theorem 3 remain
valid when € is replaced with u*(¢). When~y = 2—r, if r' > 1/2, the thresholding
procedure outperforms the quadratic one and local and global thresholding are not

comparable since

MS(69,4%(e)) C MS(B",u*(e)) and MS(69,u*(e)) C MS(8Y, u?(e)),
and

MS (6% u?(e)) ¢ MS(8%,u*(e)) and MS(8%,u*(e)) ¢ MS(8L, u*(e)).

If ' < 1/2, the quadratic procedure and the global thresholding one achieve the
same performance and the local thresholding procedure outperforms the other ones
since MS(09,u?(e)) = MS(B%,u(e)) C MS(8%,u>(e)). If ' = 1/2, this last
result remains valid if MS(09,u2(€))(R") ¢ WS, (u)((4 — 2r)'/4).

Remark 2. When ' = 1/2, we need an accurate control of constants involved
in the proofs of Property 6 and Theorem 6 that cannot be reached by using
thresholding procedures. So, whether the last result of Theorem 6 remains true
for any value of R’ remains an open question; we conjecture that the answer is

yes.

6. Connections with minimax results.
In this section, our goal is to establish connections between maxiset and minimax
results. Indeed, in the first part, we show how to deduce minimax properties of a

given procedure from maxiset results. To prove that a procedure is minimax on
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F, we point out the minimax rate p. associated with F. Then we compute the
maxiset of the procedure for the rate p. by using theorems of the previous section
and prove that F is included in the maxiset. Note that many of the minimax
results established in Section 6.1 are already known. In the second part, we focus
on procedures that are optimal on Besov spaces B}  from a minimax point of

view, and we compare these procedures from a maxiset point of view.

6.1. Minimax properties of procedures deduced from maxiset results.
Recall that the minimax rate on By ., is eifp>2,a>1/4,orp<2,a>1/(2p).
It is also the adaptive minimax rate. When p > 2, o < 1/4, the minimax rate is
162/(1+49) byt the adaptive minimax rate is (| log e|'/%e)162/(1+4a),

We begin with quadratic procedures, which means that j; = jp is the only
parameter to fix (equivalently 7). Applying Theorem 1 for the minimax rates
and using the inclusions between the Besov spaces given in Property 1, we obtain

the following result.

Result 1. The quadratic procedure built with v =1 is minimaz on By ., if
p>2 a>1/4orp<2 a>1/p—1/4. The quadratic procedure built with
v =2/(1+4«) is minimaz on By  if p > 2, a <1/4.

Let us focus now on local thresholding procedures. The soft procedures
(i = 7) for which we take v as large as possible are considered, and the threshold
is chosen as in Theorem 2. We apply Theorem 2 when j; = oo for the minimax
rates, and we use Property 3 giving results about the inclusions of the Besov

spaces in the weak local Besov spaces.

Result 2. The local soft thresholding procedure built with v = 1 is minimaz
on By ifp>2, a>1/40rp <2 a>1/(2p). The local soft thresholding
procedure built with v = 2/(1 + 4e) is minimaz on By  if p > 2, a < 1/4.

Now we study the global thresholding procedures. The soft procedures are
considered (A = 14 m277/2,/7 for some constant m > 0). We consider non-
limited procedures, which means that j; = oo and the threshold is chosen as
in Theorem 2. We apply Theorem 2 and use Property 3 giving results on the

inclusions of the Besov spaces in the weak global Besov spaces.

Result 3. The global soft thresholding procedure built with v = 1 is mintmaz
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on By ifp>2, a>1/40rp<2 a>1/p—1/4. The global soft thresholding
procedure built with v = 2/(1 4 4«) is minimaz on By ., if p > 2, « < 1/4.

Lastly, we study the adaptive thresholding procedures (we take v = 1 and
the thresholds as before) and adaptive minimax rates on B} s p = 2. In this
case, the target rate is generalized: take u%(e) = €* if @ > 1/4 and u%(e) =
(v/|Tog(e)[¢2)3/(1+42) if o < 1/4. Note that the following property (proved in
Section 7) holds.

Property 7. Let p > 2 and o > 0. Then By, C B, C W (u), and BS ., ¢
Wl(u) if a < 1/4.

Now, using Theorem 6 for r = 8a/(1 4 4a), ' = 2a/(1 4+ 4a) < 1/2 and

v =1, we have the following.

Result 4. The adaptive soft local procedure is not adaptive minimaz on
By forp > 2, a< 1/4. The adaptive soft global procedure is adaptive minimax
on By ., forp>2, a>0.

6.2. Comparisons between procedures.

The parameters of all procedures are chosen to have good minimax properties
(see Sections 4.1, 4.2 and 4.3). Depending on the rate, they are non-adaptive.
Applying Theorem 3, we obtain the following result.

Result 5.  If the targel rate is €2 or 152/(1+49) for some 0 < a < 1/4, the
quadratic procedure is as good as the (non-adaptive) soft global procedure for the
maziset criterion. The soft local procedure outperforms the quadratic one (and
then also the non-adaptive soft global thresholding procedure) from the maziset

point of view.

Now, let u?(e) = (y/]log(e)[€?)3*/(1+4%) for o > 0 be the best rate achievable
by adaptive procedures on By ., when a < 1/4,p > 2. We focus on non-adaptive
procedures and choose v = 2/(1 + 4«). Applying Theorem 6 with r = 8a//(1 +
4a) =2 — v and r' = 20/(1 4 4a) < 1/2, we obtain the following result.

Result 6. If the targel rate is u*(¢), the non-adaplive soft local proce-
dure outperforms the quadratic one and the non-adaptive soft global thresholding

procedure (that achieves the same performance as the quadratic one) from the
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maziset point of view.

Choosing now v = 1, we consider adaptive procedures. Applying Theorem

6 with r = 8a/(1 4+ 4a) > 2 — v, we obtain the following result.

Result 7.  If the target rate is u*(¢), the quadratic procedure is the worst

method from the maziset point of view.

7. Proofs for the results on function spaces.

In the sequel, ¢ denotes a positive constant that may change from line to line. For
the sake of simplicity, and without loss of generality, we assume that the number
of non-zero wavelet coefficients of any signal at each level j is exactly 27. Detailed

proofs of Properties 2, 4 and 6 are available on http://www3.stat.sinica.edu.tw/statistica

7.1. Proof of Property 2.

Inclusions (3.1) are obvious. Inclusion (3.3) is a direct consequence of (3.6)
and of the first part of (3.5). To establish the first part of (3.2), we consider
a sparse sequence (;;) such that at each level j, only one wavelet coefficient
takes the value j1/42798 with 0 < 8 < r/(4(2 = r)) = 1/(4 — 2r) — 1/4, while
the others are 0. Using straightforward computations, we easily prove that the

function f = Ej:il > i Bixtjk belongs to W2L—r,w but not to W:,GV_TW. To establish
that the second part of (3.2) holds, we build a dense sequence such that all its
wavelet coefficients at the level j take the value B;; = 277°\/7, with 1/(2(2 —
r))+1/4 < f < min(1/2 4 r/(4v);1/(2 — r)), which is possible as soon as
~ < 2—r. Using straightforward computations, we easily prove that the function

f= E;’il >k Biktir belongs to Wi but not to Wi .

7.2. Proof of Property 3.

Inclusion (3.4) is very simple to obtain since we just omit the terms Lig, <o

and 1Ek 82, <N 2/2/F in the definition of weak Besov spaces. To prove the last

points, note that if p > 2 and s > 1/4, orif p < 2 and s > 1/p — 1/4, we have
1/4

BS o C Byl

the weak global one Wfl. Moreover, when p < 2 and 1/(2p) < s < 1/p—1/4,

C Wy, where Wy, is either the weak local Besov space W1L,1 or
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we have

-1 2 -1 2—
MY D B o = AT 20 D IBiPIB T e 005

j>—2log,(A) k i>—2logy(A) K

AR Y Bl

i>=2log,(\)

IN

If f is assumed to belong to B2 __, we get for any 0 < A < 1,

p,00!

A Z Zﬁ?kllﬁmlskﬁ < et Z 2‘jp(5+1/2—1/p)(A\/3)2—p
i>=2logy(N) k i>—2logy(\)
< C[log:,(/\_l)]l—l?/?A?ps—l </

where ¢’ is a constant. So, f € W1L,1 and B; ., C WILJ.

7.3. Proof of Property 4.

Property 4 is a particular case of Property 6. The proof of the strict inclusion of
the Besov space in the weak local Besov space is similar for the polynomial rate
and for the generalized rate u?(e). We prove strict inclusion for the polynomial
rate. The proof of the links between the Besov space and the weak global Besov
space is more complicated in the case of the generalized rate u?(¢), because there
is a question on the power of the logarithmic term. In the next subsection we
prove Property 6, which implies the second statement of (3.5) and the equality
(3.6). Let us prove the first part of (3.5). Using Property 3, the inclusion is valid
for any 0 < r < 2 and any 0 < v < 2 — r. To prove strict inclusion, consider the
sequence (B;x) such that at each level j, n; = [27™ ] wavelet coefficients take the
value /7279(r/(40)+m/2) for some constant m €]0, (2 — r)/(2v)[ with the others
equal to 0 (the notation |27 | denotes the integer part of 2/). The function
f= E;’il >k Bixtjk does not belong to Bg{o(jﬂ, but belongs to WQL_TW.

7.4. Proof of Property 6.

The first statement is proved with the same argument as was Property 4. Now
consider the case of the weak global Besov space. The following inclusions are
obvious: Bayeo(u) C W (u), and By, oo(u) C WE(u), if v < 2 —r. Using
Property 5, we have By oo (u) C WS (u), if v < 2 — r. This proves (5.2) when
v < 2 —r. Still considering By, oo(u) C WS (u), we want to prove that

inclusion is strict when 7’ > 1/2. Consider the dense sequence (3;) such that
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at each level 7, and for any &, 3, = 2-i8 4o where

5 1+ 1 >1 d r’< < 1 (, r)
=—-4+——>- and —<a r'— =
1 22— 2 2 S Y29, ’

which is possible if and only if ' > 1/2. The function built with the sequence
(Bjk) belongs to WS (u), but not to Bz s, (u) and not to W (u). Let us
now prove (5.3). We assume that the function f = E]’ > Bixtjr belongs to
WS (u)(R) with v = 2 —r and u(\) = ANlog(A\™)]"". Set B; = 3, ﬁfk Using

the definition of the weak global Besov space, we have that
VA>0, Vji>-=2(2-r)logy(N), leBjsAzy/z\/]_' < R*u()). (7.1)

Then, for any given A, we study the behavior of B; when B; > /\22j/2\/7. Let us
set, if ' < 1/2, m(r,r’, R) such that

7

R?( ! ) = [-2(2 - ) logy(m(r, ', R/

4 —2r
Then determine, if there exist, indexes j such that

iz —2(2-r)logy(X)

4 7.2
B; > /\22]/2\/.77 (7.2)

3 A €]0; m(r, 7', R)], such that {

or, equivalently,

A

2" - <
3\ €]o: ! h that -
E]O,m(T,T‘,R)], suc a { A < (BjQ_j/Qj_l/Q)l/Q.

We deduce that these indexes j must verify

B; > 267501 f] = 97 a3%d ], (7.3)
Let jo denote such an index and take Ag = (Bj02_j0/2j0_1/2)1/2. Using (7.3), we
have
Jo
22—-r)
Since we have jo > —2(2 — r)logy(Ag), Assumption (7.1) has to be satisfied for
Ao and jg. Then

1 . _
logy(Ao) = 510g2(Bj02_]0/2J0 1/2) > =

BjOleS)\g?]O/z\/]‘_o < RQ’LL(/\()) — Bjo < RQU(A())

< Bj, < R*\] (logy,(M\gh)"
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which yields that

1 ~12/(2-7) ' /
R2 ( ) ] 9=Jo mjéM’ —7’)/(4—27’)7

B, <
o= 4 —2r

which contradicts (7.3). Note that for any m(r,r’, R) we also obtain a contradic-

1 1 1/2
r=Z d 2 <1.
r=g and B =

We deduce that there exists no index j such that (7.2) is true. It means that for
any 0 < A < m(r,r’",R), for any j > —2(2—r)log,(}), B; < A221/2, /5 Tt follows
that, with vy =2 —r,

supu(\)~! Z Zﬂ]?k

A>0 iz=2vlogy () k

tion if

<ec sup u(/\)_l Z Zﬁ?’le]g/\?w/?\/j + Hf”%
0<ALm (', R) i>—2(2—r)logy(A) K
This completes the proof since f is supposed to belong to WQG_M_T,.
7.5. Proof of Property 7.
We consider the dense function introduced in Section 7.1. with v = 1. Exactly
as in Section 7.1, we prove that f does not belong to Wi (u). Take 8 = 1/2+r/4
with r = 8a/(1+ 4a). Then, if a < 1/4,

Supgpj(a+1/2—1/p)2|ﬂjk|p = sup 20 (@t1/2=1/p)9i9-pif jp/2 « | o
i - i

because a4+ 1/2 — 3 < 0. We conclude that f € B, and By ., ¢ WE(u).

Let us prove now that BS _ C W{(u). Assume [ € B . If @ > 1/4 then, for
any A > 0,

+co
w7 DL D By, p ey

j=—2logy(A) k
+ oo
<aN)7TH Y Y Bk
j==2logy(}) &k
+ oo
<u(N)7TH YT 27F eu(N) TN
j=—2logy(})
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If v < 1/4 then, with 2= = (| log(/\)|/\4)_ﬁ we get, for any A > 0,

+oco
w7 D D By, oy

i==2logy(\)

Ja—1 +o0
[ S i Sy
]‘:_210820\) J=ja k

< cu(X) 7 (2097202 Tlog (V)] + 27272

Taking the supremum in A > 0, we conclude that f € W{(u) and then B C
Remark 3. Note that it can easily be proved that any function considered in

Section 7 belongs to By oo (u) C Ly([0,1]), when 7' is large enough.

8. Proofs for the results on the statistical procedures.

The results for the maxiset theory are based on a sharp study of the bias of
the estimation procedures. In Section 8.1, we give an upper bound and a lower
bound for the expected quadratic errors due to the procedures. In Section 8.2,
we deduce the proof of the main results stated in Theorem 4 and Theorem 5. In
the following sections, we prove the preliminary results. Arguments for global
thresholding being similar to those of local thresholding, proofs are available on

http://www3.stat.sinica.edu.tw/statistica

8.1. Preliminary results.

We give bounds for the quadratic error of our procedures. It is worth noting that
we do not make any regularity assumption on the function f. First, we state the
results concerning the local thresholding procedure and next we deal with the
global one. The maxisets of the local thresholding estimates are determined in

the following propositions.

Proposition 1. Let 7 = kj and let a constant K, < 1. Then, for k large
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enough, there exists some constant cg > 0 such that

_ , 2

J1—1
E@F —6)° < o |20 108+ [ Y Bl e
i j=jo k
2 2
J1—1
H - Drs ) + Zzﬁ
] ]0 J ]1

If /7 > ¢(1 — K2), where ¢ > 1 is a constant, there exists some constant ¢; > 0
with
2

J1—1
hL
E@6" -0 > « ZZﬁ]k1|@k|<AM+ZZ@k
] ]0 ] ]1

Proposition 2. Consider a continuous function u : [0, 1] — R4 such that (5.1)
is salisfied. Then, if Ky > 1/2 and 270 = 27,

4M
Supu Z 26 T1|ﬁ]k|>h2€\/_ = 1-9- supu Z Zﬁﬂ“ 1Bjk|<ey/T *

0
e J>jo k J>Jo

We deal next with the global thresholding estimate.

Proposition 3. Let 7 = kj and take constants Ky < 1 < Ky. Then, for k large
enough, there exisls some constant cg > 0 such that if A — 1 = m2‘j/2\/F, for
m > 0,

2
J1—1
BT -0 < o|do+| D Y0 -1 +27 Vg b0
J=jo
2 2
J1—1
2
+€0 + Z Zﬁ]k EkﬁQ <K1e2/297 Z Zﬁ
J=jo k J=1

Moreover, if (A —1)2/27=12 > ¢(1 — K;), where ¢ > 1 is a constant, there exists
some constant ¢; > 0 such that

2 2
J1—1

B9 -6 > o [[ DD s41 82, <Ky VDT Zzﬁ

J=jo k J=a
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Proposition 4. Consider a continuous function u : [0, 1] — R4 such that (5.1)
is satisfied. If Ky > 1/2, 270 = ¢, and if we suppose there exists a constant
m > 0 such that, for any j > jo, A — 1 < m279/% /7,

sup u( Z QJ 1Zk ﬁjgk>1{262‘/_2]7

>0 izio
<12n;7Mmsupu ZZ@M S B2V
320
Remark 4. Using the first part of Proposition 1 with g = 0 and the first
part of Proposition 3 with A = 1, we easily see that the maxisets associated with
the soft thresholding procedures are included in the maxisets associated with the
hard thresholding procedures. Whether these inclusions are strict remains an

open question.

8.2. Proofs of Theorems 4 and 5.
Using Proposition 1, Theorem 4 is obvious. We prove Theorem 5 for local thresh-
olding estimates. Let 6 be 6 and
A=WEuw) if ji=+oo,
A= Wf(u) NBayoo(u) i j1 = —27"log,(e).
First, let us assume that f € MS(8,u?(€))(R). So, for any € > 0, E(d — 0)2 <
R*u?(€). If K = K3/ < 1, using Proposition 1 with g =T,

2 2
+co
2
Yoo D Bl ckes

Z Z Brulis, < Kae /7

j=—2vlog,(Ke) k J=—2vlog,(€)

T'E(9 — ) < T R?*u?(e).

IN

IN

If K = Ky/k>1,

Z Zﬁ]k 185k <er/T Z Zﬁ]k |B5k|<Kaoe\/T

j=—2vlogy(¢) j=—2vlogy(e)

< 'R (e).

IN

Recalling that

E(é _0)2 €1 ZZﬂ ’

J=i

v
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we obtain MS(8,42(e)) C A(R') with (R')? = ¢ R? max(M2K?~4 1). Since u
satisfies (5.1),if f € A(R'), with K = /s > 1, and still using Proposition 1,
2

+ oo
Yo D Bilpckes | < (BPMIETPuR(e).

j=—2vlog,(e) k

So, using Proposition 2, f belongs to MS(8, u*(¢))(R), with

AM \?
R2 = Cy ((W) + 1) (R/)2M21(74—25‘

This completes the proof. Similarly, combining Proposition 3 and Proposition 4,

one obtains Theorem 5 for the global thresholding procedure.

8.3. Notations.
In the sequel, to provide upper bounds for many terms. We use exponential
inequalities. And, with an appropriate choice of constants, these terms will
then be negligible. In the study of the local threshold estimate, the exponential
inequality will deal with Gaussian variables. More precisely,

2

_ X
P(lyje — Birl > 2) = P(lzjp] > ' z) < QGXP(—P%

which is bounded by 2(277%) A €® as soon as @ > 1/2log(2) (e1/]log, €| V € /7).
This inequality is valid for every j,k. So, in the sequel, we use the notation
LD(j,¢,k) to denote a large deviation term that depends on j, € and k. The
value of LD(j, ¢, k) may change from line to line, but the constant x is chosen to

ensure that

+co

. _2 . _

11_%6 Z |LD(j,€e, k)| = 0.
i=jo

8.4. Proof of Proposition 1.

We note § = 6. Since ]Eéjk = ﬁ]?k if 7 < jo, and éjk = 0if 5 > j1, the classical

decomposition in variance and bias terms gives

E(6 — 6)?

. 2 . 2
J1—1 J1—1 +o0

k k

Jj==1 k J=Jo J=
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Study of the upper bound

We have
. 2 . 2
A Jo—1 . A n-1 A .
E(0 — 0)2 < 2|E Z Z(ij — Egjk) +E Z Z (ij — Eejk)

i==1 k J=jo k

J1—1 R 2 +oo 2

DD - | + (DD
J=jo k J=in k

The variables (é]k — Eéjk)jk are independent and for any 5 < jo — 1 and any &,
E(f;x — Ef;;)% < c(e?%, + ¢*). So, the first term is bounded as follows.

2

Jo—1 Jo—1 Jo—1
E Z Z(éjk — Eé]k) = Z ZE(é]k — Eé]‘k)Q S C Z Z(€2ﬁ]2'k + 64)
j=—1 k j=—1 k j=—1 k
< C(962+2j064) .

For jo < j < j1 —1, we use the following lemma of Cai and Low (2005) for u = 7.

Lemma 1 (Cai and Low (2005)). Let é}SkL be the local thresholding estimate
with @ = 7. Then

4SL _ 32 2 2
|]E <9jk - ]k)‘ 2 (6 Tlg>eyr + @kllﬁjklsﬁ/?)
var(éf,f) < ¢ (ﬁfk 4 etrl/? exp(—r/?)) .

IN

We note that, for every 5 > jg, and for every k,
nL. _  pSL 2
Ok = O —(n—T)e <1|y]k|>eﬁ - E1|z]k|>ﬁ) -
Then, for Ky < 1,
Var(éfk) < 2 :Val‘(éka +etp - T)Qvar(1|y]k|>6\/;)}

< e var(030) + €= 1) g s e 7
+ (= 7)*P(|lyjx — Bixl > (1 — Ka)ey/T)]
_/6]2k e + 64(” - 7)21|ﬁ]k|>1{25\/7_' + LD(.]? ¢, K/)} )

IN
o
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B(0% - 53)| = ‘EO — 33) = (1 = DE(1, 50 7) + LD, € 5)

(Hyk - jk) ‘|‘€2|M— T|1|ﬁjk|>1«'25\/?] +
€2|u — 7[P(lyjx — Bix| > (1 = K2)ey/T) + LD(j, ¢, K)

IN

< ¢ |:€2(|:u - 7—| + T)1|ﬁjk|>f(gc\/; + ﬁ?k1|ﬁ]k|gﬁ\/‘7_' + LD(]v €, 'k‘:)} .
It follows that
-1 2 J1—1 2
B, Z (=B ) | <c|@o+ |3 Y ln-rlelg,pmes | |-
J=jo J=jo k
J1—1 2
> Z —Edj1)
J=Jo
J1—1 2 J1—1 2
<c {22 (n=tl4+ 0, s |+ [ 20 D Bl icess
J=jo k J=jo k

The result follows.

Study of the lower bound

We focus on the bias terms. Obviously,

2
J1—1
E@-0)° > [ Y > (5% —Edyp) +ZZﬁ
J=jo k J=h

Let Ky > 1 and K3 < 1 be positive constants. For any jo < j < j; and any k,

the following expansion holds:

E(8% — 0ir) = E(B — i) |Lpui<kae s T Lkaerciyul<kie s + Liieym<isl
ﬁ?k1|ﬁ]k|gl/{2€\/‘7_’ + E(ﬁ?k - ejk)]‘l(zﬁ\/;<|ﬁ]k|gl(1€\/‘7_'
—I_E(ﬁ?k - ij)1|ﬁ]k|>f(15\/; + LD(.]? € “{)‘
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First, we get
9 ~
E((Bk — 0ik) 116,45 K1 v7)

= E((ﬁ]k 9 )|:1|yk|>5\/_+1|y]k|<5\/7_':|) 1|ﬁ]k|>Kle\/F

> LD(j,e,r)+E <( Te e =yl {1 - 1|y]k|3eﬁD Lig > Kiey/7
= LD(j,e,k)+ (u—1)é Lig,lsKyen/m 2 LD(j, € k),

since p > 1. Next, we have

E(ﬁ?k - 0‘7']‘7)1]{26\/;<|ﬁ]k|gl{16\/‘7_'
.
> E ((ﬂjk - ka)1|yjk|>eﬁ) Lioe y7<iBynl<kievm

2 2 2 .
> K ((ﬂjk — Yjr t+ pe )1|yjk|>6\/7_'15]2k—yj2k+p52<0> Ly ym<|gpl<kieym + LD, € K)

2 —pet— B3>0
e B o = |yl > \/K%—I-He\/?,
1Bk > Kae/T T

implying E(ﬁ?k_éjk)11{26\/F<|ﬁ]k|§1{15ﬁ > LD(j,¢,k)assoonas Ky < /K3 +£.
Therefore, we obtain ]E(ﬁ]?k - é]k) > ﬂ?kleﬂg{x\/; + LD(j,¢, k), leading to

Note that

2
-1

E@6 - 0) ZZﬁjklekKAQe\/“FZZﬁ]k )
J=jo J=i

where ¢ is a positive constant. This completes the proof of the lower bound.

8.5. Proof of Proposition 2.
Let jo be defined by 27 = ¢=27 for some v > 0. Since K, > 1/2, for any € > 0,

Z 6271|ﬁ]k|>1«"zeﬁ < Z Ze T Z 12ref<|ﬁ]k|<zr+1ef

J>jo k j>vlogy(e72) r2-1
—2z
< D)2 > Zﬁjkllmk e2(atD) /7
z2—1 > log, (e=22—2(z+1))

If for any € > 0,

we™ D, Z@khﬁ]kl«f < 5

7> logy(e72)
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where S lies in Ry U {400}, then

cou(e2sty 4sM
CCRD I INNOVIEIETD SEREE e

e>0 7270 I> 1

which implies the result.

8.. Proof of Proposition 4

Using similar arguments to those of Proposition 2, and recalling that 7; =
21/2,/7, we have for any € > 0,

Z QJ(A - 1)6212k ﬁ?k>1&'2527']

320
<) 2 > gif22 1 Zﬁ]k Tk B2 <(e2le+ D /2)2

2=l j>ylog,(e=22=(=+1))

If there exists m > 0 such that for any j > jg, A =1 < le‘j/Q\/?, then as for
the proof of Proposition 2 it is easy to see that

sup u(e Z 2/(A = 1)é s, 2, >K €7,

>0 J>Jo
2Mm _
< —5/2 sup u(e) ' Z ZﬁjklE B3 <€)
1 — 2 e>0 k J
> logy(e72)
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