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Introduction : statistical framework

Statistical framework

Aim: study the link between two random variables.
Y ∈ R a variable of interest.
X ∈ H an explanative (functional) variable,
with (H, 〈., .〉, ‖.‖) a separable Hilbert space.

Typically H = L2([a, b]), H = a Sobolev space...

Observations: (Xi,Yi)i∈{1,...,n} a sample following the same distribution as
(X,Y).
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Introduction : statistical framework

Models and problems considered

Functional linear model: Y = 〈β,X〉+ ε,
with β ∈ H and ε a noise term, centred, independent of X, with finite variance.

Model without structural constraint

Nonparametric regression : Y = m(X) + ε,
with m : H→ R a function and ε a noise term.
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(x, y) 7→ Fx(y) = P (Y ≤ y|X = x) .

Nonparametric regression : Y = m(X) + ε,
with m : H→ R a function and ε a noise term.

Minimisation of the conditional expectation :
x∗ = arg minx∈C {m(x)} .
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Introduction : statistical framework

Outline

1 Prediction in the functional linear model
Estimation procedure
Theoretical results
Simulation results

2 Adaptive estimation of the conditional c.d.f
Bias-variance decomposition of the risk
Bandwidth selection device
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Prediction in the functional linear model

Functional linear model

We suppose that
Y = 〈β,X〉+ ε, (1)

with
X a centred random variable with values in a separable Hilbert space
(H, 〈·, ·〉, ‖ · ‖) with infinite dimension;
β, the slope function: an unknown element of H;
ε a noise term, centred, independent of X and with unknown variance σ2.

Aim: estimate the slope function β using the information of the sample
{(Xi,Yi), i = 1, . . . , n} following (1).
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Prediction in the functional linear model

Covariance operator

Multiplying the model equation Y = 〈β,X〉+ ε by X(s) and taking expectation we
obtain

E [YX] = E [〈β,X〉X]

q q
g ∈ H = Γβ

where
Γ : f ∈ H 7→ E [〈X, f 〉X]

is the covariance operator associated to X.
Γ positive compact self-adjoint
⇒ basis (ψj)j≥1 of eigenfunctions

(λj)j≥1 associated eigenvalues, non-increasing sequence.
λj ↘ 0⇒ ill-posed inverse problem.
For identifiability, we suppose that

Ker(Γ) = {0} ⇔ λj > 0 for all j.
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Prediction in the functional linear model

Risk considered

Definition

The prediction error of an estimator β̂ is the quantity

E
[(

Ŷn+1 − E [Yn+1|Xn+1]
)2
|(X1,Y1), . . . , (Xn,Yn)

]
= E

[
〈β̂ − β,Xn+1〉2|(X1,Y1), . . . , (Xn,Yn)

]
= 〈Γ(β̂ − β), β̂ − β〉 =: ‖β̂ − β‖2

Γ

with
(Xn+1,Yn+1) a copy of (X,Y) independent of the sample;

Ŷn+1 the prediction of Yn+1 with the estimator β̂ :

Ŷn+1 = 〈β̂,Xn+1〉.
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Prediction in the functional linear model

Short overview of existing work

Estimation by projection or by roughness regularization.
On fixed basis : Fourier , B-splines, general o.n.b...
On data-driven basis : functional PCA.

Numerous results with asymptotic point of view: Cardot, Ferraty and Sarda
(1999), Cai and Hall (2006), Hall and Horowitz (2007),...
... but very few non-asymptotic results : Cardot and Johannes (2010, lower
bounds on general L2-risks), Comte and Johannes (2010, 2012; adaptive
estimators).
Comte and Johannes (2010, 2012):
→ projection estimators on fixed basis;
→ oracle-type inequalities for general weighted L2 norms without including the

prediction error;
→ minimax convergence rates.

Goal: define an adaptive estimator by projection on the PCA basis.
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Prediction in the functional linear model Estimation procedure
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Prediction in the functional linear model Estimation procedure

fPCA
functional Principal Components Regression

Aim:
Define an approximation space Sm of dimension Dm minimising the mean distance
between X and its projection on Sm.

Sm = Vect{ψ1, . . . , ψDm}

By induction:
ψk+1 ∈ arg minf∈HE

[
‖X −ΠkX − 〈X, f 〉f‖2] ,

under the constraint 〈ψk+1, ψj〉 = 0, for all j ≤ k et ‖ψk+1‖ = 1 (Πk: projector
Vect{ψ1, . . . , ψk}).

The family (ψj)j≥1 is a o.n.b of H of eigenfunctions of the covariance operator

Γ : f ∈ H 7→ E [〈X, f 〉X] .
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Prediction in the functional linear model Estimation procedure

Least-squares estimators

Case 1: the basis (ψj)j≥1 is known Case 2: the basis (ψj)j≥1 is unknown

β̂(KB)
m = arg minf∈Sm

γn(f ), β̂(FPCR)
m = arg minf∈Ŝm

γn(f ),

with Sm = span{ψ1, . . . , ψDm}, with Ŝm = span{ψ̂1, . . . , ψ̂Dm},

where (ψj)j≥1 are the eigenfunctions of
the covariance operator

where (ψ̂j)j≥1 are the eigenfunction of
the empirical covariance operator

Γ : f ∈ H 7→ E [〈f ,X〉X] . Γn : f ∈ H 7→ 1
n

∑n
i=1〈f ,Xi〉Xi.

γn : f 7→ 1
n

∑n
i=1 (Yi − 〈f ,Xi〉)2 is the least-squares contrast.

(Dm)m≥1 is a strictly increasing sequence such that D1 ≥ 1 (e.g. Dm = m or
Dm = 2m + 1). 12 / 54
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Prediction in the functional linear model Estimation procedure

Dimension selection (I)

Problem:
How to choose the dimension Dm ?

Best dimension for prediction error:

Dm∗ with

m∗ ∈ arg minm=1,...,Nn
E
[∥∥∥β̂(FPCR)

m − β
∥∥∥2

Γ

]
→ unknown in practice !!!

β̂
(FPCR)
m∗ is the best estimator it is possible to select in the family{
β̂m,m = 1, . . . ,Nn

}
. We call it oracle.
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Prediction in the functional linear model Estimation procedure

Dimension selection (II)

Bias-variance decomposition of the risk

E
[∥∥∥β̂(FPCR)

m − β
∥∥∥2

Γ

]
= E

[∥∥∥Π̂mβ − β
∥∥∥2

Γ

]
+E

[∥∥∥β̂(FPCR)
m − Π̂mβ

∥∥∥2

Γ

]
,

where Π̂mβ is the orthogonal projection on span{ψ̂1, . . . , ψ̂Dm}.

Approximation error ! bias term:

decreases with the dimension Dm;
order unknown in practice (depends on the regularity of β).

Estimation error ! variance term: ' σ2 Dm
n σ2: noise variance
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Prediction in the functional linear model Estimation procedure

Dimension selection (III)

Dimension selection criterion
We select

m̂ ∈ arg minm=1,...,Nn

{
γn(β̂(FPCR)

m ) + κσ̂2
m

Dm

n

}
with

σ̂2
m :=

1
n

n∑
i=1

(
Yi − 〈β̂(FPCR)

m ,Xi〉
)2

= γn(β̂(FPCR)
m )

an estimator of the noise variance σ2.
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Prediction in the functional linear model Theoretical results
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Prediction in the functional linear model Theoretical results

Assumptions

Assumption on the noise: there exists p > 4, such that E[εp] < +∞.
Assumption on the target function β: there exists r,R > 0 such that

β ∈ WR
r :=

f ∈ H,
∑
j≥1

jr < f , ψj >
2≤ R2


.
Assumptions on the process X:

on the principal components scores:

supj≥1 E
[
〈X,ψj〉2`

λ`j

]
≤ `!b`−1, for all ` ≥ 1

For all j 6= k, 〈X, ψj〉 is independent of 〈X, ψk〉.
→ Verified for all Gaussian
processes

on the eigenvalues of Γ:
λ1 > λ2 > . . .
cj−a ≤ λj ≤ Cj−a with a > 1, c,C > 0 (polynomial decrease) or
ce−ja ≤ λj ≤ Ce−ja , a, c,C > 0 (exponential decrease).
There exists a constant γ > 0 such that (jλj max{ln1+γ(j), 1})j≥1 is decreasing.

→ Brownian motion: λj = π−2(j− 0.5)−2, Brownian bridge: λj = π−2j−2
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Prediction in the functional linear model Theoretical results

Oracle inequality and rates

Theorem

Under the previous assumptions and if a + r/2 > 2 (for the polynomial decrease),

E
[∥∥∥β̂(FPCR)

m̂ − β
∥∥∥2

Γ

]
≤ C1 min

m=1,...,Nn

{
E
[∥∥∥Π̂mβ − β

∥∥∥2

Γ

]
+ κσ2 Dm

n

}
+

C2

n
,

where C1,C2 > 0 are independent of n and β and Π̂m is the orthogonal projector onto Ŝm.

Rates of convergence

Polynomial decrease Exponential decrease
cj−a ≤ λj ≤ Cj−a ce−ja ≤ λj ≤ Ce−ja

supβ∈WR
r
E
[∥∥∥β̂(FPCR)

m̂ − β
∥∥∥2

Γ

]
≤ Cn−(a+r)/(a+r+1) ≤ Cn−1(ln(n))1/a

→ coincides with the lower-bounds established by Cardot and Johannes (2010).

→ The estimator is optimal in the minimax sense
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Prediction in the functional linear model Simulation results
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Prediction in the functional linear model Simulation results

Simulation of X

X =

100∑
j=1

√
λjξjψj,

with ξ1, ..., ξ100 independent realizations of N (0, 1) and ψj(x) =
√

2 sin(π(j− 0.5)x).

λj = j−2 λj = j−3 λj = e−j
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Prediction in the functional linear model Simulation results
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Prediction in the functional linear model Simulation results

Comparison with cross-validation

We compare our selection criterion with other methods:
Cross validation:

m̂CV := arg minm=1,...,Nn

1
n

n∑
i=1

(
Yi − Ŷ(m,−i)

i

)2
,

where Ŷ(m,−i)
i is the prediction of Y made from the sample {(Xj,Yj), j 6= i}.

Generalized cross-validation:

m̂GCV := arg minm=1,...,Nn

γn(β̂m)(
1− tr(Hm)

n

)2 ,

where Ŷ(m)
i := 〈β̂m,Xi〉 (prediction of Y) and Hm is the Hat matrix defined by

Ŷ(m) = HmY;
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Prediction in the functional linear model Simulation results

Comparison with cross-validation

Estimation of β1
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Figure: Left: comparison of estimators β̂m when m is selected by minimization of the penalized
criterion or the CV criterion. Right: comparison with the GCV criterion. n = 2000, λj = j−3.
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Prediction in the functional linear model Simulation results

Comparison with cross-validation
Comparison of risks
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Prediction in the functional linear model Simulation results

Comparison with cross-validation
Ratio to the oracle
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Estimation of β1, λj = j−3.
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Adaptive estimation of the conditional c.d.f

Goal

Aim: estimate the conditional distribution function

Fx(y) = P(Y ≤ y|X = x)

using the information of the sample {(Xi,Yi), i = 1, . . . , n} following the same
distribution as (X,Y).
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Adaptive estimation of the conditional c.d.f

Estimation method

Kernel estimation

F̂x
h,d(y) =

∑n
i=1 Kh (d(Xi, x)) 1{Yi≤y}∑n

i=1 Kh (d(Xi, x))

where
K : R→ R+ is a kernel function. It verifies

∫
R K(t)dt = 1.

h > 0 is a bandwidth.
d : H2 → R+ is a general pseudometric.

Reference: Ferraty et al. (2006, 2010) :
Almost complete and uniform almost complete convergence (with bias-variance
decomposition).
Rates of convergence on some examples of processes.

Purposes
provide a data-driven choice for the bandwidth h with nonasymptotic
theoretical results;
discuss the choice of the semi-metric d in the kernel;
compute optimal rates of convergence under various regularity assumptions.
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Adaptive estimation of the conditional c.d.f Bias-variance decomposition of the risk
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Adaptive estimation of the conditional c.d.f Bias-variance decomposition of the risk

Considered risk

For the main part of the talk: d(x, x′) = ‖x− x′‖, (x, x′) ∈ H.

F̂x
h(y) := F̂x

h,d(y) =

∑n
i=1 Kh(‖Xi − x‖)1{Yi≤y}∑n

i=1 Kh(‖Xi − x‖)

Integrated risk

R(F̂h,F) := E
[∫

B

(∫
D

(
F̂x

h(y)− Fx(y)
)2

dy
)

dPX(x)

]
= E

[
‖F̂X′

h − FX′‖2
D1B(X′)

]
with

X′ is a copy of X, independent of the data-sample.
D is a compact subset of R;
B is a bounded subset of H.
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Adaptive estimation of the conditional c.d.f Bias-variance decomposition of the risk

Assumptions to control the risk

Assumptions on the kernel
supp(K) ⊂ [0; 1]
0 < cK ≤ K(t) ≤ CK < +∞, t ∈ [0; 1]

Assumption on the target function F:

∃β ∈ (0; 1), ∃CD > 0, ∀x, x′ ∈ H, ‖Fx − Fx′‖D ≤ CD‖x− x′‖β

−→ F belongs to a Hölder space with smoothness index β.

Assumption on the process X:
• through the small ball probabilities

ϕ(h) := P(‖X‖ ≤ h) and ϕx0 (h) := P(‖X − x0‖ ≤ h), x0 ∈ H.

• ∃cϕ,Cϕ > 0, such that

∀h > 0, ∀x0 ∈ B, cϕϕ(h) ≤ ϕx0 (h) ≤ Cϕϕ(h).
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Adaptive estimation of the conditional c.d.f Bias-variance decomposition of the risk

Upper-bound for the risk

Proposition

Under the previous assumptions, there exists C > 0, such that, for any h > 0,

R(F̂h,F) ≤ C
(

h2β +
1

nϕ(h)

)
,

32 / 54



Adaptive estimation of the conditional c.d.f Bias-variance decomposition of the risk

Upper-bound for the risk

Proposition

Under the previous assumptions, there exists C > 0, such that, for any h > 0,

R(F̂h,F) ≤ C
(

h2β +
1

nϕ(h)

)
,

Unknown oracle choice

h∗ = arg minh∈Hn
R(F̂h,F)

32 / 54



Adaptive estimation of the conditional c.d.f Bias-variance decomposition of the risk

Upper-bound for the risk

Proposition

Under the previous assumptions, there exists C > 0, such that, for any h > 0,

R(F̂h,F) ≤ C
(

h2β +
1

nϕ(h)

)
,

Unknown oracle choice

h∗ = arg minh∈Hn
R(F̂h,F)︸ ︷︷ ︸

≤ C
(

h2β +
1

nϕ(h)

)

32 / 54



Adaptive estimation of the conditional c.d.f Bias-variance decomposition of the risk

Upper-bound for the risk

Proposition

Under the previous assumptions, there exists C > 0, such that, for any h > 0,

R(F̂h,F) ≤ C
(

h2β +
1

nϕ(h)

)
,

Unknown oracle choice

h∗ = arg minh∈Hn
R(F̂h,F)︸ ︷︷ ︸

≤ C
(

h2β +
1

nϕ(h)

)
Question: How to choose h without the knowledge of β and ϕ(h)?
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Adaptive estimation of the conditional c.d.f Bandwidth selection device

Bandwidth selection device
Inspired from the work of Goldenshluger and Lepski (2011)

Bias-variance decomposition of the risk

R
(

F̂h,F
)

= E
[
‖FX′ − E

[
F̂X′

h |X′
]
‖2

D1B(X′)
]

+ E
[
‖E
[
F̂X′

h |X′
]
− F̂X′

h ‖2
D1B(X′)

]
.

Variance term of order 1
nϕ(h) → can be estimated:

V̂(h) = κ
ln n

nϕ̂(h)
where ϕ̂(h) =

1
n

n∑
i=1

1{‖X‖≤h}.

How to approximate the bias term ?

Â(h) = max
h′∈Hn

(
‖F̂X′

h′ − F̂X′
h′∨h‖2

D − V̂(h′)
)

+

Finally ĥ = arg minh∈Hn

{
Â(h) + V̂(h)

}
⇒ F̂X′

ĥ
.
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Adaptive estimation of the conditional c.d.f Bandwidth selection device

Main result: nonasymptotic adaptive risk bound

Theorem
Under the previous assumptions, and if the collectionHn is not too large, there exist 2
constants c,C > 0 such that

R(F̂ĥ,F) ≤ c min
h∈Hn

{
h2β +

ln(n)

nϕ(h)

}
+

C
n
.
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Adaptive estimation of the conditional c.d.f Optimal estimation in the minimax sense
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Adaptive estimation of the conditional c.d.f Optimal estimation in the minimax sense

Additional assumption on the small ball probability

ϕ(h) = P (‖X‖ ≤ h) , h > 0.
3 possible assumptions on the decay of the s.b.p.

Fast decay
ϕ(h) � hγ exp

(
−ch−α

)
, γ ∈ R, α > 0.

Ex: if X is a brownian motion, assumption satisfied with α = 2.

Intermediate decay

ϕ(h) � hγ exp
(
−c ln−α(1/h)

)
, γ ∈ R, α > 1.

Low decay
ϕ(h) � hγ , γ > 0.

Ex: if X ∈ Rd (random vector), assumption satisfied with γ = d.
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Adaptive estimation of the conditional c.d.f Optimal estimation in the minimax sense

Rates of convergence

Fast decay for ϕ(h) Intermediate decay for ϕ(h) Low decay for ϕ(h)
(slow rates) (intermediate) (fast rates)

(a) R(F̂ĥ,F) . · · ·
(ln(n))−2β/α exp

(
− 2β

c1/α
2

ln1/α(n)
) (

n
ln(n)

)− 2β
2β+γ

(adaptive rate)

−→ similar rates to the ones obtained by Ferraty et al. (2006), but for an adaptive bandwidth.

38 / 54



Adaptive estimation of the conditional c.d.f Optimal estimation in the minimax sense

Rates of convergence

Fast decay for ϕ(h) Intermediate decay ϕ(h) Low decay ϕ(h)
(slow rates) (intermediate) (fast rates)

(a) R(F̂ĥ,F) . · · ·
(ln(n))−2β/α exp

(
− 2β

c1/α
2

ln1/α(n)
) (

n
ln(n)

)− 2β
2β+γ

(adaptive rate)

(b) Minimax rate
(ln(n))−2β/α exp

(
− 2β

c1/α
2

ln1/α(n)
)

n−
2β

2β+γinf
F̃

sup
F,X...

R(F̃,F) & · · ·

(lower bound)

−→ similar rates to the ones obtained by Mas (2012) for regression estimation.
−→ the estimator is then optimal in the minimax sense, up to the extra ln(n) factor.
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Adaptive estimation of the conditional c.d.f Simulation study
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Adaptive estimation of the conditional c.d.f Simulation study

Implementation

Choice of K: uniform kernel K = 1[0,1].

Choice ofHn: Hn = {C/k, 1 ≤ k ≤ kmax}.

Simulation of X:
(W(t))t a brownian motion, • (ξj)j≥0 i.i.d. N (0, 1).

Fast decay for ϕ(h) Intermediate decay for ϕ(h) Low decay for ϕ(h)
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√

2ξ1 sin(πt/2)
+
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2
∑150
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e−j
√

j sin(π(j− 0.5)t) +ξ2 sin(3πt/2)/
√

2
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Adaptive estimation of the conditional c.d.f Simulation study

Estimators
Conditional c.d.f estimation in a regression model

Observations: (Xi, Yi)i∈{1,...,500} such that Yi =
(∫ 1

0 β(t)Xi(t)dt
)2

+ εi with β(t) = sin(4πt)

and εi ∼ N (0, 0.1).
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Adaptive estimation of the conditional c.d.f Simulation study

Estimators
Conditional c.d.f estimation in a Gaussian mixture model

Observations: (Xi, Yi)i∈{1,...,500} such that
Yi|Xi = x ∼ 0.5N (8− 4‖x‖, 1) + 0.5N (8 + 4‖x‖, 1),

Fast decay for ϕ(h) Intermediate decay for ϕ(h) Low decay for ϕ(h)
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Response surface methodology for functional data

Outline

1 Prediction in the functional linear model
Estimation procedure
Theoretical results
Simulation results

2 Adaptive estimation of the conditional c.d.f
Bias-variance decomposition of the risk
Bandwidth selection device
Optimal estimation in the minimax sense
Simulation study

3 Response surface methodology for functional data
Response surface methodology
Extension to the functional setting
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Response surface methodology for functional data Response surface methodology

Response surface methodology
Brief history

Box and Wilson (1950): optimal conditions for chemical experimentation→
widely used in industry.
Sacks et. al (1989): Extension to numerical experiments
↪→ Bates et. al (1996): conception of electrical circuit;
↪→ Lee and Hajela (1996): conception of rotor blades...

Recent advances: Facer and Müller (2003), Khuri and Mukhopadhyay (2010),
Georgiou, Stylianou and Aggarwal (2014).
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Response surface methodology for functional data Response surface methodology

Methodology

Goal: minimisation of (x1, . . . , xn) 7→ m(x1, . . . , xd), unknown.
Information available:

yi = m(x1,i, . . . , xd,i) + εi, i = 1, . . . , n,

(x1,i, . . . , xd,i)
n
i=1 chosen by the user and n as small as possible.

Example:
m(x1, x2) = x2

1 + x2
2;

ε ∼ N (0, 1).
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Response surface methodology for functional data Response surface methodology

Methodology

Goal: minimisation of (x1, . . . , xn) 7→ m(x1, . . . , xd), unknown.
Information available:
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Direction of steepest de-
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Example:
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1 + x2
2;
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Methodology

Goal: minimisation of (x1, . . . , xn) 7→ m(x1, . . . , xd), unknown.
Information available:
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Methodology

Goal: minimisation of (x1, . . . , xn) 7→ m(x1, . . . , xd), unknown.
Information available:
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Least-squares fit of a second-order
model:

y = β1x1+β2x2+(x1, x2)B(x1, x2)
t
+ε
′′
.

Stationary point:

(x∗1 , x∗2 ) =
1
2

B̂−1
(β̂1, β̂2)

t

.

Example:
m(x1, x2) = x2

1 + x2
2;

ε ∼ N (0, 1).

Legend:
• Minimal point of the descent direction
• Minimal point (target)
• Factorial design points
F CCD axial points
� Stationary point (estimated minimal point)
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Response surface methodology for functional data Response surface methodology

Methodology

Goal: minimisation of (x1, . . . , xn) 7→ m(x1, . . . , xd), unknown.
Information available:

yi = m(x1,i, . . . , xd,i) + εi, i = 1, . . . , n,
(x1,i, . . . , xd,i)

n
i=1 chosen by the user and n as small as possible.
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Example:
m(x1, x2) = x2

1 + x2
2;

ε ∼ N (0, 1).

Legend:
• Step points
• Minimal point (target)
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Response surface methodology for functional data Extension to the functional setting

Outline

1 Prediction in the functional linear model
Estimation procedure
Theoretical results
Simulation results

2 Adaptive estimation of the conditional c.d.f
Bias-variance decomposition of the risk
Bandwidth selection device
Optimal estimation in the minimax sense
Simulation study

3 Response surface methodology for functional data
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Response surface methodology for functional data Extension to the functional setting

Problems raised by the functional context

First and second-order models can be defined easily but
... How to define functional design of experiments ?
One possible answer: combine dimension reduction with classical
finite-dimensional design of experiments

(x(i)
0 = (x(i)

0,1, . . . , x
(i)
0,d) ∈ Rd, i = 1, . . . , n0) d-dimensional design of experiments;

{ϕ1, . . . , ϕd} orthonormal family of H

x(i)
o = x0 +

d∑
j=1

x(i)
0,jϕj,

−→ functional design of experiments.
... How can we define the directions {ϕ1, . . . , ϕd} ?
Possible basis of approximation

Fixed basis: Fourier, B-splines, wavelets,...
If a training sample exists: data driven basis

PCA basis;
PLS basis Wold (1975), Preda and Saporta (2005), Delaigle and Hall (2012): allows to
take into account the interaction between x and y.
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Response surface methodology for functional data Extension to the functional setting

Example of functional design of experiments
Factorial 2d design in H = L2([0, 1])

d = 2, 16 curves d = 4, 32 curves d = 8, 280 curves

Fourier
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X brownian motion, Y = ‖X − f‖2 + ε, f (t) = cos(4πt) + 3 sin(πt) + 10, ε ∼ N (0, 0.01)

1calculated from (Xi)500
i=1

2calculated from (Xi, Yi)500
i=1
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Response surface methodology for functional data Extension to the functional setting

Example of functional design of experiments
Central Composite Designs in H = L2([0, 1])

d = 2, 4 curves d = 4, 16 curves d = 8, 256 curves
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X brownian motion, Y = ‖X − f‖2 + ε, f (t) = cos(4πt) + 3 sin(πt) + 10, ε ∼ N (0, 0.01)

3calculated from (Xi)500
i=1

4calculated from (Xi, Yi)500
i=1
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Response surface methodology for functional data Extension to the functional setting

Methodology
Adaptation to a functional context

Goal: minimisation of x 7→ m(x), unknown.

Example:
m(x) = ‖x− f‖2 with

f (t) = cos(4πt)+3 sin(πt)+10;

ε ∼ N (0, 10).
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Methodology
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Example:
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f (t) = cos(4πt)+3 sin(πt)+10;

ε ∼ N (0, 10).

Legend:
Initial point
Minimal point f (t) (target)
28 factorial design5

5directions : PLS basis calculated from (Xi,m(Xi) + εi)500
i=1 (Xi brownian motion)
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i=1 (Xi brownian motion, d = 8)
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Example:
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Conclusion and perspectives

Conclusion

Model selection for functional principal component regression
→ faster and more stable than usual cross-validation
... with non-asymptotic control of the prediction error.
Bandwidth selection for kernel estimation
→ first adaptive estimation procedure in nonparametric estimation for functional
data
→ precise lower bounds and convergence rates.

−→ both estimation procedures leads to minimax optimal estimators.

First attempt to adapt Response Surface Methodology to functional data.
→ definition of functional design of experiments.
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Conclusion and perspectives

Perspectives

Response surface methodology: minimisation of the probability of failure of a
nuclear reactor vessel (CEA Cadarache);

Functional single-index model: Y = g(〈β,X〉) + ε. Is it possible to define a
projection based estimator which is adaptive ?

Kernel estimators in high/infinite dimension (with Gaëlle Chagny):
How to choose relevant metrics for kernels ?
Theoretical study of resulting estimators.

Functional linear model: Adaptive parameter selection for the roughness
regularization method.

β̂ρ ∈ arg minf∈S

{
1
n

n∑
i=1

(Yi − 〈f ,Xi〉)2
+ ρ‖f‖2

S

}
,

with ρ a smoothing parameter, S ⊂ H and ‖ · ‖S a seminorm on S.
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Conclusion and perspectives

Thank you for your attention!

Penalized contrast estimation in functional linear models with circular data.
É. Brunel and A. Roche, accepted for publication in Statistics.

Non-asymptotic Adaptive Prediction in Functional Linear Models.
É. Brunel, A. Mas and A. Roche, submitted.

Adaptive and minimax estimation of the cumulative distribution function given a
functional covariate.
G. Chagny and A. Roche, in revision.

Response surface methodology for functional data : application to nuclear safety
Work in progress.

Adaptive estimation in functional generalized linear models
Work in progress.
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