
 

 

 

 
 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Présentée à l’Université Paris-Dauphine 

 

Réduction de dimension et estimation adaptative en 

présence de données fonctionnelles 

Présentation des travaux par 

Angelina Roche 
Le 13/02/2024 

Discipline 

Mathématiques 

appliquées  

Composition du jury : 

 

Vincent RIVOIRARD 

Université Paris-Dauphine   Coordinateur 
 

Hervé CARDOT 

Université de Bourgogne   Rapporteur 
 

Alexander GOLDENSHLUGER 

University of Haifa   Rapporteur 
 

Alexander MEISTER 

University of Rostock   Rapporteur 
 

Fabienne COMTE 

Université Paris Cité   Examinatrice 
 

Marc HOFFMANN 

Université Paris-Dauphine   Examinateur 
 

Nathalie VIALANEIX 

INRAe Toulouse     Examinatrice 
 

 

 





Remerciements

Le processus d’écriture de ce manuscrit d’Habilitation à Diriger des Recherches et celui de la
préparation de la soutenance associée n’ont pas été des plus faciles. Le plus difficile a été de sur-
monter une quantité importante de doutes de différentes natures et je souhaiterais donc remercier,
en premier lieu, tous ceux (et celles) qui n’ont pas semblé douter et qui m’ont donné l’énergie
d’aller au bout du processus. Mes premiers remerciements vont donc Vincent Rivoirard pour
avoir accepté de coordonner cette habilitation et également pour toutes les discussions que nous
avons eues depuis mon arrivée à Dauphine. Je souhaiterais remercier également Hervé Cardot,
Alexander Meister et Alexander Goldenshluger pour avoir accepté de rapporter ce manuscrit et
pour le temps que vous y avez consacré. Je remercie également Fabienne Comte, Marc Hoffmann
et Nathalie Vialaneix pour avoir accepté – avec enthousiasme il m’a semblé – de faire partie du
jury.

Mes remerciements vont également à l’ensemble des collègues avec qui j’ai eu la chance de
collaborer scientifiquement ces dernières années. En premier lieu à Gaëlle Chagny, pour toutes
nos discussions autant amicales que scientifiques et également à Giuseppe di Benedetto, Valère
Bitseki-Penda, Caroline Bérard, Fabienne Comte, Antoine Channarond, Van Hà Hoang, Olga
Mula, Judith Rousseau, Robin Ryder, Camille Sabbah, Giulia Sambataro, Ludovica Saccaro,
Mathilde Sautreuil et Nicolas Vergne. Merci à Franck Picard et à Vincent Rivoirard pour avoir
accepté de co-encadrer deux thèses avec moi ainsi qu’à Ryad Belakhem et à Nassim Bourarach
pour avoir accepté d’être encadré par nous et Anouar Meynaoui pour les discussions très en-
richissantes que nous avons eues pendant ton post-doctorat. Je souhaite remercier également
Victor Panaretos pour sa visite à Dauphine en février 2020 et pour son invitation à Lausanne
en 2022 et les discussions très riches que nous avons eues à ce moment-là. Et enfin mes derniers
remerciements scientifiques vont à Elodie Brunel et André Mas pour m’avoir proposé un sujet de
thèse sur des thématiques passionnantes et pour avoir guidé mes premiers pas dans la recherche.
Les discussions scientifique que j’ai eues avec vous tous et toutes m’ont considérablement fait
avancer et je vous remercie pour cela.

Je souhaite remercier également l’ensemble des collègues du Ceremade pour l’ambiance agréable
qui y règne et qui fait que l’on est content de venir travailler et notamment à César, Isabelle,
Anne-Laure, Gilles et Thomas pour le super travail qu’ils effectuent au quotidien.

Enfin, mes derniers remerciements (mais les plus importants) à ma petite famille : à Vincent,



avec qui je traverse l’aventure du quotidien depuis bientôt 20 ans et à nos petits ”reloops” Alexis
et Hugo, qui font du quotidien une aventure. Enfin, à ma grande famille, notamment à ma mère,
qui n’a pas hésité à faire le voyage depuis Montpellier pour écouter sa fille parler de statistique.

ii



Introduction

Scientific context

The work presented in this manuscript starts at the beginning of my Ph.D. in 2011 in Montpellier.
The subject of my thesis was in the field of functional data statistics, which is a branch of
statistics that studies data that can be modelled as random functions. The aim was to develop
an adaptive estimation procedure for the slope parameter in the functional linear model with
scalar output. The specificity of the approach compared to the previous works on the subject
was that the estimator was defined by projection onto a random basis, which is the basis of
Functional Principal Components. Another specificity was to consider a prediction risk, aligning
this work more closely with the field of statistical learning.

After these initial works, in collaboration with Gaëlle Chagny, we considered bandwidth
selection for kernel estimators for functional data, adapting to the functional framework the
work of Goldenshluger and Lepski (2011) which, at the time, was recent.

At the same time, I became interested in experimental design problems in functional spaces,
with the aim of optimizing a ”black box” function. This work, which is not detailed in this
habilitation thesis, was applied to a computational code in collaboration with Michel Marques
who at the time was an engineer at the French Atomic Energy Agency (CEA Cadarache).

In September 2014, I joined the University of Paris-Descartes (now University Paris-Cité)
as an ATER (Temporary Teaching and Research Assistant). With Fabienne Comte and Gaëlle
Chagny, we worked on the estimation of the hazard rate function in a multiplicative censoring
model. This work, in a new framework compared to my previous works, raised new questions,
in particular about the support of the estimators.

I then joined the Ceremade (University Paris-Dauphine) as an Assistant Professor in Septem-
ber 2015. During these eight years, while remaining within the framework of one or more of the
three themes above, I was able to diversify the approaches and frameworks considered. First, fol-
lowing my accidental participation in a working group on Group Lasso in Montpellier, I became
interested in variable selection problems in multivariate functional linear models (i.e., involving
multiple variables, at least one of which is infinite-dimensional).

We also formed a small working group in Rouen, consisting of Caroline Bérard, Gaëlle Chagny,
Antoine Channarond, and Nicolas Vergne, focusing on adaptive estimation issues for genomic
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data processing. This project benefited significantly from the important contribution of Mathilde
Sautreuil, who completed an M2 internship and an alternance contract funded by the Normandy
region, Van Hà Hoang, a postdoctoral researcher funded by the ANR Smiles project, and Florian
Lecocq, a research engineer. Hà, whose postdoctoral research was supervised by Gaëlle and
Antoine, worked, among other things, on adaptive estimation in a two-component mixture model
and the integration of the PCO method (Lacour et al., 2017) into an EM algorithm (work still in
progress). At the same time, Gaëlle and I continued to work together on several themes related
to adaptive estimation: particularly on the functional linear regression model with functional
output with Anouar Meynaoui, whom we co-supervised during his postdoctoral research (also
funded by the ANR Smiles), on the adaptive estimation of conditional quantiles with Camille
Sabbah, and on the adaptive estimation of density conditional on a functional variable.

In addition to these activities, I discovered with Judith Rousseau and Giuseppe di Benedetto
the challenging world of nonparametric Bayesian statistics. We started to work on a problem that
I did not know how to approach from a frequentist perspective at the time: adaptive estimation
in a functional single-index model. Building on recent work by Naulet and Rousseau (2017),
we were able to propose a prior distribution that achieves a posterior convergence rate that we
believe is minimax optimal (the proof of the lower bound is still in progress).

Furthermore, with Olga Mula and Robin Ryder, we created the Stat-Num working group at
Ceremade, at the interface between Statistics and Numerical Analysis. The scientific exchanges
related to this working group led to the Emergences M&M’s project (for Measures and Models)
funded by the city of Paris and led by Olga Mula. This allowed us to finance, among other
things, a project for the 2021 edition of Cemracs devoted to data assimilation and reduced
models in high-dimensional spaces. The results from this project are expected to be submitted
for publication soon.

Finally, in 2017, together with Franck Picard and Vincent Rivoirard, we started to work
on dimension reduction problems. Ryad Belhakem’s Ph.D. thesis, co-supervised by the three
of us, focused on minimax convergence rates in functional PCA when the data are discretised
and noisy, and on sparse estimation in multivariate functional PCA (Belhakem, 2022). He
defended his thesis in 2022 and continues his professional career. Since 2022, we have also had
the opportunity to supervise a new Ph.D. student, Nassim Bourarach. This collaboration also
took a new turn after the scientific visit of Victor Panaretos to Dauphine in early 2020, during
which we managed to define an explicit representation of a Karhunen-Loève-type decomposition
for point processes. The theoretical results and their application to real data are very promising
and open the door to numerous extensions and generalisations.

More recently, with André Mas, we have been working on defining an adaptive estimation
procedure in a functional AR(1) model. Considering a dependence framework for functional data
is quite natural. Indeed, many data sets studied in the literature, such as electricity consumption
data, are time series sampled at certain points in time (days, years, etc.). These data are usually
considered as independent, which can be difficult to verify when considering, for example, the
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electricity consumption on the day i and that on the day i+1. However, dealing with dependent
data poses significant challenges and requires specialized tools. This work echoes an earlier
collaboration with Valère Bitseki-Penda on adaptive estimation problems in branching Markov
chains. In both cases, one of the main challenges is to establish a sufficiently precise concentration
inequality for the empirical processes that need to be controlled.

List of publications and ongoing works

The initials in brackets refer to published and submitted works (in red [...]) and ongoing works
(in blue [...]).

Submitted Articles

[CMR]. Adaptive nonparametric estimation in the functional linear model with functional
output, with Gaëlle Chagny and Anouar Menaoui.

[BPRR]. Minimax estimation of Functional Principal Components from noisy discretized
functional data, with Ryad Belhakem, Franck Picard, and Vincent Rivoirard.

Published Articles

[RLasso]. Variable selection and estimation in multivariate functional linear regression via
the Lasso, Electronic Journal of Statistics, 17(2), 3357–3405.

[R22]. New perspectives in smoothing: minimax estimation of the mean and principal
components of discretized functional data. The Graduate Journal of Mathematics, Special
issue in Probability and Statistics, 7 (2), pp. 95 – 107 (2022).

[CCHR22]. Adaptive nonparametric estimation of a component density in a two-class
mixture model, Journal of Statistical Planning and Inference, 216, 51–69 (2022), with
Gaëlle Chagny, Antoine Channarond, and Van Hà Hoang.

[BR20]. Local bandwidth selection for kernel density estimation in bifurcating Markov
chain model, Journal of Nonparametric Statistics, 32(3), 535–562 (2020), with Valère
Bitseki-Penda.

[R18]. Local optimization of black-box functions with high or infinite-dimensional inputs.
Application to nuclear safety. Computational Statistics, 33(1), 467–485 (2018).

[CCR17]. Adaptive estimation of the hazard rate with multiplicative censoring. Journal of
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Outline

This manuscript is structured around three main themes: dimension reduction, which is the
subject of Chapter 1; minimax convergence rates in regression for functional data, which is
the topic of Chapter 2; and adaptive estimation for functional and dependent data, which is the
subject of Chapter 3. For reasons of thematic coherence, the progression is not chronological, and
some works appear in one or more chapters. Chapter 1 can be read independently of Chapters
2 and 3.

Chapter 1, dedicated to dimension reduction, bridges recent work from the theses of Ryad
Belhakem ([BPRR]) and Nassim Bourarach ([BPRR]), on minimax estimation of the functions
composing the functional PCA basis and associated eigenvalues in the presence of noise and
discretization. It also connects with earlier work done during my thesis ([BR15], [BMR16]) and
with the postdoctoral work of Anouar Meynaoui ([CMR]), where non-trivial results on the risk
of these functions had to be established. Additionally, it relates to recent ongoing work on PCA
for point processes ([PPRR]).

Chapter 2 focuses on regression models involving at least one functional variable and, in
particular, minimax convergence rates obtained in these models. The considered models include
functional linear regression models with scalar output ([BR15], [BMR16], [RLasso]) and func-
tional output [CMR], nonparametric models ([CR14], [CR16], [CR]), and the single-index model
([DRR]).

Finally, Chapter 3 focuses on adaptive estimation, with a particular emphasis on two aspects:
model selection in function spaces generated by the PCA basis ([BMR16], [CMR]) and bandwidth
selection for kernel estimators in the presence of functional ([CR14], [CR16], [CR]) and dependent
data ([BR20]).
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Chapter 1

Dimension reduction: from functional
data to point processes

Functional data can be defined as data that can be modeled as realisations of random variables
taking values in a function space. Thus, dimension reduction naturally plays a central role
in functional data statistics. Dimension reduction is usually performed by projection onto an
approximation space, which can be either fixed such as those spanned by Fourier, wavelets or
splines basis or random (data-driven). Among these, functional Principal Components Analysis
(fPCA), which is the generalisation of classical multivariate Principal Component Analysis to
functional spaces, plays a central role.

Let X be a random variable in a Hilbert space X equipped with a scalar product 〈·, ·〉X , and
m ∈ N∗. The best m-dimensional space SPCAm to project the data (in the mean squared sense)
is the one that minimizes the quantity

E[‖X −ΠSX‖2X ], (1.1)

among the m-dimensional subspaces S of X (the notation ΠS denotes the orthogonal projection
onto S). It is related to the diagonalization of the covariance operator

Γ : f ∈ X 7→ E[〈f,X − E[X]〉X (X − E[X])],

in the sense that
SPCAm = span{ψ1, . . . , ψm},

where ψ1, . . . , ψm are eigenfunctions of Γ associated to the m largest eigenvalues (counted with
multiplicity).

For simplicity, we assume that X is centered (i.e. E[X] = 0) and that each eigenvalue of
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CHAPTER 1. DIMENSION REDUCTION: FROM FUNCTIONAL DATA TO POINT
PROCESSES

Γ is of multiplicity 1 (i.e. for all eigenvalue λj of Γ, dim(Ker(Γ − λjI)) = 1)1. We denote
by (ψj , λj)j≥1 the eigenfunctions/eigenvalues sequence of Γ (sorted such that (λj)j≥1 is a non-
increasing sequence).

In the case of second-order periodic stationary processes, which has been studied by Comte
and Johannes (2010) and in [BR15] under the name of circular functional data, the eigenfunc-
tions (ψj)j≥1 of Γ are known and coïncides with the Fourier basis. This case aside, when the
distribution of the process X is unknown, the eigenfunctions of the operator Γ are also unknown
but can be estimated.

Section 1.1 is devoted to the theoretical study of the estimators of the ψj ’s and λj ’s in
the case of noisy and discretized functional data in subsection 1.1.1, and in the case where
the data are fully observed with perturbation theory tools in subsection 1.1.2. An extension
to the case of point processes is presented in Section 1.2. Finally, in Section 1.3, we consider
integrating in a statistical analysis the Reduced Order Modeling (ROM) method, developed by
numerical analysts to obtain credible intervals for prediction of time-series solutions of a system
of differential equations.

1.1 Functional Principal Components Analysis

Estimators of the eigenfunctions/eigenvalues sequence (ψ̂j , λ̂j)j≥1 are usually obtained by di-
agonalizing an estimator of the covariance operator Γ. The aim is then to obtain theoretical
guarantees that these estimators are convergent and that their convergence rates are optimal in
a certain sense.

1.1.1 Minimax rate of estimation for noisy and discretized functional data

First, let us assume that we are observing the functional data on a regular grid and that they are
(possibly) corrupted by noise. Then the first step is to construct an estimator of the covariance
operator Γ from the observations {Zi(th), i = 1, . . . , n;h = 0, . . . , p− 1}, with th = h/(p− 1) and

Zi(th) = Xi(th) + εi,h,

with {εi,h}i=1,...,n;h=0,...,p−1 ∼i.i.d. N (0, σ2) and X1, . . . , Xn a n-sample of random continuous
functions (here X = C0([0, 1]), and 〈f, g〉X =

∫ 1

0
f(t)g(t)dt).

In this model, the empirical covariance operator

Γ̂ : f 7→ 1

n

n∑
i=1

〈Xi, f〉XXi

is not an estimator of Γ, since the Xi’s are not observed. To define an estimator of Γ, we choose
1The case where there exists eigenvalues with multiplicity strictly larger than one is discussed in Hsing and

Eubank (2015, p. 131)
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1.1. FUNCTIONAL PRINCIPAL COMPONENTS ANALYSIS

to first reconstruct the Xi’s on an orthonormal system of functions {ϕ1, . . . , ϕm} as follows

X̃i(t) =

m∑
j=1

˜〈Xi, ϕj〉ϕj(t),

where ˜〈Xi, ϕj〉 = 1
p

∑p−1
h=0 Zi(th)ϕj(th) is an estimation of 〈Xi, ϕj〉. Once the Xi’s are recon-

structed, we get an estimator of the covariance kernel K(s, t) = E[X(s)X(t)], s, t ∈ [0, 1],

K̂m(s, t) :=
1

n

n∑
i=1

X̃i(t)X̃i(s) and Γ̂m : f 7→
∫ 1

0

K̂m(s, t)f(t)dt,

the associated estimator of Γ. With the estimator Γ̂m, we obtain easily estimators of the eigen-
functions/eigenvalues (ψj , λj)j≥1 of Γ by taking the eigenvalues/eigenfunctions (ψ̂

(m)
j , λ̂

(m)
j )j≥1

of Γ̂m, sorted such that (λ̂
(m)
j )j≥1 is a non-increasing sequence .

Remark. The computation of these estimators is quite easy for projection estimators. Indeed,
Γ̂m is uniquely represented by the matrix Gm =

(
〈Γ̂mϕj , ϕk〉

)
1≤j,k≤m

, the eigenvector v
(m)
j :=(

v
(m)
1,j , . . . , v

(m)
m,j

)t
associated to the j-th largest eigenvalue of Gm gives us directly the j-th eigen-

function of Γ̂ by the formula ψ̂(m)
j (t) =

∑m
k=1 v

(m)
k,j ϕk(t), t ∈ [0, 1].

We assume the following regularity assumption for the functional data X,

E[(X(t)−X(s))2] ≤ L|t− s|2γ , t, s ∈ [0, 1], (1.2)

where γ ∈ (0, 1] and L > 0. This assumption is equivalent to assuming that the covariance kernel
K is a bivariate γ-Hölder-continuous function. It is also linked with the regularity of the ψj ’s
and the decreasing rate of the eigenvalues. For instance, assuming that for all j such that λj > 0,
ψj is γ-Hölder continuous, the Karhunen-Loève theorem implies that

E[(X(t)−X(s))2] =
∑
j≥1

λj(ψj(t)− ψj(s))
2 ≤

∑
j≥1

λj‖ψj‖γ |t− s|2γ , t, s ∈ [0, 1].

Hence, (1.2) is verified if
∑
j≥1 λj‖ψj‖γ < +∞. The Brownian motion and Brownian bridge

satisfy (1.2) with γ = 1/2 and L = 1, fractional Brownian motion with Hurst exponent H and
Hurst index L with γ = H.

We prove in [BPRR] the following result on the minimax rates for the estimation of the first
eigenfunction.

Theorem 1 ([BPRR]). Let, for γ ∈ (0, 1], L > 0, Rγ(L) the set of all distribution functions on X
verifying (1.2).
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Lower bound Assume that rk(Γ) ≥ 2 then there exists a quantity c(σ) > 0 such that

inf
ψ̂1

sup
PX∈Rγ(L)

E[‖ψ̂1 − sign(〈ψ̂1, ψ1〉)ψ1‖2] ≥ c(σ)
(
p−2γ + n−1

)
,

where the infimum is taken over all estimators calculated from the observations {Yi(th), i =
1, . . . , n;h = 0, . . . , p− 1}.

Upper bound Assume that there exists C4 > 0 such that

E

(p−1∑
h=0

X(th)vh

)4
 ≤ C4E

(p−1∑
h=0

X(th)vh

)2
2

, v = (v0, . . . , vp−1)
t ∈ Rp.

Then, there exists two quantities B(L,K, γ) > 0 and V (K,σ,C4) > 0 such that for all
j ≥ 1,

inf
ψ̂j

sup
PX∈Rγ(L)

E[‖ψ̂j − sign(〈ψ̂j , ψj〉)ψj‖2] ≤ 8δ−1
j

(
B(L,K, α)

p2γ
+
σ4

p2
+
V (K,σ,C4)

n

)
,

with δ1 = λ1 − λ2, and for any j ≥ 2, δj = min(λj − λj+1, λj−1 − λj) is the gap between
two consecutive eigenvalues (spectral gap)

Key steps of the proof. To prove the lower-bound, we first prove separately that

inf
ψ̂1

sup
PX∈Rγ(L)

E[‖ψ̂1 − sign(〈ψ̂1, ψ1〉)ψ1‖2] ≥ cn−1, (1.3)

and
inf
ψ̂1

sup
PX∈Rγ(L)

E[‖ψ̂1 − sign(〈ψ̂1, ψ1〉)ψ1‖2] ≥ c′p−2γ . (1.4)

Inequality (1.3) comes from the properties of the Fourier basis that allows us to construct two
functions ψ1,A and ψ1,B such that ‖ψ1,A‖ = ‖ψ1,B‖ = 1 and ‖ψ1,A − ψ1,B‖ � n−1 and generate
from it two samples {Y Ai (th), i = 1, . . . , n;h = 0, . . . , p−1} ∼ P⊗n

A and {Y Bi (th), i = 1, . . . , n;h =

0, . . . , p − 1} ∼ P⊗n
B such that the Kullback-Leibler divergence of P⊗n

B with P⊗n
A is uniformly

bounded. For (1.4), we use Assouad’s Lemma and follows the general scheme described in
Tsybakov (2009). The models we define consists in adding some perturbations of the function
ψ1,0 = 1[0,1] around each grid point th. This allows us to define functions ψ1,ω such that
ψ1,ω(th) = ψ1,0(th) for all h and ‖ψ1,ω − ψ1,ω′‖ ≥ p−γ for all ω 6= ω′. Then the functions are at
distance p−γ but generate the same distribution of the observations.

The upper-bound is attained by an histogram estimator with m = p bins i.e.

ϕm = p−1/21[th;th+1), h = 0, . . . , p− 1.

The proof of the upper-bound relies on inequalities proven in Bosq (2000) that give an upper-

4
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bound on the distance between the eigenfunctions of two operators by controlling the distance,
in operator norm, of these two operators. Remark that the key argument for which the lower
and upper-bounds match is that γ ≤ 1, which implies that σ2

p2 . B(L,k,α)
p2γ .

We also obtained a result in probability and an upper-bound on the estimation risk of the
eigenvalues.

The fact that the minimax rate is obtained without any regularization or smoothing, even
when the noise variance σ2 is non null, is quite surprising, especially in the field of functional
data, where smoothing is a common practice, but also from a non-parametric statistics point of
view, since we are used to regularizing estimators. The obtention of similar results in the case
γ > 1 – that is to say, to processes X that are bγc-times differentiable such that

E
[(
X(bγc)(t)−X(bγc)(s)

)2]
≤ L|t− s|γ−bγc

– is an open question and is now under investigation by Nassim Bourarach who started his
PhD in October 2022 under the co-supervision of Franck Picard, Vincent Rivoirard and myself.
Nassim has also obtained results for the lower bound on the estimation of the eigenvalues and
inconsistency results for the estimation of eigenfunctions in the case where the spectral radius of
Γ can be taken arbitrarily small.

Similar rates are obtained for the estimation of the mean of functional data by Cai and Yuan
(2011).

It is noteworthy that the fact that the grid {t0, . . . , tp−1} is fixed and not random is cru-
cial. In the case where the grid is random, the convergence rates are completely different and
regularization is required to achieve optimal rates (see [R22] and references therein).

1.1.2 Perturbation theory [BMR16] [CMR]

In the example of functional principal components regression that we studied in [BMR16], the
aim is to estimate the slope function β∗ from observations {(Xi, Yi), i = 1, . . . , n} which are i.i.d.
copies of a couple of random variables (X,Y ) ∈ X × R, such that

Y = 〈β∗, X〉X + ε,

with ε a centered noise, independent of X. In this subsection, we consider the ideal case where
we observe Xi(t) for all t ∈ [0, 1]. In that case, the empirical covariance operator Γ̂ is calculable
from the observations and our estimators (ψ̂j , λ̂j)j≥1 are the eigenfunctions/eigenvalues of Γ̂.

Let
ŜPCAm = span{ψ̂1, . . . , ψ̂m}

the space spanned by the m-first elements of the fPCA basis that we use as an approximation

5
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space. The risk, in prediction norm ‖ · ‖Γ = ‖Γ1/2 · ‖, of the least squares estimator

β̂m∈argminβ∈ŜPCA
m

1

n

n∑
i=1

(Yi − 〈β,Xi〉X )
2
,

can be decomposed as follows

‖β̂m − β∗‖2Γ = ‖ΠŜPCA
m

β∗ − β∗‖2Γ + ‖β̂m −ΠŜPCA
m

β∗‖2Γ

≤
(
‖ΠŜPCA

m
β∗ −ΠSPCA

m
β∗‖Γ + ‖ΠSPCA

m
β∗ − β∗‖Γ

)2
+ ‖β̂m −ΠŜPCA

m
β∗‖2Γ.

The term ‖ΠSPCA
m

β∗ − β∗‖2Γ can be seen as a bias term and, if

β∗ ∈ Eb(R) =

β ∈ X ,
∑
j≥1

j2b〈β, ψj〉2 ≤ R2


then we have easily

‖ΠSPCA
m

β∗ − β∗‖Γ =
∑
j>m

λj〈β∗, ψj〉2 ≤ m−2b
∑
j>m

λjj
2b〈β∗, ψj〉2 . λmm

−2b.

The last term ‖β̂m − ΠŜPCA
m

β∗‖2Γ can be seen as a variance term and is (under mild assump-
tions) of order m/n. Then the residual term ‖ΠŜPCA

m
β∗ − ΠSPCA

m
β∗‖Γ that takes into ac-

count the randomness of the fPCA basis should be negligible with respect to the optimal risk
minm≥1{λmm−2b +m/n}. We use tools from perturbation theory that allows us to prove the
following result.

Lemma 2 (Lemma 15 of [BMR16]). If λj � j−2γ for γ > 0 and β∗ ∈ Eb(R), under some sub-
gaussianity assumption of the scores ξj = 〈X,ψj〉/

√
λj ,

E[‖ΠSPCA
m

β∗ −ΠŜPCA
m

β∗‖2Γ] ≤ C1
ln3(m)

n
mmax{(1−2b)+,2(1−γ−b)} +C2

ln9(n)

n2
m(4+2(γ−b)+−4γ)++2.

Idea of proof. The idea is to write the projector in the form of an integral on a complex path
γ. We consider for instance the contour γ = ∪mj=1Cj where Cj is the circle of the complex plane
centered at the eigenvalue λj of radius δj/2 (recall that δj = min{λj − λj+1;λj−1 − λj} is the
difference between two consecutive eigenvalues) represented in Fig. 1.1.

First recall that the index of a complex number z with respect to a closed path γ (with
z 6= γ(t), for all t) writes

Indγ(z) =
1

2iπ

∫
γ

dζ

ζ − z
,

and that, for a simple contour like γ, Indγ(z) = 1 if z is inside one of the circle Cj for j ≤ m

and 0 otherwise (see Theorem 10.11 p. 204 of Rudin 1966). By definition of the projector Πm,

6
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0 λm · · · λ2 λ1

δm δ2 δ1

Figure 1.1: Contour made of disjoint circles

for all j ≥ 1, and using the definition of integrals of continuous functions

ΠSPCA
m

ψj = 1{j≤m}ψj =
1

2iπ

∫
γ

dz

z − λj
ψj =

1

2iπ

∫
γ

1

z − λj
ψjdz =

1

2iπ

∫
γ

(zI−Γ)−1ψjdz, j ≥ 1,

meaning that2,
ΠSPCA

m
=

1

2iπ

∫
γ

(zI − Γ)−1dz.

Moreover, it can be proved that, under an assumption of sub-gaussianity of the coefficients
〈X,ψj〉, with large probability, |λ̂j − λj | < δj , for all j = 1, . . . ,m (if m is not too large, but for
instance m ≤ n works, see Lemmas 11 p. 223 and 13 p. 224 of [BMR16]). Hence we also have

ΠŜPCA
m

=
1

2iπ

∫
γ

(zI − Γ̂)−1dz.

This leads to the following equality (see Theorem 5.1.4 of Hsing and Eubank 2015 for a precise
statement), true with large probability

ΠSPCA
m

−ΠŜPCA
m

=

m∑
j=1

∑
k 6=j

1

λk − λj

(
πj(Γ̂− Γ)πk + πk(Γ̂− Γ)πj

)
+

1

2iπ

∫
γ

R(z)

∞∑
k=2

(−(Γ̂− Γ)R(z))kdz,

(1.5)

with πj(·) = 〈·, ψj〉ψj the orthogonal projector onto span(ψj) and R(z) = (Γ − zI)−1 is the
resolvent operator of Γ. This formula explicitly expresses the difference between the two operators
ΠSm and ΠŜm

as a function of Γ̂−Γ, which can be controlled with classical tools such as TCL and
Bernstein type inequalities, since Γ̂ is a moment estimator. The first term gives the exact order
of the difference and the last term can be proven (sometimes under some additional assumptions)
to be negligible.

Hence this residual term due to the randomness of the basis is negligible compared to the

2The integral below is well defined (see Rudin 1966, Definition 3.26).

7

https://www.sciencedirect.com/science/article/pii/S0047259X15002225


CHAPTER 1. DIMENSION REDUCTION: FROM FUNCTIONAL DATA TO POINT
PROCESSES

variance term of order m/n since γ + b > 1/2. Remark that the upper-bound does not depend
on the spectral gap δm which is crucial here since it can be very large (for instance, if λj = j−2γ ,
δ−1
j � j2γ+1). Finally, this allows us to prove that the estimator β̂m∗ achieves the minimax rates

described in Table 2.1, p. 23 with appropriate choices of m∗.

1.2 Principal Components Analysis for Point Processes [PPRR]

Another open question is on which objects exactly PCA may be extended. The natural framework
to consider PCA is Hilbert spaces, as the Hilbert structure links the optimization problem (1.1)
to the diagonalisation of the covariance operator and leads naturally to the series expansion

X =
∑
j≥1

√
λjξjψj , (1.6)

with the convergence lying in an L2-sense. Now, for functional data, as a second step, with an
additional assumption that the paths of X are mean-square continuous, the Karhunen-Loève
theorem (see e.g. Theorem 7.3.5, p. 188 in Hsing and Eubank 2015) states that the conver-
gence (1.6) holds uniformly that is to say the sequence ΠSPCA

m
X =

∑m
j=1

√
λjξjψj also converges,

when m→ ∞, in the Banach space C0([0, 1]) equipped with the norm ‖ · ‖∞.
We study the problem of extending these results to point processes that are seen as random

measures. Carrizo Vergara (2022) proves series expansions of the form (1.6) for signed random
measures in Rd by using the fact that the space of finite random signed measure in Rd can
be injected in the Hilbert space L2(Rd) via the transformation µ 7→ Fµ where Fµ(t1, . . . , td) =
µ([0, t1] × . . . × [0, td]). The questions that we intend to answer are the following. First we
want to obtain a constructive version of the series expansion of Carrizo Vergara (2022) that
allows us to define estimators. Second, we aim at obtaining explicit decomposition for some
well-known distributions of point processes (Poisson process and Hawkes processes) and third we
aim at obtaining equivalent of Mercer and Karhunen-Loève theorem for the associated random
measures (with uniform convergence when it is possible).

Assume we observe n i.i.d. point processes N1, . . . , Nn ∼i.i.d. N . We associate to a process
N = {t1, . . . , t|N |} a random measure on ([0, 1],B([0, 1])),

Π(A) =

|N |∑
j=1

1{tj∈A} = |A ∩N |, A ∈ B([0, 1]), i = 1, . . . , n.

It is natural to define the intensity measure

Λ(A) = E[Π(A)], A ∈ B([0, 1]),

which can be seen as a moment of order 1 and we aim at characterizing, as we do naturally for
functional data, the variation of each measure Πi around its mean Λ or, written differently, the

8
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variations of
∆i = Πi − Λ.

∆1, . . . ,∆n is, by definition, a sample a random signed measures. We define the associated
covariance measure,

C∆(A×B) = Cov(∆(A),∆(B)), A,B ∈ B([0, 1]),

which defines a measure on the product σ-field B([0, 1])⊗B([0, 1]) and can be seen as a moment
of order 2 of Π.

We define a kernel associated to the measure C∆ as follows

K∆(s, t) = C∆([0, s]× [0, t]), s, t ∈ [0, 1],

and diagonalize the integral operator associated to C∆,

Γ∆ : f 7→
∫ 1

0

K∆(·, t)f(t)dt.

The associated eigenfunctions/eigenvalues sequence is denoted by (ηj , λj)j≥1. It can be proved
that the function ηj is a function with bounded variations for all j such that λj > 0. Hence, its
derivative, in the distribution sense, is a measure that we denote by µj . We obtain the following
results.

Theorem 3 ([PPRR]). Assume E[Π2([0, 1])] < +∞ and thatK∆ is a continuous bivariate function.

1. For all function ϕ : [0, 1]2 → R of class C2 and with support in (0, 1)2,

m∑
j=1

λj〈µj ⊗ µj , ϕ〉 −−−−−→
m→+∞

〈C∆, ϕ〉,

where, for a measure µ and a function ϕ, we note 〈µ, ϕ〉 =
∫
ϕdµ and µj⊗µj is the product

measure of µj and µj .

2. Moreover, if

sup
m≥1

∥∥∥∥∥∥
m∑
j=1

λjµj ⊗ µj

∥∥∥∥∥∥
TV

< +∞,

then we have the uniformity result

lim
m→∞

sup
ϕ∈C0([0,1]2),‖ϕ‖α≤L

∣∣∣∣∣∣
〈
C∆ −

m∑
j=1

λjµj ⊗ µj , ϕ

〉∣∣∣∣∣∣ = 0.
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3. If, in addition, t 7→ Λ([0, t]) is a continuous function on [0, 1],

lim
m→∞

sup
ϕ∈C1(0,1),‖ϕ′‖≤1,ϕ(1)=0

E


〈Π1, ϕ〉 −

m∑
j=1

√
λjξj〈µj , ϕ〉

2
 = 0.

Idea of proof. The key of the proof is to apply Mercer’s theorem on the kernel K∆ to obtain 1.
and Karhunen-Loève theorem to obtain 3. The uniform result 2. relies on the properties of the
total variation distance of a measure as the dual norm on the space of continuous functions C0
equipped with the uniform norm ‖ · ‖∞

‖µ‖TV = sup
ϕ∈C0,‖ϕ‖∞≤1

〈µ, ϕ〉.

We also consider a regularizing sequence to deduce the uniform convergence result 2. from the
weak convergence result 1.

Theorem 3 can be considered as an extension of the Karhunen-Loève Theorem and Mercer’s
Theorem to point processes.

Now the following question that we intend to answer is if it is possible to obtain explicit
Karhunen-Loève decomposition for some examples of point processes. We considered the follow-
ing examples.

Homogeneous Poisson process The kernel associated to the homogeneous Poisson process of in-
tensity w,

K∆(s, t) = wmin{s, t}

coincides with the one of the Brownian motion with variance w. Hence the Karhunen-Loève
decomposition can be derived directly from the one of the Brownian motion and we get

Π([0, t]) = wt+
∑
j≥1

√
λjξjηj(t), t ∈ [0, 1],

where
λj =

w

(jπ − π/2)2
and ηj(t) =

√
2 sin(π(2j − 1)t/2),

and the scores ξj can be written

ξj =
√
2
∑
X∈N

cos

(
π(2j − 1)X

2

)
+ (−1)j

√
λj .

In other words, for a borelian set A, Π(A) is, up to the multiplicative constant w, equal
to the Lebesgue measure of A plus a random perturbation that can be written explicitly.
Note that, unlike the Brownian motion, the distribution of the scores is not Gaussian and

10



1.2. PRINCIPAL COMPONENTS ANALYSIS FOR POINT PROCESSES [PPRR]

(a) (b) (c)

0 2 4 6

−
15

−
10

−
5

0
5

10
15

ξj

ξ k

−20 −10 0 10 20 30

−
40

−
20

0
20

40

ξj

ξ k

−40 −20 0 20 40

−
60

−
40

−
20

0
20

40
60

ξj

ξ k

Figure 1.2: Sample of scores (ξj , ξk) (axis j versus axis k) of homogeneous Poisson processes.
(a) j = 1, k = 2; (b) j = 3, k = 4; (c) j = 5, k = 6.

has a particular structure as represented in Figure 1.2.

Inhomogeneous Poisson processes This case is more intricate and, unless the particular case of
the homogeneous process considered previously, the eigenfunctions (ηj)j≥1 and eigenvalues
(λj)j≥1 appearing in the Karhunen-Loève decomposition are not explicit. However, we
have established that they are solutions of some second-order differential equations which
allows us to derive some properties.

Proposition 4. Let Π be an inhomogeneous Poisson process whose intensity t 7→ w(t) is
positive on (0, 1) and verifies

∫ 1

0
w(t)dt < +∞.

1. (λj , ηj)j≥1 are the eigenelements of the operator Γ∆ iff (λj , Fj)j≥1 with Fj(t) =∫ 1

t
ηj(t)dt are solutions of{

−λy′′(t) = w(t)y(t), t ∈ (0, 1)

y(1) = 0, y′(0) = 0.
(1.7)

2. The eigenvalues λj are all distinct and verifies

λj ∼j→+∞

(∫ 1

0
w1/2(t)dt

)2
π2j2

.

3. The function Fj has exactly j − 1 zeros on (0, 1).

Idea of proof. 1. comes by differentiation of the equation λjηj = Γ∆ηj . 2. and 3. are
obtained by identifying Eq. (1.7) with a Sturm-Liouville problem (Zettl, 2005).

Remark. The case of the homogeneous process corresponds to the case where w is a constant
function on [0, 1]. In that case,the differential equation (1.7) can be solved explicitly and
we obtain the expected solution (λj , ηj)j≥1 written above.
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Figure 1.3: Plot of
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Figure 1.4: Plot of η̂j , j = 1, . . . , 8 for Model 1

On simulated data, we observe the behavior predicted by the theory for two different
choices of the function w (model 1: w(t) = e−t and model 2 : w(t) = t). Fig. 1.3 and
Fig. 1.4 illustrate the behavior of the eigenfunctions/eigenvalues sequences. Note that,
unintentionally, we also obtain a method for approximating the solutions of the differential
equation (1.7) from the simulation of Poisson processes and the approximation of the
associated eigenfunctions/eigenvalues.

Hawkes processes Hawkes processes are particular classes of point processes that allows the pos-
sibility of self-excitation of the process. They are used to model for instance neuronal spikes
or earthquakes. The intensity function of a univariate Hawkes process can be written

w(t) = w0 +
∑

X∈N,X≤t

h(t−X),
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Figure 1.5: Plot of η̂j , j = 1, . . . , 8 for Model 2

with w0 > 0 the baseline intensity and h : R+ → R+ an exciting function. We obtain
some results in the particular case of an intensity function of the form h(t) = h0e

−h̃t. The
existence of a stationary process is ensured under the condition

∫ +∞
0

h(t)dt < 1 meaning
that 0 < h0 < h̃ (see e.g. Daley and Vere-Jones 2008, Example 12.5(c)). In the case of
Hawkes processes, the eigenvalues/eigenfunctions sequence are obtained by solving a per-
turbed version of the differential equation associated to the homogeneous Poisson process.
Under a condition on the parameters of the process, the following proposition allows us to
establish that the eigenvalues and eigenfunctions have a behavior very similar to that of
the homogeneous Poisson process.

Proposition 5. Let Π be a stationary Hawkes process whose intensity is h(t) = h0e
−h̃t with

0 < h0 < h̃.

1. Then, (λj , ηj)j≥1 are the eigenelements of the operator Γ∆ iff (λj , Fj)j≥1 with Fj(t) =∫ 1

t
ηj(t)dt are solutions of

{
−λy′′(t) = wy(t) + h0w(2h̃−h0)

2(h̃−h0)

∫ 1

0
e−(h̃−h0)|t−s|y(s)ds, t ∈ (0, 1)

y(1) = 0, y′(0) = 0,
(1.8)

where w = w0h̃(h̃− h0)
−1.

2. Under the condition h0(2h̃− h0)(h̃− h0)
−1(2 + 3(h̃− h0)

−1) < 1:

• there exists a sequence (λj)j≥1 of positive real numbers and an orthonormal basis
(ηj)j≥1 of L2([0, 1]) such that

λj =
w

(jπ − π/2)2
+O(j−4)

13
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Figure 1.6: Plot of (ξ̂i1,Card(Ni)))i=1,...,n.

sup
t∈[0,1]

|ηj(t)−
√
2 sin(π(2j − 1)t/2)| ≤ Cj−1.

From a numerical point of view, the calculation of the estimator follows the same guidelines
as the one explained in the remark of p. 3. The difference lies in the histogram basis which
is here adapted to the grid of observation. The method we developed allows us to estimate
the eigenfunctions/eigenvalues sequence at rate n−1 without regularization nor smoothing. The
main key tool for the proof are the inequalities of Bosq (2000) as in [BPRR].

We implement it on a Turkey earthquakes dataset obtained from the website http://www.
koeri.boun.edu.tr/sismo/2/earthquake-catalog/ set up by the Kandilli Observatory and
Earthquakes Research Institute of the Boğaziçi University. Each point process Ni represents the
occurrences of earthquakes at a given location i ∈ {1, . . . , n} (n = 2063).

We plot in Figure 1.7 the estimated values of ηj for j = 1, 2, 3. We can see that the sign of
η̂1 is constant. The first axis is strongly positively correlated with the total number of points
Πi([0, T ]) (with [0, T ] the time window of observation): the correlation with the scores on axis 1
(ξ̂i1)i=1,...,n and (Πi([0, T ])i=1,...,n is 0.994. This strong link is illustrated in Figure 1.6.

The value of λ̂1 = 2.66×1010 represents 97.6% of the variability (meaning that λ̂1/(
∑
j≥1 λ̂j) =

0.976). Despite the important weight of this axis 1, we still choose to analyze axes 2 and 3 and
we find a particular structure. First, we remark that η̂2 is approximately constant before July
20, 2017, then negative between July 20, 2017 and October 30, 2020, then positive. Then, from
what is explained below we can deduce that, if ξi,2 > 0, the process Πi has a tendency to have
less points (compared to the mean) between the July 20, 2017 and October 30, 2020 and more
points (still compared to the mean) after October 30, 2020. And, on the contrary, if ξi,2 < 0

the process Πi has a tendency to have more points (compared to the mean) between the July
20, 2017 and October 30, 2020 and less points (still compared to the mean) after October 30,
2020. The third eigenfunction η̂3 has a different behavior, but still shows brutal changes at the
same moments in time (corresponding approximately to the 20th of July, 2017 and the 30th
of October, 2020). From its signs and variations we can deduce that if ξi,3 > 0, the process
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Figure 1.7: Plot of η̂j , for j = 1, 2, 3 for the Earthquakes dataset.
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Earthquake. Right: PCA scores (ξ̂i,2, ξ̂i,3)i=1,...,n on axis 2 (1.40% or variability) and axis 3
(0.68% of variability).

Πi has a tendency to be more and more active from the beginning of the time window to July
20, 2017 then less active than the mean then more and more active before October 30, 2020.
These two dates corresponds to two major events in the seismic activity of the area: the 2020
Aegean Sea earthquake, with a moment magnitude of 7.0 (the largest magnitude over the period
of observation) and the 2017 July 20 6.6 Bodrum–Kos earthquake (Karasözen et al., 2018).

The scores plotted in Figure 1.8 (Left) allow us to detect three groups of locations whose
earthquakes have behaviors consistent with our analysis of η̂2 and η̂3 as can be seen on Figure 1.8
(Right).

This approach thus allows us to detect locations with remarkable or atypical behavior in our
sample.

1.3 Reduced Order Models [MRRSS]

This project is at the interface between numerical analysis, functional data statistics and Bayesian
statistics. We aim at obtaining credible intervals for prediction of infected, recovered or dead
people obtained by a Reduced Order Model approach in the work of Bakhta et al. (2021).

The prediction is based on classical simple SIR model where the number of people who are
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susceptible of being infected S(t), recovered or dead R(t) and infected I(t) at time t, follows the
following dynamics :

S′(t) = −β(t)I(t)S(t)

I ′(t) = −S′(t)− γ(t)I(t) (1.9)

R′(t) = γ(t)I(t),

with β, γ ∈ L∞([0, T ]) are functional parameters and constant population size N = S(t)+ I(t)+

R(t). The model with constant coefficients β(t) ≡ β, γ(t) ≡ γ is a basic epidemiology model that
has a lot of variants. The novelty of the approach of Bakhta et al. (2021) is to let the coefficients
vary over time that allows the model to fit all possible observations I, R, S as soon as S and
I are both differentiable and positive. Indeed, let S and I be differentiable positive functions,
then (S, I,R) follows the SIR model (1.9) with coefficients :

β∗(t) = − S′(t)

I(t)S(t)
and γ∗(t) = − 1

I(t)
(I ′(t)− β∗(t)I(t)S(t)) . (1.10)

Then there is a correspondance between (S, I,R) and (β, γ) and denote by Sβ,γ , Iβ,γ , Rβ,γ a
solution of (1.9) with coefficients (β, γ).

The problem of interest is the prediction of the future of the series (I(t), R(t), S(t)) on an
interval (T, T + τ) with τ > 0 from the observations of (I(t), R(t), S(t)) on [0, T ]. This problem
is equivalent to estimating (β(t), γ(t)) on (T, T + τ) from the observations of (I(t), R(t), S(t)) on
[0, T ].

However, the space L∞([0, T +τ)) is too large and without constraint, the statistical problem
of finding (β(t), γ(t)) ∈ L∞([0, T + τ))2 given the observation of (S(t), I(t), R(t)) for t ∈ [0, T ] is
not identifiable. The method of Bakhta et al. (2021) consists in finding finite dimensional subsets
Sβm = (ϕβ1 , . . . , ϕ

β
m) and Sγm = (ϕγ1 , . . . , ϕ

γ
m) of L∞([0, T + τ ]) and minimizes the least squares

contrast

(β∗
m, γ

∗
m) ∈ argmin(β,γ)∈Sβ

m×Sγ
m

∫ T

0

(I(t)− Iβ,γ(t))
2
+ (R(t)−Rβ,γ(t))

2
dt (1.11)

on these spaces. We denote by

J(β, γ) =

∫ T

0

(I(t)− Iβ,γ(t))
2
+ (R(t)−Rβ,γ(t))

2
dt,

and by J∗ = J(β∗
m, γ

∗
m) the minimal risk.

The specificity of the Model Order Reduction (MOR) approach lies in the generation of the
sets Sβm and Sγm. The aim is that these spaces contains ”plausible” values of β and γ. To do that,
the space Sβm × Sγm is supposed to be an approximation of the manifold of all possible solutions
of a detailed compartimental model such as the one described in Di Domenico et al. (2020). In
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Figure 1.9: SEI5CHRD model from Di Domenico et al. (2020)

this model, additional compartments are added compared to the SIR model: E for exposed but
non infectious people, Ip for infected and pre-symptomatic people, Ia, Ips, Ims, Iss for infected
people with respectively no symptoms (asymptomatic), few symptoms (paucisymptomatics),
mild symptoms and severe symptoms, H for hospitalized, C for intensive care unit and D for
dead and R for recovered. This model is governed by a system of 11 differential equations
and counts 27 parameters µ = (µ1, . . . , µ27) ∈ R27. Hence, prediction in this model is quite
hard but simulations from this model given a set of parameters µ ∈ R27 is feasible. The idea
behind the Reduced Basis approach considered in Bakhta et al. (2021) is to simulate a large
number of solutions (S(i)(t), I(i)(t), R(i)(t)), t ∈ [0, T + τ ] from a detailed model, then obtain the
corresponding values for (β(i)(t), γ(i)(t)) for t ∈ [0, T + τ ] by solving approximately (1.10) and
use classical dimension reduction methods such as fPCA to obtain the spaces Sγm and Sβm. Now
the aim of our project is to obtain credible intervals on the predictions.

To do so, we assume that the data

yobs = {(S(th), I(th), R(th)), h = 0, . . . , p− 1}

is generated from the following model:

S(th) = Sβ,γ(th) + εSh ,

I(th) = Iβ,γ(th) + εIh,

R(th) = n− S(th)− I(th)

with t0, . . . , tp−1 a regular grid of [0, T ] and {εSh}h=0,...,p−1 ∼i.i.d N (0, σ2), {εIh}h=0,...,p−1 ∼i.i.d
N (0, σ2), σ > 0 and Sβ,γ , Iβ,γ are the solutions of the SIR model equations with parameters
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β, γ ∈ L∞([0,+∞[) and n is the (fixed) population size.
We place ourselves in a Bayesian framework and define a sieve prior distribution on β and γ

as follows

β(t) =

m∑
j=1

bjϕ
β
j (t) and γ(t) =

m∑
j=1

gjϕ
γ
j (t)

where the families of functions {ϕβ1 , . . . , ϕβm} and {ϕγ1 , . . . , ϕγm} are the reduced order basis gen-
erated in Bakhta et al. (2021). We assume the basis to be not random (or equivalently we
work conditionally on the basis which is supposed to be independent of the data and the prior
distribution). Finally, the prior distribution on the coefficients is

b = (b1, . . . , bm) ∼ πβ and g = (g1, . . . , gm) ∼ πγ .

Hence, if the prior distribution (πβ , πγ) on the coefficients is chosen to be uniform, (β∗
m, γ

∗
m)

corresponds to the maximum a posteriori (MAP) estimator. This places the approach of Bakhta
et al. (2021) in a bayesian framework.

Now the following step is to obtain credible intervals on the prediction of the series yfuture =
(S(T + sh), I(T + sh), R(T + sh))h=1,...,q with (sh)h=1,...,q a regular grid of the interval (0; τ). To
do so, we have to approximate the quantiles of the posterior predictive distribution of yfuture
given yobs = (S(th), I(th), R(th))h=0,...,p−1 that may be written

p(yfuture|yobs) =
∫
R2m

p(yfuture|b,g)p((b,g)|yobs)dbdg,

where p(yfuture|b,g) is the density of the future of the series conditionnally to the parameters
b and g and p((b,g)|yobs) is the posterior density. This posterior predictive is intractable since
:

• the conditional distribution of p(yfuture|b,g) depends on the function (b,g) 7→ (Sβ,γ , Iβ,γ)

which is a fully deterministic, but non linear and non explicit function,

• the posterior density may be written

p((b,g)|yobs) =
p(yobs|(b,g))πβ(b)πγ(g)

p(yobs)

and is also intractable for the same reason (p(yobs|(b,g)) depends on the map (b,g) 7→
(Sβ,γ , Iβ,γ)).

Then, it is not possible to calculate explicitly p(y[T ;T+τ)|yobs).
We consider then an Approximate Bayesian Computation approach, that allows us to obtain

an approximation of this predictive posterior. The basic idea is to generate a large number of
observations from the distribution (b(1),g(1)), . . . , (b(N),g(N)) ∼i.i.d πβ × πγ and to keep only
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Figure 1.10: Credible intervals (gray), Predictions (plain blue line) of I∗ (left) and R∗ (right)
obtained from the MAP estimators (β∗

m, γ
∗
m) and true observations (red dotted line). The black

dotted line represents the end of the fitting window T .

the corresponding observations (S(i), I(i), R(i)), such that

J(β(i), γ(i)) ≤ J∗ + δ,

where δ is sufficiently small. The problem is that we are exploring a space which is too large and
few observations verify this condition when δ is not too large. Then a second idea is to simulate
instead noisy versions (β

(1)
[0,T ], γ

(1)
[0,T ], ), . . . , (β

(N)
[0,T ], γ

(N)
[0,T ], ), by perturbating (β∗

m, γ
∗
m):

{
β(th) = β∗

m(th) + ηβh
γ(th) = γ∗m(th) + ηγh

h = 0, . . . , p− 1

where (ηβ0 , . . . , η
β
p−1) and (ηγ0 , . . . , η

γ
p−1) is a noise vector that can be correlated (we choose an

AR(1) process) and to use importance sampling to obtain estimation of quantiles of the target
distribution. In Figure 1.10, we represent the prediction based on the MAP estimators and
corresponding credible intervals.

1.4 Perspectives

1.4.1 PCA for point processes: generalizations and applications

The work on the PCA basis for point processes may have several natural extensions. An imme-
diate one is to consider the case of spatio-temporal or spatial point processes which consists in
extending the study to points processes on a compact set of Rd. This may allow us, for instance,
to take into account the spatial structure of the Earthquakes dataset presented in Section 1.2 but
add difficulties linked with the study of multivariate cumulative distributions functions. Another
extension, is to consider marked processes.

Other perspectives are opened by the analysis of the PCA scores of the sample. Indeed, as it
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is the case for classical PCA, most of the information contained in the sample N1, . . . , Nn may be
summarized by the matrix of scores ΞJ = (ξ̂i,j)i=1,...,n;j=1,...,J if J is sufficiently large. Once this
score matrix is obtained, it opens the door for the application of classical multivariate methods
to the case of point processes, such as regression modelling, discriminant analysis, clustering,...
with specificities that remain to explore.

1.4.2 Multilevel PCA for functional imaging data [SR]

This project follows a pilot study (Bazin et al., 2021) that identified both in humans and mouses
that gastric inflammation induces modifications of both visible and near-infrared spectra. Mod-
ifications of autofluorescence in association with gastric inflammation have also been detected.
The identification of gastric inflammatory state is of importance to prevent gastric cancer. This
study paves the way toward the development of an optical diagnostic system which would im-
prove on current biopsy-based methods. A research project, led by Professor Dominique Lamar-
que (Hôpital Ambroise Paré) and Dr Thomas Bazin (Université Versailles Saint-Quentin), which
also involves a specialist of polarimetry (Tatiana Novikova, Ecole Polytechnique), was set up
with the aim of gathering experimental data on a larger cohort of mice than that resulting from
the experiments described in Bazin et al. (2021). Once the data collected, we intend to perform
factor analyses to reduce the observations dimensionality and identify the most valuable variables
to measure and study. This type of methods is now well-known but the nature of the data will
require an expertise, both in probabilities/statistics and in computer sciences. A first idea is to
draw inspiration for instance from Zipunnikov et al. (2011) that developed a method to perform
functional PCA for high-dimensional multilevel functional data (functional MRI). This method
may be adapted to our context and both statistical and computational efficiency of covariance
estimation improved using separability ideas from recent works (Masak et al., 2022). After fac-
torial analysis, we aim at setting up classification task based on PCA scores with a supervised
learning method (logistic regression for instance).
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Chapter 2

Minimax rates in regression models with
functional covariates

This chapter is devoted to regression models involving functional data. In all sections (except in
Subsection 3.3.1), we consider that we observe a sample

Dn = {(Xi, Yi), i = 1, . . . , n}

following the same distribution as a couple (X,Y ) of random variables taking values in X × Y.

• The space X is still a Hilbert space, equipped with a scalar product 〈·, ·〉X and associated
norm ‖ · ‖X . The typical example is X = L2([0, 1]) with 〈f, g〉X =

∫ 1

0
f(t)g(t)dt, f, g ∈ X ,

and ‖f‖X =
√
〈f, f〉X .

• The space (Y, dY) is a metric space. Here, we mainly consider the case where Y = R
equipped with the distance induced by the absolute value dY(y, y′) = |y − y′|. The case
where Y = L2([0, 1]) with dY(y, y

′) = ‖y − y′‖ will be considered in subsection 2.1.2.

The aim of the chapter is to give an overview on the minimax rates in this context, assuming
different constraints on the relationship between X and Y : linear dependence (section 2.1),
single-index constraint (section 2.3.1) or no constraint (section 2.2). We consider, except when
otherwise specified, the risk associated to the quadratic loss, that is to say, for an estimator ĝ
constructed from Dn,

Rn(ĝ) = EP [d2Y(Y, ĝ(X))] (2.1)

where the expectation EP means that the expectation is taken from the distribution (X,Y ) ∼ P .
Let G a class of probability distribution on X ×Y, the sequence (rn)n≥1 is the minimax rate over
the class G if

inf
P̂

sup
P∈G

Rn(ĝ) � rn,
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where the infimum is taken over all estimators.
To simplify the mathematical derivations, we assume that both X and Y are centered.

2.1 Functional Linear Regression (FLR) model

The functional linear model has been the object of particular attention during the past decades
since it combines an important interest for practitioners and also concentrates interesting theo-
retical questions. The reference book of Ramsay and Silverman (2010) counts three chapters on
the subject. We also refer to Cardot and Sarda (2011) and Hsing and Eubank (2015, Chapter
11).

2.1.1 Linear regression model with scalar output [BR15], [BMR16]

We assume that the relationship between X and Y follows a linear regression model that is to
say there exists β∗ ∈ X such that

Y = 〈β∗, X〉X + ε, (2.2)

where ε is a centered noise, independent of X and with finite variance σ2. The minimax lower
bound for the linear regression model has been proven by Cardot and Johannes (2010). General
projection estimators achieving this rate have been defined by Cardot and Johannes (2010) but
also by Comte and Johannes (2010, 2012) and in [BR15], [BMR16] (see Section 3.1.1). Ridge
estimators have been defined, for instance, by Cai and Yuan (2012) who also prove minimax
lower bounds on reproducing kernel Hilbert spaces.

The minimax rates established for the functional linear model depend on regularity assump-
tions on both β∗ and X.

• For X the assumptions are on the covariance operator of X

Γ : f ∈ X 7→ E[〈f,X〉XX].

It is assumed the existence of a sequence v = (vj)j≥1 and a constant d ≥ 1 such that

Γ ∈ Nv(d) =

Γ, d−2
∑
j≥1

v2j 〈f, ej〉2X ≤ ‖Γf‖2X ≤ d2
∑
j≥1

v2j 〈f, ej〉2X , for all f ∈ X

 ,

for (ej)j≥1 an orthonormal basis of X . This assumption is called a link assumption since
it characterizes the relationship between the basis (ej)j≥1 and the operator Γ.

Choosing the basis (ej)j≥1 = (ψj)j≥1 to be the eigenfunctions of the operator Γ, we obtain
that

∃d,Γ ∈ Nv(d) ⇐⇒ v2j � λj .

Cardot and Johannes (2010) considered two decreasing rates for the sequence (vj)j≥1.
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HX,pol HX,exp

Lower bound n−(2γ+2b)/(2γ+2b+1) n−1 ln2γ(n)

m∗ n1/(2γ+2b+1) ln2γ(n)

Upper-bound on Rn(β̂m∗) n−(2γ+2b)/(2γ+2b+1) n−1 ln2γ(n)

Table 2.1: Minimax rates of the Functional Linear Model with scalar output on the class
Glin,1v,b (d,R).

HX,pol There exists γ > 1/2 such that vj � j−γ .

HX,exp There exists γ > 0 such that vj � e−j
γ .

Assumption HX,pol is a classical assumption that we can find in most theoretical contri-
butions on FLR. In the case (ej)j≥1 = (ψj)j≥1, it is verified by the Brownian motion and
Brownian bridge, with γ = 1, by the fractional Brownian motion, with γ = H +1/2 where
H ∈]0, 1[ is the Hurst exponent (see Bronski 2003). In the case where X = L2([0, 1])

(ej)j≥1 is the Fourier basis and coincides with (ψj)j≥1 and γ − 1/2 is an integer, we can
characterize HX,pol in terms of the regularity of the operator Γ. Indeed, if Γ ∈ Nv(d) for
a given d ≥ 1, we have∑

j≥1

j2γ〈Γf, ej〉2 =
∑
j≥1

j2γ〈Γf, ψj〉2 =
∑
j≥1

j2γλj〈f, ψj〉2 . ‖f‖2 < +∞,

then, there exists η > 0 such that

∣∣〈Γf, ej〉2X ∣∣ . j−1−2γ−η

meaning that Γf is at least γ−1/2-times differentiable for all f ∈ X . Then Γ is called finitely
smoothing. The case, HX,exp is called infinitely smoothing and corresponds intuitively
to the case where Γf is infinitely differentiable. This framework is then related to the
functional regularity of the curve X itself via the Karhunen-Loève decomposition.

• For β∗ we assume in a similar way that β∗ belongs to an ellipsoid of X i.e. that there exist
b > 0 and R > 0 such that

β∗ ∈ Eb(R) =

β ∈ X ,
∑
j≥1

j2b〈β, ej〉2 ≤ R

 .

It is also linked with the functional regularity of β∗.

We finally consider the class

Glin,1v,b (d,R) = {P dist. of (X,Y ) s. t. Y = 〈β∗, X〉X + ε,

ε ∼ N (0, σ2), ε ⊥ X,β∗ ∈ Eb(R),Γ ∈ Nv(d)
}
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The minimax rates for the predictive error (2.1) over Glin,1v,b (d,R) are given in Table 2.1. The
lower bound has been proven by Cardot and Johannes (2010) who defined projection estimators
that achieve this rate. In [BR15] and [BMR16] we have proven that the least-squares estimator

β̂m = argminβ∈Sm

{
1

n

n∑
i=1

(Yi − 〈β,Xi〉X )2

}

achieves this rate in the case where Sm = SPCAm = span {ψ1, . . . , ψm} (when the basis (ψj)j≥1

that diagonalizes the covariance operator Γ is known) or, when the ψj ’s are not known, Sm =

ŜPCAm = span
{
ψ̂1, . . . , ψ̂m

}
for appropriate choices of the dimension m given in Table 2.1.

2.1.2 Linear Regression Model with functional output [CMR]

In this section, both X and Y are functional variables and we still assume a linear dependency
between them i.e. there exists a linear application B∗ : X → Y such that

Y = B∗X + ε, (2.3)

where ε is centered random variable, independent of X. For sake of simplicity, we assume in the
following that X = L2([0, 1]), σ2 = E[‖ε‖2X ] < +∞ and that there exists an integrable function
β∗ : [0, 1]2 → R such that

B∗f(t) =

∫ 1

0

β∗(s, t)f(s)ds, f ∈ L2([0, 1]).

Imaizumi and Kato (2018) proved minimax rates under polynomial assumptions on the rate
of decay of the eigenvalues of Γ and on the coefficients of β∗ for the L2 risk. Crambes and Mas
(2013) also prove a lower bound based on regularity assumptions on S and an upper-bound based
on a regularity assumption on B∗Γ1/2. We choose in [CMR] a joint assumption on the operator
B∗Γ1/2 and obtain upper and lower bounds for the minimax risk associated to the predictive
error (2.1).

In this manuscript, to allow easy comparisons with the FLR with scalar output, the choice
has been made to separate both assumptions and assume that

B∗ ∈ Ebl,br (R) =

S ∈ L2(X ),
∑
j,k≥1

j2blk2br 〈Bψj , ψk〉2 ≤ R2

 ,

for bl, br, R > 0 and consider, as it has been done for the FLR model with scalar output, that
Γ ∈ Nv(d) for a sequence v satisfying either assumption HX,pol or HX,exp and d ≥ 1. We refer
to [CMR] for the exact formulation of the more general assumption we made on B∗Γ1/2.
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2.1. FUNCTIONAL LINEAR REGRESSION (FLR) MODEL

HX,pol HX,exp

Lower bound n−(2γ+2bl)/(2γ+2bl+1) n−1 ln2γ(n)

m∗
l n1/(2γ+2bl+1) ln2γ(n)

m∗
r +∞ +∞

Upper-bound on Rn(β̂(m∗
l ,m

∗
r)
) n−(2γ+2bl)/(2γ+2bl+1) n−1 ln2γ(n)

Table 2.2: Minimax rates of the Functional Linear Model with functional output on the class
Glin,2v,bl,br

(d,R).

The regularity class for the functional linear model with functional output is then

Glin,2v,bl,br
(d,R) = {P dist. of (X,Y ) s. t. Y = B∗X + ε,

ε Gaussian process, ε ⊥ X,B∗ ∈ Ebl,br (R),Γ ∈ Nv(d)} .

The minimax rates for the predictive error (2.1) over Glin,1v,b (d,R) are given in Table 2.1. The
lower bound can be deduced from [CMR] and the upper-bound is achieved by the least squares
estimator

B̂ml,mr
∈ argminβ∈ŜPCA

ml
⊗ŜPCA

mr

1

n

n∑
i=1

∥∥∥∥Yi − ∫ 1

0

β(s, ·)Xi(t)dt

∥∥∥∥2
for appropriate choices of the dimensions m∗

l and m∗
r .

The rates obtained are exactly similar to the ones we had for the FLR with scalar output.
Moreover, they do not depend on the ”right regularity” of the operator B∗, which seemed to us
totally counter-intuitive. Hence the regularization is made only ”on the left side” of β meaning
that the ”right side” is automatically regulated by the integration. It implies, that, from a
theoretical viewpoint, predicting a scalar or a function in a linear model has the same statistical
complexity. The upper-bound is achieved by projection estimators, as we defined in [CMR] or
in Crambes and Mas (2013).

2.1.3 The question of sparsity and the infinite-dimension

In the case where the variable to predict Y depends on d covariates (instead of one in the models
studied above), the question of variable selection is posed. In [RLasso] the covariable X is a
vector X = (X(1), . . . , X(d)), each X(j) belonging to its own Hilbert space. This kind of data
is often referred as multivariate functional data. Two examples are given in figures 2.1 and 2.2.
In figure 2.1 the quantity to predict Y is the probability of failure of the nuclear reactor vessel
while for the data represented in figure 2.2 it is the mean electric consumption of the day after.

The corresponding multivariate functional linear model can be written as follows:

Y = 〈β∗
1 , X

(1)〉X1
+ . . .+ 〈β∗

d , X
(d)〉Xd

+ ε, (2.4)

with, for all j = 1, . . . , p, β∗
j ∈ Xj is unknown and ε a centered noise, with finite variance,
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Figure 2.1: Evolution of heat, pressure and heat transfer parameter during simulations of
hypothetical loss of coolant accident in a nuclear reactor (see [R18])
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Figure 2.2: Temperature (T9) and humidity (RH_9) of the parent’s room, outside temperature
(T_out), outside pressure (Press_mm_hg), outside humidity (RH_out) and wind speed during
several days (6 among the d = 24 covariates considered in [RLasso] ).
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2.1. FUNCTIONAL LINEAR REGRESSION (FLR) MODEL

independent of X.
The product space X =

∏d
j=1 Xj also is a Hilbert space, equipped with its usual scalar

product

〈f ,g〉 =
d∑
j=1

〈f (j), g(j)〉Xj
, f = (f (1), . . . , f (d)),g = (g(1), . . . , g(d)) ∈ X ,

and associated norm ‖f‖X =
√
〈f , f〉X . The multivariate functional linear model (2.4), is a

functional linear model on X ,
Y = 〈β∗, X〉X + ε,

with β∗ = (β∗
1 , . . . , β

∗
d) ∈ X to be estimated.

Other interesting cases that are different from what is usually considered as multivariate
functional data fall within the scope of model (2.4) :

• the case where the Xj are Reproducing Kernel Hilbert Spaces. in particular, the question
of finding sparse estimators of the vector of coefficient functions is of interest appears in
multiple kernel learning problems (Lanckriet et al., 2004; Bach, 2008),

• the case where Y is supposed to depend only on one functional covariate X on [0, 1] and
we want to determine if there exist subintervals (Ij)j of [0, 1] on which β∗ is equal to 0. In
this case, let I1, . . . , Id d subintervals of [0, 1], Xj : Ij → R is the restriction of X to the set
Ij . This setting allows us to obtain a slope function that is easy to interpret. In the spirit,
it is close to the FLIRTI method (for Functional LInear Regression That is Interpretable)
developed by James et al. (2009),

• the case where the data are of different nature (some of the Xj ’s are functions and the
others scalar of vectors for instance).

Let X (m) a subspace of X such that dim(X (m)) = m. We consider the following minimization
problem:

β̂λ,m ∈ argminβ=(β1,...,βd)∈X (m)

 1

n

n∑
i=1

(Yi − 〈β, Xi〉X )
2
+ 2

d∑
j=1

λj‖βj‖Xj

 , (2.5)

where λ = (λ1, . . . , λd) ∈]0,+∞[d is the penalty parameter and m ∈ N\{0}∪{+∞}. In the finite
dimensional case (i.e. dim(X ) < +∞) this criterion is exactly the same as the one of Lounici
et al. (2011).

At the beginning, only the case m = +∞ was considered and the two initial questions that
has motivated this work was the following.

1. Is it possible to prove an oracle-type inequality similar to Lounici et al. (2011, Theorem
3.2) in the infinite-dimensional case dim(X ) = +∞ (which is equivalent to assume that at
least one of the Xj ’s is infinite-dimensional) ?
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2. Is it possible to approach numerically a solution of (2.5) without projecting the data ?

The main difficulty for answering question 1 is that sparsity oracle inequalities are usually
obtained under conditions on the design matrix. One of the most common condition is the
restricted eigenvalues property. Translated in our context, this assumption may be written as
follows.

(ARE(s)): There exists a positive number κ = κ(s) such that

min

 ‖δ‖n√∑
j∈J ‖δj‖2Xj

, |J | ≤ s, δ = (δ1, ..., δd) ∈ X\{0},
∑
j /∈J

λj‖δj‖Xj
≤ c0

∑
j∈J

λj‖δj‖Xj

 ≥ κ,

with ‖f‖n :=
√

1
n

∑n
i=1〈f,Xi〉2X the empirical norm on X naturally associated with our problem.

The constant κ has to be strictly positive since its inverse appears in the upper-bound. For
instance, applying Lounici et al. (2011, Theorem 3.2) with our notations gives us, for the case
dim(X ) < +∞ and the noise ε is Gaussian, for λj sufficiently large,

‖β̂λ,m − β∗‖2n ≤ min
β∈X ,J(β)≤s

96

κ2

∑
j∈J(β)

λ2j + 2‖β − β∗‖2n

 ,

with probability larger than 1− 2d1−q with J(β) = Card{j, βj 6= 0}.
The next lemma, proved in [RLasso], shows that assumptions like (ARE(s)) can not hold when

the dimension of the space is too large. We first introduce new notations: let, for J ⊂ {1, . . . , p},

XJ =
∏
j∈J

Xj and Γ̂J f = (fj)j∈J ∈ XJ →

 1

n

n∑
i=1

∑
j∈J

〈fj , X(j)
i 〉XjX

(j′)
i


j′∈J

,

the product space of the Xj for j ∈ J and the empirical covariance operator of the data (X
(j)
i , i =

1, . . . , n; j ∈ J).

Lemma 6 ([RLasso]). Suppose that there exists J ⊂ {1, . . . , p} such that dim(XJ) > rk(Γ̂J),
then, for all s ≥ |J |, for all c0 > 0

min

 ‖δ‖n√∑
j∈J ‖δj‖2Xj

, |J | ≤ s, δ = (δ1, ..., δd) ∈ X\{0},
∑
j /∈J

λj‖δj‖Xj ≤ c0
∑
j∈J

λj‖δj‖Xj

 = 0.

Idea of proof. Γ̂J is a linear operator on XJ . If dim(XJ) > rk(Γ̂J), this means that dim(Ker(Γ̂J)) ≥
1 and then we can construct δJ = (δj)j∈J ∈ XJ\{0} such that Γ̂JδJ = 0. Defining now δj = 0 for
j /∈ J , we define an element δ ∈ X satisfying the constraint

∑
j /∈J λj‖δj‖Xj ≤ c0

∑
j∈J λj‖δj‖Xj

and such that ‖δ‖2n = ‖Γ̂JδJ‖2XJ
= 0.

Since rk(Γ̂J) ≤ n, the conclusion that can be drawn from Lemma 6 is that no Restricted
Eigenvalues assumptions can hold as soon as the ambient space X is infinite-dimensional (and
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even when it is finite-dimensional, as soon as the dimension is larger than the number of obser-
vations). However, restrictions to finite-dimensional spaces may be considered. Let for m ≥ 1

and s ∈ {1, . . . , p}, X (m) be a m-dimensional subspace of X ,

κ̃(m)
n (s) :=

min

 ‖δ‖n√∑
j∈J ‖δj‖2Xj

, |J | ≤ s, δ = (δ1, ..., δd) ∈ X (m)\{0},
∑
j /∈J

λj‖δj‖Xj
≤ 3

∑
j∈J

λj‖δj‖Xj

 . (2.6)

it is reasonable to assume that, for m not too large, κ̃(m)
n (s) > 0. For s fixed, the sequence

(κ̃
(m)
n (s))m≥1 is a non-increasing sequence, equal to 0 up to a certain rank, which seems to

be related, in a complicated way, to the decreasing rates of the eigenvalues of the operators
{Γ̂J , |J | ≤ s} which is related to the regularity of the data (see Section 2.1.1 and also the
examples given in Section 2.3 of [RLasso]).

The following proposition is proved in [RLasso] under a unique assumption of subgaussianity
of the noise ε and under some constraint on the basis that is detailed in [RLasso]. The result is
written here in the case of Gaussian noise for simplicity.

Proposition 7 ([RLasso]). Let q > 0 be fixed and choose

λj = rn

(
1

n

n∑
i=1

‖Xj
i ‖

2
Xj

)1/2

with rn = Aσ

√
q ln(d) + ln(2)

n
(A ≥ 4). (2.7)

With probability larger than 1− d1−q, for all m ≥ 1,

∥∥∥β̂λ,m − β∗
∥∥∥2
n
≤ min

β∈X (m),|J(β)|≤s

‖β − β∗‖2n +
9

4(κ̃
(m)
n )2

∑
j∈J(β)

λ2j

 (2.8)

using the convention 1/0 = +∞ in the case where κ̃(m)
n = 0.

The upper-bound is the sum of an approximation term ‖β−β∗‖n and a term related to both
the penalty and the quantity κ̃

(m)
n . The proof combine ideas from the proofs of Lounici et al.

(2011, Theorem 3.2) and Bellec and Tsybakov (2017, Proposition 5). In particular, the constants
appearing in the upper-bound are better than those of Lounici et al. (2011, Theorem 3.2) (2
replaced by one for the ”bias term”, which implies that the oracle-inquality is ”sharp”, and 96
replaced by 9/4 in the term associated to the penalty).

We also remark that the two terms in Eq. (2.8) can be controlled to obtain an upper-bound
on the convergence rates. For this, we need additional moment assumptions on X and consider,
as in sections 2.1.1 and 2.1.2, the regularity classes Nv(d), for the covariance operator Γ, with
vj � jγ (assumption HX,pol), and the regularity class Eb(R) for β∗. We also define a theoretical
version κ(m)(s) of κ̃(m)

n (s) (replacing in the definition the empirical norm ‖ · ‖n = ‖Γ̂1/2 · ‖ by its
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theoretical counterpart ‖ · ‖Γ = ‖Γ1/2 · ‖), and suppose that

κ(m)(s) � m−γ(s),

for γ(s) ≥ 1/2, s ∈ {1, . . . , p}.
We choose, for all j = 1, . . . , p,

λj = Aσ

√
ln(n) + ln(d)

n

√√√√ 1

n

n∑
i=1

‖X(j)
i ‖2j ,

with A > 0 a numerical constant and

m∗
n �

(
n

s(ln(n) + ln(d)) + ln2(n)

) 1
2b+2γ(s)+2γ

.

Under these assumptions, and assuming in addition β∗ has less than s non null coefficients
(i.e. |J(β∗)| ≤ s) there exist two constants C,C ′ > 0 such that, with probability larger than
1− C/n

sup
β∗∈Eb(R),Γ∈Nv(c)

∥∥∥β̂λ,m∗
n
− β∗

∥∥∥2
Γ
≤ C ′

(
s(ln(d) + ln(n)) + ln2(n)

n

) b+γ
b+γ(s)+γ

. (2.9)

Comparing with the minimax rates in the functional linear model given in Table 2.1, the rate
we obtain is probably not minimax optimal. Since the bias term has the same order than the one
of the functional linear model, the problem comes certainly with the order of the term related
to the penalty which is

(κ(m)(s))−2
∑

j∈J(β∗)

λ2j � m2γ(s)s
ln(n) + ln(d)

n

whereas an order of m/n (up to eventual ln(n), ln(d) and s) is expected. A possible solution to
solve this problem could be to change the penalty in the criterion (2.5) from e.g. an adaptive
one which is a perspective of this work.

Question 2. has been solved by using a coordinate descent algorithm in the spirit of the
glmnet algorithm (Friedman et al., 2010). The difficulty is that the algorithm is based on the
so-called group-wise orthonormality criterion which, translated to our context, is equivalent to
suppose that the operators Γ̂j are all equal to the identity, up to a multiplicative constant, which
is impossible when dim(Xj) = +∞ since Γ̂j is not invertible. To overcome this problem, the
Groupwise-Majorization-Descent algorithm developed in finite-dimensional contexts by Yang and
Zou (2015) can be adapted in the infinite-dimensional context (see sections 5 and 6 of [RLasso]).

We choose λj as described above and remark that λj is entirely defined by the quantity
A and we denote by λ(A) the corresponding vector of values of λ1, . . . , λd. Then we define
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Model 1 Model 2

λ̂
(CV )

λ̂
(σ̂2)

λ̂
(BIC)

λ̂
(CV )

λ̂
(σ̂2)

λ̂
(BIC)

Support recovery of β̂λ̂,∞ (%) 0 100 0 2 100 4
Support recovery of β̂λ̂,m̂ (%) / 100 / / 100 /

Table 2.3: Percentage of times where the true support has been recovered among 50 Monte-Carlo
replications of the LASSO estimator.

the grid A = {A1, . . . , Amax} of possible values for A such that A1 < . . . < Amax and that
β̂λ(Amax),m = (0, . . . , 0). The algorithm defined in [RLasso] is the following.

Algorithm 1 Coordinate descent algorithm inspired from Yang and Zou (2015) to approach β̂λ,m

For all Ar ∈ A: initialize β̂
(0)

λ(Ar),m = β̂
(final)

λ(Ar−1),m.
repeat

For j = 1, . . . , d,
β̂
(`)
j = argminβ∈Rγ̃n,j(β).

until 1
n

∑n
i=1〈β̂

(`)

λ,m − β̂
(`−1)

λ,m ,Xi〉2X ≤ s or maximal number of iterations reached

Return β̂
(final)

λ(Ar),m.

Here γ̃n,j(βj) is a majorant of the target quantity

γn,j(βj) =
1

n

n∑
i=1

(Yi − 〈β,Xi〉X )
2
+ 2λj‖βj‖Xj

,

obtained by fixing the coordinates of β except the j-th one. The idea of initializing β̂
(0)

λ(Ar),m

with β̂
(final)

λ(Ar−1),m comes from Friedman et al. (2010) and, according to the authors, leads to a
more stable and faster algorithm.

On simulated data, we are able to provide methods to select λ and the couple (λ,m), that
have good practical support recovery properties for β∗ (we refer to Section 6 of [RLasso] for
the description of the two models considered to simulate the data and to section 5.2 for the
description of the three methods to select λ). The dimension m̂ is selected by minimizing a
penalized contrast criterion

m̂ ∈ argminm

{
1

n

n∑
i=1

(
Yi − 〈β̂λ̂,m,Xi〉X

)2
+ κσ2m log(n)

n

}
.

The explication for using the criterion above will be given in subsection 3.1.1. However, despite
the good support recovery properties, we observe that both estimators β̂λ̂,∞ and β̂λ̂,m̂ are biased,
which is in coherence with what is also observed for Lasso estimators in the finite-dimensional
case (see Giraud 2015, Section 4.2.5). This bias is corrected with a Ridge estimator on the Lasso
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Figure 2.3: Plot of β∗
1 (solid black line), the solution of the Tikhonov regularization on the

support of the Lasso estimator (dashed blue line) and on the whole support (dotted red line).

Lasso + Tikhonov Proj. Lasso + Tikhonov Tikhonov without Lasso
Example 1 7.5 min 9.3 min 36.0 min
Example 2 7.1 min 16.6 min 36.1 min

Table 2.4: Computation time of the estimators.

support calculated - without projecting the data - by the following stochastic gradient descent
algorithm initialized at the estimator β̂λ̂,∞ or β̂λ̂,m̂ (depending on context).

Algorithm 2 Stochastic gradient descent algorithm on the Lasso support

Initialize β̃
(0)

= β̂λ̂,m̂ or β̃
(0)

= β̂λ̂,∞.
repeat

β̃
(`)

= β̃
(`−1)

− α` ∇β̃
(`−1)γ(R)

n,ρ ,

where ∇fγ
(R)
n,ρ is the gradient of the Ridge criterion γ

(R)
n,ρ with parameter ρ at the point f

and α` = α1`
−1.

until 1
n

∑n
i=1〈β̃

(`)
− β̃

(`−1)
,Xi〉2X ≤ s or maximal number of iterations reached

The parameter ρ is selected by cross-validation.
We see in Figure 2.3 that the resulting estimators perform well, especially compared to the

Tikhonov regularization without Lasso (i.e. with all the d = 7 covariates). The computation
times also are in favor of the Lasso + Tikhonov estimation procedure.

2.2 ”Nonparametric” regression model [CR14], [CR16]

Another model that has been widely studied in the literature is the so-called ”non parametric”
regression model (see Chapter 5 of Ferraty and Vieu 2006). For observations following this
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model, we de not assume a particular form of the regression functional r(x) = E[Y |X = x].
In this context we studied in [CR14] the minimax rates for the estimation of the cumulative
distribution function (c.d.f.) of Y given X

F x(y) = P(Y ≤ y|X = x),

and in [CR16] the minimax rates for the estimation of the regression function

r(x) = E[Y |X = x].

We started from the articles of Ferraty et al. (2006); Ferraty and Vieu (2000) and consider
kernel estimators of the form

F̂ xh,d(y) =

n∑
i=1

W
(i)
h,d(x)1{Yi≤y} and m̂x

h,d =

n∑
i=1

W
(i)
h,d(x)Yi

for the c.d.f. and regression function respectively, where the weights are defined as follows

W
(i)
h,d(x) =

Kh(d(Xi, x))∑n
j=1Kh(d(Xj , x))

with Kh(·) = h−1K(·/h), K is a kernel function, h > 0 the bandwidth and d a pseudo-distance
on X . Assuming that ∣∣∣F x(y)− F x

′
(y)
∣∣∣ ≤ Ldb(x, x′), (2.10)

for a constant L > 0 and b ∈]0, 1], Ferraty et al. (2006) obtained convergence rates of the form

sup
y∈S

∣∣∣F̂ xh,d(y)− F x(y)
∣∣∣ = O

(
hb +

√
ln(n)

nϕx,d(h)

)
a.s.1

with ϕx,d(h) = P(d(X,x) ≤ h) is the small ball probability of X associated to the pseudo-distance
d and S a compact subset of X . The final rates then depends on the asymptotic behavior of the
small ball probability when h→ 0. Two main cases then occur.

• The small-ball probability is polynomial in h i.e. ϕx,d(h) ∼h→0 h
2γ for γ > 0. In that case,

choosing h ∼ (log(n)/n)
1/(2b+2γ) they obtain a polynomial rate of order:

sup
y∈S

∣∣∣F̂ xh,d(y)− F x(y)
∣∣∣ = O

(
(log(n)/n)

b/(2b+2γ)
)

a.s. (2.11)

However, we have to be careful with this rate:

– If d is a distance (and not a pseudo-distance) and rk(Γ) = +∞, these polynomial rates
1the notion considered by Ferraty and Vieu (2000) is the notion of almost complete convergence that imply

both a.s. convergence and convergence in probability.
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are impossible (see Mas 2012; Azaïs and Fort 2013). Then, in the case rk(Γ) = +∞,
d must be a pseudo-distance. For instance, the case

dm(x, x′) =

√√√√ m∑
j=1

〈x− x′, ej〉2X ,

with m ∈ N∗ and {e1, . . . , em} an orthonormal family of X gives a small-ball proba-
bility of order

ϕx,d(h) � hm.

– Since the pseudo-distance d appears in the estimation procedure, it is chosen by the
statistician. Hence assumption (2.10) seemed to us too strong in the case of projection
pseudo-distance. Indeed, it implies that the conditional distribution of Y given X only
depends on the coefficients (〈X, e1〉X , . . . , 〈X, em〉X ) and that the family {e1, . . . , em}
is known (since they appear in the definition of the estimator).

To overcome these difficulties, we adopted in [CR14] the following assumption:∣∣∣F x(y)− F x
′
(y)
∣∣∣ ≤ L‖x− x′‖bX , x, x′ ∈ X , (2.12)

for a constant L > 0 and b ∈]0, 1]. We obtained the following results on the pointwise risk
(predictive version under additional assumptions are also proved in [CR14]).

Proposition 8 ([CR14]). Under some assumptions on the distribution of the coefficients (〈X, ej〉X ):

E
[∥∥∥F̂ x0

h,dm
− F x0

∥∥∥2] ≤ C

h2b +
∑
j>m

Var(〈X, ej〉2X

b

+

∑
j>m

〈x0, ej〉2X

b

+
1

nϕx0,dm
(h)

 .

(2.13)

The two additional terms compared to (2.11) are due to the fact that the distance dm appear-
ing in the kernel differs now from the one appearing in assumption (2.12). They both decrease
to 0 when m → ∞ but not sufficiently fast to achieve a polynomial rate similar to the one of
Ferraty and Vieu (2000) (in addition it can be shown the small ball probability ϕx0,dm(h) is of
order hm, which degrades the variance term when m is large). On the contrary, the estimator
F̂ x0

h,∞ obtained with d∞(x, x′) = ‖x− x′‖ have the following bias-variance decomposition

E
[∥∥∥F̂ x0

h,∞ − F x0

∥∥∥2] ≤ C

(
h2b +

1

nϕx0,∞(h)

)
, (2.14)

but the behavior of the small ball probability ϕx0,∞(h) = P(‖x − x0‖ ≤ h) associated to the
distance d∞(x, x′) = ‖x− x′‖ does not allow for polynomial convergence rates in the case where
rk(Γ) = +∞. The conclusion that can be drawn is that, with the upper-bound (2.13), non
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Assumption HX,L HX,M HX,F

Lower bound (ln(n))−2b/γ′
exp

(
− 2b

c
1/γ′
1

ln1/γ
′
(n)

)
n−

2b
2b+d

Order of h∗ ln−1/γ′
(n) exp

(
− 1
c1

ln1/γ
′
(n)
)

n
1

2b+d

Rn(F̂h∗) (ln(n))−2b/γ′
exp

(
− 2b

c
1/γ′
1

ln1/γ
′
(n)

)
n−

2b
2b+d

Table 2.5: Minimax rates for the estimation of the conditional c.d.f. [CR14] and the regression
function [CR16] in the ”non parametric” model.

parametric convergence rates of the form (2.11) are not achievable. The open question at this step
was if another estimator could achieve non parametric convergence rates under assumption (2.12).
To answer the question we proved lower bounds under some assumptions on the behaviors of
small ball probability functions described below.

HX,L There exist γ′ > 0 and c1 ∈ R, c2 > 0 such that

ϕx0,∞(h) � hc1 exp(−c2h−γ
′
).

HX,M There exist γ′ > 1 and c1, c2 ∈ R, such that

ϕx0,∞(h) � hc1 exp(−c2 lnγ
′
(1/h)).

HX,F There exists a constant d > 0, such that ϕx0,∞(h) � hd.

The assumptions HX,L and HX,M are related to the assumptions HX,pol and HX,exp made in
subsection 2.1. For instance, if X is a Gaussian process and satisfies HX,pol, then Assumption
HX,L is satisfied with c1 = (3 − γ)/(2γ − 1), c2 = γ(2γ/(2γ − 1))1/(2γ−1) and γ′ = 1/(γ − 1/2)

(Hoffmann-Jørgensen et al. 1979, Theorem 4.4 and example 4.5, p.333-334). The second case
HX,M typically happens when the eigenvalues of the covariance operator decrease exponentially
fast (see Dunker et al. 1998, Proposition 4.3 p.12). In the case where c exp(−2j)/j ≤ λj ≤
C exp(−2j)/j, we have c2 = 1/2 and γ′ = 2. (Hoffmann-Jørgensen et al. 1979, Theorem 4.4 and
example 4.7, pp. 333 and 336).

The obtained rates are given in Table 2.5. The corresponding lower bounds are proved
in Section 4.3 [CR14] and are achieved by F̂x,∞(h∗) for particular choices of h∗. We obtain
similar rates for the estimation of the regression function in [CR16] for the risk associated to
the pointwise mean squared error. The proof of the lower bound relies on the general scheme
described in Tsybakov (2009) with inspiration from a similar bound proven in regression for
functional data by Mas (2012) and in c.d.f. for univariate data by Brunel et al. (2010).

35

https://projecteuclid.org/journals/electronic-journal-of-statistics/volume-8/issue-2/Adaptive-and-minimax-estimation-of-the-cumulative-distribution-function-given/10.1214/14-EJS956.full
https://hal.science/hal-01099520v1
https://projecteuclid.org/journals/electronic-journal-of-statistics/volume-8/issue-2/Adaptive-and-minimax-estimation-of-the-cumulative-distribution-function-given/10.1214/14-EJS956.full
https://hal.science/hal-01099520v1


CHAPTER 2. MINIMAX RATES IN REGRESSION MODELS WITH FUNCTIONAL
COVARIATES

2.3 Perspectives

2.3.1 Single and multiple index models [DRR]

Single-index models are intermediate models between the linear model, which may be too re-
strictive for some applications, and the ”non parametric” model, which suffers from the curse of
dimensionality. They have been defined first for classical multivariate statistics (see e.g. Härdle
et al. 1997) and extended naturally to the case of functional data by Ferraty et al. (2011). The
model can be written

Y = g∗(〈β∗, X〉) + ε,

where both the link function g∗ : R → R and the index parameter β∗ are unknown.
The main difficulties for estimation in this model come from the nonlinearity of g∗ and the

fact that the support of g∗ can not be naturally considered as a compact subset of R. To overcome
these difficulties, we consider a Bayesian approach based on hybrid-location scale mixtures of
normal prior, introduced by Naulet and Rousseau (2017). We obtain posterior concentration
rates that are the maximum between the minimax rate of estimation for the functional linear
model given in Table 2.1 and the minimax rate of the estimation of g∗ if β∗ is known. We have
obtained posterior concentration rate in empirical norm

dn((β, g), (β
∗, g∗)) =

(
1

n

n∑
i=1

(g(〈β,Xi〉)− g∗(〈β∗, Xi〉))2
)1/2

.

Theorem 9. Suppose that there exists p > 2 such that supj≥1 E[〈X,ψj〉p/λ
p/2
j ] < +∞, that

HX,pol is verified and that there exists α,L > 0 such that

‖g∗‖α ≤ L and E[g∗(〈β∗, X〉)] < +∞

and, b,R > 0 such that β∗ ∈ Eb(R). Then, under some assumptions on the prior distribution Π

of (β, g),
E [Π (dn((β, g), (β

∗, g∗)) & rupn ) |Dn] −−−−−→
n→+∞

0,

with
rupn = max

{
n−min{α;1}(b+γ)/(2(b+γ)+1);n−α/(2α+1)

}
.

The proof of the lower bound is in progress but we already have obtained the following partial
result.

Lemma 10. Suppose HX,pol is verified. There exists a positive quantity c > 0 and an integer n∗

(depending only on the sequence (λj)j≥1, b, α, L and R) such that, for all n ≥ n∗,

inf
(β̂,ĝ)

sup
β∗∈Eb(R),‖g∗‖α≤L

E[dn((β̂, ĝ), (β∗, g∗))] ≥ cn−α/(2α+1).
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Idea of proof. The proof is based on Assouad’s Lemma, as described in Tsybakov (2009) and
the model to construct the lower bounds are closed to the one that are constructed in univariate
non parametric regression. The main difficulty here is to handle the randomness of the empirical
norm dn itself (to the best of my knowledge lower bounds in empirical norms have not been
proven yet so far). The idea is to work conditionally on the Xi’s that gives us the intermediate
result

inf
(β̂,ĝ)

sup
β∗∈Eb(R),‖g∗‖α≤L

E[dn((β̂, ĝ), (β∗, g∗))] ≥ cn−α/(2α+1) inf
ω̂∈Ωn

max
ω∈Ωn

Pω({ω̂ 6= ω} ∩ An)

with Ωn a subset of {0, 1}m of cardinality larger than 2m/8 and such that the Hamming distance∑m
j=1 1ωj 6=ω′

j
between two elements ω = (ω1, . . . , ωm) and ω′ = (ω′

1, . . . , ω
′
m) of Ωn is larger than

m/8 (the existence of such a set Ωn is given by the Varshamov-Gilbert bound) and An a set,
measurable w.r.t. X1, . . . , Xn such that

P(Ac
n) ≥ 1/2.

To obtain an optimal minimax result we need now to obtain the following lower-bound, which
is still in progress,

inf
(β̂,ĝ)

sup
β∗∈Eb(R),‖g∗‖α≤L

E[dn((β̂, ĝ), (β∗, g∗))] ≥ cn−min{α;1}(b+γ)/(2(b+γ)+1).

The difficulty is to handle the term min{α; 1} appearing in the rate. A partial answer to this
problem has been found with help of a recent article of Wibowo et al. (2020) that proves the
existence of bi-Lipshitz continuous functions of order min{α; 1} in the case α < 1 (the case α ≥ 1

has the simple example t 7→ (t+ 2)2 − 4) i.e. functions such that

c−1|t− u|min{α;1} ≤ |ψ(t)− ψ(u)| ≤ c|t− u|min{α;1}, t, u ∈ [−1, 1].

The randomness of the semi-norm can be treated with similar conditioning arguments than the
previous lower bound.

Another difficulty due to the complexity of the definition of the prior distribution will come
to obtain information on the posterior distribution in practice (on simulated or real data).

Obtaining frequentist estimators that achieve these rates should also be possible by defining
projection estimators for g∗ with bases adapted for the estimation on non-compact support such
as the Hermite basis (Belomestny et al., 2019). Moreover, we also have to precise the exact
identifiability condition in this model.

More general models than the single-models that should achieve non-parametric rates are the
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multiple-index models:
Y = g∗(〈β∗

1 , X〉, . . . , 〈β∗
m, X〉) + ε,

where the multivariate link function g∗ : Rd → R and the m indexes β∗
1 , . . . , β

∗
m have to be

estimated. In addition, the problem of selecting the number of indexes m also is open.

2.3.2 Achieving minimax risk in sparse multivariate FLR ?

The question of obtaining minimax rates in the multivariate functional linear regression model
with a sparse slope vector of functions β∗ is still open. First a lower bound has to be proven,
maybe under a different assumption on the covariance operator Γ than the one of [RLasso].

Then a second step is to find an estimator that achieves this minimax rate. The question of
optimality could be studied from a Bayesian point of view. Indeed, let us denote | · |2 (resp. | · |1)
the 2 (resp. 1) norm of Rn, the LASSO estimator

β̂ = argminβ∈Rp{|Y −Xβ|22 + λ|β|1}

in the classic multivariate linear model

Y = Xβ∗ + ε, ε ∼ Nn(0, σ
2In),

can be considered as the maximum of the posterior distribution (posterior mode) when the prior
distribution Π on β∗ is a product of Laplace densities of scale parameter λ. Castillo et al. (2015)
proved in this context that the LASSO posterior distribution put no mass into balls of radius
substantially larger than the minimax rates. They have also shown that the minimax posterior
contraction rates can be achieved with an alternative prior distribution. In addition, the bias
problem of the LASSO estimator – or, in other words, the fact that LASSO ”underestimates”
the large coefficients – mentioned in the simulation study in subsection 2.1.3 is widely discussed
in the Bayesian literature. To solve this problem, several alternatives have been developed,
such as spike-and-slab priors (see for example the review in Bai et al. 2021). A closer look at
the literature on Bayesian model selection could lead to the development of an estimator that
achieves a minimax optimal posterior concentration rate.

2.3.3 Taking account discretization and noise in regression models

Another perspective is to find the minimax rates in regression models when the functional data
are not entirely observed. Indeed, assume as in [BPRR], that instead of observing directly X(t)

for all t ∈ [0, 1], we observe {Z(tj), i = 1, . . . , n; j = 1, . . . , p} such that

Z(tj) = X(tj) + ηj ,
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where (ηj)j=1,...,p is an i.i.d. noise, independent of Xi and t1, . . . , tp a fixed regular grid. Then,
the estimation of β∗ in the functional linear model

Yi = 〈β∗, Xi〉+ εi,

has to take into account two sources of noise and the uncertainty linked to the fact that we do
not observe X outside the points of the grid. As in [BPRR], both lower and upper bounds on the
risk then must depend on a double asymptotic (in the number of individuals n and in the number
of points p). Smoothing splines estimators have been studied in this context by Crambes et al.
(2009). They proved that taking into account the noise and discretization in the study of the
risk of the estimator of β∗ adds an extra variance term of order (ρnp)−1 where ρ is the parameter
appearing in the penality of their ridge estimation procedure. It could be interesting to study
minimax optimal projection estimators in this context by combining the results of [BMR16] and
[BPRR].
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Chapter 3

Constructing adaptive estimators: case of
functional and/or dependent data

In Chapter 2, we give minimax rates for regression models involving functional covariates. In
all these examples, we are able to define either projection estimators β̂m∗ , β∗

m∗
l ,m

∗
r

or kernel
estimators F̂h∗ , m̂h∗ that attain the lower bound for the minimax risk. However, since the optimal
values m∗, m∗

l , h∗ depend on the regularity of the functional data X and/or the regularity of the
function to estimate which are both unknown, it is of interest to develop data-driven selection
procedures for these parameters such that the rate of the selected parameter is comparable, in
some sense, to the optimal rate.

3.1 Model selection

3.1.1 Model selection and functional PCA

In [CR15] and [BMR16], we have adapted model selection procedures to select the dimension m
of the estimator β̂m in the functional linear model Y = 〈β∗, X〉X +ε. The approach is inspired by
Barron et al. (1999); Baraud (2000, 2002) and consists in penalizing the least-squares criterion
(least square contrast),

m̂ ∈ argminm=1,...,Nn

{
1

n

n∑
i=1

(Yi − 〈β̂m, Xi〉X )2 + κσ̂2
m

m

n

}
(3.1)

where

σ̂2
m =

1

n

n∑
i=1

(Yi − 〈β̂m, Xi〉X )2
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is an estimator of the noise variance; or equivalently

m̂ ∈ argminm=1,...,Nn

{
1

n

n∑
i=1

(Yi − 〈β̂m, Xi〉X )2
(
1 + κ

m

n

)}
(3.2)

where κ ≥ 4 is a constant and Nn is the maximal dimension.
The motivation behind the introduction of the estimator σ̂2

m for the noise variance is its
simplicity since the criterion takes a multiplicative form. The simulation results of Table 1
of [BMR16] indicates that the substitution of σ2 by σ̂2

m leads to similar model selection and
estimation performances. The estimation performances, in terms of predictive risk, also are
similar to the one of leave-one-out cross-validation, with a computation time drastically reduced:
for the calculation of (3.2) we have to calculate β̂m for all m whereas leave-one-out cross-validated
criterion necessitates the calculation of a least-squares estimator for each element of the sample
and for all m. From a theoretical viewpoint, we obtained the following oracle-type inequality.

Theorem 11 ([BMR16]). Under some assumptions on the scores 〈X,ψj〉X and a joint constraint
on the regularities of β∗ and X (see Theorem 3 of [BMR16]),

E[‖β̂m̂ − β∗‖2Γ] ≤ C min
m=1,...,Nn

(
‖β∗ −ΠSPCA

m
β∗‖2Γ + σ2m

n

)
+
C ′

n
(1 + ‖β∗‖2). (3.3)

Idea of proof. The proof is inspired from the proofs of Baraud (2000, 2002). The randomness
of the projection space is handled by working conditionally to the covariate. This allows us to
obtain an oracle-type inequality controlling the empirical semi-norm ‖ · ‖n = ‖Γ̂1/2 · ‖ instead of
the prediction norm ‖ · ‖Γ = ‖Γ1/2 · ‖. The main difficulty is the replacement of the empirical
semi-norm by the targeted prediction norm which is made by controlling uniformly the ratios

inf
f∈ŜNn

‖f‖2n
‖f‖2Γ

.

It is usually done by controlling the spectral radius of Gram matrices. The randomness of the
model space is handled with perturbation theory tools described in Section 1.1.2.

This allows us to prove that β̂m̂ achieves the minimax rates detailed in Table 2.2 with a
completely data-driven dimension selection procedure. Then β̂m̂ is an adaptive estimator.

Using the fact that the multivariate functional linear regression model is a functional linear
model on the product space X =

∏d
j=1 Xj a similar criterion has been used in [RLasso] in the

context of multivariate functional linear regression

Y = 〈β∗
1 , X

(1)〉X1
+ . . .+ 〈β∗

d , X
(p)〉Xp

+ ε

to select the dimension m of the estimator β̂λ,m defined by Eq. (2.5), p. 27. The criterion
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considered is

m̂ ∈ arg min
m=1,...,Nn

 1

n

n∑
i=1

Yi − d∑
j=1

〈β̂λ,m, X(j)〉Xj

2

+ κσ2 log(n)
m

n

 . (3.4)

Compared to (3.1), the penalty term has an extra log term which was necessary to obtain
theoretical results.

Theorem 12. [RLasso] Assume λ is chosen as in Proposition 7, there exist a universal constant
CMS > 0 and a minimal value κmin such that, with probability larger than 1− d1−q − CMS/n,
for all κ ≥ κmin, for all ζ > 0,

∥∥∥β̂λ,m̂ − β∗
∥∥∥2
n
≤ (1 + ζ) min

m=1,...,Nn

min
β∈X (m),|J(β)|≤s

‖β − β∗‖2n +
9

4(κ̃
(m)
n )2

∑
j∈J(β)

λ2j

+
2 + ζ

1 + ζ
κσ2 log(n)

m

n

}
.

Compared to Proposition 7, there is an additional term due to the model selection penalty,
which is negligible with respect to the term due to the sparsity inducing penalty. The proof
is based on the control of the empirical process 1

n

∑n
i=1 εi

∑d
j=1〈fj , X(j)〉Xj

uniformly over the
functions f = (f1, . . . , fd) ∈ X (Nn) and is also inspired from the proofs of Baraud (2000).

The resulting estimator is not adaptive, it achieves the same rate as the estimator β̂λ,m∗

(see Eq. 2.9, p. 30) but this rate is (probably) not the minimax rate as explained in subsec-
tion 2.1.3. However, the criterion (3.4) gives us a fully data-driven method (after replacement of
σ2 by σ̂2

m) which is also computationally efficient to select the dimension m with similar support
selection performances. Hence, in the context of variable selection in multivariate FLR, it pro-
vides an advantageous alternative to cross-validation that is too time consuming to be efficiently
used in practice in our context.

In the case of the functional linear model with functional output

Y = B∗X + ε,

we adopted in [CMR], a similar approach by selecting the two unknown dimensions m̂l and m̂r

with the following criterion

(m̂l, m̂r) ∈ argminml=1,...,Nn;mr∈N∗∪{+∞}
1

n

n∑
i=1

‖Yi −BXi‖2 + κσ2ml

n
,

and since the first term is decreasing with mr and the penalty is independent of mr we can
choose m̂r = +∞. We also obtain an oracle-type inequality in empirical norm.

Theorem 13. [CMR] Under some assumptions on the eigenvalues sequence (λj)j≥1, on the scores
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ξj = (λ
−1/2
j 〈X,Φj〉)j≥1 and if ‖ε‖ has a moment of order strictly larger than 6, then for all ζ > 0,

E
[∥∥∥B∗ − B̂m̂l,+∞

∥∥∥2
n

]
≤ (1+ ζ) inf

ml∈1,...,Nn

{
E[‖B∗ −ΠSPCA

ml
⊗L2([0,1])B

∗‖2n] +
2 + ζ

1 + ζ
κσ2ml

n

}
+
C

n

where the empirical semi-norm writes ‖T‖2n = 1
n

∑n
i=1 ‖TXi‖2.

3.1.2 Estimation of hazard rate and multiplicative censoring [CCR17]

We consider in [CCR17] hazard rate estimation under multiplicative censoring. More precisely,
let X be a real non-negative random variable (supposed to represent e.g. a duration), the hazard
rate is the quantity

w∗(t) = lim
h→0

P(X > t+ h|X > t) =
fX(t)

F̄X(t)

of a real positive random variable X of density fX and survival function F̄X(t) = P(X > t).
If X represents a lifetime for instance, the hazard rate models the probability of dying ”just
after” time t conditionally to the fact that the person is alive at time t. Since the hazard rate
is a quotient with the survival function that decreases to 0 when t → +∞, the behavior of its
estimators may be unstable when t is large.

In [CCR17], we consider adaptive estimation in presence of multiplicative censoring that is
to say we assume that we observe Y1, . . . , Yn ∼i.i.d. Y where Y is a random variable such that

Y = UX, U ∼ U([0, 1]), U ⊥⊥ X.

We estimate the target function w∗ on a compact set [0,a], a > 0, and define a collection
of models Sm = span{ϕj , j ∈ Jm} where Jm is a subset of Z. For instance, in the case of the
B-splines model of order r ∈ N∗, Jm = {−r + 1, . . . , 2m − 1}, and

ϕj,m(t) =
2m/2√

a
Nr

(
2m

a
t− j

)
,

with Nr(t) = 1?r[0,1](t) the indicator function on [0, 1] convoled r-times (i.e. Nr is the density
function of the sum of r independent uniform variables on [0, 1]). Drawing inspiration from
Comte et al. (2011); Plancade (2011), we consider a minimum contrast estimator

ŵm = argminw∈Sm
γn(w) with γn(w) = ‖w‖2n − 2νn(w),

where ‖ · ‖n (resp. νn) is an empirical semi-norm (resp. an empirical linear functional) adapted
to our problem. The model is then chosen classically with a penalized contrast estimator

m̂ ∈ argminm=1,...,Nn
{γn(ŵm) + κp̂en(m)},
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with p̂en(m) = 1

d1
̂̄FY (a)n

(
φ20|Sm|+ (aφ20 + a2φ21)|Sm|3

)
where d1, φ0 and φ1 are explicit quan-

tities depending on the basis and ̂̄FY (a) is a consistent estimator of the survival function of Y
at point a such that ̂̄FY (a) ≥ n−1/2. The term p̂en(m) is an estimation of the variance term
and we remark that it increases when a increases. In particular, if Y (hence X) is compactly
supported on [0,b] we expect estimation to be unstable when a is close to b.

This can be seen in the upper-bound (oracle-type inequality) we obtain on the selected esti-
mator.

Theorem 14. [CCR17] We assume the density of X is upper-bounded on [0,a], the survival
function F̄X of X verifies F̄X(a) > 0, that ‖fY ‖L2([0,a]) < +∞ and E[Y 2

1 ] < +∞. Then there
exists κ0 and n∗ such that, for κ > κ0, n ≥ n∗,

E[‖ŵm̂ − w∗‖L2([0,a])] . min
m=1,...,Nn;|Sm|≥ln(n)

{
inf

w∈Sm

‖w − w∗‖+ pen(m)

+E
[
max{|Sm̂|; |Sm|}

(
f̂Y (a)− fY (a)

)2]}
+ n−1.

In the upper-bound, in addition to the usual bias-variance term, appears an additional term
depending on the difference

(
f̂Y (a)− fY (a)

)2
. Using a locally adaptive estimator for fY (a),

such as the one defined by Rebelles (2015), allows us to obtain a quantity that does not degrades
the convergence rates.

3.2 Bandwidth selection for kernel estimators

The second large class of estimators for which we are able to define data-driven selection pro-
cedure leading to adaptive estimators are kernel estimators. Important recent progresses have
been made from the seminal work of Goldenshluger and Lepski (2011). The general idea is the
following: let

ν̂h(t) =
1

nhd

n∑
i=1

Kh(t− Ti),

a kernel estimator for the d-variate density ν of a sample T1, . . . , Tn ∼i.i.d ν. The bandwidth is
selected with the following criterion:

ĥ ∈ arg infh∈H

{
sup
η∈H

(‖Kh ? ν̂η − ν̂h‖ −m(h, η))+ +m∗(h)

}
, (3.5)

where the quantity m(h, η), called majorant, is a term allowing to control uniformly in η and h the
stochastic errors 1

n

∑n
i=1Kh(t−Ti)−E[Kh(t−T1)] and 1

n

∑n
i=1Kh?Kη(t−Ti)−E[Kh?Kη(t−T1)]

and m∗(h) = supη∈Hm(η, h). The first term supη∈H (‖Kh ? νh − νh‖ −m(h, η))+ is constructed
to be of the order of the bias term ‖Kh ? f − f‖ and replaces the term depending on the least-
squares contrast for the model selection estimators of Section 3.1.1. The bandwidth collection
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H is, in the article of Goldenshluger and Lepski (2011), a compact subset of ]0,+∞[d.
Several simplifications, variations and adaptations to different contexts have been made to

this initial work. A common simplification can be made by considering that the bandwidth
collection H is finite with cardinality growing with n. This allows to control the stochastic error
uniformly in n with the simple argument

E

[
sup
h∈H

(
1

n

n∑
i=1

Kh(t− Ti)− E[Kh(t− T1)]−m(h)

)
+

]

≤
∑
h∈H

E

[(
1

n

n∑
i=1

Kh(t− Ti)− E[Kh(t− T1)]−m(h)

)
+

]
.

Hence, the control of this term is based on an appropriate concentration inequality. Another
simplification that can be found in numerous works on the subject is to choose the majorant
m(h, η) of the order of the variance term of ν̂h (here V (h) = ‖K‖22/(nh1 × . . .× hd)).

3.2.1 Bandwidth selection for the invariant measure of a Bifurcative Markov
Chain [BR20]

Starting from these considerations we consider adaptations of the Goldenshluger and Lepski’s
method in the case of Bifurcating Markov Chains. Bifurcating Markov Chains are a class of
stochastic processes indexed by a binary tree T =

⋃+∞
k=1{0, 1}k satisfying a Markov property.

The precise definition is given below.

Definition 15 (Bifurcating Markov Chain). Let µ be a probability measure on (Rd,B(Rd)), P a
T-transition probability (i.e. x 7→ P(x,A) is a measurable map, for all A ∈ B(Rd)⊗ B(Rd) and
A 7→ P(x,A) is a probability measure for all x ∈ Rd) and (Fn)n≥1 be a filtration. The process
(Xu)u∈T is called a (Fn)−BMC if

• Xu is Fn-measurable for all u ∈ Gn = {0, 1}n (the n-th generation of the tree),

• X∅ ∼ µ (initial distribution).

• For all n ∈ N∗, for all (fu)u∈Gm measurable functions from (Rd)3 to R,

E

[ ∏
u∈Gn

fu(Xu, Xu0, Xu1)|Fn

]
=
∏
u∈Gn

∫
Rd×Rd

fu(Xu, y, z)P(x, dy, dz),

with Xu0 = (u, 0) and Xu1 = (u, 1) the values of the process on the two parents (u, 0) ∈
Gn+1 and (u, 1) ∈ Gn+1 of u.

These processes are of interest to sudy the propagation of physical caracteristics (size, weight,...)
of individuals from a lineage.
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From a BMC (Xu)u∈T, we can construct a Markov chain (Yn)n≥1 called tagged-branch chain
started from Y0 = X∅ and constructed iteratively by selecting independently one of the two
parents with equal probability (if Yn = Xu with u ∈ Gn, then Yn+1 = Xu0 with probability 1/2

or Yn+1 = Xu1 with probability 1/2 independently of (Xu)u∈T). Assuming the Markov chain
(Yn)n≥1 is ergodic, we estimate its invariant distribution ν from the observation (Xu)u∈Tn of the
BMC until the n-th generation with the kernel estimator

ν̂h(x) =
1

|Tn|
∑
u∈Tn

Kh(x−Xu).

A bias-variance decomposition for the pointwise risk

E[(ν̂h(x)− ν(x))2] ≤ 2(Kh ? ν(x)− ν(x))2 + 2
C(P, ν)

|Tn|h1 × hd

was obtained by Bitseki-Penda and Olivier (2017), with C(P, ν) a quantity depending on the
distribution µ, on the transition probability P and on the kernel K.

Assuming C(P, ν) is known we defined in [BR20] a local bandwidth selection criterion of the
form

ĥ(x) ∈ argminh∈H

{
max
η∈H

(
(Kh ? ν̂η(x)− ν̂h(x))

2 − bV (h, x)
)
+
+ V (h, x)

}
,

with
V (h, x) = C(P, µ) log(|Tn|)

|Tn| h1 . . . hd
for which we prove an oracle-type inequality.

Theorem 16. Under an assumption of geometric uniform ergodicity of the BMC (Xu)u∈Tn
, and

if minh∈Hn
h1 × . . .× hd ≥ log(|Tn|)/|Tn|,

E[(ν̂ĥ(x)(x)− ν(x))2] ≤ C1 min
h∈Hn

{Bh(x) + V (x, h)}+ C2

|Tn|
,

with
Bh(x) = max

η∈Hn

((Kh ? Kη ? ν(x)−Kη ? ν(x))
2.

The key arguments of the proof are Bernstein-type inequalities that we prove to control the
two terms 1

|Tn|
∑
u∈Tn

Kh(x−Xu)− E[Kh(x−Xu)] and 1
|Tn|

∑
u∈Tn

Kh ? Kη(x−Xu)− E[Kh ?

Kη(x−Xu)].

The term Bh(x) is of the order of the bias term for appropriate choices of Hn. The form of
the bias term Bh(x) is usual in non-parametric estimation. However, a similar form of the bias
in oracle-type inequalities for the pointwise risk also appears in the case of density estimation
for i.i.d. data (Rebelles, 2015) or in deconvolution problems (Comte and Lacour, 2013). An
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immediate consequence is that, if ν is a β = (β1, . . . , βd)-Hölder continuous density, then

E[(ν̂ĥ(x)(x)− ν(x))2] ≤ C

(
log(|Tn|)

|Tn|

)−2β̄/(2β̄+1)

,

where β̄ = d/(1/β1+. . .+1/βd) is the harmonic mean of β. This rate coincides with the minimax
rate for density estimation for i.i.d. data under anisotropic regularity and then our estimator is
adaptive.

Now from a practical viewpoint, the constants a and b appearing in the criterion fulfill the
constraint b ≥ a ≥ 1 (and we choose, as suggested in Lacour and Massart 2016 b = 2a). The main
difficulty is the fact that the quantity C(P, µ) is not explicit raises a problem in practice. For
the case d = 1, we adapt the method, developed by Arlot and Massart (2009) for least-squares
estimators that detect complexity jumps to find a good value of aC(P, µ). The whole procedure
works well in practice (in dimension d = 1).

3.2.2 Bandwidth selection and functional data [CR14], [CR16]

Another variation of the criterion defined by Goldenshluger and Lepski (2014) in the case where
the bias does not write as a convolution product consists in replacing the term Kh ?ν̂η in (3.5) by
ν̂min{η;h}. This criterion has been considered in different context (for instance Rebelles 2015) and
is, in fact, a rediscovery of Kerkyacharian et al. (2001). We consider a criterion of this type to
select the bandwidth h for both estimators F̂ xh,d and m̂x

h,d of the conditional c.d.f and regression
function respectively. The selected estimators achieve an oracle-type inequality and attain the
minimax rates of Table 2.5, up to a log(n) term in the case HX,pol.

3.3 Perspectives

3.3.1 Functional autoregressive processes [MR]

In this project, we aim at estimating the transition operator in a functional autoregressive process
(functional AR(1) process) defined by

Xk+1 = Φ∗Xk + εk+1, k ∈ Z,

based on the observations X1, . . . , Xn. Here Φ∗ : X → X is an unknown linear operator which
is the parameter of the model that we intend to estimate. This model has been widely studied
in the book of Bosq (2000) and is identifiable on the condition ‖|Φ∗‖| < 1 which is assumed
hereafter.
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Assumptions λj � j−2γ λj � e−γj

‖Φ∗ψj‖2 � j−2r ‖Φ∗ψj‖2 � e−rj ‖Φ∗ψj‖2 � j−2r ‖Φ∗ψj‖2 � e−rj

Rn(Φ̂ρ∗) n−
2γ+2r−1
2γ+2r n−

4γ
4γ+1 ∼ log(n)

n

ρ∗ n−
2γ

2γ+2r+1 n−
2γ

4γ+1
log2b(n)

n
log(n)
n

Table 3.1: Minimax rates and theoretical optimal value of ρ in the AR(1) model (conjecture).

We consider ridge estimators of Φ∗:

Φ̂ρ ∈ argminΦ∈S2

{
1

n

k−1∑
i=1

‖Φ(Xk+1)− Φ(Xk)‖2 +
ρ

2
‖Φ‖2HS

}
,

where S2 is the space of Hilbert-Schmidt operators equipped with its usual norm ‖ · ‖HS . It can
be shown that Φ̂ρ can be written explicitly

Φ̂ρ = D̂(Γ̂ + ρI)−1,

where D̂ : f 7→ 1
n

∑n−1
i=1 〈Xk, f〉Xk+1 is the empirical cross-covariance operator.

The estimator Φ̂ρ also has been studied by Caponera and Panaretos (2022) who obtain an
upper-bound on the p-Schatten norms. We consider a predictive risk

Rn(Φ̂) = E[‖(Φ̂− Φ∗)(Xn+1)‖2],

and study the dependency of the minimax rates of convergence with the decreasing rate of the
eigenvalues (λj)j≥1 of the covariance operator Γ and the regularity of the function to estimate
as it has been done for the functional linear model (Tables 2.1 and 2.2). In our case, it is the
decreasing rate of the quantity ‖ρ∗ψj‖2 the characterizes the regularity of ρ∗ and conjecture the
rates in Table 3.1.

Since the optimal value ρ∗ depends on unknown regularities of X and Φ∗, the aim is to define
an adaptive estimator by defining a data-driven selection criterion for ρ. The main obstacle we
are facing is to find a sufficiently sharp concentration inequality in our case where the data are
dependent and functional. Moreover, adaptive procedures for Ridge estimators are not common.
Up to our knowledge, only two works are related to the subject in the case of multivariate i.i.d.
data Loubes and Ludeña (2008); Baraud et al. (2014) and the path to follow here will certainly
differ from these previous works.

3.3.2 Estimation of quantiles [CRS]

The aim is to define an adaptive estimator of the quantile of a distribution of a real random
variable Y conditionally to a real random variable Z from a sample {(Yi, Zi), i = 1, . . . , n}. We
consider as in Guerre and Sabbah (2012) a local polynomial estimator: Q̂h(α|z) is constructed
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as the first element q0 of the minimizer over q = (q0, . . . , q`)
t ∈ R`+1 of the criterion

n∑
i=1

`α(Zi −U(Xi − x)tq)Kh(Xi − x),

whereK is a kernel function, Kh(·) = K(·/h)/h, `α(z) = z(α−1z≤0) and U(x) = (1, x, . . . , xp/p!)t.
The choice of the estimator is motivated by the fact that the quantile of order α of Y given Z is
the solution of the minimization problem

min
q∈R

{E[`α(Z − q)|X = x]}.

The local polynomial estimator is necessary to achieve the right order of the bias term when the
function to estimate is b-Hölder continuous, with b > 1.

Chichignoud and Loustau (2015) have developed an adaptive estimation procedure based on
Goldenshluger and Lepski (2011) for estimators defined by minimization of an empirical risk but
their methods requires that the criterion to minimize is 2-times differentiable, which is not the
case here and adds some difficulties in obtaining the theoretical results.

3.3.3 Estimation of the ergodicity parameter in Markov Chains and BMC

The uniform ergodicity assumption we made in [BR20] to obtain the theoretical results is ques-
tionable. More precisely, we assume that there exists a constant ρ ∈ (0, 1/2) and M > 0 such
that

|〈g,Qnµ〉 − 〈g, ν〉| ≤M‖f‖∞ρn, g : Rd → R, bounded and ν − integrable,

with Qmµ the distribution of Yn.

The fact that ρ < 1/2 is itself a problem. In particular, there is no method to verify it
on observations. Moreover, it seems that we have a phase-transition at ρ = 1/2: in the case
ρ ≥ 1/2, the rates of convergence are no the same than in the i.i.d. case (Bitseki-Penda and
Delmas, 2022) and the optimal bandwidth may depend on ρ. Obtaining an adaptive estimator
in this context hence requires to be able to estimate the parameter ρ. With Marc Hoffmann and
Valère Bitseki-Penda, we have the project to develop an estimation procedure of the ergodicity
parameter ρ, based on the consideration that ρ is the second eigenvalue of the integral operator
Q associated to the transition kernel of the Markov chain (Yn)n≥1. Since this transition kernel
is estimable from the observations, the approaches and tools described in Chapter 1, could be
useful to study estimation of ρ.

50

https://arxiv.org/abs/1706.07034


3.3. PERSPECTIVES

3.3.4 Adaptive estimation of a ”regular” density conditionally to a functional
data [CR]

In [CR14] and [CR16], we estimate the conditional c.d.f. and regression function respectively
with the assumption that the target functions are b-Hölder continuous, with b ≤ 1. This strong
assumption is necessary since we need the kernel to be positive. More precisely we need the
existence of a constant c ≥ 1 such that

c−11[0,1](t) ≤ K(t) ≤ c1[0,1](t), t ∈ R.

To overcome this difficulty, we would like to use multiplicative kernels. Consider e.g. the
estimation of the conditional density fY |X=x w.r.t. the Lebesgue measure of a real random
variable Y conditionally to X = x where X is a functional variable. We can define an estimator
of fY |X=x from a sample {(Xi, Yi), i = 1, . . . , n} with the following formula

f̂h,w,m(x) =

n∑
i=1

W
(i)
h,p(x)Hw(y − Yi) with W

(i)
h,p(x) =

∏m
j=1Khj

(〈x−Xi, ej〉)∑n
i′=1

∏m
j=1Khj

(〈x−Xi′ , ej〉
,

where h ∈]0;+∞[m, w > 0 and m ∈ N∗ are the parameters to select and K and H are two kernels.
An alternative would be to consider local polynomial estimators but writing such estimators in
a functional context is not an easy task.

3.3.5 Bandwidth selection and EM algorithm [BCCHLR]

We consider here classification for multivariate data. Let X be a random variable in Rd. We
suppose that X follows the following mixing model i.e. that its density fX can be written

fX(t) =

K∑
k=1

pkfk(x), (3.6)

where the weights p1, . . . , pK ∈ [0, 1] verifies
∑K
k=1 pk = 1 and the density of the classes f1, . . . , fK

are general multivariate densities in Rd. The case that is of interest for us is the case d = 2 and
K = 3 since the aim is to compare genetic expressions under two different conditions as in Bérard
et al. (2011) without the assumption of gaussianity of the logarithm of the data.

Written in the general form (3.6), the model is not identifiable. Hence, we assume the
existence of an unknown function f : R → R, such that,

fk(x1, . . . , xd) =
d∏
j=1

f(xj − µj,k),

where (µj,k)j=1,...,d;k=1,...,K are translation parameters that are also unknown. In other words,
conditionally to the belonging to a class k, the coordinates (X1, . . . , Xd) of X are independent
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and follow, up to a translation, the same distribution. A less restrictive model would be to
also add a scaling parameter that may be different among the coordinates and/or the classes.
However, adding this scaling parameter implies non identifiability of the model. On the contrary,
Hunter et al. (2007) proves identifiability of the model with translation in the case of interest
(d = 2, m = 3) under some mild conditions on the pk’s.

EM-like algorithms with kernel density estimators have been implemented in the R package
Benaglia et al. (2009) with a bandwidth selection method based on Rule-of-Thumb, which is
designed for Gaussian distribution but has no theoretical support for general distributions. Then,
our idea was to replace the Rule-of-Thumb method by a bandwidth selection step based on the
Penalized Comparizon to Overfitting (PCO) method developed by Lacour et al. (2017).

This leads us to Algorithm 3 and our preliminary results compared to the case where the
bandwidth selection step (in blue) is replaced by the Rule-of-Thumb are given in Fig. 3.1.

Indeed, the bandwidth selection step of algorithm Benaglia et al. (2009) is based on Rule of
Thumb method. Cross-validation methods are too time-consuming to be inserted in an EM-like
algorithm. The advantage of the PCO method is that is easily implementable, advantageous
in terms of computation times and covered by theoretical guarantees. The other novelty of our
approach is that the bandwidth grid H varies along the iterations: H(0) = H where H is a large
grid containing hmin = ‖K‖∞(nKd)−1 and then H(`) only contains the neighbors of h(`−1) in H.

The results we obtained are represented in Figure 3.1.
The performances of Rule-of-Thumb and PCO-like methods are comparable except in the

last case where our method perfoms best.
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Algorithm 3 EM-like algorithm with data-driven bandwidth selection [BCCHLR]

Initialization: first classification made by hierarchical clustering to initialize ẑ(0)i,k (ẑ(`)i,k estimate
at step ` P(Xi in class k)), µ̂(0)

j,k, f̂ (0) and

λ̂
(0)
k =

1

n

n∑
i=1

ẑ
(0)
i,k .

repeat
E-step: update the probability of i being in class k, for all i = 1, . . . , n; k = 1, . . . ,K,

ẑ
(`)
i,k =

p̂
(`−1)
k

∏d
j=1 f̂

(`−1)(Xi − µ̂
(`−1)
j,k )∑m

k′=1 p̂
(`−1)
k′

∏d
j=1 f̂

(`−1)(Xi − µ̂
(`−1)
j,k′ )

M like step:

1. Update the estimation of the weights: for all k = 1, . . . ,K

p̂
(`)
k =

1

n

n∑
i=1

ẑ
(`)
i,k .

2. Update the estimation of translation parameters: for all j = 1, . . . , d; k = 1, . . . ,K

µ̂
(`)
j,k =

1

n

n∑
i=1

ẑ
(`)
i,k

p̂
(`)
k

Xj
i .

3. Update the estimation of the common density :

(a) Calculate, for all h ∈ H(`−1) ∪ {hmin},

f̂
(`)
h (t) =

1

nd

n∑
i=1

K∑
k=1

d∑
j=1

z
(`)
i,kKh(t−Xk

i + µ̂
(`)
j,k).

(b) Select the bandwidth:

ĥ(`) = argminh∈H(`)

{
‖f̂h − f̂hmin‖2 + 2

〈Kh,Khmin〉
n

}
.

until
∑n
i=1

∑K
k=1 |ẑ

(`)
i,k − ẑ

(`−1)
i,k | ≤ s or maximal number of iterations reached
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Normal density

Laplace density

Epanechnikov density

Mixtures of 3 uniforms

Mixture of 2 Gaussian r.v.

Mixtures of 6 Gaussian r.v.

Figure 3.1: Comparison of EM-like algorithms in the case where the bandwidth is selected by the
Rule-of-Thumb implemented in Benaglia et al. (2009)(left) or with the PCO method (inspired
from Lacour et al. (2017)) with a Gaussian kernel K(t) = (2π)−1/2e−t

2/2. The true density is
plotted in red.
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ABSTRACT 

 

This habilitation thesis is structured into three parts: 

 

• Dimension reduction for functional data and its extension to counting processes. 

The core of this section primarily involves the study of theoretical properties of 

Functional Principal Component Analysis under various observation schemes. 

• Minimax rates in regression for functional data. Different regression models with at 

least one functional data covariate are studied. The minimax rate depends on the 

regularity of the function to be estimated as well as the regularity of the data. This 

regularity can be theoretically characterized either via assumptions on the 

asymptotic behavior of the eigenvalues of the covariance operator or on the 

asymptotic behavior of small ball probabilities. 

• Adaptive estimation for functional and/or dependent data. In this section, we 

investigate the extension of model selection methods for projection estimators and 

bandwidth selection methods for kernel estimators in various frameworks involving 

functional and/or dependent data. 

RÉSUMÉ 

 

Ce mémoire d’HDR s’articule en trois parties : 
 

• La réduction de dimension pour données fonctionnelles et son extension aux 

processus de comptage. Le cœur de cette partie consiste notamment en l’étude 

de propriétés théoriques de l’Analyse en Composantes Principales fonctionnelle 

sous différents schémas d’observation. 

• Les vitesses minimax en régression pour données fonctionnelles. Plusieurs 

modèles de régression ayant pour covariable au moins une donnée fonctionnelle 

sont étudiés. Dans ces modèles, le risque minimax dépend en particulier, en plus 

de la régularité de la fonction à estimer, de la régularité des données. Cette 

régularité peut-être caractérisée théoriquement soit via le comportement 

asymptotique des valeurs propres de l’opérateur de covariance, soit via le 

comportement asymptotique des probabilités de petite boule.  

• L’estimation adaptative pour données fonctionnelles et/ou dépendantes. Dans 

cette partie, nous étudions l’extension de méthodes de sélection de modèle pour 

des estimateurs par projection ou de fenêtre pour des estimateurs à noyau dans 

différents cadres faisant intervenir des données fonctionnelles et/ou dépendantes.   
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