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This supplementary material contains additional results and proofs that could not be included in the
main paper (Sulem, Rivoirard and Rousseau, 2022) due to space limitations. In Section S1, we prove the
second case of Proposition 3.5, our concentration result for the shifted ReLU model. Then in Section
S2, we report the proofs of Theorem 5.5 and Lemma A.2. Section S3 contains the proofs of two results
in the graph estimation problem (second part of Theorem 3.11 and Proposition 3.10). In Section S4
we prove frequentist results of Corollary 3.8. Results regarding the construction of prior distributions
can be found in Section S5. In Sections S6, S7 and S8 we report additional technical results and their
proofs, notably on the tests used in the main theorems and on the Kullback-Leibler divergence defined
for the Hawkes model. Lemmas A1l and A4 are proved in Section S9. Finally, we report multivariate
extensions of existing results on the regenerative properties of the nonlinear Hawkes model in Section
S10.

For the sake of simplicity, all sections, theorems, corollaries, lemmas and equations presented in the
supplement are designed with a prefix S. Regarding the others, we refer to the material of the main text
(Sulem, Rivoirard and Rousseau, 2022). This is not specified at each place.

S1. Proof of Case 2 of Proposition 3.5

We recall that in this case we consider a shifted ReLU model with unknown shift 6y = (90, .. ,9?(),
corresponding to a particular case of partially known link functions ¢y (x; 6y) = 6 + (x)+, and for pa-
rameter f € 7 and 0 € O, we denote A;(f,0) the intensity process. We note that in this case, ry = 6y + vo
and similarly ry = 6 + v, with ry defined in (21). We then prove the posterior concentration rate on
both fy and 6. First, we apply the same steps as in the proof of Theorem 3.2 in Section 5.2, replacing
ILf = folly by ||ro = ||, + Ik = holly = 160 + vo — € = vil; + Ik — holl; . In particular, we re-define the balls
w.r.t. the L;-distance as (for simplicity we keep the same notation)

We therefore obtain (see also Remark 3.7)
Eo [TV = holly +1160 + vo — 6 = vlly > M vkrer|N)| = o(1). (SL.1)

Secondly, we design a test to separate 6y and vo. For this, we restrict again the set Q7 to a high
probability set Q4, where 6 can be correctly estimated. Let

AXT) = (1€ [0,T1; (o, ho) <0}, Qa = (IAK(D)| > 20T, Vke K}, 1<k<K,
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with zg > 0 defined in the proof of Lemma A.1 (see Section S9.1), and deﬁnef)’T = ~QT NQy. M0~reover,
we define a neighborhood around 6y, A(R) := {6 € ©; ||10 — 6ll; <R} and M7 = M «/kr with M > M.
Using again the decomposition (24), with A = A(Mrer), B=A L,(Mrer), and the subset /., we thus
only need to construct a test function ¢ € [0, 1] verifying:

Eo|#1g, | = oD, sup Eo[B/[(1 - 0115, |[6o] = ot e+, (s1.2)
! 0eA(Mrer).feArL (Mrer)NFr !

To construct this test, we first consider some arbitrary parameter f| = ((v]i)k, (hllk)l,k) €Ar,(Mrer)

and ) = (Qli)k € A(Mrer)©, and for any k € [K], we define the following subset of the observation
window

I(f1.60) = {t € [0.T1; A(f1.61) = 6. Af(fo.00) = 6]} (SL.3)

By construction 92 and 0}( can be identified on the set I]?( f1,61), hence we need Ig( f1,61) to be large
enough in order to test between «92 and HIi. We can ensure this by defining a controlled set of ex-
cursions &. Let [ € [K] such that h?k‘ #0, 8 = (xp — x1)/3 with x1, xp defined in condition (S8.46),

Cx = MiNye[y, 1] h?k_(x) and n; = |_2v,1/(/q cx)] + 1 for some O < k1 < 1. We consider the following
subset of excursions:

&:={jelJrl; Nltj,tj+6") =Nl[‘rj,‘rj +6)=n,N[tj+6, 1j41) =0}, (S1.4)

where the 7;’s are the regenerative times defined in Lemma 5.1. Using the intermediate result (S6.24)

from the proof of Lemma A.5, if |&| is large enough, then we can find a lower bound on |I]9( f1,601)]. We
then define our generic test function:

#(f1,61) = oy (111\/1«(1;3( ALON-A(fr 0 )<-vr ¥ ]1|5|< ZE(')’?ATTI] ’]lNk(I,?(fl,91))—1\,?(1,?(]‘1,91))>ur v ]1|8|<2E<,:([)ATT1]}

(SL.5)

. T
where po = Po[j € E]. AYI(1.60) = [ Loy 6\ Af (fo. 60)dt, vr = wrTer, wr =2 Jmaxg 6k + 1)+
2xp and xo from assumption (A2). From Lemma A.5, there exists u; > 2xg and ¢ € (0, 1) such that

Eo|o(f1 001y, | <e™ 7, sp B [By|(1- 9,001, ||Go] = o CTHVTE). (s16)
T I =fill+l6-61lI<ler T
To define our global test ¢, we first cover the space A(Mrer) x Ap,(M7er) N Fr with L;-balls
{Bi}1<isxn of radius ey, with £ > 0 and N € IN the covering number. For each ball B; centered at
(fi,6:), we define the elementary test ¢(f;,6;) as in (S1.5). Then we define ¢ := max;en ¢(fi, 6;), and
obtain that

Eo [¢]lf2/ ] < Ne_”lTE%, sup Ey []Ef [(l - d)lg ] |g0] = o(e_(KT*'C')TE%).
! 9eA(Mrer)’.feAL, (Mrer)NFr T

Next, we find an upper bound of the covering number N using assumption (A2). We note that if
f €A, (Mrer), then for any (/,k) € [K1%, 0k <O + vi = rl’: < r]? +er < 2(92 + vg). Consequently, using
similar computations as in the proof of Proposition 5.5 in Section S2), one can find x;, > 0 such that

2maxk(6‘0 + vo) K maxj W+ er K ) ’ )
/ ’
S( { k k ) ( g k ] N(é'ET,WT,“.H])$€_K10g€T€x0TET SEKIOgTexoTET ZO(KMITET),
€T €T
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since log T = 0(Te%) by assumption. Hence, reporting into (S1.6), this proves that (S1.2) holds and al-
lows us to conclude that Eq [[I(A(Mrer)°|N)| = Eo[TI(10 - 6oll; > M yKrer|N)| = o(1). Finally, since
M > M, from (S1.1), we also have that Eo[TI(lv + 6 — vo — 6oll; + Ik = holl; > M yrerIN)| = o(1)..
Therefore it only remains to prove that Ey [H(Hv -l >M VKT eT|N)] =o(1). By the triangle inequal-
ity, we have ||[v —vll; <|lv+6 —vo — Ooll; + 116 — Boll; , and, up to a modification of the constant M,

Eo [T1(|v - vol|, > ¥ krerIN)| < Eq [T1(|[v + 0 = vo = 6g||, > ¥ vkper|N)| + Bo [ T1(||0 - 6o||, > M vrerIN)| = o(1),

which terminates this proof.

S2. Proofs of Theorem 5.5 and of Lemma A.2

S2.1. Proof of Theorem 5.5

This section contains the proof of the posterior concentration rate w.r.t. the stochastic distance defined
in (23) in Sulem, Rivoirard and Rousseau (2022). We use the well-known strategy of Ghosal and
van der Vaart (2007) which has the following steps. First, the space of observations is restricted to
a subset Qr defined in (25) which has high probability (see Lemma A.1). Secondly, we use a lower
bound of the denominator D7 defined in (5) using Lemma A.2. Thirdly, we consider Ay, (M’T er)CF,
the ball centered at f of radius M7.er w.r.t the auxiliary stochastic distance dir. To find an upper bound
of the numerator N7(Ag4, (M7.€r)°) as defined in (5), Ag, (M7.€r)° is partitioned into slices S; on which
we can design tests that have exponentially decreasing type I and type II errors (see Lemma S6.1). We
then define ¢ as the maximum of the tests on the individual slices S;. Note that the following proof
applies to all estimation scenarios, and for generality here, we consider 8y unknown.

We recall the notation Ay, (€) = {f € F; di7(f, fo) < €}. and from (5), Dy = f/c eLr(N=Lr(O gTI( £).
For a sequence er verifying the assumptions of Theorem 3.2 and for i > 1, we denote

Si={f € Fr; Kier <dir(f, fo) <K(i+ Der}, (82.7)

where Fr = {f = (v,h) € F; h = (hy)ix € Hr, v € T7}. Let My = M’ \Jkr with M” > 0 and k7 defined in
(6). Using the decomposition (24) with A = Ay, (M7.er)° (and B =F) , for any test function ¢ € [0, 1],
we have

Eo[TI(Ag, (M} er)°IN)] < Po($5) + Po ({DT < e T TI(Bo(er))} N QT) +Eol¢lg, ]

2 2
oirTer krT e

. e +00 ) ~
e Ty [+ZM L TIEo[lEf[ngTﬂfes,.(l #Go||d11(p |
(S2.8)

For the first term on the RHS of (S2.8), we have IPO(Q%) =0(1) by Lemma A.1. For the fourth term of
the RHS of (S2.8), under (A0) and (A1), we have that

2
T Ter

II(B(er))
The second term of (S2.8) is controlled by (26) and goes to 0.

T(FE) < 0T (T(HE) + TI(TS)) = o(1).
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We now deal with the third and fifth terms on the RHS of (S2.8), which require to define a suitable
test function ¢. Let i € N,i> M7 and f € S;. On Qr, with A»(T) defined in (22), we have that

K K Jr-1 5
Tdr(f.fo)= f = A lde=>" 3" |k - ko)) a
=1 YA2(T) =1 j=1 Y7
K Jr-1 U<1> ' Jr-1 0
DI RN Z(U Tl = > Sl Ea e 2

with rf = (@11, 6k (V) 10 = (@10, 6k (V) and 7, &, USD, 1< j<Jp - 1 defined in
Sections 5.1 and 5.2. Consequently, for any / € [K], since dir( £, fo) < K(@i+ 1)er, we obtain that

r[f r[ +2K(@i+ 1) ||roll Eo [AT1] er < rl + 1+ 2K ||roll; Eo [AT1]ier, (S2.9)

for T large enough. Moreover, using Assumption 3.1, ¢;1 is L'-Lipschitz on J; = ¢;(I;) and r? e J.
With & > 0 from Assumption 3.1, we now separate the set of indices i in two subsets.
Case 1: i is such that 2L’ ||rgll; Eg [AT1] K(i + 1)er < &. Then we have that rlf € J; and v; € [ since

|rlf_r?| =< 2|Irolly Eo [AT1] K(i + 1)er. Consequently, §|V1—V?| < |’”lf—”?| < Llv;~}| and in particular,
v <V +2KL (i + 1) |Irolly Eo [Ati ] 7.
Defining
Fi={f e Fri vl <0+ 14 2KL lIngly Bo [Ari]ier, Vi € [K1),

we therefore have that for any f € §; and T large enough, f € 7; Let ( ﬁ,n)nN:"l be the centering points of
a minimal L;-covering of ¥; by N; balls of radius ier with { = 1/(6Ny), and Ny defined in the proof
of Lemma S6.1 in Section S6.2. There exists Cg > 0 such that we have

Co(1 +ier)\K
N<(M) N(Zier |2, Hr, |llIy).

Jier /2
Ifier <1,
Ni< (Zﬂ) N (Cier /2. Hr. L) = (450) ST N e /2. Hir ).
Otherwise, if ier > 1,
N;< (4%)1(/\/@1'@/2,%, -
Moreover, since i — N (Cier /2, Hr,|.|l1) is non-increasing, and if i > 2/, we have that N (Zier /2, Hr ||.|l1) <

N(oer, Hr, |11 < eooTe using (A2). Consequently, since ey > e% > % when T is large enough,

4
_ i log(5%=T .
e~ loglier) < o (2557 and we obtain

K K K
Nis(@) (i) e’“"gTN(gier/z,ﬂr,||.||1)=(@) KI8T Ny (sier 12, Hp, 1)
4 240 4
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2
< CKeKlog TexoTsT ,

denoting Cg = (%)K

Case 2: 2L’ ||roll; Eg [AT1] K(i + 1)er > €. Then in this case we define 7; = F7 and vy = ecsz%, and
the Li-covering number of F; is now upper bounded by

K
N;i < (é,.VT/z) N (Cier /2, Hr,||.|l1) < C(/)e(XO*'CZK)TE%’
ler

with C{ > 0 a constant.
In both cases, considering the tests ¢; = rn[%(] ¢, with ¢ . y; = min; xy; defined in Lemma S6.1,
ne[N; ’ ’

and Cj = Cg V C, x6 = Xxg + cg, we have
Eollg ¢/l </\(ie—le(iZe%AieT) <C}((2K+ l)eKlogTex(’)Te%e—ylT(ize%AieT)
T b
_ 22,
Eo|Ef|1g, 1yes,(1 - 6lGo]] < @K + e " TEeirien),

Choosing ¢ = max ¢; and since M7 > 2{o/{ for T large enough, we obtain
'T<i< i

[ -1
€.
T
’ 2 272 e
Eo[lg, 4] < Cx(2K + 1)eX 8T Xl § eniTe 4 § e~ viTer
,i:MIT i>5;|

ro-1
€r

< C;((ZK_’_ l)eKIOg TexE)TE% Z e—)/]iM}TE% + Z e—y] TieT

i=M] >
| T i>e;

<Cy(2K + l)eKIOgTeX(,)TG% >Ze_71M/TZTf% + Ze_YIT]
<ACL Q2K + D[eMMETeG 1 gniTy, (S2.10)

since log3 T = O(Te%) by assumption. Therefore, we arrive at ]Eo[]IQTgb] = o(1). Similarly, we can
obtain
e}l
2 2 .
Eo f Ef|1g, 1 ses,(1 - 9)Go|dlI(f)| < 2K + 1) eniTe 4 N gnTier
YRS | S entrie

=M, >
T i>e;

<AQK + D[e VMG 4 o1,
Therefore, using (A0), we have for the second term in (S2.8),

2 2
eKTTeT k7 Te

400
—H(Bw(em)[ZMl, fT B[ [, Lyes, (1 - 006o] [0 | < =
=My

€_C] ET

1227 2
42K + D]e " MrTe 4 o)

<4QK + De MMFTEI2 Z o1y,
(S2.11)
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for M}, > +Jcy + «r, which holds true if M}, = M” \kr with M’ large enough. Aggregating the upper
bounds previously obtained, we can finally conclude that

Eo[TI(Ag, (M7er)IN)] < Po(QF) + o(1) = o(1),

which terminates the proof of Theorem 5.5.

S2.2. Proof of Lemma A.2

In this section, we prove a control on the log-likelihood ratio of the form Py [Ly(fo) — Lr(f) = 5zr] =
o(1), where z7 = Te%(log T)" where r =0, 1,2 is defined in Lemma S7.3 and depends on the assump-
tions on the link function. We have

Lr(fo) = Lr(H) =) f Tlog(/lf(fO)]de— f W - A
TJo T 4 Jo ﬂf(f) t 0 tJO t

Jr—1
=Wy + Z T+ Wr,
=1

with

(G
W0:=§k] fo lo (/lk(f))d (/lk(fo) Ay,

T A
W=, [ [/lk(fo)))de f (o)~ AP,

Let L7 = L1(fo) = L1(f) — Eo [Lr(fo) - L1(N)] = Lr(fo) — Lr(f) = KL(fo, f), with KL(fo, f) the
Kullback-Leibler divergence defined in (S7.29). Then

Po[Lr =4zr]1 =Py

Jr—1
D Tj+ Wo+ Wr = KL(fo. f) > 4le
J=1

Jr—1 Jr—1 Jr—1
=P, Z(Tj—IE() K Z Eo|T}] - Eo Z T +WT—]EO[WT]+W0—]EQ[W0]>4ZT‘
j=1 j=1 j=1
Jr—1 Jr-1
<Py| Y Tj=Eo[Tj|>zr |+ Po|(Jr —Eo UrDEo[T1]1-Eo| ). Tj~Eo[T;]| > 21
J=1 Jj=0

+ Py [Wp — Eo [Wo] = z7],
(S2.12)

using equation (S7.31) and that

T pLs T
KL(fOsJ‘):ZIEO[ f log[ ’k(fO))de - f (/l'f(fo)—ﬂi‘(f))dt}
k T /l;(f) 0

0

Eo[Wol

+ Py [Wr —Eo [Wr] 2 z7]
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Tt k(fO) k Tt k k ]
E It d - d
+Zk] OUO 0 (ﬂk(f)] Nf - fo (A (fo) = Af(f))dt

Jp-1

k|51 7]
T /lk T
+Znao[ f 1og( k(fO))dN" f (ﬁf(fo)—/lf(f))dt].
i RO
Eo[Wr]

From Lemma S7.3, we have that P, [Z; T;-E [T ] ZT] = o(1). We now deal with the second
term on the RHS of (S2.12). Using Lemma S7.3, we have

Jr—1
2, Ti~Eo|7j]|=
Jj=1 Lj=LT/Eo[A7]]

<IE0>ZJIJT—J( Ji 'Tf_]EO[Tj]|]

LJedr J=LT /EolAT1]]

Jr—1

Ey T, - Eo [T,-]

+ Py L7 ¢ 71 T?Eo | T?]

Ly (s y 50

<E > ITj—Eo [T;|I|+ T'1* \Eo [ T2

luég_T)J

B e it

2 Eo[IT1 — Eo|T;l] VT log T + T2 \[Eo 2]

" Eo[AT1]
< +/Eo |72| VT 1ogT < VT(logT)*er = 0(zr),

since log3 T = O(zr) by assumption. Consequently,

Jr—-1
Z
Po|(Jr —Eo [JT])Eg [T1] - E T;i—Ey|T;i||> <PolJr —EolUr] > m—=—7—
o|(r — Eo LI DEo [T1] OJZO j—Eo|T)]|>2r o[r o LJ7] 2]E0[T1]]
T 2T
<Py |Jr - 2 },
Eo[Ati] ~ 4B [T1]

using that Jr — Eo[J7] = Jr — m + 1Eo[AT1] - Eo[Jr] and g1r— [ATI —Eo[J7] < 4]E [T for T

large enough. Consequently, since B [T1] < /% =, we have with nr = T 4E0[T and Bj=1;-7j_1 —
Eg [A11], and using the computations as for the proof of Lemma A.1,

T
o|Jr — EolAti] > TIT] <Py [TI_T/]EO[ATI]H]TJ < T]
LT/EolAT1]+n7]

=Py B <T —|T/Eqg[A7i]+ nr]Eq [AT/]

J=1
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LT/Bo[ATi]+n7]
<P| > Bj<-EolAtilnr +Eo[Ar]

j=1
AT/Eo[Anil+nrlBo[AT}| 7 1 1

< . S +—s—=ol).
Eo [A71 1717 ny Mo Ir

For the third term on the RHS of (S2.12), applying Bienayme-Chebyshev’s inequality, we have

E
Po [Wr — Eo[Wrl > 2] < 0[ ] (52.13)
T

Using similarly computations as in Lemma S7.3, we obtain

> [ [”‘f(fO))de— [ - s 2
), S ),

k 2
(T -7, f [ [ (f‘)))ﬂi%fo)—uf‘(fo)—ﬁﬁ‘(f»} di

Eo|W7|=Eo

<]E()

+]E()

T (fo)) . }
ﬁ log (ﬂ,(f) A: (fo)dt|.

Jr

Then since

Ak 2
(T -1,) f [ ( (fO)]Ak(fm A Cfo) - A"(f))] dr

T ﬂk(fo)) [ & A(fo)
E log? | “=== [ A% (fo)dt| < E f I ( ]/lk d]
o{ﬁ og (/lf(f) : (fo)dt| <Eg . og ) (fo)dt

Jr
we can use the bounds derived for [Eg [sz] in Lemma S7.3.

Ey <Ep

o (k)Y
At f x( ! ] X (fo)2dt],
Y AR )

We finally obtain
(log’T)e:  10e®T
Po [Wr —Eo [Wr] >zr] < —L< S 5 =o(D).
27 TZET

With similar computations, we also obtain that Py [Wy — IEg [Wy] = zr] = o(1). Consequently, reporting
into (S2.12) and using Lemma S7.1, we finally obtain that

Po [L7(fo) — L1(f) > Szr] < Po [Lr > 5Sz1 — ur] <Py [ L1 > 4z7] = (1),

since KL(fy, f) < ur < zr using Lemmas S7.1 and S7.3.

S3. Proofs of Theorem 3.9, Theorem 3.11 and Proposition 3.10

S3.1. Proof of Theorem 3.9

In this section, we show that in all the models satisfying the assumptions of Theorem 3.2 or Proposition
3.5, the posterior distribution is consistent on the connectivity graph parameter dg. For ease of expo-
sition, we here report the proof for the models considered in Theorem 3.2. We first recall the notation



Supplementary material of Bayesian estimation of nonlinear Hawkes process S9

Mr = MRz, A, (Mrer) = (f € 7 |[rg = roll, + 11k — holl; < Mrer), and I(60) = {(L k) € [KT?, 6, = 1.
We first note that

I1(5 # 69IN) = n(a(l, o € (K12, 60, 61k'N) < n(a(z, k) € 1(80). 8 = O'N) 3 nog= 1|N). (S3.14)
(AKIeT50)

For the first term on the RHS of (S3.14), using Theorem 3.2, we have that

H(El(l, k) € 1(80), 61 = O'N) < > H({(S[k =0} N AL (MTET)’N) + opy(1).
(LB (60)

For large enough 7', if ||h?k||1 > MoMrer with My > 1, then

Al ‘
(fe€F:0u =0} C{f € F:||hf — hul|, = |nyl],} {feT;Hh?k —hu|, > %} C AL, (Mrer)",

therefore H({élk =0}NAL (MTeT)|N) = 0. For the second term on the RHS of (S3.14), since (I,k) ¢

1(69) implies that |1 ||, =0 and {6y = 1} N AL, (Mrer) C{f € F 0 < llhyll < Mrer), defining Ny =

Lr(f)-Lr(fo) : 143 ; — — _
ﬁ51k=llﬂAL1 Myep) € r(H=Lr(fo dI1(f), and using the decomposition (24) with A = Ay, (Mrer), B= {6 =
1} and ¢ = 1, we obtain that

. 2 ~ ~ N 2
Eo[M({6 = 1} 0 AL, (Mrep)IN)| < Po(Dr < e™ T+ 0 O + Py + e*T VT TI(6y = 1) N AL, (Mrer)
. 2
<o(1) + e¥r+eTer Z Ly =1ps (laglly < Mrerld) = o(1),
5e{0,1}K?

where in the last inequality we have used assumptions (A0)-(A1), (11), and the construction of the
prior from Section 4. Consequently, from (S3.14), we finally arrive at Eq [I1(6 # dg|NV)] = o(1).

S3.2. Proof of Theorem 3.11

We here prove the consistency of the penalised estimator defined in (13). We consider the models
satisfying the assumptions of Theorem 3.2, although our proof is also valid for the ReLU-type models
of Proposition 3.5. Besides, for f € F, we use the shortened notation d7 := dir( £, fo) and L .=
S™L(N). We recall that for (I,k) € [K]?, Sy = [|hkll; and the notation from previous proofs, My =
M ~fxr, M} = M" \Jkr with M > M’ > 0. We first note that Py [SH’L # 60] < 2k Po [5[51(’1‘ # 6?,( and
consider two cases for each (1, k).

e Case 1: (I,k) ¢ 1(0p), i.e, 6?k = 0. Using (13) and (14), there exists a > 0 such that with ¢} :=
a+ cy + «r, for any y > 0, we have

AL 0] _ AILL _
Po )" # 0y | =Po |67 = 1]
<Py [e_c,lTE%H(&k =1, S < Mrer|N) 2 10y = O|N) = TI(S x > Mrer|N)
<P, [e—Ci TS, = 1, S < Mrer|N) = TSy = O|N)/2

+]P() [H(S]k >MT6T|N)>H(51k =0|N)/2]. (S3.15)
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To show that the second term in the previous equation is o(1), it is enough to show that
Po [[I(di7 > Mpper|N) > TSy = OIN) /4] = o(1), ($3.16)
PPy [H(le < Mjer, Sy > MrerIN) > (6 = 0|N)/4] =o(1). (S3.17)

Let mp(op = 0) := fﬁ eLrD=LrOgrI( f16, = 0). Similarly to the computations of the lower

bound of Dy in Section S2, we have under (A0?) that P, [mT((Slk ~0)< e—K’rTf%] = o(1) with

K7 := kr +c1. Using the test function from the proof of Theorem 3.5 in Section S2, ¢ = max; ¢(f;)
(with ¢(f;) defined in Lemma S6.1), we have

Py [[(di7 > M} erIN) > Ty = 0IN)/4] < Bo [#1 g, | + Po Q5 | + TI(F5)

+Ep

(- ¢)]lflr]1fr,rr ]lle>M'TET eLT(f)LT(fo)dn(f)>n(5lk_0)mT(6lk_0)/4]

<o(l)+Ey

(

1-¢)lg 1 ,
P)lg, by Vit ep T T 0 P TS 4]
/ 2
< 0(]) + 4eKTTET j;: Ey [IEf []leT]lle>M,TET(] - ¢)|g0] dn(,ﬂélk — 0)] .
T

In the second inequality, we have notably used (S2.10) Eg [(ﬁ]lQT] = 0(1) from Section S2. More-
over, from (S2.11), there exists y; > 0 such that

D f Er |14, Lres,(1 - $)IGo|dTI(f16% = 0) < 42K + De M7 Ter,
Fr

i>M)
where the S;’s are the slices defined in (S2.7). Therefore, we obtain (S3.16) using that
Po[I(di7 > MyerIN) > ISy = OIN)/4] < o(1) + 4e7 T 42K + 1)e™ MG = o(1),

To prove (S3.17), using Markov’s inequality and Fubini’s theorem, we have, for M’ large enough,
that

Po [[(dir < Mfer, Sy > MrerIN) > TSy = 0IN) /4]

<Py [{mT((Slk =0)< e_K’TTE%} N QT] + Py [Q%]
+ 4T [ f Lo, Laypeatyere™ =70 dTI( flon = m]
Fro{Su>Mrer} T

—o)+4¢57% [ B[Py [ 0 iy < MyerliGo] | drich,

Su>Mrer

Moreover, from (27), we have that SUP e, (Mrer)nfr P, [QT N{dir < M}eT}|g0] = O(E_K’,TTE%)-
Finally, since 62{ =0, Sy > Mrer implies that f € Azl (Mrer), which thus leads to (S3.17).
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Reporting into (S3.15), we now have
A ’ 2
Py [, =1] <Py [e‘CITfr TSy =1, S ik < Mpep|N) > IS = 0|N)/2] +o(1)

<P, [e‘f’l T T1(Sy, = 1IN) > IS = O|N)/2] +o(1)

oy =0)

[ 72
=Py |e 1T Tmyp(y =1)> S =0)| +o(1
ol mr (G = 1) Mo = 1y O =0 +o(D)
[ o 2 I1(6;;, =0 o 2 ~ o 2
<Pgfqe ClT'ETmT(élk: 1> L KT NQr|+Py [mT((Slk:O)<e “rTer +0(1)
| MG =1

+0o(1)

[ HOp=0) -1\ ~ &
<P, =1 ————aTinG
0 »{mT( k=1 Mg =1° T

p— ’ ’ = 2
2Me=1 e~ KTE | o(1) < 21p = D7 e

~(ci—xp)Tef +o(l)=0(1
Moy = 0) M6y = 0) ()= oL,

< Eq[m7 @y = 1]

since ¢| > k7 + ¢1 = k7 and that [Eg [m7(6 = 1)] = [1(6 = 1) with Fubini’s theorem.

e Case 2: (L,k) € I(6p), i.e, 6?k = 1. In the case, the computations are slightly simpler since {5 =

0} = feAr,(M+/krer)© and for T large enough, Sg( — Mrer > 0. Thus we can use the fact
that TI(6; = OIN) < TI(Ar, (M vkrer)IN).

We first note that if S?k > My \krer with My > M and 1 - F(S?k/Z) > 2¢7T€ for some v >
KT +C1 = K'T, thenif 6 =0, f € AL] (M, \/EET)C and
TSy = OIN) <TI(AL,(Mrer)‘IN), and  S§ - Mrer > S} /2.
Therefore, since F' is non-increasing, F(S 8( —Mrer)< F(S 2( /2) and
Po [31F = 0] < Po | I(C1 = F(S i) om1 (L 550 atrey * L <5 —atyer)IN) < THAL, M rerIN)|
<Po|(1 = FS RIS i > S = MrerlN) + TI(1 = FS 1) <50yt IN) < THAL (M3 VK7€) IN)|

<Py [2e—7“%n<slk > 89 — MrerlN) <TI(AL, (M, «/ﬁer)ﬂN)]

<P [TI(S i > S — MrerIN) < 1/2 + P [QT n {e—VTE? <TI(AL, (M, \/K_TET)C|N)}] +Po [QF].

Similar to the first case where 6?k =0, we have that Py [QT N {e_K/TE% <II(Az, (MTeT)C|N)}] =

o(1), and since y > K’T,

Po [, = 0] <Py [TI(S 4 > S, — MrerIN) < 1/2] + o(1) = P [TI(S < S, — MrerIN) > 1/2| + o(1)
<Po[Qr N{TI(AL, (M) Virer)IN) > 1/2}] + Po Q5| = o(1),

which terminates this proof.
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S3.3. Proof of Proposition 3.10

In this section, we prove our posterior consistency result on the posterior distribution in the restricted
models, the All equal model and Receiver dependent model, defined in Section 3.2 of Sulem,
Rivoirard and Rousseau (2022).

In the All equal model, if 1(o) # 0 then 3(I1, k) € [K]?, 5‘,)1 i, = 1. and /g # 0. Consequently, for T
large enough,

(feFs ouk #60 )={f €T o1k, =0} < {f € F5 M) — ey = lholly ) € Ar, (Mrer),

leading to Eg [H(511k1 * 6? Ky IN)] = o(1) using Theorem 3.2. This would hold for the same reasons for
any (1, k) € I(6¢). For (I,k) ¢ 1(6p), we have instead that for T large enough,

(fe€F: du#0g) ={f€F: op=1)C{f €F ||hy — hu|, = lIAll1)

A€ Wl + [, = b, > olli} € Ary (Mrer,

as soon as [lholly > 3Mrer, since [Illy + ||, = e | > Wl + Wholly A 5= O], > il + ol A
(1Ally + 1k = holly) = |lholl- Similarly to the proof of Theorem 3.9 in Section S3.1, we then obtain
Eg [T1(6 # 60IN)] = o(1).

If 1(6p) = 0, then V(L k) € [K]z,ég( =0, and hg = 0, and in this case we first show that there exists
C > 0 such that

Py [{Dr < T2} Q7| = (D). (S3.18)
Since hg = 0, the log-likelihood function is the one of a K independent homogeneous Poisson PP with

parameter ry, i.e.,

Lr(fo) = Lr(ro) = Y logrN*10.T) - r{T,
k

with { = ¢, (). Let A = {f € Fr: h = 0}. Forany f € A, we also have Ly (f) = Ly (r) = 3¢ 1og(r{ YNK[0, T) -
r{ T and the model is also a Poisson PP, which is a regular model, and which parameter is ¢(v). There-
fore, we have

Lr(n) = Lr() = ) logCON'O.T) — ] = )T
k k
g oY

Kk~ Tk '
. +Opy(r] = 19)?

N[O, T) = (] = )T

=Z r]f—r]? 1
X rl(c) 2
NX[0,T)
:Z :
k k

2 0

r l"k

N7y (] - 9Y
—T]mf—r?)— : [" "]+0P0(T<r{—r2>3>.

Also, let 7, be the prior density of r{ = ¢r(vi) given by 7,.(x) = ¢(v)m,(v). Note that in the case of
partially known link functions of the form ¢x(x) = 6x + ¥(x), the parameter of the Poisson PP is now
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(v,0) and we can consider a marginal prior density of r/{ = O + Y(vi) given by

vl (x)
7o(3) = fo o(x — Yy ().

The regularity assumptions on 7, (and 75) and ¢~ imply that 7, is continuous and positive at r]? for
all k.
Defining A7 = A N {|lrf — rolli < €} for € > 0 small enough, we thus have

DT:f eLT(f)_LT(fO)dH(f)Zf eLT(r)—LT(VO)dH(f)
Fr Ar

K k k ,f_ 0 2
> . HeXP{[N [%’T)—T]v[-r,?)—N [O’T)[ : or"] (He)}fr(rk)drk

1
2
Nk[o, T) f 0 (r]?)z Nk[o’ T) f
- = T -T|| td
fl‘r,{—r,?Ks/K CXP{ 2(r](3)2 ( €) (Fk T (1 + ©)NK[0,T) r,? "
K

\2r 277, (r0)r?
~ 0.0 'k
> k:l—]lnr(rk)rk VoA on) > 1_1[ o o,

since N¥[0, T) is a Poisson random variable with parameter rgT so that |N¥[0, T - r,?l < Myp/ \NT
with probability going to 1 and { Ir{ - rgl < €/K} contains the set

() NK[0,T) e
o k D _rllc £
(0 (1= ONF[O, T)( 7 T] Sk

for T large enough. Therefore we obtain (S3.18) and deduce that e7 < +/log T/T using the same argu-
ments as in the proofs of Theorem 3.2. As in Theorem 3.2, it is thus sufficient that

IO < ||hlly S M A/logT/T}N {m]?xlr[ - r](()l <MAJlogT/T})

M
<TI0 < ”]’l”] <M 10g T/TiN {ml?x v — V2| < Z IOg T/T)) = O(T_K/z)’
for M large enough which boils down to assuming that
({0 < ||All; < M Alog T/T}) = o((log T)%/?),

to conclude that [Eq [TT(6 # 6g|NV)] = o(1).
In the Receiver node dependent model, i.e., V(/,k) € [K 12, hy = 61l we obtain the result similarly
to the All equal model since the likelihood is also a product of likelihoods per node:

K
Lr(f) = Z Ly (vi, hie, 6(k), 0p), with 6(k) := (6, 1 <1< K),
k=1
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T
LT(Vk,hk,5(k),9k)i=210g/ll}_k(fk)—fo A(fodt,  fi = v, i, 60,6, ke [K].
Tk '

If the priors on (6, v, hig, 6(k)) are independent, the posteriors are also independent and we can directly
apply the previous result.

S4. Proof of Corollary 3.8

In this section we prove our result on the convergence rate of the posterior mean estimator. In all
the considered models with known link functions, the convergence of the posterior mean f = (¥, )
results from the same arguments as in Corollary 1 of Donnet, Rivoirard and Rousseau (2020) (proof
in Section 2.3 in the supplementary material). In the case of the shifted ReLU model with unknown
shift, we can also use similar computations for f =, iz) and 0. We first recall some notation from
the proofs of Theorem 3.2 and Proposition 3.5: A(Mrer) =1{6 € ©,0 — 6oll; < Mrer}, Ar,(Mrer) =
{(f.0) € F x0,]10+v—00—volly + lIh— holl; < Mrer} and My = M ~\Jkr, My = M ~Jkr, M > M > 0.
We note that

16— 60|, < Mrer +E"[16 - 6ol Lz 47,y IN1.

Then, Splitting A(MTET)C X Fr into A_(MTET)C XFrnN AL| (Mrer) and A(MTGT)C XFrnN ALl (M7er)©,
we control E[||§ — 6p]|; 1 Br|N] using the following arguments with Br representing either A(Mrer) x
Fr NAL,(Mrer) or A, (Mrer)°. Using the decomposition (24), with K’T = k7 + ¢, we have

’ 2
T Ter

’ 2 ~ ~
Po [E"[116 - foll; 15, IN1 > €7 | < Eo [#1g, | + Po [{DT <e Ty QT] + P[5 ] + II(F5)

€T

2
eK’T Ter
+

[ o= Eo[s [ - 0116, ||| ancro
FrNBr

€T
<o(1>+o(f I|9—90I|1dH(f,0)) ~ o(1),
FrNBr
using the tests defined in Lemma A.4 if By = AMrer)t x Fr N A, (Mrer) or the tests defined

k! Tez
in Lemma S6.1 if Br = Az, (Mrer)©, and also that logT = o(Te%) to obtain that %H(TTC) <

H(?—[;’)eK’TTG%_IOg T = o(1), whichs terminates this proof.
S5. Proofs of some results on prior distributions
In this section, we present an alternative construction of the prior distribution using mixtures of Beta

distributions and the proof of Lemma 4.3, which gives one example of model where the condition (8)
can be verified.

S5.1. Mixtures of Betas priors

This family of prior distributions can be also considered alongside the ones presented in Section 4
of Sulem, Rivoirard and Rousseau (2022). The following construction is similar to Section 2.3.2 of
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Donnet, Rivoirard and Rousseau (2020), which is based on Rousseau (2010). Using the hierarchical
structure (15) from Section 4 , we define 7, as follows. For simplicity, we here consider that A = 1. Let

I'(a/u(l — u))

—a)/(l=u)-1,1 _ ~—afu-1
T(a/w)(a/(1 - u)) (I-x) ,

hom(x) = f Jau(D)AMW),  gau(x) =

and 7, be the push forward distribution of Il, X ITy by the transformation (a, M) — hq p, where I,
and Iy, are respectively the probability distribution on « and M. Therefore 77, is a bounded signed
measure on [0, 1]. As in Donnet, Rivoirard and Rousseau (2020), we choose +/a to follow a Gamma
distribution and define Iy, by

J
i.id.
M@) = ripiou@), u;" G, J~P),
J=1

where Gg is a base measure and the r;’s are independent Rademacher random variables and
(p1s-+.p)) ~D(ay, - ,ay) with 2521 aj < C for some fixed C > 0. Note that since [|hq,mll1 < 1, we
can define

& 7 & = iid.

b =Suhy,  WSTN< 1, "< m,
®I(S)
. h
formation, with mg defined in (S2) in Section 4. Since S is a (component-wise) upper bound on the
matrix S, ||S*|| < 1 implies ||S || < 1. We then arrive at the following result.

so that the prior distribution on /4 is the push forward distribution of & X mg|s by the above trans-

Corollary S5.1. Let N be a Hawkes process with link functions ¢ = (¢y), and parameter fy = (vo, hg)
such that (@, fo) verify the conditions of Lemma 2.1, and Assumption 3.1. Under the above spline prior,
if the prior on S satisfies the conditions defined in (SI) (see Section 4), and also if ¥(I,k) € [K]?, h?k €
H(B, L) with 8> 0 and IISSII < 1 then for M large enough,

Eo [T1(1f = foll: > MTP/CF+D \floglog T(log T)?|N)] = o(1),

where q = 58/(4B +2) if ¢ verifies Assumption 3.1(i), and g = 1/2+58/(4B +2) if ¢ verifies Assumption
3.1(ii) .

S5.2. Proof of Lemma 4.3

Lemma S5.2 (Lemma 4.3). Let N be a Hawkes process with ReLU link functions ¢(x) = (x)+, Yk €
[K], and parameter fy = (v, ho) such that (¢, fy) verify condition (Clbis) and for all I, there exists
Jo € N* such that

Jo
M= 1,0, oeQ Vjelkl
=1
with {Ij}j():1 a partition of [0,A]. Then, condition (8) of Proposition 3.5 holds, i.e.,

1 T 1 kys0
lim sup =Eo (f %dt} <400, kelK].
T—o0 T /ll‘ (f())
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Proof. Let f verifying the conditions of the lemma. We first show that there exists co > O that depends

only on the parameters {vg, {w%}le}flzl such that Vk € [K], Yt > 0, /l’t‘(fo) >0 = /lf(fo) > co. We

prove here the result for the unidimensional Hawkes model with K = 1, but our proof can be easily
generalized to K > 1. We therefore use the notation vy and w jo for v(l) and w}é.

Since wjp € Q, let pj,q; € Z such that wjo = p;/q; and let g € Z be the least common multiple of
(pj»qj). Thus there exists a; € Z such that wjo = a;/q. and for any ¢ > 0, let n;(¢) = ftt_A 1;(t — 5)dN;s
be the number of events that "activate” the bin j at z. With this notation, we can then write

Jo . Jo .
A:(fo) = {Vo + Z”j(t)&) = {Vo + an(l)ﬂ]
j=1 1 + =1 i +
1 Jo
:{c_] voq+2nj(t)ajU .
.1 .

j:
Let £ > 0 such that &£ = min,ez, yg+u>0 vog + u. Then £ > 0 and for any 7 > 0 such that A fo) >0, since
Z/J.il nj(t)aj € Z, then voq + ij.il nj(t)a;j > &> 0and A,(fo) > &/q =: co > 0, which proves that (i) holds.
Therefore, in this model, we have

1 1 1 1 1 T 1 1
—Ep (f A(0)>0 dt) < =y (f Mdt) < = (f —dt) = — < 400,
T o A(fo) T 0 o T 0 <o o

which proves that (8) is satisfied. |

Remark S5.3. We could similarly show that if also VI € [K],Vj € [J], v](() € R\Q, then there exists
dy < 0 depending on {»?, {w’;g}]f.zl }K,_| such that Vk € [K],V1 >0, 24(fo) =0 = A (vo.ho) < db.

S6. Lemmas on tests

In this section we prove two technical lemmas on the test functions used in the proofs of Theorem 5.5
and Proposition 3.5. In Section S6.1, we state and prove our first lemma, Lemma S6.1, which relates
to the elementary test functions used in the proof of Theorem 5.5 (Section S2) and in Section S6.2, we
prove Lemma A.5, which provides the bound on the error of the tests used in the proof of Case 2 of
Proposition 3.5.

S6.1. Test used in the proof of Theorem 5.5

Lemma S6.1. Fori> 1, let Fi={f e Fr;v; < v? + 2K||roll1 Eo(ATy)ier, Yl € [K]} and fi € Fi. We
define the test

i = A Lintca-ala foyziter /81 N Lvicas)-nag, foyirer )
T
where for all 1 € [K], Ay = {t € [0,T1; A(fi) > L(fo)h, AAw, fo) = [y La,(DA(fo)dr and A(AS,, fo) =

T
I 1 Acl-l(t)/lﬁ( fo)dt. Then

e T 0\
Eollg, ¢l + sup Eo []Ef[]lQT]lfeSi(l - 95 ,,-)|g0]] < (2K + 1)maxe x”TlgT(\/;/\’eT),
If=filli<ier /(12Nop) le[K]
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where for | € [K], x1; > 0 is an absolute constant, /,t(l) =Ey [/lﬁ(f())], No=1+ leil ,u(l) and S is defined
in (S2.7).

Proof. Forle[K], let

it = $u(f1) = Linia, p-nlca . fo)»iTer /8-
Mimicking the proof of Lemma 1 of Donnet, Rivoirard and Rousseau (2020), we obtain that

s . 0 -
o[t | <o) (56.19)

We first consider the event {A'(Ayy, fi) — Al(A1, fo) > AlAS . /1) = AU(AS,. fo)). Let f € F; such that

|1|lf — fillh < ier with { =1/(6Np) and No =1 + Z,,u?. On Qr, using that ¢; is L-Lipschitz for any /, we
ave

K T K T
T =) [ L@ - k< Y, [ -
=1 =1

K T
<L) J; AL, ) = Aoy, hy)lde
=1
K K K AT n
<TLZ|V,—V}|+LZZf0 fA|(hk,—h,1,)(:—s)|Nk(ds)
I=1 k= 1=

=1 k=1

K K
_ Ir_ gl
<TLIY=villy +maxN'[ A,T]L;;nhkz il

<SLNoT|If = filly < LNoTier.
Moreover, since f € S;, on Qr, we also have that
T T
f La, )ALt < f Lay AL fo)dt + KT (i + Der < 2Tw) + KT(i + Der =: 5.
0 0

Applying again inequality (7.7) of Hansen, Reynaud-Bouret and Rivoirard (2015) with v = ¥ and using
the computations of Donnet, Rivoirard and Rousseau (2020), we arrive at

. . 0 -
Ef []IQT]IfESi(l - ¢il)|g0] < 2Ke_x”lTET min( \/lT[)lET)’
for some x;; > 0. We can obtain similar results for

¢ = ]1{N‘(A‘l’l)—Al(/i‘l',,fo)%TeT /8}

Finally, with ¢4, ; = {n[z}é ¢i1 A ¢, we arrive at the final results of this lemma:
’ €

—xyiTer min( \Ju0,ier) ~(min xy))iTer min( [u ier)
Eo [¢f1,illﬁr] <maxe ke !

. —(min x1)iTer min( /i ier)
]Ef[]lQT]leSi(l - ¢f1,,-)|g0] < Inlm]Ef[]lQT]lfGSi(l —oiDlGo]l <2Ke ! 1t er ‘/T T '
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S6.2. Proof of Lemma A.5

In Lemma A.5, we establish the bound on the type I and type II errors of the tests to estimate the
parameter 6 in the shifted ReLU link function considered in Case 2 of Proposition 3.5.
We recall that ® = R, \{0}X and A(R) = {0 ©; |16 - Oolly <R}. Let >0 and

(f1.601) = 1, 71,00 = (VD W}k @) € (AMrer)* x F) N Ar, (Mrer),

with My = M +Jkr , My = M ~Jkr and M > M. Let (f,6) € (A(Mrer)° x F) N Ar,(Mrer) such that
Ilf = fill; < et ie,

Z Vi = vl + 16 — 6} + Z 7 = hy ||, < zer
k Lk

Since 6 € A(Myer)©, there exists k € [K] such that IQI? — 6| > Mrer/K. For this k, from assumption
(S8.46), there exists [ € [K] and x1, xp, c« > 0 such that Vx € [x], x2], hg((x) < —cx <0.

We first consider the case ) < 92 — Myer/K and recall the notation of Section S1: ¢ = (x2 — x1)/3,
ny = I_ZV}{/ (k1cx)] + 1 for some k1 € (0, 1) and the subset of excursions

E={jelJrl; Nltj,tj+6) = Nl[Tj,Tj +6)=ny, N[tj+8, 1j41) =0}
We recall that
I(f1,00) = {10, T1; A (.00 = 0}, A5 (fo, 00) = 6]}
and we first state a preliminary lemma on I]?( f1,61), which is proved at the end of this proof.

Lemma S6.2. In the Hawkes model with shifted ReLU link funcfion , for any fo € F such that (S8.46)
is satisfied and any (f1,01) € (A(Mrer)° X ®) N Ar,(Mrer), on Q7 it holds that

X2 — X1
001> =5 ) Ljee.
JelJr]

with & defined in (S1.4).

Let

G f1:01) 1= L0, 00)- A1 00 foy<—or ¥ ﬂ\g|<#§m’

. T . .
with Ax(I(f1,61), fo) = [y 1 00 ’gl)u)/lf( fo)dt, po =Pq[j€E], vr = wrTer >0 with wr > 0 chosen
later. We have by definition

p T ~/ N/
{|8| < m} 0O |+ Po [{NEIXCf1,00) = AelIY(fi,00), fo) < —or} N Q|

(S6.20)

Boeu(f1.00 1, | <P
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For the first term on the RHS of (S6.20), we apply Hoeffding’s inequality with X; =1 jeg L B(po):

.
poT ~/ poT ~/

Py |8|<—}mQ <Py Xj<=—=———:nQ
[{ 2E [At/] T ; 77 2By [Aty] T

2

[T/Q2Eg[AT1]) poT 7p2
<P Xj< =LY | <o bl = g(etoT <)
’ ; I 2B [AT] ( ).

for up < )25 2/ (8Eq [AT1]) and using that on Q& Jr>T/ (2 [AT1]). For the second term of the RHS
of (S6. 20) we apply inequality (7.7) in Hansen, Reynaud-Bouret and Rivoirard (2015), with H; =

T
L0709 (@ H} o Af(fo)= 5 1 00 ’91)(t)92dt =Q(f1.0D <OT, x=x3T e}, x3>0.If /292Tx +
x/3 <wrTer and x3 > ug, then by (7.7) of Hansen, Reynaud-Bouret and Rivoirard (2015),

Py [{(NAULf1,60) = AcUf.00), fo) < —vr} 0 Q| < €77 = 007G,

Reporting into (S6.20), we obtain that Eg [¢k(f1)]lﬂ/T] = O(e_"’oTE%), which proves the first part of

Lemma A.5. To prove the second part of Lemma A.5, we first note that

T ~
Er| 1 - a0, | =P [{N"(I,?(fl,eo) — A1, 00, fo) = —or) 0 {|6| > L} n Q’T].

2Eq [AT1]
(§6.21)
We also have
AX(f1,00), £0) = A2(f1,00), ) = AU (1,00, fo) — Ak (f1,61), f1) (86.22)
+ AT, 01), f1) = AT (fi,60), f) (S6.23)
Firstly, if |&| > o, [ AT ]T then from Lemma S6.2,
0 (x2 = x1)po
|Ik (f1,01)| > —4]E0 (A1 (56.24)
and
ACOCf1,00), fo) — ACICf1,00), f1) = (60 — GDIIOCf, 6] > éK]E—?A)”O]M Ter.  (5625)

since ||6—01||1 < {er therefore 62 —9,& > |02 — Okl — 16 — 911' > MTeT/K—g’eT > %67 for T large enough.
Secondly, since ¥t € I]?(fl ,01), ;lﬂ‘(lq ,h1) <0 and ;lf(v, h) <0, we have

AR, 00), D) = AU(f1,00), 1) = O = OO (fi,61)] — f (s m)s = 01, ) )t

L (f1,61)

> (0] - 601161 - f o) — Ao

L (f1,01)

T
—{Ter — f | v, ) = Ay, hy))ldt, (S6.26)
0
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where we have used the fact that by definition |II?( f1,61)| < T. Using Fubini’s theorem, for any / € [K],
we have

T~ 5 T
fo () = A vy, I it = fo

T S+A
< Thvg = vl + Z f f ke = ) \(0)ldtdNL = Ty = v}| + Z (| = ||, N'T-A. T
7 T-AJs 7

dt

-
Vi — V/i + Z f A(hlk - h[lk)(t - S)dNﬁ,
[ Vi

<T|If—flll[1 +Z(,u?+6T)]<{TET(1 +2Zu?], (86.27)
l l

using the definition of Q’T in Section 5.2. Consequently, reporting the previous upper bound into
(56.26), we obtain

AIRCAL 00, 1) = AU 00, ) > ~{Ter2+2 ) ).
I

Therefore, using now (S6.25) and (S6.26) in (S6.22), we arrive at

Mr(x2 = x1)po
16KEq [AT1]

Mr(x2 = x1)po

A0 Jo) = AB (.00 ) > =gp=re s

TET—§T6T(2+ZZ,LL?)> €r,
1

16K Eo[AT(12+2 3 44))
(x2=x1)po

since for T large enough, M7 > . Reporting into (S6.21), we obtain

T ~
P, [{Nk(lij(fl,el)) — Afi.60). fo) = —ur ) {|8| > %} n Q’T]
My (xy — x1)po
16]E() [AT]]

<P7[INUQ(f1,600) = AU 1,00, ) = o} 0 Q7 |

. \ 16wT]E0 [AT 1 ]

if Mr > (x2—x1)po

C > 0 a constant.
Similarly to the proof of Lemma 1 in Donnet, Rivoirard and Rousseau (2020), we can adapt inequal-

ity (7.7) from Hansen, Reynaud-Bouret and Rivoirard (2015) with H; =1 0 91)(t) to the conditional
T

probability B [.|Go] and the supermartingale fOT Il[,?(f] o )(t)(dNt - /lf(f, 0)dt). Witht=T, x7 = x1 Te%,
we obtain

<Py

INF((f1,60) = AT (f1,600), ) = —vr + Ter)n <Y,

, which is true for M large enough (recall that My = M vir) if wr < C +fkr with

Py [INYUQ(/1.60) = A1, 60), f) > or) 0 Q| < e 1T = (e ®rDTed)if xp >k + ).
(S6.28)

For this to be true, we also need vy > /20(xr + cl)Te% + (k7 + cl)Te% /3 where 7 is an upper bound of
H,2 ) Af(f). Using the fact that Yz € I]?(fl ,01), ;lf(vl ,h1) <0, we have

H2 o AK(f) = f

ECF 00t = B0 6] + f v, hyde
L(fi.01)

(1,000 (,h)>0)
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< 9k|11(3(f1,91)| +f ] A, ) = A, e
1(f1.6)NA (>0}

<O (f1,00)| + (Ter [1 +2 Z#?J <T (O + Mrer|K) < 60T =70,
I

using (S6.27) and since for T large enough, {K(1 + 221;1?) < My < My. Consequently, if wy >

A /292(/@ +c1) + (k7 + c1)er /3 and wr < C +fkr (which is possible since er = o(1/ +/kr) by assump-
tion), then (S6.28) holds and we can finally conclude that E [(1 - or(f1, 91))1Q,T = o(e’(KT“'l)TE%) is
verified, which leads to the second part of Lemma A.S.

In the alternative case where ) > 02 + Myer/K, similar arguments can be applied with 11?( f1,61)

defined as in (S1.3) and & defined as in (S1.4) except that n; = |_2v2/(/<1c*)] + 1. We then use the
following test, with v = wrTer

G(f1501) 1= Lnu01, 6)-A10f1.00. fopsor ¥ ﬂ‘f"*ﬁll]

Then Hoeffding’s inequality and inequality (7.7) from Hansen, Reynaud-Bouret and Rivoirard (2015)

lead to [Eg [(f)k( f1,01)]l§27] = o(e”‘OTE%). For the second part of Lemma A.5, we first note that in this

case, since Yt € Ig(fl,el), /lf(f, 0) > 6 (and also A’f(fo,eo) = 92, /l],‘(fl,é’l) = 9,1), then on the event
poT

1E1> 2 fxm

AX(f1,600), f0) = A (f1,00), ) < (6 = OO (1,001 + (6} = OO (1,60

MTETU](()(f],GIN <_ (X2 —x1)po -~

< (~Mrer /K + Lep)I)(fi.00)| < - T <~ 3KE. [ar T Ter

for T large enough and using (S6.24). Consequently,

T ~
P, [{Nk(lg(fl,el ) = A1, 00, fo) <vr) 0 {|8| > L} n Q’T]

2Eq [ATq]
<P, [{N"a,?(fl,el)) A6 f) < or %Mﬂeﬂ Ny,

<P7[INUQ(f1,00) — AU f1,00), ) < —or} N Q]

if M7 > %;][)A;;]U)T. Applying inequality (7.7) from Hansen, Reynaud-Bouret and Rivoirard (2015),

we can finally obtain

— . 2
Er| (1 - a1 0001y, | = oe e 0T,
which ends the proof of Lemma A.5.

Proof of Lemma S6.2

Let (fp,60) € F X ©, (f1,61) € (F x A(Mrer)) N Ap,(Mter) and k € [K] such that |9]1 - 92| >
Mryer/K. For this k, from assumption (S8.46), there exists / € [K] and x1, x2,c« > 0 such that Vx €
[x1,x2], h?k(x) < —cx < 0. We first consider the case «9,1( < 02 — Mrer/K. Since (f1,61) € Ap,(Mrer),
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we also have that |6,£ + vll - 92 - vgl < Mrer, which implies that v/i > v](() — (M7 — My /K)er > v2/2. For
0 <« <1, we define

- 2"11
By ={x€[0,A]; hy; (x) > kicx}, n1= + 1.
K1Cx
Moreover, since ”h?k - hllk”1 < Mrer and h?k‘(x) > ¢y for x € [x1, x2],
Lt x2] 0 Bl (1 — k) < f (bl ~ ) ()dx < Mrer
[x1,%2]1NB]
Mrer

= |[x1,x2] N Bl > (x2 — x1) — =

e —xD) >3(x2 — x1)/4,

for T large enough.
Now let 6" = (xo — x1)/4. For j € &, we denote T1,...,T,, the n; events occurring on [7;,7; + ¢'].
Forte[rj+x1 +6,7;+x2], wehave t —T; € [x1,xp] for any i € [1] and

/le(vo,ho) = vg + Z h?k(t -TH< vg —njcx < 2v,1 —nikicx <0,
i€[n]
by definition of n;. Similarly, for t € By + [r,7; + ¢'], we have ¢ — T; € B and therefore
(v, k) = v,lc + Z hllk(t -T)< 2v,1< —nikicx <0.
i€[n]
Consequently, for 7 € ([x1, x2] N B1) +[1},7j+0'], A¥(fy.60) = 60 and AX(f,61) = 6, and thus ([x, x2]N

By) + [1j,7+ &1 C I)(fi.61). Moreover, we have

|(Lx1, 2] 0By + [, 7+ 671 > 302 = x1)/4 = (32 = x1)/4 > (x2 — x1)/2.

Consequently,
I X X
2 T Al
I2CAL001= D [T 711 01> 0 Ko, 00) = o, AK(f1,0) =01} > > Z= g
Jj=0 JeJT]

In the alternative case 0]]( > 02 + Mrer/K, similar computations can be derived by defining n; as n| =
min{n € N; nkjcy > vg}.

S7. Lemmas on Ly(fy) — L1(f)
For fy, f € ¥, we define the Kullback-Leibler (KL) divergence in the Hawkes model as

KL(fo, f) = EolL7(fo) — LT (/)] (87.29)

With a slight abuse of notation, we still use the same notations L7(fy), L7(f), KL(fo, f) in the nonlinear
model with shifted ReLU link function with the additional shift parameter 6. We also note that with
the standard ReLU link function, the KL divergence can be infinite for some f € 7, e.g., if there exists
t €[0,T] such that dN* = 1 and A%(f) = 0. However, in this model, for any f € Bu(er), AX(v,h) >
/lﬂ‘(vo, ho), which implies that KL(fp, ) < +oco. The next lemma provides some upper bound on the KL
divergence on B (er) with all the link functions considered in Theorem 3.2 and Proposition 3.5.
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S7.1. Lemma to bound the Kullback - Leibler divergence

Lemma S7.1. Under the assumptions of Theorem 3.2 and of Case 2 of Proposition 3.5, for any
f € Boo(er) and T large enough,

0<KL(fo, f) <x1Tef,
and, under the assumptions of Case 1 of Proposition 3.5, we similarly have
0< KL(fo. ) < k2(log T)°T,

with k1, ky > 0 constants that only depends on (¢y) and fy.

Remark S7.2. For the models considered in Theorem 3.2 and with the shifted ReLU link function
(Case 2 of Proposition 3.5), for f € By(er, B), we instead obtain

0< KL(fo, f) < (loglog T)Tex.

Moreover, with the standard ReL U link function (Case 1 of Proposition 3.5), without assuming that the
additional condition (8) holds, we can also obtain the sub-obtimal bound

0<KL(fo,f) s Ter,

which would also lead to the sub-optimal posterior concentration rate +/er.

Proof. For simplicity of exposition, throughout this proof, we use the notation /lf( f),/lf( fo) for the
intensity in all models, therefore including the case /1/;( f,0), /lf( fo,60) (Case 2 of Proposition 3.5).

Firstly, similarly to the proof of Lemma 2 of Donnet, Rivoirard and Rousseau (2020), we can easily
prove that KL(fy, f) > 0. Secondly, since intensities are predictable, we have

T (A (fo)
IEO[ fo log[/{f(f))(dN,k—/lf(fo)dt)]=O. (87.30)
Since
KL(fo. )= ZJEO[ f (’(ﬁ’))dzvk f @ - ﬁk(fo))dt} (57.31)
then, with

T ﬁk(fo)] ]
Rr=) Eo|ls. Kl ! dt| + E
T Zk: 0[ QTL‘ ¢ (o) Og(/lf(f) |+ Eo

T
Lo fo (ﬂ’f(f)—ﬂﬂ‘(fo))dt], (S7.32)

’ k /lf(fO) T k k
KL(fO,f)=Z]EO{IlQT (jo‘ /lt(f())log(—)dt+fo (/l,(f)—/lt(fo))dt) +Rr. (§87.33)
k

()

We first show that Ry = o(T'e ) For the first term on the RHS of (S7.32), if f € B (€r), we use that
logx <x—1forx>1and we have

T Ak
E Il~cf log /lk(f)dt]< E
; 1o T Rk 2%

! A
l"cfo Lakcrys b 108 = o) ——— A (fo)dt
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r T
< ; Eo| fo Lae Lyt oo (AN = ﬂi‘(fo))dr]

<3 TL|W —vk|+Z“hlk hlkH Eo |l sup]N[t—A z)D
k
<TLZk: Ivk—vk|+2“hlk 1| o |14 m?xtes[ng]Nl[t—A t)}<LT1_'BET (S7.34)

for T large enough, using Lemma A.1 for § > 0. If the model verifies Assumption 3.1(i), and f €
By(er, B), we have

QATRNRAT) 220°+2Lv + L(B + max; ||| ) sup, NIt - A0
F B S inf x ()

therefore
T )
Eo {HQLT f(;

log
A(f)

/lk(fo)dt] < Ey

T
ILQC max sup Nl[t—A,t)f /lf(fo)dt}
I te[0,7] 0

<TEo|1Lge ( sup N[t - A, t))(vk+max“hlk” sup Nl[t—A,t))}
t€[0,T] [0,7]
2
< TE, ]ch max( sup Nl[t—A t)) <T' B,
L \tef0,71]

If instead the model verifies Assumption 3.1(ii), using that log ¢ is L;-Lipschitz for any k, we can
alternatively use that
()

T T
B _ akenko e 5k
Zk]IEo Lge fo o <lek:]Eo[ fo Lae OIS /l,(fo)ldt]

<Z [|vk—vk|+2”hlk hlk” Eqy )sﬂ—ﬁ.

We can additionally bound the second term of (S7.32) in a similar fashion and conclude that, in all
cases, Ry = O(T'#) = o(Te%) for 3 large enough.

To bound the first term of the RHS of (S7.33), we consider separately the models satisfying As-
sumption 3.1(i) and (ii) and Case 1 and Case 2 of Proposition 3.5.
Scenario 1: under Assumption 3.1(i) or Case 2 of Proposition 3.5

Under Assumption 3.1(i), for any f € Bo(er) or f € By(er,B) and t > 0, /l],‘(f) > inf, ¢r(x) >
miny inf, ¢ (x) and /lf(fo) < ng + Lsup,eio NIt —A,0) 2 IIh?klloo. In Case 2 of Proposition 3.2, for T
large enough, 7 € [0,7] and 6 € B2 (er), A (f.6) > 6k > 69 /2 and A (fo. 60) < 6 + Ly + Lsup,¢o 1) N[t -
A DYy ||h llo. Therefore, in this scenario, on Q7, /lk(fo)//lk(f) <flogT for some £y > 0. Thus, with

xx) = —logx + x— 1, we have
T /lk(fo)) 2(f) ] ﬂ
1; LA L ~1la
o Uo U 0)( Og[ ¥ ) G )

log

E(fodr

2
L mlax[ sup N'[1—A, l‘)]
1€[0,T]

KL(fo, f)~Rr = )" Bo
k
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()
Zk: ’ “Uo O T )

4log(lologT)
<——= > E
miny inf, ¢r(x) Z 0

T
1g, fo (/lf(fo)—/lf(f))zdt],

since for any rr € (0,1/2] and x > rr, we have y(x) <4log r}l(x — 1)2 (see the proof of Lemma 2 of
Donnet, Rivoirard and Rousseau (2020)). Note that if f € Be(er), YVt € [0,T], /lf( )= /lf( fo) and we
obtain instead

1 T
KL(fo, f) = Rr < —————— > Ey [HQT fo (A (fo) - /li‘(f))zdt] :

ming inf, @r(x) T

Moreover, since ¢y is L-Lipschitz, under Assumption 3.1,

1E(fo) = 25N = I (vo, o)) — (v, )| < LA (vo, o) — A (v, )|

-
<L =+ LZ f g — KO.|(¢ = $)dN'
7 t—-A

and in Case 2 of Proposition 3.5, we have

I (fo,00) — A5CF,0) = 160 + (A (vo, o)) — O — B X v, )| < 160 — Okl + LI (v, o) — AE (v, )|
-
<16k = 61+ Livi = vl + L) f I — h), (2 — $)dN?.
1] —A

Using the same computations as in the proof of Lemma 2 of Donnet, Rivoirard and Rousseau (2020),
we obtain

SE
k

T
Lg, ( fo (A (fo) —Af‘(f))z)dt] <yoT[|Vk =P+ Dl h?ku%] <yTer,
!

or
SE
k

with yo := max(1, L) [3 + 6K 3 (AEo [ A5(fo)?| + Bo [ 44(f0)])]- Consequently,

T
1g, ( fo (A (fo, 60) —/Iﬂ‘(f,é’))z)dt] <WT| )10k =1 + i =P + Zuhzk—h?kn%) <nTe,
k !

4log(lylogT) 2 .
—=——="sygTes if € By(er,B
KL(fo. )~ Ry < | mmntcai 0T e 10 S e Baler. By (57.35)
Te; if  fe€ Bo(er).

miny inf ¢y (x)

. 8 .
Therefore, KL(fy, f) < k; (loglog T)T €2, with K| = m if f € Ba(er, B) - or KL(fp, ) < ki TE%
with K1 = m 1ff€ Boo(ET) .

Scenario 2: Under Assumption 3.1(ii), i.e., ¢; > 0, and log ¢y and /@y are L,-Lipschitz, L, > 0.



S26
For k € [K], let A(f) := fOT AX(f)dt. Then for t € [0, T], we define

206
AK(f)

a(f) =

From (S7.33), we have
» ’ k /lf(fO) ’ k k
KL(fo. f)=Rr = ) Bo|lg, f A (fo)log | = |d1 + f AE(F) = Af(fo)dt
k L 0 Af(f) 0

k k

a,(fo)) . (A (fo)) Koy ak )}
s di+ N (fo)log | 55|+ (A = A ()
aﬁ‘(fm] s U = A H

ak(f) A*(fo) ’

= > o1, (A0 [ af(fa)log[
! AK(T)

r T
<D Eo|lg, Ak(fo)fo a’;(fo)log(

k

AR

where in the last inequality we have used that y(x) < (x — 1)? for x > 1/2, with x = Ny

In fact, we
have

IAK(f) = A*(fo)l < TLIvi = VY| + LZ ||k = R ||, N'[=A. T1 < TLer (1 + ZmZaX,u?),
1

using that on Qr, N [-A,T] < T,u? + Tor < ZT/J?. Moreover, on Qr, using the notations of Section
5.2, we have
Jr—1
1
Ao) > g D WU =) > g1
i=1

J

— =yT,
2Eo[At ol 7

for some yg > 0. Similarly, for f € Ba(er, B) or f € Boo(er), we have

Jr—1
A > U0~ )5 02
(f)>¢k(Vk)jZ:;( R TN T TN

Consequently,

0
L MO - NGl A L INOD - ARGl L 2Amaxg

20 M) ARy Aalfo) Yo

for T large enough, and

er=1+ O(ET),

(AK(F) = AR (fy))?  LPT?EE(1+2max )’ L*Ter(1+2A max; )
< < .
AK(fo) AK(fo) Yo
Additionally, on QT, on the one hand, for f € By(er, B), we also have that for any ¢ € [0, T], since

k -
/lf(fo) < ﬂf(f) +er + BCglogT = /;t"((f‘))) < MylogT for some My > 0, then
t

) _ HRIND o A
() PN AK(fp)

<MlogT + O(Mylog Ter).
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Applying Lemma 8.7 from Ghosal, Ghosh and van der Vaart (2000), we have, for any M > M,

T k T 2
fo af(fo)log((:k((];?))]dtslog(MlogT) fo (,/af(fo - ,/a';(f)) d.
t

Moreover,
T ) T 1 k AK(fo) 1k ’
| (Ja,(fo - \/oz,(f)) as [ ot R AR el K
2
> (T 1z P )2 1 (T, Ak (fy)
< ) -+ d B E S
<Ak(fo)f0 ( A0 = VAL ”Ak<fo>fo Sk L vy I
[k - 0 (NK(f) = AR (fy))?
A"(f)f( 4o “f) IR

On the other hand, if f € Bs(€er), then Af( fo) < /lf( f) and we have

T k T 2 k k 2
_ a,(fo>] 2 f( — 3 ) AP - AR (o))
fo o o) Og(af(f) WS [E Gy Jo (NAUD = WD) did =505

Moreover, in this case,

T 2 T 2
fo (\/ﬂf(fo - \//li‘(f)) di = fo (\/¢k<i$<m,ho»— Vouiouy) dr

- < 2
< L%f (/lf(vo,ho) - X, h)) dt sTer.
AK(T)

Finally, we obtain that

(loglog T)TeT if feBy(er,B)

KL(fo. f) < {TeT if f€Bo(er)

Scenario 3: Case 1 of Proposition 3.5, i.e., ¢;(x) = (x)+, Yk € [K].

In a Hawkes model with the standard ReL.U link function, we can obtain two types of rates, under
and without condition (8). We consider f € Bw(er) so that ¥t € [0, T1, AX(v, h) > A (vo, hy). Since for
any t€[0,7T], log(/lf(fo)//lf(f)) < 0, we can use that

T
KL(fo. f)< ) Eo [ fo CHOE Af‘(fo»dr] = > Eo[A(H - A ()],
k k

with for any 1 <k < K, A(f) := [ 24(f)dr, and AK(fy) := [} AX(fo)dt. Since for any 7, 2(v, ) >
/le(vo, hg), we have

T T
0 < AL = AK(fo) = fo (1)) — (v, b))t < fo (v ) = (v, o)l
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T '~
<Thvg =Yl + Z fo f ) e — W \(2 = $)dN'dt < T(vi —vY) + Z || = Ry ||, N'-A. T1.
] = ]
(S7.36)

Consequently, we arrive at
KL(fo. ) < KTer(1 +max Eg [N'[-A. T1)) + Ry

<TerK(1 + ZmZaX,u?) +0(Ter) < Ter.

To refine this bound, we will assume that (8) holds. For k € [K] and ¢ € [0, T], we define p; k(f) =
AX(f)/A¥(f) and similarly for p¥(fy). Using (S7.33), we then have

p;(fo)
(f)

Py <fo>] (N (fo) = AR(f))? )

T
1~ | AK f 1 K 1
or [ (fo) b /l’,‘(fo)>0pl (fo) Og[ p;‘(f) dt + A*(fp)

KL(fo, /)~ Rr = ZlEo

<> E
k

where in the last inequality, we have used the fact that —logx + x — 1 < (x — 1)? for x > 1/2, with
A
A (fo)

i4 [A (o) f /lk(fo)>0Pz(f0)10g[ ]dt+Ak(f)log( A((J;?)]HA"(J‘) Ak<fo>))]

, (87.37)

> 1. Moreover, from (S7.36), we have on QT,

X =
AR = AR (fo) < Ter(1 + 2mlax,u?).

Besides, on Qr, using A>(T') defined in (22) and noting that in this case, r = v , Yk,

Jr-1 Jr-1

o)
J
Ak(f0)>f A (foyde > g f A foydt =7 § (UE_”_T])
A) j=1 VT =1

OT L2 logT S VgT
_ — ZC, > .
Z Eorvoll PNTT )T 2Eo(AtIvolly

A (o) <N < N (fo) + Ter (1 +2max py)

Therefore,

2A%(fo)(1 + 24 max; u))Eo(ATplvolly

<A(fo) + 5 er
4
k

2(1 +2A max; ! )EO(ATI)||VO||1

0
k

<A (fo) |1+ <2AK(fy), (S7.38)

v

B0 o A
IGRETTRE

equality —logx + x — 1 < (x — 1)? with x = £22 ((,jf)) > 3 and the fact that fo pi(fHdt = fo K(foyde =1,

for T large enough. Besides, this implies that p; k(f) = k(fo)/2. Using again the in-
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we have

T K(fo) T P(fo)
1 k(foylog| 2t dt= f k(1 ( L
L A (fy)>0Pt (fo) Og( pf(f) ) 4 o p;i (fo)log Pf(f)

T k k T k _k 2
X P (fo)] i) ] (P¥(fo) = PYCF)
= (f)(log[ AL dt<f 1, wR-p ",
fo O O Ty TS 0 AU R

T
)dr+ fo O — P

k 2

_ 1 fT z(ﬂf(ﬁ)) - ﬂf(f))z +22K(f)? (1 _ //\\k((};?)))
) L dt
Ak(fy) Jo A H0>0 /lf(fo)

2 |7 3 () - k)’
fo A (f0)>0

+2A%(fy) x

Ak(f)2

- A = A (f)?
A (fo) A (fo)

2
_ 6 an 2K = HD) Ak - ARG
S MGy Jo A0 TR A2

In the previous inequalities, we have used A*(fo) < AF(f), and for T large enough, we have the follow-
ing intermediate result:

T Ak (foy) = Ak (f))? (MK (fy) — AR())?
]lf)r (6f ]l/lf(ﬁ))>0 : /lff(f();_dt + 4—Ak(f0)

KL(fo. f)~Rr < > Eog )} (57.39)
k

Moreover, on QT, using (S7.38)
k r 0 " 0 1 0 0 1
A (fy) = fo W+ Zf Wt = )N | de<TV) + 3 I W N'[-A.T)
7 t—A + I
3
0 0 0 0 0 0
<Tv) + szl: g W (g + 67) <2T [Vk + Zz: ||h1k+||1/11]’

for T large enough, since 67 = & IO%T. Thus,

2
(A*(fo) = AR(f))? 21 + 24 max; ) Eo(At)lvolh
T A <A(fo) Vé e <=3 Ter,

with

2
(1+24 maxlﬂ?)]EO(ATl)”VO”l ]

cg=8[v2+2||h2(+||1#(1)][ 0
1

Vi

Therefore, reporting into (S7.39) we have

T A (fo) = 24(f))?
1s 1 %dt] +4KATEL.
Qrfo A(fy)>0 ﬂf(fo) 2L €r

KL(fo. /)~ Rr <6 ) g
k
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We now bound the first term on the RHS of the previous equation.

T A (fp) = 242
Ey |14 f 1 %sz E
Zk: 0 07 0 /lf(fO)>0 /l;((fo) Zk: 0

Moreover, for any k € [K] and ¢ € [0, T'], we have on By (€7)

T 1k )0 }
k—dt .
(o)

1g. sup 1 AP = AR f)? f
Qq, 1€[0.T] A(fp)>0\'t 1Jo 0

Lo, Tt yo0 U (F) = A (fo)) et < 207k = v)? + 2K max e = hi I, Sup N[t - A,1)?

<26; +2KCjlog” Tep <4KCjlog” Tey.
Consequently,

T (A (fo) = AK(f))? 1 (T Ligyso
Zk:]Eo [ﬂﬁr fo ]lxl’f(fo)>0_t /l];(fo;—dt] < 4C2K(10g T)zTe% Zk:]Eo [T fo —/lf(;o) dt]

= 4C§C?K(1og T)Ter,

using (8), with

1 (T Ligyso
c(l) :=lim sup ]Eo[—f (020 1l < oo
0

Toe | T A (fo)

Consequently, reporting into (S7.39), we finally obtain

KL(fo. f) <4C5c{KL(log T)*Te + 4K T e + o(Ter)
< 8KC§c?(1og TY’Ter = ky(log T’ Ter,

with ky := 8K Céc(l), which terminates the proof of this lemma.

S7.2. Deviations on the log likelihood ratio: Lemma S7.3

The next lemma is a control under Py over the centered sum of i.i.d. variables that are used to decom-
pose the log-likelihood ratio in Lemma A.2.

Lemma S7.3. Under the assumptions of Lemma S7.1, for f € Bo(er) and j > 1, let

Tt pLs Tt
Tj:=; f | log[ A’;(];f)) )dNZ‘— f ) = A (S7.40)

Then it holds that Ey [TJZ] < z7/T, with

Te% (under Assumption 3.1(i))
zr =4 (log T)TEYZ- (under Assumption 3.1(ii))
(logT)’Te€2  (ReLU link)
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Moreover, if log> T = O(zr),

Py

ZT Eo[7)|>2r

Remark S7.4. Under Assumption 3.5, for f € By(er, B), we also obtain similar results with z7 =
(loglog T)ZTE%.

=o(1).

Proof. Firstly, using the fact that 71,1, are stopping times, we have
2
A
Z f [ Ak((fO)]de f (o) - ﬂk(f))dt]
SZ]EO [sz log[ﬂéc(f())]/lk(fo)dHsz log(/lf(fo)](alNk—/lk(fo)a't)—sz(ﬁk(fO)_/11<(f))alt]2
; oo ()T o (k)T oo
o () n o ()
A‘rf X( ! )/lk(f)zdt f 1og2[’ )/lk(f)dt,
He ki) 0 L )

t
with y(x) = —logx + x — 1. For any x > 0, we have Y2(x) < 210g x +2(x — 1)%. Now, if f € Boo(er),

using that log? x < (x — 1)2 for x = AX(f)/2*(fo) > 1, we have,\/(/l,g((;))) AK(f0)? < (A (fy) - 24(f))? and

o|T7]=Eo

s Ep

+Eg

(S7.41)

ke rn_ ok
log? ( 40 )/1"( o) < D HID v ofore, (S7.41) becomes

(fo) F(fo)
19) 2k
Tge f 1og2( ’(f(’))zf(fo)dz} (S7.42)
T

| 2
i A (fo) = A ())?
]IQT jr‘l ]lfllf(fo)>0 ﬂk(f) dt

With the ReLU link function, we can easily bound the third term on the RHS of (S7.42) using (8):

19 /lk —/lk 2 7 1k,
1q, f Ly )>0(’(ﬁ’)k—f(f))dt}s10g2 TEE, [ f /l;((/()bodt]slogz TE.
71 o /lt (fO) Tl /lt (fO)

For the second term on the RHS of (S7.42), using that logz(/lf(f))/lf(f) < (sup, N[t —A, 1)? and simi-
larly for /llt‘( fo), we have

= (G & .
g, [ logz( . (;)]ﬂf(fo)dt}s]Eo [1a; [ ot

T1 t
< \/]Eo

using Lemma A.1. For the first term on the RHS of (S7.42), we have

+]E()

T2
Ea[73] < Bo[ans [t - erar
T1

+Eg

Eo

Eo

+ Ep

T2
1o f log (i

Lo (sup N[t - A,t))6] Eo[A?]| s TP = o(e}).

T2
Eo|Ary f Ay — Ak (r)ldr | <
T

T2 _ ~
Eg |A7y f (/lf(fo)—/lf(f))zdt]
Tl
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<Ey

K 2
T A
At f (2|vk—y2|2+2KZ( f (h,k—h?k)(t—s)ng) dt
T =1 Wi-A

K T !
<2 - V)PEo ATt + 21<Z Eo [An f N-A,0 f A(h,k — )%t - s)de.dt]
=1 1 =

K
=2l — )P [Ar}] + 2K ) [l - h?knj Eo [AriN'[r1.72)?]
I=1

K
<2~ WPEg[Ar] +2K ) thk - h%(“j \/]Eo [N!r1.12)4] \/1130 [a?] < €.
=1

Thus, reporting into (S7.42), we can conclude that if (8) holds, Eg [le] < log2 Te%.

Under Assumption 3.1(i), if f € Bs(€er), we can use the same computations. If f € By (er, B), for the
first term on the RHS of (S7.42) and for the second term, we use instead that log2 x<4 logz(r}l)(x— )2
_ %)

for x > rr with x = y) > rr :=(log T)—l and we obtain,
t \

Eoy

T2 /11{ T2
1g, f 1og2( {k((];))) )/lf(fo)dt] < (loglog T)’Eo [ f A (fo) = A (f))dr
T] t T]

T2
< (loglog T)’Ey [ f (A (v, ho) = 2, h))zdt} < (loglog T2,
Tl

or, in the shifted ReLU model with unknown link (Case 2 of Proposition 3.5),

T k
1g, f 210g2(/l’(fo’g()))ﬁf(foﬂo)dt]

E e
’ 1 A(£.6)

< (loglog T)2 [JEO [AT11(6 — 6% + Eg

T2
f (A (vo, ho) = A, h))zdrﬂ < (loglog T)er,
i

1

using similar computations to the control of the first term of (S7.42). The remaining term, i.e.,

T) /lk
Eo {ﬂg; f | logz( /{k((?)))/lf(fo)dt},

t

is bounded as the second term of (S7.42).
Finally, under Assumption 3.1(ii), using the fact that log ¢y L-Lipschitz for any k, we have

T k T,
Eo [ [ zlogz[i’k((];?)))ﬂﬂfo)dr] <Ey [ | oo -Ho, h»zﬂf(fo)dt]
T ¢ T

T) 5
<log TEy [ f (Ao, ho) = 2X(v, h))*dt| + Eq
T1

T2 - -
Lge f A (fo) = /lf(f))z/l'f(fo)dt]
1
< (log T)e%,

and the first term of (S7.41) can be bounded similarly.
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We now prove the second part of the lemma. We first note that

Jr-1 J-1
Po| > Tj—Eo[T)]>2r|< IPQ[Z T; - Eo [T} >zT] + Py ()
J=0 JeJr j=0
J-1
< TP, [Z T;-Eo[T}] >zT] +o(1). (S7.43)
j=0

Let J € Jr. Since the {T}i<j<s are ii.d.. random variables, we apply Fuk-Nagaev inequality (see
Proposition S10.3) to the sum of centered variables T; — [E[T;] with A := z7 and x := x7 with x7 —» o0 a

sequence determined later. We denote v := JEEg [le] < TE, [le] < zr. Hence, we have xA/v = xrzr /v 2
x7. Since x7 — oo,

1 A xd xrd
(1 + x—)log(l + x—)— Ay
U v v v

From Fuk-Nagaev inequality, we have

J
IPO[ (T; - E[T;]) >ZT] <JPy[T| — E[T}]> x7] +exp {—i—T} (S7.44)
1 T

J
We note that in the second term on the RHS of (57.44), if i—; > xo log T with xo > 0 large enough, then

exp{—%} = 0(%). Since by assumption, log T = o(Te%), then we can choose x7 = x{)% — oo with

xE) > 0 a constant small enough. For the first term on the RHS of (S7.44), let us consider j € [J]. From
(S7.40), we have

T2
T, <Z{ f ) = A5 fo)ldr + f[ )IIOgﬂff(f)—10gflf(fo)lszk}~
T 71,72

1

Using the first part of the lemma and Cauchy-Schwarz inequality, we have that E [T1] < . /ZTT <xr
since x7 > zr/log T and log3 T = O(zr). Therefore,

Py [Ty —=Eo[T1] > x7] <Py

~ 2k k k k
QTn{ f ) = A fo)lde + f[ )|10g/1;(f)—10g/1;(f0)|>xT}
T 1.7

1

+ Py [Q%] .

- . . . Jx—yl
On the one hand, on Q7, under Assumption 3.1(i), using that [log x — logy| < 5 for x >y,

2
|log 4{(f) ~log { (f)ldNf € —————— |log 24(f) — log 24 fy)ldN¥
’LI’TZ) ' ' "~ miny inf, Pr(%) Jiry 1m0 ' ' !
2LN[11,72) 0 2L

Vi = Vol + e — WS, |(t = 5)dNFdN*

= ming infy @r(x) ming inf; ¢y (x) [11,712)?
4L

< ———————(erN[r1,72) + Nlt1,72)* ||l = hy|| ) < BLBN[71,72)?,
ming inf, @y (x) o
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for T large enough. In Case 2 of Proposition 3.5, we similarly have

2
f[ )|1ogﬂf(f>—1ogdi‘<fo>|d1vf<9—0 f llog AX(f) - log A4 (fo)ldNF
71,72

[T1,72)

2N[11,T2
< 22 g o+ =B+ —f

L [T1,72)

f e = W, \(¢ = 5)dNFdN*
[T1,72)

4
< gerNrim) + 2N[t1,72) || — B ||, < 3BNIt1,72)%,
k

Under Assumption 3.1(ii), log ¢y is L;-Lipschitz, therefore,

D llog k() —log (I <L > 1Ak = X (vo, ho)l < LiBN[T1,72)%,

ti€lry,m2) ti€lry,m2)

With the ReLU link function, we directly have that 71 < 3, fT le(/lf(f ) — A (fo))dt.
In Case 2 of Proposition 3.5,

T T - -
f ECE 0) = 5o, o)l < 160 — BplATy + f ) = (v, o)t
7] T
< (6] = Ol + v = viDAT) + 3 [l = ||, N'l71,72) < [2A7) + Nl71, 7)ler
[
and in all other cases,
i k k 2 Nk Nk
f AP = A Colde < L f ) = K (v, o))t
T 8|

<Lvk = v)DAT) + L Z || = W ||, N'[r1.72) < LI2AT) + Nlt1,72)]er
l

Consequently,
T1 < KC[2At) + N[71,72)ler + 3KCBN[71,72)> <4KCBN[1|,72)°,
with C = max(1,L, L) or C = max(1, L) depending on the assumptions on the link functions, and

XT
2KCB]’

Po 71 ~ BolT1] > 2x7] < Po [ Nlr1,72)° >
Using Lemma 5.1, we have for some s > 0

Py |N[r1,72)* >

2KCB]<]E [ SN[r1, 72)] =S VITT@KCB) _ 72y

if x7 > x; log? T for some x; > 0 large enough, implying that z7 > z9 log? T for some zo > 0. Finally,
reporting into (S7.43), we can conclude that

T
Py [Z(T, ~EIT}]) > ZTJ <T?Py [Ty — B[T1] > xr] + TP [Q%] + Texp {——} +o(1) = o(1).
- ’ XT
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S8. Proofs of identifiability results and regenerative properties of
nonlinear Hawkes models

S8.1. Proofs of Proposition 2.3, Proposition 2.5 and Lemma 2.6

In this section, we prove our two propositions on the model identifiability, i.e., Propositions 2.3 and
2.5, as well as Lemma 2.6 in the mutually-exciting Hawkes model. We recall the results in each case.

Proposition S8.1 (Proposition 2.3). Let N be a nonlinear Hawkes process as defined in (1) with link
functions (¢r)x and parameter f = (v, h) satisfying the conditions of Lemma 2.1 and Assumption 2.2. If
N’ is a Hawkes processes with the same link functions (¢y)x and parameter f' = (vV',1"), then

NEN' = v=v and h=¥.

Proof. Let f'=(V',h’) and N’ ~P;. We recall that N ~ Py and N LNis equivalent to /lf(f) = /lg(f’)
for all £ > 0 and [ € [K]. Let 7 be the first renewal time of the process N, as defined in Section 5.1.
From the proof of Lemma 5.1, with U il) the time of the first event after 7; and V) € [K] the index of
the component associated with this event, we have that Uﬁl) ~ Exp(””f”1) 1 Vfl) withrp = (r{, e, rlf()

and r,f = ¢r(vr), Yk, and

Vil ~ Multi{l; ii]
I, I,

Therefore we can conclude that
NEN = rp=rp e i) = (V). Yk e [K]. (S8.45)

Since for all k, vy € Iy defined by Assumption 2.2 (ii), then v]’< = qﬁ,:l(q)k(vk)) and since ¢y, is monotone
non-decreasing, we obtain v = vl’(, Vk.
Moreover, for each k € [K], we define the event ; as

Q= {I]}’lai(Nk/ [1,72) = 0, N"[t1,71 + Al = 1, N[t + A, 12) = 0}.
' #

On Q, for 1 € [r1,72) N [USY, UV + AT and 1 € [K1, 2(f) = ¢y(vy + hia(z = US")) and similarly for
/lﬁ(f’). Then, for any s = — Uil) € [0,A], /11U(1)+S(f) = ¢1(vi + hi(s)) = ¢i(vi + by (s)). Consequently,
1

using that ¢; is injective on I;, hy; = h,’d for all 1 <k, < K which concludes the proof of this proposition.
O

Proposition S8.2 (Proposition 2.5). Let N be a Hawkes process with parameter f = (v,h) and link
function ¢r(x;0r) = O + Yr(x) with 6, > 0 for any k € [K] satisfying the conditions of Lemma 2.1 and
Assumption 2.2. We also assume that for all k € [K], lim yy(x) =0 and

X——00

A€ [K], x1 <x2, suchthat hy(x)>0, Vxe€[xy,x]. (58.46)
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Then if N" is a Hawkes processes with link functions ¢r(x;6,) = 6, + Y (x), 6, > 0 and parameter

fr=001),

=

NEN = v=v, h=K, and 0=0, 0=, 0 =0,

Besides, in this case we have Py [ing AX(f,0) = Hk} =1.
>

Proof. Using the proof of Proposition 2.3, we first obtain that ¢;(vx) = ¢x(v}), therefore

O + Yivi) = 6 + Y7, Yk € [K].

Secondly, we also have that 6; + Y (v; + hyi(s)) = 0] + i (v; + hy (s)) forany s € [0,A] and all 1 <k, /< K.

We first prove that 6 = ¢’ and from the latter we can deduce that v = v’ and finally that h = i’ by
the injectivity of ¥ on I, for any k. The proof of the identification of 6 relies on the construction of
a specific excursion for each k € [K] in which there exists # > 0 such that /l’t‘( f) € [6k, 0 + €] for any

€ > 0. From that, we will deduce that N £ N = 6=¢0'.
Let k € [K] and consider / € [K] such that Ay satisfies Assumption S8.46. We first note that

() = O + (v, 1)) > .

Thus, we directly have that 6 < ing /lf( f), a.s. Let € > 0. Using Assumption S8.46 (i), AM > 0,Vx <
1>

M, Y (x) < €. Using now Assumption S8.46 (ii), let / € [K] and x| < xp such that [x,x2] C By :=
{x € [0,A], hy(x) < —c,}. Define n; = min{n € N; nc, > vg - M}, 8 = (xp — x1)/3, and we consider an
excursion, which we write [0, 7], and which satisfies

&={N[0,8'] = N'[0,6"] = ny, N[&',5" + A] = 0}.

In other words the events only occur on the /-th component of the Hawkes process and only on [0, §].
Since ¢y is Lipschitz and injective on [y = (v — max; th‘ka — &,V + max; ||h;c||oo + &), it holds that
P [E]>0.Forte[x1 +¢,x2], Vi€ [n], we have x| <t —t; < x2, and therefore,

v,y = vy + Z It — 1) < Vi — nyce < M.

i€[ny]
Consequently, for ¢ € [x] + &', x3], /lf( fo) =6 + wk(;lf(v, h)) < 6 + €. We can then conclude that
Po [T >0, A(f) € [0k, 0k + ]| > 0,
for any € > 0. This is equivalent to
6r = inf inf A¥ ,
kT 0 el 1 (N(W)

where /lf( fo)(w) denotes the value of the random process (1;(fp)); at time .
Now, if N” is a Hawkes process with parameter f” € # and link functions ¢y = 6 + i, k € [K] such
that N £ N’, then for any 7 > 0 and & such /lf(f) < 6k + €, we have 6] < /lf(f') < 6 + e and thus, 6; > 6.

Inversely, if ﬂf (f") <0, + € then 6 < 6, and finally we can conclude that 6 =¢'.
m]
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Lemma S8.3 (Lemma 2.6). Let N be a Hawkes process with parameter f = (v, h) and link functions
Or(x;0;) = Ok + (X)+, Ok = 0, k € [K] satisfying Assumption 2.2, and let k € [K]. IfVIl € [K], hy > O, then
for any 6 > 0 such that 6 + vy — 6, >0, let N be the Hawkes process driven by the same underlying

Poisson process Q as N (see Lemma S10.2) with parameter ' = (v, h’) and link functions ¢y(x; ;) =
O, + (X4, k € [K] withy' = (v1,...,vk + 6 = 6,...,vK) #v, I =h, and §' = (6y,...,6,,...,0k) # 6.

Then for any t > 0, /lf(f, 0) = /lf(f’, 0"), and therefore N Ly

Proof. We consider k € [K] such that VI € [K], hy > 0. For any ¢ > 0, we have
~ t_
Bohy=vi+ f hu(t = $)dN' > vi > 0,
T Ji-A
and thus /lﬂ‘( f) =06+ (;lf(v, h): =6 + ;lﬂ‘(v, h). Moreover, for any ¢ > 0, we have
-
K )=+ 6 -6 +Zf hi(t = $)AN. > vi + 6 — 6, > 0
VL R) = v+ 0 — 6, (&t = $)ANg 2 v + 6 — 6, > 0,
T Ji-A

and

(=6, + AEW W)y =6, + A K
-
=0 + Vi + O — 6 + Z f hy(t = $)dN" = 6 + A5 (v, h) = 24(f).
i t—A

Therefore, we obtain that N =< N’.

S8.2. Proofs of Lemmas 5.2 and 5.4

In this section, we prove our lemmas related to the renewal properties of the nonlinear Hawles pro-
cesses, in particular the existence of exponential moments for the generic renewal time A7y, and a
concentration inequality on J7. the nunber of excursions in the interval of observation [0, T].

Lemma S8.4 (Lemma 5.2). Under the assumptions of Lemma 5.1, the random variables At and
N[t1,12) admit exponential moments. More precisely, under condition (C1bis), with m = “S +H <1, we
have

Vs < mln(”r}(”l ,')//A), Ef I:e‘YAleI < +00, and IE]‘ IieSN[Tl,Tz)] < 400, v= 1 __m log(l + m) .

2VK 2m

2
Under condition (C2), we have ¥s < miny Ay, Ef [em”] < %

particular, this implies that E ¢ [N[T], )+ N[Tl,Tz)z] < 400,

and Ey [eSN[Tl’Tz)] < +4o0. In

Proof. Under condition (C1bis), similarly to Costa et al. (2020), we use the fact that the multivariate
Hawkes model is stochastically dominated by a mutually-exciting process N* with parameter f* =
(v, (h;;{)l,k), and driven by the same Poisson process as N (see Lemma S10.2). For N, the stopping
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time A7} corresponds to the length of the busy period of a MX/GK /oo queue (see Lemma S10.1,
which is a multi-type extension of existing results).

More precisely, since N* is mutually-exciting, the cluster representation is available Reynaud-Bouret
and Roy (2007), with the ancestor arrival process being a Poisson Point Process equal to the baseline
rate ry, defined in (21). For this process, the duration of the clusters then corresponds to the generic
service time H of a queue with an infinite number of servers. In the multidimensional case, this duration
may depend on the type of the ancestor (or “customer” in the queuing framework) but the generic
service time can be written in a compact form, and is independent of the arrival process

K
H= Z S HF,
k=1

where 0, = 1 if and only if the ancestor is of type k € [K]. To apply Lemma S10.1, we only need to
check that the cluster length H*, k € [K] has exponential moments. This can be proved using results
from Donnet, Rivoirard and Rousseau (2020).

For the process N*, let WX be the number of events in a cluster with an ancestor of type k. By
definition of a cluster of events, H* < AW*. Moreover, from Lemma 5 in the Supplementary Materials
of Donnet, Rivoirard and Rousseau (2020), for a mutually-exciting Hawkes process and for any ¢ <

ISl L+||S ]
VR log 1S and k € [K],

] < L
To2qsH)
Therefore, we define y = (1 - ||S+||) [log(l + ||S+||) —log(2 ||S+||)] /(2VK) and s = % Forall 0 <

k . . .
t <y, we thus have E¢ [etH / A] < so. Consequently, we deduce that the service time H* has exponential

tails, i.e., Ps [Hk > t] < spe~"'A. We can now use the fact that a.s. 7 = ATT (cf Lemma S10.2), so that

sATT ]

for any s < “rf”l Ay[A, we have Ef [e < oco. Finally using the second part of Lemma S10.2, we

have that Py [A‘rl < ATI—] =1 and, using Lemma S10.1, we arrive at Vs < ||rf||1 AY/A, Ef [esATl]

Under condition (C2), we use the fact that the process N is dominated by a K-dimensional homoge-
neous Poisson point process Np = (N1 e ,Nf.f) with rate A = (Aq,...,Ag). For the latter process, the
generic service time of an ancestor of type k, Hy, is exponentially distributed with mean Ay, i.e.,

< 0o,

Py [He>1l=e ™, t>0.

Therefore, denoting AT{) , the corresponding generic stopping time of N* - with the same definition as
in Lemma 5.1 for the Hawkes process (note that the Poisson point process is a renewal process), we
have

]Pf I:AT{) > t] < ]Ef [NP[O, t]] e— mink Ak(I—A) = ”A”l te—mink Ak(l—A).

Therefore, for any s < ming Ag,

+00 . +00 .
Ef[e™™| <Ef [esATf ]: f se*'Py [AT] > t] dr <A ™A f 1SN gy
0 0

+eo f(s—ming Ag) ||A||%

<IIAIF . =— :
ST o ming Ag — s (ming Ay — 5)?
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We now consider the number of events in a excursion N[7y,72). Under condition (C1bis), From
Lemma S10.2, we can also deduce that E [N[71,72)] <Ef [N Tt T;)]. We once again use the cluster
representation available for N*. For the latter, let n* be the number of ancestors arriving in [‘rf,rgr )
and W; be the number of points in the cluster with ancestor i for 1 < i < n.. We denote (NP;); the
homogeneous Poisson process of intensity ||rf||1 corresponding to the arrival times of the ancestors.
By definition of 77,77, we have

nr
N¥ITT ) = D | Wi (S8.47)
i=1

Lety>s>0andu< ”er (AY/A. Witht=Eg [eSWI] < sp, since the W;’s are independent conditionally
on Ny,

]Ef [eSN[TI,TZ)] < ]Ef [esZ;:l Wi] — ]Ef []Ef I:eSZ;:l WilnT]] = ]Ef [Ef [eswl ]nr] - ]Ef

+00
Z em’]lm.e[z,zn)}

I=A

+00 +o
< Z]Ef [esNP[‘rl,T1+l+1)]lATl>l] < Z \/]Ef [eZSNP[Tl,T1+l+1)] \/]Pf [At; > 1]
I=A I=A

<\/Ef[euATl]i\/]Ef[eZSNPITI’Tl+l+1)]€_ul/2: /]Ef[euATl]ie||rf||](l+1)(325_1)/26—u1/2,
I=A I=A

since NP is a homogoneous Poisson process with rate ”rf”r Moreover, since for any a € (0, 1),

[

Ef [e‘”Wl] = (Ey e“‘Wl]l/a)" <Ey [eswl] < s, with v =Ey [emwl], we have that Hrf”1 @ -1)<
u/2 for @ small enough. Consequently,

+oo Eo [euA‘rl]
]Ef [esN[‘rl,‘rz)] < WZ e_ul/4 — 1_6——14/4 < 00,
I=A

In particular, this implies that E¢ [N[r1,72)] + Ef [N [71,72)2] < 00, Under condition (C2), the domi-
nating process N* is a homogeneous Poisson process with intensity A = (A1,..., Ag) and the previous
computations remain valid by replacing ry by A and with W; =1 for any i € [n] (since in this case
each cluster only contains the “ancestor” event).

O

Lemma S8.5 (Lemma 5.4). Under the assumptions of Lemma 5.1, for any B > 0, there exists a con-
stant cg > 0 such that Py [JT € [Jrp1, JT,,B,Z]] <T7P, with Jr defined in (19) and

J : T l—c logT J 3 T L+c logT
TAL T Ef (AT ANTTO)T TP | EBslAn] ENTT |

Proof. Letcg>0andfor2<j<Jr,Bj=1;—7; 1 —E;[A7{]. Using Lemma 5.1, the random variables
{Bj}2<j<Jy are iid.. By definition of J7 g7, we have

T logT T logT
S DT PR - IS ppp-guetu) § g L §
]Ef[AT]]( BN ] =T IEf[AT]][ BN
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Therefore,
Jrp2
Py [JT > Jrﬁ’z] =Py [TJT#2 < T] =Pys|ro + Z Bi<T - Jrp2Er[At]
j=1
(Jrp2 Jrs2 logT
=P Z i <T =JrpaEf[At]| <Py Z Bj<T- T(l +g/ i ] +Es[A1]
| j=1 J=1
[Jrp2 Jrp2
cgA/TlogT
=Py Z Bi<—cgTlogT + Ef[A1(]| <Py Z B;< —% .
[ j=0 J=1

We can now apply the Bernstein’s inequality. Using Lemma 5.2, there exists @ > 0, such that
Ef [e"ATl] < +00. Since

E; [eaAn] — i w’
k=1 ’
we therefore have that
A
Ef[(am)] < %Ef et = %k!a—’”? X 2]Ef[2—zﬁ].

]EO[

AT
In particular, Ef [(A‘r])z] <2——— ] =: v. Consequently, with b := 1/a, we obtain Ey [(A‘rl)k]

%k!bk‘zu, and therefore,

—cé,Tlog T
Py [JT > JT"gQ] < exp -

8(c2+ % \[TlogTbh)

with

Jrp2 | ‘ i
flog T\ Er |A7] ErlAT
ol = Z Vy(Bj)=Jrp2Vs(At1) < T[] % ? ]]Ef [Aﬁ} s 2T]Ef [AT}
=

: Ef|ac?
for T large enough. Therefore, o + ‘7/3 VT logTh < 4T% and

2
—c;log TE s [ATq]
Py [JT > JT,,B,Z] <eXP{ £ }=0 TP)

32E; [A‘rﬂ

for any 8 > 0, if cg > 0 is chosen large enough. Consequently, with probability greater than 1 — %T‘ﬁ,
log

we have that J7 < AT [ ATl (1 +cp ) Similarly, we obtain that

Jrp1

_C/23T logT
Bj>cg\TlogT|<exp
Z k 2(02 + cg /T log Th)

Py [J JTﬁl
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—c2log TE ;s [Aty]
<exp A ! = o(T_ﬁ).
4B |Ad]

Finally, we conclude that with probability greater than 1 — T8, JIr 8.1 <Jr < Jrpn.

S9. Proof of Lemmas A1 and A4

S9.1. Proof of Lemma A.1

Lemma $9.1 (Lemma A.1).  Let Q > 0. We consider Qr defined in (25) in Section 5.2. For any B> 0,
we can choose Cg and cg in the definition of Qr such that

Po[Q 1< T7P.

Moreover, forany 1 < g < Q, Ey ]IQCT max; sup (Nl[t —A,t)>q < 2T7B12. Finally, the previous results
1€[0,T]

hold when replacing Qr by fZ'T = Q7 N Q4 with Qy defined in Section S1 for the model with shifted
ReLU link and unknown shift.

Proof. Let 8> 0. From the definition of Q7, we have that

Po[Q7] < Po[Q} ] + 3P [Q]] + Po[Q; N QY ]. (S9.48)

For the second term on the RHS of (59.48), we can directly use Lemma 5.4, and we obtain ]Po[Qj] <

ﬁT‘fB for cg large enough. For the first term on the RHS of (59.48), we use the same strategy as in
Donnet, Rivoirard and Rousseau (2020). Firstly we have

K

+Z]P0

k=1

NX[0,T]
T

Po[Q4] <]P0[max sup NX[t—A,1)>CglogT -

ke[K] te[0,T]

> 54 . (S9.49)

For the first term on the RHS of (59.49), we use the coupling with the process N*, i.e., the Hawkes
process with parameter f(;’ = (vo,hg ) driven by the same Poisson process. Then for any [/ € [K],

sup N lr=A,0n < sup (N [t — A, 1) and consequently,

t€[0,T] t€[0,T]
Po|max sup N¥[t—A,1)>CglogT| <P {max sup (N [t-A,n>C logT}.
kelK] ref0,T) b kelK] tef0,1] p

Using Lemma 2 from Donnet, Rivoirard and Rousseau (2020), we obtain that for any 8 > 0, there exists
Cp > 0 such that

1
Po | max sup (N )¥[t—A,1) > Cglo T}S—T‘ﬁ.
O[kE[K]te[o,pT]( ) ) > Cglog 1
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For the second term on the RHS of (59.49), we use the same arguments as in the proof of Lemma 3 in
Donnet, Rivoirard and Rousseau (2020). For k € [K], we have

Nk, 1)
T M

>Toé7/2|+ Py

T
0 Lﬂ AE(fy) - T

For the second term on the RHS of (59.50), we can use Corollary 1.1 from Costa et al. (2020). We
have that A*(fy) = Z(S,N), with

T
N[0, T] - fo AX(fo) >T5T/2]. (S9.50)

>5T]<]P0[

.
Z(N) = AE(fo) = ¢k (v,? + Z f hy(t — s)dNﬁ.} < Lb(1 + N[-A,0)),
T J-A

with b = max(%, max; ||h0+” Yand fort€ R, S;: N(R) — S;:N = N(. + 1) the shift operator by 7 units
of time. Applying Corollary 1.1 of Costa et al. (2020) with f = Z, zaf = Eo[A5(fo)| = u2, & = 67/2
and = %T‘ﬁ , we obtain that for ¢ large enough,

g

For the first term on the RHS of (S9.50), we use the computations of the proof Lemma 3 in the Sup-
plementary Materials of Donnet, Rivoirard and Rousseau (2020) and obtain

g

T
fo A (fo) - 1)T| >

1
T(ST/Z} 4 T75,

NY0,71 - f e TéT/z] sl
0

for ¢ large enough.
For the third term on the RHS of (59.48), we denote X ; = U;l) —tjforl<j>Jr—-1. We recall that

the X’s are i.i.d. and follow an exponential law with rate ||ro||; under Py and Eg [X ] . We thus
have

IIroll

Py[Q; QQZ] <Py

Jr—1
T logT
QN Xi< —|1-2¢
! {; / ]EO[AT1]||FO||1[ PNTT ]}

Jr—1
Jr—-1 T log logT
<P Qs N X;- 2¢ -l+c
! {Z lIroll; ]EO[ATl]VO”l[ INTT p

= - JT1
QJQ{ZX Jr=1 _ pNTlogl } > P

Ilolly Eo[At]llroll1 5

TlogT

J-1
2%~ et
= 7 lrolly ~ EolArdlirolly |

:PO

where in the first inequality we have used the fact that on Q;,

S T e logT
~ Eo[Ar1] BNTT )
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We apply the Bernstein’s inequality using that for any k > 1, [Eg [X’l‘] < k!(||r0||1)_k+21E0 [Xlz] /2. There-

fore, since [Eg [Xﬂ = ||ro||l_2, we obtain

J-1 2

P, ZX' J—l B cgTlogT <exp— cﬁlogT
I rolly S " BolArallrol Eo[Ar (1 + V=T
Eo[ArINT

2
czlogT
SCXP_ 'B— < lTWB,
2IEg [AT] 4

for c¢g > 0 large enough. Finally, reporting into (5S9.48) we can conclude that for Cg, ¢, o large enough,
Py [QCT] <Th.

For the second part of the lemma, we can use the exact same arguments as in the proof of Lemma 2 in
Donnet, Rivoirard and Rousseau (2020) to obtain the result.
For the case of shifted ReLLU link function with unknown shift, we similarly have that

POl ] < Po[Qy] + 3Po[QS] + Po[Qy N Q1+ Py [Q N Q] (89.51)

and therefore it only remains to bound the last term on the RHS of the previous inequality. Using
Assumption S8.46 (ii), let 0 < x1 < xo and ¢4 such that [x1,x2] C Bp ={x € [O,A],h?k(x) < =cy}, ny =
0

}

min{n € N;nc, > v}, o

= (x2 — x1)/3. We denote & the set of indices satisfying
Eo={j€lJrl; Nltj,7j+8'1=N'[r;,7;j+ &1 =n1, Nlt; + & ,7j01) =0}
Since V7 € [7j+x1 +&,7; + x21, A(f) < 0, then |A*(fo)l > 22521|&| and, with po = Py [j € S|,

320

Po[ut <] <P < 5 s

T] <Pg [[Eol < poT /2],

if zo <2po(x2 — x1)/3. Consequently, applying Hoeffding’s inequality with ¥; = 1 jeg, bid: B(po) for
je[Jr] with J7 > 2T /3Ey[AT], we obtain

2T/3]E() [AT] ] Tp%
Y < % < e OBolATi] < ZT*ﬁ.

T
Py [|so| < ’%] <Py

J=1

Consequently, Py [Q g N Qg] = o(T‘ﬁ), which terminates the proof of this lemma.

S9.2. Proof of Lemma A.4

Lemma S9.2 (Lemma A.4). For f € Fr and l € [K], let

1
Zi= f ) = A fo)ldt,
T
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where &1 is defined in (22) in Section 5.2. Under the assumptions of Theorem 3.2 and Case 1 of
Proposition 3.5, for My — oo such that Mt > M ~fkr with M > 0 and for any f € Fr such that
v = voll; <max(|voll; , €) with C > 0, there exists 1 € [K] such that on Qr,

E¢[Zy] = C(fo)llf = folly »

with C(fo) > 0 a constant that depends only on fy and ¢ = (¢ )x.

Similarly, under the assumptions of Case 2 of Proposition 3.5, for f € Fr and 6 € O, let ry =
(ks g = (D with 1) = g = 09 + 0, r{ = 10 = O + vie, V. If ||y = rol|, < max(liroll, €
with €’ > 0, then there exists | € [K] such that on Qr,

Ef [Z1]1> C'(fo)(llrg = rolly + I = holl),  C'(fo) > 0. (59.52)

Proof. In this proof, we will show that (S9.52) holds for all the models satisfying the assumptions of
Theorem 3.2 and Proposition 3.5, with r]? = ¢k(V2) and r]f = ¢x(vg) for all k. Then, excluding Case 2,

we use the fact that for any k, ¢;1 is fully known and L’-Lipshitz on Ji = ¢y (I;) with I defined in
Assumption 3.1 (which also holds for the ReLU link function by Assumption 2.2), to show that

Iy = roll + 1l = holly > 1/L'lv = volly + Ik — holl;
>min(1, 1/L")(lv = voll + Ik = holly) = min(L, 1/L)1If = foll; -

The proof of (S§9.52) is inspired by the proof of Lemma 4 in the supplementary material of Donnet,
Rivoirard and Rousseau (2020). The following computations are valid in all our estimation scenarios.
We recall that for any £, r;: = vy for the ReLU link (Case 1 of Proposition 3.5) and r]{ = Oy + vy for the
shifted ReL.U link (Case 2 of Proposition 3.5).

Let A > x> 0 and 1 > 0 such that

2,12 ins 0
<(A+x) nkK <l ming r;

and <

O 9
-7k 2 7o

(S9.53)

with C{) such that ||r7 — roll1 + |k — holl; < Cjy. Assume that for any 1 </" <K, Ir[’j - r?l <n(llry—rolls +
Il = holl) and let € [K] such that 3l — Al = maxp S Vo — b2, .
Then we have

2
nkK 0
Iry = rolli + lla = holl <(1 e +K);||hk1—hk,n1. (89.54)
For each k € [K], we define the event ) as

Q= {r]zla;{(Nk/[Tl,Tz) =0, N¥[r1,71 + x] =0, N¥[1] + x, 71 + x+ Al = 1, N¥[1) + x + A, 1)) =0}.
2

On Q, we have & = U&l) + A and thus,

A+U§')
Lo, f () = Al fo)lde|.

1

]Ef [Z11] = Z]Ef
k
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Let Q be the point process measure of a homogeneous Poisson process with unit intensity on R* and
equal to the null measure on [-A,0). Then

U§”+A
f L(Pa ) - ﬂﬁ(fo)l} ar,

1

Er[Zy] > Z]EQ
3

with £,(f) the likelihood process given by

! !
L,<f>=exp(1<r—2 f A(Hrdu+ )’ f 1ogu’;(f)>dN5].
k T k T

Forte [Tl,Uil) + A), since on Qp, 71 + x < Uil) <711+ A+ x, we have

!
Lih M (Nexp {— > f o (, (f))du} :
k/ T
Under condition (C2), since ¢p < Ay, YK/, with A = (Ay,...,Ag), we directly have that
L) > eKt/lIZ/(l)(f)e_(A+x)“A”1 > r/{e—lll\\ll ,
1

since at /l][‘](l) = r]’: = dr(vp).

1
Under condition (C1bis), using that ¢y, is L-Lipschitz, we have

A+ULD
Lz e 2 ORI (exp {_ 2 f ROTEAGE ((»)du}
1 k' T1

A+U

M
> e~ 2k o 0(A+U] ‘Tl)/llzl(l)(f) exp {—LZ ((A + Uﬁ” - TV + f
1 1

)
U(l) hkk/(u U] )du
1

|

+u

A
>e 2k B (0)(2A+x)ﬂ];](1)(f) exp {_LZ [(2A + X))V + f(l) hl-:k'(u - Uil))du]}
1 % U,

> ¢~ Zi w O0A), T o, {—L Z (@A +xyvie + Il )} -
k/

Moreover, since ||S *||; < 1, then Y(k, k) € [K]?, I, 1l < 1. Thus, we obtain

Li(f) > e~ T d0 02A+D) r]): o LK-LQA+0) Ty v

e~ 2w b (0)(24+x),0 )
k ,~LK=6ALmax(Cvoll)) . ¢
2 = C.

>
In the last inequality, we have used our assumption ||v — vp||; < max(||voll; ,C) which implies that

Z v < 2max(|voll; , C).
k/
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Moreover, we have that

ul+a y
E/[Zi]> C ) Eq|lg, fU |¢1(/1£(f))—¢1(/1f(fo))||dt}

(D)
k 1
C U}1)+A
k U

in all models except Case 2. In fact, in the latter case, we obtain

1 =)+ (g = (e = US| dr} :

U(1)+A

l 0 _ 0 0 M

Lo, L(l) O +vi=0 =v))+ (hi — b))t = U, )|dt
1

Ef[Zyl>C Z Eq
3

=C) Eq
k

uih+a
! 0 0 b
oy [ Jof = = e - U
1

On the one hand,

U§1>+A
Eq|lo, fU W = vld| = Al =10 <AL gi(v) = 51DIQEQ) = AL lr] — r{IQ(%)
1

K2
SALTE 2 3 e =,
k/

and in Case 2 we have

UP+a .
1o, f il — 1O\d
U

(1
1

Eq 1

K2
= Al = Q@ <ATT 2 Dl =yl
k/

On the other hand, by definition of Q, NK[71,71 + x + A] ~ Poisson(x + A). Consequently, with U a
random variable with uniform distribution on [7{ + x,T{ + x + A], we obtain

U+A
fU |(haa = B = U>|dr]

ds > QI — Kl

W
o, f |G = W)t = U dr| = QUVIE

()
Ul

Q T1+A+x A+s
_ Q) [ f Vg = K (¢ = s)dt
S

A T1+X

Eq

Moreover, we have
Q) > Q(rlglai(Nk,[‘r],‘rl +x+2A1 =0, N [r1, 11 + x] = O, N¥[r; + x, 71 + x+ Al = 1)
'#
= Q(I]‘?&])((Nk, [11,71 + X+ 24] = O0QWN [71, 71 + x] = 0)0QN [1) + x, 71 + x + Al = 1)
'#

= ¢ K=DEH24) o o pAe™ = .
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Using (S9.53) together with (S9.54), we obtain
Q , cc
E/ (21> Z Q) (uhkz Wl - AL 1’7 e h2,||1) > 5 3l = Wl
k

Cl
r 2(K +nK2/(1 - nK))’

> C(fo)lr = rolli +1lh = holl)),  C(fo) =

If there exists / € [K] such that Ir - rol = n(|r— f —rolli + Ik — holl;), we can use similar arguments
as in the proof of Lemma 4 of Donnet R1V01rard and Rousseau (2020):

Ey[Zul> Py [m,ng"[n T +A] = 0] x Alrf =19

and

T1+A

T1+A
Py |max N¥ri.Ti+ Al = O] =Eq [ Lt(f)]lmkaxNk[n,r1+A]=0dt] =Eq [f Al ]lmkaxN’f[n,rHA]:od’
71

71

> Aetlrslh e_KA,
so that

Ef[Z1] = C'(fo)lry — rolli + = holly),  C’(fo) = A2neAlroli/2=KA,

We can conclude that in all cases,

Ef [Z1] > min(C(fy), C"(fo))(Irf = rolli + 1k = holly),

and except in Case 2 of Proposition 3.5,

E/[Zy] > min(C(fo), C'(fo), 77» DIIf = foll; -

L”

S10. Additional results

In this section we recall some useful results on the regenerative properties of the nonlinear Hawkes
model, which are mainly straightforward extensions of Costa et al. (2020) to our multivariate and
general nonlinear setup. Besides, we recall the well-known Fuk-Nagaev’s inequality.

The first lemma is an extension of Theorem A.1 Costa et al. (2020) for a MX/GX /oo queue when
the arrival process is the superposition of K Poisson Point processes, corresponding to K types of
customers.

Lemma S10.1.  Consider a M¥X /GX oo queue with K types of customers that arrive according to a
Poisson process with rate r = (r1,. .., rx). Assume that for each k € [K], the generic service time H* for
a customer of type k satisfies for some y > 0 and for any t > 0:

P[H* > 1] = o(e™).

Let T the first time of return of the queue to zero.
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1. If|Irlly <7, then

yB
G ol
¥ —lirlh

P71 2 < |1+

[l

where B is the length of a busy period of the queue, i.e. B= 771 — V| with V| the arrival time of
the first customer.
2. Ify<|Irlly, then for any 0 < <y, P[T] = t] < ci(@)e™ ¥, with

E|[c8| }

Il —a |

cil)=11+

aTl| ¢ lIrlly aB

3 Ya<|rl; Ay, JE[e ] < L JE[e ] < +00.

Proof. In this situation, the arrival process of customers, regardless of their type, is a superposition
of K Poisson processes with individual rate ry, k € [K]. Consequently, it is equivalent to a Poisson
process with rate ||r]|; = Xx 7. Moreover, the generic service time H of a customer can be written as
H = Y 6xH*, with 6 = (Ox)kerk) @ one-hot vector indicating the type of customer. We can easily see
that

ry rg

0~Mult[1l, —,...,—
( lIrlh lIrlly

), H|6 ~ 0P,
with P the vector of service time distributions of the K types of customers. We note that the service
time H is independent of the arrival process. Consequently, for 7 > 0,

IP[H>t]=ZIP[Hk>t, 5 = 1]<ZIP[H’<>z]=o(e—W).
k k

We can therefore conclude that this queue is equivalent to a M/G/co queue with rate ||r||; and generic
service time satisfying P[H > t] = o(e™""). We can then apply Theorem A.1 in Costa et al. (2020) to
obtain the results. O

The next lemma is a direct multivariate extension of the results in Propositions 2.1 and 3.1 and
Lemma 3.2 of Costa et al. (2020). It introduces the mutually-exciting process dominating (in the sense
of measure) a nonlinear Hawkes process.

Lemma S10.2. Let Q be a K-dimensional Poisson point process on (0, +00) x (0, +00)X with unit
intensity. Let N be the Hawkes process with immigration rate v = (v1,...,vk), vr > 0, k € [K], inter-
action functions hy, : Ry - R, (k) € [K1? and initial measure Ny on [-A,0] driven by (Q)r=0 and
satisfying one condition of Lemma 2.1. N is the pathwise unique strong solution of the following system
of stochastic equations

NE= NS+ [0 1oop0-+00) W0 Loty @ (du, d6),
) :
Ay = (vie+ K, [ hulw = $)dNt), u>0, ke[K]

with 6(.) the Dirac delta function. Consider the similar equation for a point process N* in which hy is
replaced by h;;C for any I,k € [K]%. Then

1. there exists a pathwise unique strong solution N;
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2. the same holds for N* and N < N* a.s. in the sense of measures.

This also implies that, with At| defined similarly to Aty in (20) for the process N,
P|Ar <At}]=1.
Moreover, with T defined as in Lemma S10.1, we also have P [A‘rir = ‘7'1] =1.
Finally, the last proposition is the Fuk-Nagaev’s inequality.

Proposition S10.3. Ler (X;);>1 a sequence of independent and centered random variables with finite
variance and S, = 3| X;. Withv =} | V(X;), for any x > 0 and A > 0, it holds that

xA

P[S, > ] < Zn:IP[Xi > x] + exp{—x—l;h(j)},
=1

where h(u) = (1 +u)log(1 +u) —u, u>0.
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