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ABSTRACT

In the Gaussian white noise model, we study the estimation of an unknown multidimensional
function f in the uniform norm by using kernel methods. We determine the sets of functions that
are well estimated at the rates (log n/n)ﬁ/(2ﬁ+d) and n~P/(20+4) by kernel estimators. These sets
are called maxisets. Then, we characterize the maxisets associated to kernel estimators and to
the Lepski procedure for the rate of convergence (log n/n)ﬁ/(2ﬁ+d) in terms of Besov and Hdlder
spaces of regularity . Using maxiset results, optimal choices for the bandwidth parameter of
kernel rules are derived.Performances of these rules are studied from the numerical point of view.
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1 Introduction

We consider the maxiset point of view in the classic Gaussian white noise model

dY; = f(t)dt + %th, t €[0,1]%, (1)

where f : R? = R is an unknown function, W is the Brownian sheet in [0, 1]%, o > 0 is known
and n € N, where N is the set of positive integers. We take a level of noise of the form o/\/n
to refer to the asymptotic equivalence between the model (1) and the regression model with n
observations and noise level equal to o, which has been proved under some conditions by Brown
& Low (1996) and Reiss (2007). In this paper, we study the estimation of f on [0, 1]¢ from the
observations {Y;,¢ € [0,1]%}. For this purpose, we assume that f belongs to LZ"(R9) the set of
I-periodic functions that belong to L., (R?). The quality of an estimator fn is characterized by
its risk in sup-norm

Bu(f) =E(11fn = 112

where [|g||oc = esssup,cjg 432 [g(¢)] and p > 1.

In a general way, for non parametric framework, there are three steps for the statistician when
he faces the problem of estimating f: the choice of the method (kernel, Fourier series, wavelet,...),
the determination of parameters of the method (the bandwidth, the number of coefficients that
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have to be estimated,...) and the evaluation of the quality of his procedure f= (fn)n (the
word "procedure" sets the couple method-parameters) by computing the rate of convergence
of R, (fn) In the non-parametric setting, the minimax theory is the most popular theoretical
point of view: it consists in choosing a functional space F; C ]Lper(Rd), where s is a smoothing
parameter, and ensuring that f achieves the best rate on F;. But, at first, the rate could be
unknown. Secondly, the choice of Fy is arbitrary (what kind of spaces has to be considered:
Sobolev spaces? Besov spaces? why?). Thirdly, for minimax evaluation, we have to focus on the
most difficult functions to be estimated in F;. But this set of “bad functions” strongly depends
on the way smoothness is defined. Finally, these functions could not reflect what we expect in
practice, so the used procedure could be too pessimistic and not adapted to the data. To answer
these questions, an other point of view has recently appeared: the maxiset point of view (see for
instance Kerkyacharian & Picard (2000)). It consists in deciding the accuracy of the estimate
by fixing a prescribed rate ¢ and to derive all the functions f that can be estimated by the
procedure f at the target rate ¥». The maxiset of the procedure f for this rate 1 is the set of all
these functions. So, in our framework, we set the following definition.

Definition 1. Let 1 < p < o0, ¥ = (¢,,), a decreasing sequence of positive real numbers and
let f = (fn)n be an estimation procedure. The maziset of f associated with the rate ¢ and the
II.||5-loss 1s:

sUoem={renar®ys s [vrE (I, - )] < oo}

The maxiset point of view brings answers to the previous questions. Indeed, there is no
a priori functional assumption and then, the practitioner does not need to restrict his study
to an arbitrary functional space. In addition, the smoothness parameter does not come from
an external choice but is connected to the procedure. The practitioner knows the quality of the
used procedure once the desired accuracy is fixed, which is more concrete than fixing smoothness.
Previous results concerning the maxiset approach are the following. Maxisets of linear procedures
are Besov spaces BqﬁpO when investigated under the L,-norm (1 < ¢ < co) and with polynomial
rates of convergence (see Kerkyacharian & Picard (1993)). These results have been generalized by
Rivoirard (2004) who proved that linear procedures are outperformed by non linear ones from the
maxiset approach. Maxisets for adaptive local and global thresholding rules and Bayesian rules
have been investigated in different settings (in the white noise model, in density estimation,
in inverse problems or for integrated quadratic functionals estimation). See Kerkyacharian &
Picard (2000), Cohen et al (2001), Kerkyacharian & Picard (2002), Rivoirard (2005), Autin
(2006), Autin et al (2006) and Rivoirard & Tribouley (2006). All these results based on wavelet
procedures have been derived for the Ly-norm or for the Ly-norm (1 < ¢ < o0). Furthermore,
most of these maxiset results are established for one-dimensional functions and with the rate
(log n/n)ﬁ/ 26+1) and the maxisets are not Besov spaces Bgoo but so-called Lorentz spaces that
can be viewed as weak versions of Besov spaces and are strictly larger than Besov spaces (See
Section 2.4.3 of Kerkyacharian & Picard (2000) for a simple introduction of such spaces in
the maxiset setting). So, the framework of this paper is quite different since, for estimating
multidimensional functions, we consider kernel estimators and the L,,-norm.

In the non-adaptive minimax framework, estimation in sup-norm has been studied by Ibrag-
imov & Hasminskii (1981) for one-dimensional Hélder functions and by Stone (1982) for mul-
tidimensional isotropic Holder functions. They proved that the minimax rate of convergence is
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1/J(1)(ﬂ, d) = (1/')7(11)(@ d)),, for estimation of functions with known regularity 3 where

_B
$0(8,d) = (bi ") R (2)

In the adaptive case, Lepski (1992) and Bertin (2005) obtained the same rate for estimation of
Hé6lderian functions for the one- and multidimensional case. Most of these results are obtained
with kernel estimators. For estimation in sup-norm under the minimax approach, the regularity
of functions is often measured by using Hélder spaces. See Tsybakov (2004) for a review on
estimation in sup-norm using kernel estimators.

As explained before, our goal in this paper is to investigate maxisets in sup-norm for kernel

rules, denoted JZK,h = < ];K,hn) in the sequel, where
n

~ 1 ft—u i
fian0) = gy [ 8 () avi, e ®)

K is a compactly supported kernel function and o = (h,,),, is a sequence of bandwidth parameters.
Note that, from a practical point of view, it is of interest in using the sup-norm in estimation
since it provides a confidence band centered at the estimator. First, in Theorem 1, we focus
on estimation by kernel rules f]{,h at arbitrary rates ¢ and we establish a lower bound for the
bandwidth parameter h,,. Theorem 1 is proved under mild assumptions, namely MS(]ZK}L, ¥, p)
is not empty and n? — 4o00. Then, two particular rates are considered: w(l)(ﬁ, d) previously

defined and ¥ (8, d) = (¥{2(8, d))n, where

v®(8,d) = n~ 7, (4)

Theorem 1 is illustrated with such rates. Then, the last part of Section 2.2 provides an upper
bound for the bandwidths, which leads to an optimal choice for these tuning parameters. Optimal
bandwidths are of the form

d
log(necoi?) - 2
h, = —=* th g = ——=
( dnegip? Wi co do?||K||3

that can be used in practice if ¢ is known. Moreover, maxisets of kernel rules associated with
optimal bandwidths are determined for the rates ¢(1)(ﬁ,d) and ¢(2)(ﬁ, d). For the first case,
the maxiset is characterized in terms of functional spaces. Under some conditions on the kernel,
we prove that the maxiset is a Besov space Bﬁom when § is not an integer. Since in this case,
Bgopo is equal to the set of g-Hélder functions, this result justifies the classic choice of Hélder
spaces to study minimax properties of procedures under the || - ||o-loss. When § is an integer,
the maxiset contains the g-Hoélder functions and is included in Bgo’oo. In fact, it was already
known that g-Hélder functions can be estimated at the rate ¥»(1)(3,d) (see above), but, roughly
speaking, we prove that these functions are the only ones and this result is new.

In the previous results, our kernel procedures are non-adaptive since they depend on . Our
next goal is to study the maxisets associated to the adaptive estimation procedure proposed by
Lepski (1992). We prove that the Lepski procedure achieves exactly the same maxiset perfor-
mance as non-adaptive kernel rules previously considered. In other words, we obtain that, for all
B ¢ N, the maxiset associated to the Lepski procedure for the rate ¢(1)(ﬁ, d) is the Besov space
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Bgopo. So, our results show the optimality of the Lepski procedure among kernel procedures in
our setting.

These theoretical results allow to draw interesting conclusions from the methodological point
of view. Indeed, the optimal choice for h,, is determined by maxiset results of the paper. So, our
maxiset study can be viewed as a guideline to choose the bandwidth parameter for kernel rules,
which can be used for real data. Such a result is new since maxisets for wavelet procedures were
derived once the tuning parameter (the threshold) is fixed. Some simulations are performed to
illustrate the numerical performances of the kernel procedure associated with optimal bandwidth.
The procedure achieves satisfying results for different signals and for different values of the
parameters n and o. Our numerical study gives an answer to the problem of calibrating the
tuning parameter of kernel rules from the practical point of view.

The paper is organized as follows. Section 2 contains results previously described. More
precisely, in Subsection 2.1, we introduce kernel estimators. In Subsection 2.2, maxisets of these
estimators are derived. Characterizations in terms of functional spaces are given in Subsec-
tion 2.3. The Lepski procedure is introduced in Subsection 2.4 and its maxisets are determined.
Section 3 is devoted to the simulation study and Section 4 to the proofs.

2 Main results

2.1 Kernel estimators

We consider 7, the following classic class of kernel procedures.

Definition 2. The class I 1s the class of kernel procedures th = (]Z]@hn)n where for any n € N
and t € [0,11%, fxp,(t) is defined in (3), h = (hy,), is a sequence of positive numbers that tends
to 0 and K : R? = R is a function satisfying:

(A1) K has a compact support,

(A2) |

Since K will be compactly supported and the so-called bandwidth parameter £, will be
small, the estimator f p, (¢) is well defined when ¢ is far from the boundary of [0,1]? (because

K

5= JpaK*(u)du < co.

K <th_—n“) = 0 when u ¢ [0, 1]%). However, some problems arise when trying to define ]Z[{an (t)

for ¢ close to the boundary of [0,1]%. To answer this issue, for any j = (J1,---,Jd) € Z? and any
function g € Lo(R%), if J = [j1,51 + 1] X - -+ X [Ja, ja + 1], we set

/ g(u)dW, = / o(ut )W, (5)
J [0,1]¢

Since f is 1-periodic, this implies that

/ g(u)dYu:/ g(u+ j)dYy,.
J [0,1]4

This trick allows to define integrals of the form fRdg(u)dYu by decomposing R? as a union of
compact intervals of the form [ji, 71 + 1] X -+ X [ja, Ja + 1]. Using again the periodicity of f, we

obtain the classic form for E []ZK,hn (t)} :

U

vie[0,1]% E [fK,hn(t)] - é/ﬂwK (t}; )f(u)du: Kn, * f(£) (6)
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where for any ¢ € R?, K, (t) = hLdK (ﬁ) and * denotes the standard convolution product on

R¢. Note that these boundary effects can also be dealt with folded kernels. See for instance,
Bertin (2004). Most of the functions we consider are 1-periodic (in particular since f is 1-periodic,
K}, * f is also 1-periodic) and in this case the sup-norm on [0, 1]? is identical to the sup-norm
on R4

2.2 Maxisets of kernel rules

Before deriving maxisets for classic kernel rules, let us point out the following theorem and
corollaries.

Theorem 1. Let ¢ = (¢,), be a positive sequence such that lim, ., n2 = + oo. Let us
assume that there exists a function f satisfying for allm € N

Ell i — [ <

where fK,hn is the kernel estimator of f given by (3) and fK’h = (]ZK,hn)n is assumed to belong
to L. Then, for all0 < e < 1, there exists ng € N such that, for all n > ng,

log<nco¢;i)) Hd

b > (1-2) ( rach (7)

where

& (8)
Co= —Y—————=.
° 7 do?||K|)2

Roughly speaking, Theorem 1 means that if M S (fK’h, w,p) is not empty, then h = (h,),

cannot go to 0 too quickly. Observe that this result is true for any arbitrary rate (¢,), as soon
as this rate is slower than the parametric rate.
In the sequel, we shall show that, for particular rates, the choice

o _ (log(neov?)\ !
e dnegip?

suggested by the previous result is suitable for our maxiset approach. Besides, even if our setting
is asymptotic, such a result can help the practitioner to choose the bandwidth parameter, at
least for large values of n (see Section 3).

Theorem 1 is proved in Section 4 but let us give the main tools that allow to prove this result.
In the minimax setting for any estimator f; and p > 1, we use the classic decomposition of the
risk in bias and variance terms:

Ell /7 = JI% < 227N (IESy — Sl + Bl - ESI) -

In the maxiset setting, and in particular to prove Theorem 1, we use the following converse result
that shows that controlling the risk allows to control the bias and the variance terms.

Lemma 1. For any estimator f, we have:
IEfy = flle < Elfy — fl%,
Elf; — B N5 < 27E| f7 — Sll%-
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The proof of Theorem 1 also relies on the following proposition concerning the variance term
that actually provides the lower bound for the bandwidth parameter.

Proposition 1. Let us consider (fNI{,hn)n € Z. For any § > 0, there exists ng € N such that for
any n > ng,

2da2uKu%|1og<hn>|)p“

Bl i — Efia i > (- 8) (2L

Let us illustrate Theorem 1 with particular rates. First, we consider the rate L/)(I)(ﬁ,d)
defined in (2), which is classic in the minimax setting as we recall in Introduction. Lemma 1 and
straightforward computations show:

Corollary 1. Let 3 > 0 and 0 < ¢ < 1. Under the conditions of Theorem 1 with ¥, =
Czb?(ll)(ﬁ,d) where C' a positive constant, we have for n large enough

. A log ) 120+
hn 2 (1=¢) (6002(2ﬂ+d)> (T) ' ©)

1 € MS (ficn, v)(8,d),p), then
sup {h;ﬁHEﬂﬂhn — fHoo} < 0. (10)

This corollary implies that the maxiset of procedures of the class 7 associated to the rate
»1)(B,d) cannot be larger than the set of functions that satisfies (10). The next corollary
investigates the case of polynomial rates. More precisely, we consider here the maxiset associated

to the rate () (8, d) defined in (4).

Corollary 2. Let § > 0 and 0 < ¢ < 1. Under the conditions of Theorem 1 with ¥, =
Czb?(f)(ﬁ,d) where C' a positive constant, we have for n large enough

1 1/d (log n)l/d
in 2 (1 =) (COGQ(zﬁ T d)) o1/ 550 (11)

1 € MS (ficn, v)(8,d),p), then
sup [h? log b /4B i, — [lloo] < 0. (12)

In the following section, we will characterize (10) in terms of Besov spaces. Unfortunately,
(12) cannot be characterized in terms of classic spaces.

Naturally, our next goal is to build a procedure achieving the rates ¢(1)(ﬁ, d) and zb(Q)(ﬁ, d).
Using (6), observe that the bias term of fjmn is

IES K = Sl = 1K, f = JIIE

that tends to 0 when h,, tends to 0 under standard regularity properties of f. Therefore, heuris-
tically, the smaller h,, the smaller the bias. But previous results show that to achieve a given
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rate, h, has to be large enough. So, we consider the procedures fél) = (ﬁg%)n and féz) = (ﬁ(jg)n
defined for ¢ € {1, 2} by

fﬁj)ﬁ - fK,h“)ﬁ (13)
where in view of (9) and (11), we naturally set
hY) = ! 1 (logm) VPO (14)
. co(206 + d) n
and
a® (L) ogm)t (15)
. co(26 + d) nl/(26+d)’

where ¢( is defined in (8). Now, we show that this choice is convenient to prove converse results
of Corollaries 1 and 2. In particular (14) and (15) provide the optimal choice for the bandwidth
parameter. In the sequel, we consider the following additional condition on the kernel K.

(As) for all t € R? such that [|¢]| < 1, [po(K(t+ u) — K(u))?du < C||t||?V, where || - || is a norm
of R%, C' is a positive constant and v € (0, 1].

Theorem 2. Let 3 > 0 and suppose that the kernel K satisfies (A1), (A2) and (As).
1. If f satisfies

sup | (! 5) B = fllo| < o0, (16)

then we have
sup | (608, d) 7B [ = T2 )] < e (17)

2. If f salisfies
sup | (h12) = tog hZPM|BA — fll] < oo, (19)

then we have
sup | (@28, d)7E |17 - %] ] < oo (19)

n

Now, Theorem 2, (6) and Corollaries 1 and 2 easily imply the following maxiset result.

Theorem 3. Let § > 0 and suppose that the kernel K satisfies (A1), (Ag) and (As). Then we
have the following equalities between subspaces of LES (R?):

M, 603, = {5 sup |00 P K g 1= S| <0} )

n,

n

MS(fé2)7¢(2)(ﬁ,d),p): {f: sup [(hff)ﬁ)—ﬂloghff)ﬁm/dHth)ﬁ w [ = fllso| < oo}. (21)
Note that MS(fgl),Qﬁ(l)(ﬁ,d),p) does not depend on the parameter p. But this maxiset

depends on the kernel K and on the bandwidth parameter hfll)ﬁ. Furthermore,

MS(fél), 1&(1)(@, d), p) does not look like a classic functional space. In the following subsection,
by adding some mild conditions, we characterize this maxiset by classic functional spaces.
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2.3 Characterization of the maxiset in terms of functional spaces
2.3.1 Functional classes

Let us recall the definition of some classic functional spaces that will play a capital role in the
maxiset setting of this paper. First, let us adopt Meyer’s approach to introduction of Besov
spaces as approximation spaces (see Meyer (1990) p. 49). This approach is natural in the
context of this paper.

Definition 3. For 3 > 0, the Besov space ngi;g is the set of functions f that belong to LE"(RY)
and satisfy the following property: for any integer N > 3, there exisls a sequence of functions
(fi)jen belonging to LA (R?) such that
sup 279)| f = filloo < o0
JEN
and oo oo
. X1 N d
su 2_(N_ﬁ)] [
P T T
where o = (ay, ..., aq) € (NU{O}? satisfies S, a; = N.
Now, let us introduce Holder spaces.
Definition 4. For 3 € (0, 1], the Holder space ¥P°"(3) is the set of continuous functions f that
belong to L2 (RY) and satisfy:

< 00,

o0

< 0

wup 1= 10)
w2y |12 =yl
For 3 > 1, the Hélder space P (3) is the set of functions f of class C™ that belong to LE (R?)

and such that all the derivatives of order m belong to XP°" (o) where m = | 3] = max{l € N,l < 5}
and B =m+ a.

When 3 ¢ N the Hélder space YP"(3) and the Besov space BES2 are identical (see for
instance Meyer (1990) p. 52-53). This is not true when § is an integer and X" () is strictly
included in BE22. We have the following result proved by Meyer (1990) (cf. p. 53).

Proposition 2. For 3 € (0,1], a continuous function f € LE(R?) belongs to the Besov space
BZif;jl;E if and only if
e when 0 < B < 1,

INICENTI
oyl —yll?
e when =1,
Mt 4 =g =2 @]
z€R 2 y#£0 ”y”

For 3 > 1, the Besov space BQE;Z;E is the set of functions f of class C™ that belong to L (R?)
and such that all the derivatives of order m belong to B5s where m = | 3] = max{l € N, < (3}
and B =m+ a.

In the following sections, to avoid tedious notations, we denote Bgopo instead of Bﬁiﬁ;ﬁ and

Y(0) instead of X7 (). Besov spaces and Holder spaces will naturally characterize maxisets of
the kernel procedures.
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2.3.2 Assumptions on the kernel estimators

Before characterizing maxisets for kernel rules, we need to restrict the class Z. For this purpose,
let us introduce Z(N') defined as follows.

Definition 5. For N € N, K(N) is the set of the functions K : R? — R that satisfy conditions
(A1), (A2), (As) and

(A4) [paK(u)du=1,

(As) for any (a,...,aq) € (NU{0})?, such that S, a; < N, we have

J.

(Ag) for all polynomial P of degree less than N such that P(0) = 0,

A
o e

K(t)‘ dt < o0,

/ P(w)K («)du = 0.
R4
The set H is the set of sequences (hy,)y of the form h, = 27" n € N, where sequence (my,)y,
satisfies
1. (my)n is non decreasing,
2. limy, 400 my = 400,
3. sup,,(Mmpy1 — my) < 00.

For N € N, Z(N) is the class of kernel rules

I(N) = {(J[NK,hn)n ) : fxn, = é/ﬂ{dlﬁ' (t};“) dY,, K € K(N), (hp)n € 7{} .

Conditions for belonging to H are very mild and are for instance satisfied by the sequences
(14) and (15). Furthermore, the sets (V) contain kernels commonly used in estimation:

[ ] KY(CL') = 1[_1/271/2](1') fOI‘ N =1.

o K(z)=cs(1 =%, |a;®)4 with 8 > 1 for N = 1, with § > 2 for N = 2 where for any
z € R, z4 = max(0, z).

o K(z)=dg(1— %, |z%)2% with > 1 for N = 1.

e For N > 2, see the construction of higher order kernels by Tsybakov (2004) §1.2.2 for
instance.

So, the class Z(N) is a very general class of kernel rules. Note that in Condition (As) the kernel
K only needs to be differentiable almost everywhere.
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2.3.3 Characterizations of maxisets for kernel rules

For 8 > 0, we denote
[B] =min{le N: [>j3}.
First, let us establish the following result concerning the class Z([5]).

Proposition 3. Let (fxp,)n € Z([3]). If f € LE (R?) such that
sup { b2 Ky # = flloo | < 00, (22)

then f € Bgopo.

Proposition 3 allows to characterize in terms of functional spaces the maxiset (20). Using
the class Z([3]), we prove the following result.

Theorem 4. Consider the procedure fél) = (ﬁg%)n defined in (13) with K € K([#]) and hi
given by (14).

1. If B s not an integer

)
B

MS(fAél)’ft’b(l)(ﬁvd)v ) Bgooov
2. 1f B 1s an inleger
2(8) ¢ MS (5", w8, d),p) C B, .-

Theorem 4 is proved in Section 4 as a consequence of Theorem 3 and Proposition 3. This
result establishes that the set of functions that can be estimated at the classic rate ¢(1)(ﬁ, d) is

exactly the functions that belong to Bgopo when (3 is not an integer. When f is an integer, there
is a slight ambiguity resulting from the strict inclusion of ¥(f) in Bgopo. Moreover, Theorem
3, Proposition 3 and Theorem 4 imply that the maxiset (21) is included in Bgopo and contains

Bgm for #' > . But a characterization in terms of simple functional spaces is not possible for
the maxiset (21).

Until now, we have investigated maxisets for kernel procedures depending on 3 through the
bandwidth parameter. Now, in view of adaptation, the question is the following. Can we build
a kernel procedure f such that for any g > 0, f achieves the same maxiset properties as the
procedure fﬁ )2 This problem is solved in the next section by considering the Lepski procedure.
And we prove as previously that, roughly speaking, Besov spaces are maxisets of adaptive kernel
procedures.

2.4 Maxisets for the Lepski procedure

In this subsection, we determine the maxiset associated to the Lepski procedure (Lepski (1992)).
Let B = {B1,...,8.} a finite subset of (0,4+00)? such that 8; < 3; if i < j and the 3;’s are

non-integer. For each § € B, we consider the procedure fél) = (f(l)) defined in (13) with

K € K([8]) and hfﬁi% given by (14). We set

B = max{u € B: HfT(ng - ﬁHoo <ma(y), ¥y < U}7
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with
n (7) = le‘/%(zl)('-)/7 d)7
and Cy is a constant assumed to be large enough (cf. Lepski (1992) and Bertin (2005) for a

precise choice of the constant C'1). Denote this procedure f = (f(lg)n The Lepski procedure is
n

based on the fact that while v < § < § and f is of regularity §, the bias of fé% — ﬁi}% is bounded
from above by a term of order zb?(zl)('y, d). We have the following theorem.

Theorem 5. Let § € B. We have
MS(f,0 (8, d),p) = B, co.

This result proves that the adaptive kernel procedure f achieves the same performance as
fél) from the maxiset point of view. But f does not depend on § and automatically adapts
to the unknown regularity of the function to be estimated. To prove Theorem 5, we first use
arguments of Bertin (2005) to derive the inclusion B2, . € MS(f, () (8,d), p). The inclusion
MS(f,vM(3,d),p) C Bgopo is expected since we guess that the maxiset performances of f

cannot be stronger than those of fél). Technical details of this proof are given in Section 4.

3 Simulations

In this section, we carry out simulations (by using Matlab) to study practical performances of
the kernel estimate associated with the bandwidth parameter we propose in Section 2.2. For this
purpose, we consider the regression model with equispaced fixed design

Yi=f (%> toz, a SUN(0,1), 1<i<n

that is close to the model (1) as recalled in Introduction. Our goal is to estimate f : R — R
assumed to be 1-periodic by using

() = %Zf{hn (t _ %) Y, K (i) = %K (ht_) ,
=1

where K is the classical Epanechnikov kernel: K (¢) = 2(1—¢?); that belongs to K(2) (see Section
2.3.2). To avoid boundary effects, observations are periodized. The bandwidth parameter &, is
naturally taken as

B log(nc(ﬂbz) 2

h —
. neoy o*|| K3

Cyp =

where

o%log(n/o?) T
W = (g7> _

n

Actually, 1, is chosen to be asymptotically equal to C' x 1/')7(11)(ﬁ7 1) where C' is a constant such
that 1, only depends on the ratio o/y/n and . In the sequel, simulations are performed for
different signals and for different values of the parameters n, o and 3, keeping in mind that our
theoretical results were established in the asymptotic setting. The Monte Carlo method allows
to approximate E (Hf— fHOO) by averaging over 100 simulations the sup-norm of f — f. This
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average risk will be viewed as a function of § and will be denoted R(3). To build test functions,
we start from the signal
fz) = g 2](95) ~ 05X 11 1] ()
3712

8 7 4

that satisfies fol f(t)dt = 0. Then, for z € [0, 1], we set
Ni(@)=aif(z), f2z)=az /f Ji()dt +by,  f3(z) = a3 /z f2(t)dt + bs,
0 0

where a1, ag, by, a3z and b3 are constants such that for any ¢ € {1,2,3}, fol fi(t)dt = 0 and
I fillz = 1. Such a construction allows to build 1—periodic signals with different regularity
properties. Finally, for z € R, we take fy(z) = v/2sin(27z) that has an infinite number of
continuous derivatives. For o € {1,1, 55} and n € {1000, 10000, 100000}, Table 1 gives Bmin the
value of 8 that minimizes the average risk of each signal and the corresponding value of the risk:
Rumin = R(Bmin)- Figure 1 illustrates the reconstruction obtained by using our estimate for each

o n f1 fo fa fa
ﬁmin Rmin ﬁmin Rmin ﬁmin Rmin ﬁmin Rmin
n = 1000 0.38 0.342 1.97 0.120 3.34 0.084 5.27 0.074
n = 10000 0.51 0.151 1.70 0.056 3.28 0.040 3.66 0.032
n = 100000 0.72 0.058 1.67 0.030 3.03 0.021 3.64 0.014
n = 1000 0.53 0.187 1.76 0.067 3.34 0.048 4.21 0.040
n = 10000 0.64 0.074 1.82 0.035 3.11 0.024 3.71 0.018
n = 100000 0.90 0.031 1.82 0.020 2.96 0.014 3.42 0.007
n = 1000 0.50 0.139 1.88 0.056 3.32 0.038 3.91 0.031
o= % n = 10000 0.74 0.054 1.79 0.029 2.88 0.020 3.67 0.013
n = 100000 0.98 0.024 1.88 0.018 2.73 0.013 3.28 0.006

W=

|

Table 1: Values of Bpnin and Ry, for each signal and for different values of n and o.

signal when 0 = Bpyin, n = 1000 and ¢ = % In Figure 2, we display for each signal the graph
of the function § — R(3) when n = 1000 and ¢ = % Graphs of Figure 1 and the numerical
values of R(0Omin) show that the performances of our estimate are quite satisfying. Of course,
the behavior of our estimate improves for larger values of n and smaller values of o. When the
regularity of the signal increases, Omin increases and R(fOmin) decreases. We also observe that
Bmin € [0,1] for fi, Bmin € [1,2] for fo and Bpin € [2, +oo[ for f3 and f4. In addition, except
for f1, the value of By does not highly depend on n and o. Observe that for regular signals,
the value of By, should not be considered as sacred since Figure 2 reveals a kind of “plateau
phenomenon®. Actually, numerical results illustrate our maxiset statement: a function can be
estimated by our kernel procedure at fast rates if and only if it is regular. The last step for
practical purposes is to provide a rule as simple as possible for the choice of the parameter 3,
which is necessary to define h,,. For many situations, our simulation study addresses this issue
since Figure 2 shows that the choice 3 = 0.5 is not so bad (for many values of o € {1/3,1/7,1/10}
and n € {1000, 10000, 100000}, graphs of 3 — R(3) are similar to those of Figure 2). However,
when the practitioner knows a priori that the underlying signal is continuous (like f2, f5 and
fa), he’d better take 5 = 2. The Lepski procedure could also be used but, for this purpose,
many parameters have to be calibrated. Finally, we do not discuss in this paper the problem
of estimating o or the influence of the choice of K. All these interesting issues are beyond the
scope of our paper and constitute topics for future research.
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(@ ()

~ observations . ~ observations
i9 : . signal
estimate

sign:
— - — estimate

o 02 0.4 06 08 1 o 02 0.4 06 08 1

Figure 1: Observations and estimation of each signal by using f for n = 1000, 0 = 1/3 and
ﬁ = ﬁmin- (a): fl (/Bmin = 038)7 (b) f? (ﬂmin = 197)7 (C): f3 (ﬁmin = 334)7 (d) f4
(/Bmin = 5.27).

(a) Risk of , in function of B (n=1000, 0=1/3) (b) Risk of f, in function of B (n=1000, 0=113)
1 1
0.9 0.9
08 08
07 07
06 06
05 05
04 04
03 03
0.2 0.2
01 01
0 0

o 05 1 15 2 o o5 1 15 2 25 3

(©) Risk of f, in function of B (=100, 0=1/3) (d) Risk of f, in function of B (n=1000, 0=1/3)

1 1
09 09
08 08
07 07
06 06
05 05
0.4 0.4
03 03
02 02
01 01
o o

0 1 2 3 4 5 [ 2 4 6 8 10

Figure 2: Graph of § — R(f) for n = 1000 and ¢ = 1/3 for each signal. (a): fi1; (b): fa; (c):
fs5 (d): fa
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4 Proofs

4.1 Proof of Lemmal

The first inequality is a simple consequence of Jensen inequality. The second inequality comes
from

Ellfy — Ef5 1% < 27N (ESY — fli5 +EISY = flI%) < 27Elf7 — Jl%.
4.2 Proof of Proposition 1
For t € [0,1]¢, we set
\/nhd

d /- . _ 1 ft—u
£o= % (G (0~ B 00) = o [ 1€ () v

Let A > 0 such that the support of K is included in [—A, A]?. We set m = LmJ — 1, and

Vi=(iy,i2,...,iq) € {1,...,m}*, ;i = (201 Ahy,2i3Ah,, ..., 2i4Ah,).

Since the support of K is included in [—A, A]¢, then (5&')2-6{1.

Gaussian variables with common variance s? = ||K||3. We also have for any r > 0,

Pl sup [&|>r] > P| sup & >r
tefo0,1]¢ ie{l,...,m}¢

- 1—P( sup 5ti3r>
ie{l,..,m}¢

> 1-exp (~mlo(r/s))

4 are independent centered
m}

where for any © € Ry,

o= o= [ oo (<5 ) o> e (<) i
z) = exp| —— | dv exp | —— .
o). TP\ = V2r P72 ) 1y

So, there exists hg such that if A, < hg,

P ( sup |&] > S\/(l — §)1/r2d| log(hn)|> >V1-4.

€[o,1]¢
Finally, for h, < hog,
B¢l >

P
E[1€]1%, 1||£||oo>8\/(1—5)1/1’2d| log(hn )|

/2
(1= 8)/72d]| K| Bl10g(ha)])" % P sup [ > s1/(1 — 8)!/r2d]log(h,)]
te[0,1]4

v

v

(1 - 6) (2d|| K|} log(h)])"*

and

2da?\|KH%|1og<hn>|)p“

Bl i — Efia it > (- o) (21D
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4.3 Proof of Theorem 1

Let 0 < § < 1. Using Proposition 1 and the inequality
El| /Kb = Ef B < 27Ell ficpn — FlIE

(see Lemma 1), we have for n large enough

| log(hn) 2
b < avy, (23)
where ¢; = ¢o/(1 — 5)2/79. Denote (u,)nen the sequence such that for all n € N, u, =

by, (nclwg)l/d. Taking the logarithm of both sides of (23), we deduce that the sequence (uy),
satisfies for n large enough

1
log(un) > — loglog(hz").

This implies that u, > 1 for n large enough. Using the definition of w,, we obtain

1 dlog(uy,) 1 9 1
1 n) — =1 1——————— 1 > =logl — —logd. 24
og(un) ~ log (1= 2B ) > Jlogloglueas) - o (24)
Let € > 0. Let us prove that for n large enough, we have
upd'/? (log(nclipi))_l/d >1-¢. (25)

Now, let us assume that (25) is not true. Then, there exists an increasing function ¢ such that
(Ug(n))n satisfies for any n € N,

—1/d
u¢(n)d1/d <log(¢(n)01¢£(n))) <1-E&.

Using that u, > 1, we deduce that

1 1 .
0 < log(ttg(ny) < - log (1og(¢(n)c1¢;(n))) — —logd +log(1 - ). (26)

Since nt? — 400, this implies that

log(ud)(n)) n—+co
— 0
log(o(m)crv2,,)

and then for n large enough

1 dlog(u¢(n)) 1 -
-1 1-— > —log(1l —£).
pi og ( log(é(n)cl@b;(n)) Z 3 og( )

Since log(1 — €) < 0, (24) and (26) are contradictory. Then (25) is true and since ¢; > ¢, hy,
satisfies

b > (1= 2)(1 = 6)2/0P) (neqp?) ™/ (log (neoys?)) /a1,

Now choose £ and § such that (1 —&)(1 — §)%/(%) > 1 — ¢ to conclude. Inequality (7) is proved.
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4.4 Proof of Corollaries 1 and 2

. . logr, \ 3/ (26+4d)
Relations (9) and (11) are direct consequences of Theorem 1. When 1, = C< g% )

3

from Lemma 1, we have for any n € N,

—pB||R f, —pBR|| f, 2 pra _ C \F
ho P NB S, = [l < AP Bl frch, — flI% < { (c0C*(26 + d)) 1-¢258)"

which implies (10). Now, we prove (12). Using (11), we deduce that for n large enough

B> (log myn-d/es+ _(1L=€)"
" C002 (Qﬂ + d)
and ( )
1-—
log h,| < S|
|log hy| TR
Then
|log hn|ﬁ/dh;ﬁ < cg/d025/dnﬁ/(2ﬁ+d)
and then

sup {|10g hul /B fic, — flloe | < o0

4.5 Proof of Theorem 2

We prove (17) and (19) simultaneously. To simplify the notations, if (16) is satisfied, we set
hyg = h( ) and fng = f( ) (18) is satisfied, we set h, g = hi)ﬁ and fng = f( ) The result of

this theorem is obtained by doing a balance between the bias and the variance of the estimator
fn 5+ Denote for ¢ € [0,1]¢ the bias term

VreN, b(ft)= E(fnﬁ(t)) - f(1).

The stochastic term is

YneN, Zyt)= fust) - E(fos(t)) = /ﬂrlmk( ﬁ)dW

Let A such that the support of K is included in [—A, A]?. We consider n large enough to have
Ahy g < 1— Ahy . Here we consider first the case d = 1. Since ford =1,V ¢ € [0,1], K, ,(t—.)
is supported by [t — Ah,, g,t+ Ah, g] C [—1, 2], using Definition (5), we can write Z,, of the form

Zn(t) = ZY(t) + Z2(t) + Z,) (t) (27)
with
t—u o u+1-—1

Zt ( ) AW, = K (7> AWy,

(t)= ,ﬁ\/— —1,0] b3 b g1 Jjo] b3

t—u

Z2(t ? K ( ) AW,

( ) n,ﬁ\/H [0,1 n,B

t—u o wu—1—1
Z3(1) = _7 K dw, = K| —— | dW,.
»() b gv/m 1 9] ( bn,s ) W b gv/1 Ji01] ( b3 ) W
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Since K satisfies conditions (A3), we have for any j € {1, 2,3} and for all (s, ) € [0, 1]?

i 3 2 00'2 t—s QU
E[(Zt) = Z3(9)*] € —— |7 - (28)
nhy g hnp
where C'is a constant. Moreover we have
) 2 K 2
E[(Z(t)%] < Ld”? (29)
nhnﬁ

Following the same lines of the proof of Lemma 4 in the Appendix of Bertin (2004) and using
(28) and (29), we have for r > 0 and n large enough

P | sup |Z(t)| > r

tefo,1]¢

exp{—r2d| log hy, |} exp{Csr},

2do?|| K |13 log hngl | _ Callog hn,s|*”)
nhy, 5 B he

with Cy and C positive constants. Then using that E[||Z2 %] = ohee P[||Zi||% > t]dt, doing
the change of variables ¢ = r,u? and splitting in two parts the integral, we deduce that for any
J €41,2,3},

. too .
vneN, E(|ZL) < (2P+p [ w17 = rifrd] du), (30)
2

where

2d0”|| K|[3) log hn s \ '
Tn = .
nhdﬁ

Then, since the integral in (30) is upper-bounded by a constant, we have for any j € {1,2,3}
and n large enough

p/2
|log hn,m)

Py <
E(Hznuoo)_cu( iy

with (4 a positive constant and

log ]\
VneN, E(|Z|n)<cs | 8imsl)
nhnﬁ

with Cs a positive constant.

For d > 1, as in (27), Z, can be decomposed as the sum of 3¢ terms that satisfy (28) and
(29) and consequently

) log h g\
VneN, ]E(HZRHOO) < (s T . (31)
s

with Cg a positive constant that depends on d.
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If (16) is satisfied, then we have

Ve N, [bu(f )l < Calhyp)’, (32)
where C is a constant. Then (31) and (32) imply (17).
If (18) is satisfied, then we have
Ve N, (/e < Cr(hE)  loghi 1=, (3)

where C is a constant. Then (31) and (33) imply (19).

4.6 Proof of Proposition 3

Remember that for any n, h, = 27™". Without loss of generality, we assume that m; = 1 and
sup,, (Mmnpy1 — m,) < 1. We denote for ¢ € [0, 1]¢,

bh, (f: 1) = Efgcp, (t) = f(t) = K, * f(t) = f(2).

So,
198 (f, loo < Ch,

where C' is a constant. For k € N, we set
Nk:{n: 2~ k-1 <hn§2_k}:{n: E<m,<k+1}.

For any k € N, N}, # 0, and we denote nj;, = max(Ny) and hy = hy,, so 9—k-1 hy < 2=k We
set
{ Ug = I{hi‘ * I(}LT * f,

U = Krhz_l_l * I(hZ+1 x [ — I(hz * I(h: x f, k€ N.

Using (22), we have

1 Khz % Kpz % f = flloo < [ Kk % K * [ — Kpx * flloo + 1 Kp2 % f = flloo
= [[Knz *bpx (f, )lloo + [16r3 (f, ) lloo
< jor: (f, ')HooX/lﬁ'(U)ldWerh;(fa Moo

< Ci(h)P < G2
where ('] is a constant. So, we have

kgffoo | Kny * Ky * [ = [lloo =0

since lim,_, 4o hp = 0 and then Y, ur = f. Furthermore, for k > 1, since (hy), € H

lluklloe < ([ Khy * Kip * f = flloo + [ Knp,, * Knz, % f = flloo
< Ci(h)P + Cr(hfy)?
< 20 (hy)”
< 20,278, (34)
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Let N = [8] and (o, ..., aq) € (NU{0})% such that 3% | @; = N. Using the properties of the
convolution operator and condition (As) on the kernel, we have for k£ > 1,

0™ 0% o™ 0% . . .
H@t—?lat—gduk = H@t—‘flat—jd (Kh;;+1 *KhZ.H * [ — Kpx o+ Kpx *f) H

|58

oo 9o (KhZH + KhZ) * (Khzﬂ N Khz) i f‘
1 d

g 9
< * -N *\—IN o K v -
< (i)™ 4 (A ™) 1Ky, f = Ko *f\!oo/‘at?l mjdk(t)‘dt

(Mo + 113 ()lloo)

Cob) ™ (l1bng,,
Ca(hp) N+
Cy2(k+1)(N=5) (35)

IAN AN IA

where C3 and C'3 are constants. We have used (h,), € H.
Now, by setting for any j > 1, f; = i;é ug, we have, using (34),

sup 27| f — fillee < 00
JEN

and, using (35),

o™ %4

(N=8)s 2
ot oty

sup 2~ < 0.

JEN

/i

(o)

These inequalities prove that f belongs to B?o,oo (see Definition 3).

4.7 Proof of Theorem 4

For simplification, we denote h,, g = h;l)ﬁ. Theorem 3 and Proposition 3 imply that

MS(FP, (3, d),p) C BL, ...

Now, let us consider f € ¥(3). This implies

[/ (8) = P (f)(b— a,a)| < LI|b— al|?,

with L > 0, for all @ = (ay,...,aq),b = (by,...,bs) € R? where P, (f)(z,a) is the Taylor
polynomial of order m associated to the function f in the neighborhood of @ and m = |3]. For
t € [0,1]% and n large enough, we have, since K satisfies (A4)

1 t—u

Kn, ,* f(1) = f(1) = W /R K ( hﬂﬁ) (f(a) = f(1))du

1 ft—u
= o [ () v - P ol
n,g /R 0

where the last line comes from the fact that K satisfies (A4g) and that the polynomial Q(u) =

Po(f)(u—t,t) — f(t) is of degree less than m and satisfies Q(0) = 0. We have, for n large
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enough,

[ (““) ”t_“Hﬁdu
n,ﬁhiﬁ R hog 1P

n7ﬁ
= thﬁ/ K (u)]|u]|®du
Rd

[ Kh,, 5 [(8) = f(0)]

IN

and the last line comes from a change of variables. Using Theorem 3, this implies that
8(8) € MS(f w08, d).p).

4.8 Proof of Theorem 5

For simplification, we denote the procedure fél) = (f(lg)n by fg = (fnﬁ)n. Here we emphasize

the fact that since for all v € B, v is not an integef7 we have for all v € B X(7) = Blo,co-
Consider the following proposition:

Proposition 4. Let 3 € B. If [ € Bgopo, then

sup { (6006,0) "E 17 - 4l } < . (36)

Proof. The proof of (36) is the same as the proof of Theorem 2 of Bertin (2005) but for kernels
more general and regularities larger than 1. O

Proposition 4 proves that

B e © MS(f,01(8,d), p).
Now, here we prove the inclusion
MS(f, 90 (8,d),p) C BY, . (37)

Let f € MS(f, 1/)(1)(6, d),p). This implies that

n

sup{ (006,0) "B 17 - F, gl } < . (39
Moreover, we have

v Y < Bv ”fn,w - fnﬁHoo < 7771(7)- (39)
Let us establish some preliminary results.
Lemma 2. If f € Bl «, then ]P’(ﬁ <) — 0, when n goes to +oo.

Proof. The proof is the same as the proof of Lemma 7 of Bertin (2005) and we have for any
v € B, if f € B 0, then P(3 < v) — 0 with a polynomial rate when n goes to +cc. O

Lemma 3. Let [ € MS(f,l/J(l)(ﬁ,d),p). Under the assumptions of Theorem 5, we have f €
B2 .
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Proof. Since 31 < 3 and (8 < 8, using (38) and (39), we have that

)
or—1 (R P E P
| gy = Fo gl + B = 1, 5015

Ell f60 = fl% <
< 2 (a8 + CD (B, ))?)
< O (ﬂh )) :
where C' and C' are two positive constants. Theorem 4 implies that f € ng,oo. O

Now, here we prove by induction on § € {51, 32,...,3} that f € Bgom

- By Lemma 3, we have that f € B4
- Now, let § € {83, f33,...,3}. We assume that f € BS_

00,000 Where

0" =max{y € B: <4}

Now, to obtain that f € B?
for all n large enough,

20,000 1t 18 enough to prove that there exists a constant C' such that

|Efns — fIE, < C(M(8,d))P

(see Proposition 3). We have ¥V n € N,

(b0, 0)" < CElfos- -~ Efs- |2
< PCE]| f - — fI
< 2Cy (B[l fus- = FIZ jos=| + B[ fus- = FI%1505-] )
< 20 (Bf, 5 - 1+ (Bl - 112) PG £6)
< G ((v06,0) + (6067,0) BV < 67) + D67, QYFVB > 57))

< G (s067,0) PG > 8 +o (0067, 0)),

with C7 and Cy two positive constants, where the first two lines are a consequence of Lemma 1
and Proposition 1, the fifth line comes from (38) and the sixth line is a consequence of Lemma
2 and § < . This implies that for n large enough,

1

PI26)2 1L

Now we have for n large enough

IBfus = fI2 < ACER(5 > 8)||Bfus — FII%
AC3E 15y B S5 = fIL|
E [ Lggssy (IBfs = Fasllie + s = Fogl + 17,5 = 1%)]

IN

IN

where Cj is a positive constant. Using properties (31), (38) and (39), we deduce that

IBfus = Jl5 < Ca (60(5,)) "
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with Cy4 a positive constant.
Then using that the induction is for § € {8y, B9, ..., 5}, we deduce that f € Bgopo and we obtain
the inclusion (37).
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