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ABSTRACT. The original Studentization was the conversion of a sample mean
departure into the familiar t-statistic, plus the derivation of the corresponding Stu-
dent distribution function; the observed value of the distribution function is the
observed p-value, as presented in an elemental form. We examine this process in a
broadly general context: a null statistical model is available together with observed
data; a statistic t(y) has been proposed as a plausible measure of the location of the
data relative to what is expected under the null; a modified statistic, say t̃(y), is
developed that is ancillary; the corresponding distribution function is determined,
exactly or approximately; and the observed value of the distribution function is the
p-value or percentage position of the data with respect to the model.

Such p-values have had extensive coverage in the recent Bayesian literature, with
many variations and some preference for two versions labelled pppost and pcpred. The
bootstrap method also directly addresses this Studentization process.

We use recent likelihood theory that gives a third order factorization of a reg-
ular statistical model into a marginal density for a full dimensional ancillary and
a conditional density for the maximum likelihood variable. The full dimensional
ancillary is shown to lead to an explicit determination of the Studentized version
t̃(y) together with a highly accurate approximation to its distribution function; the
observed value of the distribution function is the p-value and is available numerically
by direct calculation or by Markov chain Monte Carlo or by other simulations.

In this paper, for any given initial or trial test statistic proposed as a location
indicator for a data point, we develop: an ancillary based p-value designated panc;
a special version of the Bayesian pcpred; and a bootstrap based p-value designated
pbs. We then show under moderate regularity that these are equivalent to the
third order and have uniqueness as a determination of the statistical location of
the data point, as of course derived from the initial location measure. We also
show that these p-values have a uniform distribution to third order, as based on
calculations in the moderate-deviations region. For implementation the Bayesian
and likelihood procedures would perhaps require the same numerical computations,
while the bootstrap would require a magnitude more in computation and would
perhaps not be accessible. Examples are given to indicate the ease and flexibility of
the approach.

Some key words. Ancillary; Bayesian; Bootstrap; Conditioning; Departure mea-
sure; Likelihood; p-value; Studentization.

1



2

1. Introduction

Suppose we have a null model f(y; θ) for a statistical context and wish to judge

the acceptability of the model in the presence of data y0; the null model may exist

on its own or be a restriction of a larger embedding model. Also suppose we have a

statistic t(y) that has been proposed as a plausible measure of departure of data from

the model; the statistic may have arisen pragmatically based on physical properties,

or may be a simple departure measure for some parameter of an embedding model,

such as t(y) = b(y)− β where b(y) is say some median type estimate of a parameter

say β in the larger model.

It would be quite natural to find that the distribution of t(y) depends on the

parameter θ of the null model and thus to want to derive a modified statistic say

t̃(y) that is ancillary, with a θ-free distribution, and yet retains as much as possible

of the essential structure of the original statistic. One would also want to obtain

the distribution function, say H(t̃), of t̃ so as to calculate the observed p-value,

p0 = H(t̃0), as the percentage position of the data with respect to the null model,

all in the context of the original proposed statistic t(y). In this formulation the

only indications of possible alternatives to the null are found in the choice of the

departure statistic t(y). We do not here address this important issue, which may

depend heavily on the physical context.

As a simple example, consider a sample allegedly from a normal model with given

mean µ0 plus a proposed departure measure t(y) = ȳ: we might reasonably hope that

the indicated p-value would be p0 = Hn−1(t̃
0), where H is the Student distribution

function and t̃0 is the observed value of the t-statistic for assessing y0 relative to µ0;

this p-value is of course the usual Student value recording the percentage position

of the data with respect to the normal model located at µ0.

The process of developing t̃(y) from t(y) is here referred to as general Studenti-

zation, a generalization of the Student (1908) conversion of ȳ − µ0 into the familiar

t-statistic with its Student(n−1) distribution function as just described. This prob-

lem has had extensive recent discussion in the literature, particularly the Bayesian

literature; see for example Bayarri & Berger (2000) and Robins et al (2000).



3

Frequentist theory gives a simple first order p-value called the plug-in p-value,

p0
plug = G(t0; θ̂0), (1.1)

where G(t; θ) = P{t(y) < t; θ} is the distribution function for t(y) and the parameter

has been replaced by its observed maximum likelihood value. This p-value is well

known to be remarkably unreliable in many contexts; see for example, Bayarri &

Berger (ibid) and Robins et al (ibid). For the simple normal example the plug-

in distribution is that of a sample from a normal distribution with mean µ0 and

standard deviation σ̂0 = {∑(yi − µ0)
2}1/2; and the derived distribution of ȳ is

normal with mean µ0 and standard deviation σ̂0/n1/2; and the resulting plug-in

p-value is p0 = Φ(n1/2(ȳ0 − µ0)/σ̂
0); this is centered but underestimates departure

from the center. It is of particular interest to note that as a statistic, the preceding

p-value is one-one equivalent to the ordinary Student statistic t̃ = n1/2(ȳ − µ0)/sy.

And if the plug-in approach were to be repeated for the modified statistic we would

obtain the observed p-value p0 = H(t̃0) where H is the Student(n-1) distribution

function and p0 is the ordinary normal theory p-value.

Bootstrap theory is directly addressing this general Studentization problem; see

for example Beran (1988). One samples from the null model distribution using the

observed maximum likelihood value for the parameter, and then compounds the

process as the double or triple bootstrap. The first order bootstrap is directly the

plug-in p-value p0
plug and typically centers an initial statistic; a double bootstrap can

then give appropriate scaling, as indicated for the normal example above; and so

on. Indeed, a bootstrap evaluation is a plug-in evaluation.

The recent Bayesian literature, has developed many p-values for this general Stu-

dentization problem, but from a different viewpoint. As mentioned in Bayarri &

Berger (ibid) “Bayesians have a natural way to eliminate nuisance parameters: in-

tegrate them out.” In the present notation with a prior π(θ), the posterior density

for y is

m(y) = c

∫

f(y; θ)π(θ)dθ
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with appropriate norming, giving the posterior p-value

pprior = P{t(y) < t(y0); m(.)};

see Box (1980). For the simple normal example with the natural flat prior for log σ,

this direct Bayesian approach produces an improper posterior density m(y) for y.

This and other complications, as described in the preceding references, have led

the Bayesian approach to seek more refined and incisive methods for using prior

densities to obtain p-values, and then to obtain some preference for two versions

designated pppost and pcpred.

In the recent Bayesian approach that yielded pcpred, a posterior density for θ is

derived from some aspect of the data designated say Data1,

π(θ|Data1) = cL(θ; Data1)π(θ),

and then used to eliminate θ from the distribution function say G2 for t(y) derived

from some other aspect of the data say Data2,

p0 =

∫

G2(Data2; θ)π(θ|Data1)dθ.

If the full data y0 is used in both places there is a clear conflict in the probability

calculations, often described as double-use of the data. Some obvious difficulties

with the double use of data can be avoided by having Data1 in some sense distinct

from Data2. Bayarri & Berger (2000) and Robins et al (2000) study the case where

Data1 is the conditional maximum likelihood estimator given the test statistic t(y);

for this, Robins et al (2000) show that pcpred is asymptotically uniform to first order,

provided t(y) is asymptotically normal.

In many settings however the preceding conditional maximum likelihood estimator

is extremely difficult to work with as it can need an explicit expression for the density

of t(y), which is often unavailable. Here, following Robert and Rousseau (2003), we

take Data1 to be θ̂ and Data2 to be y|θ̂. For this Robert & Rousseau (ibid) prove

that the resulting p-value pcpred is first-order equivalent to the frequentist p-value

P{t(y) < t|θ̂; θ}, for any statistic t(y). Here we accept this p-value as a plausible
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contender and examine it with other p-values using recent higher-order likelihood

theory.

The recent likelihood theory (for example: Fraser & Reid, 2001; Fraser, 2003)

assumes an asymptotic model with p dimensional continuous parameter, moderate

regularity, and smoothness of the maximum likelihood statistic θ̂(y), and to third

order gives the existence of an ancillary a(y) of dimension n − p with density g(a)

and a corresponding conditional density h(θ̂|a, θ) for θ̂ given a; see Section 2. We

thus can think of the model as being h(θ̂|a; θ)g(a) on a product space for (θ̂, a), and

accordingly as needed write t(a, θ̂) in place of t(y). Certain technical question arise

concerning uniqueness, approximation accuracy, and coordinates for the ancillary;

these are discussed in Sections 2 and 3..

The frequentist p-value is obtained from the full ancillary density g(a):

p0
anc = Pg{t(a) < t0} = Gg(t

0; θ̂0) =

∫

t(a;θ̂0)<t0
g(a)da, (1.2)

where Pg designates probability using the ancillary density g(a) and Gg(t; θ̂
0) desig-

nates the related distribution function for t(y). We let t̃(y) designate an asymptotic

statistic equivalent to the ancillary p-value function panc(y). The distribution of the

full ancillary is third-order unique using coordinates specific to the observed value

of the maximum likelihood estimate; this raises technical issues that are addressed

in Section 3.

We also obtain in Section 2 a Bayesian ancillary distribution g̃(a) by prior averag-

ing, as for m(y), but restricting the probability being examined to that in a region

having θ̂ in a small interval (±δ/2) about the observed maximum likelihood value;

we find that this modified Bayesian ancillary is equal to the frequentist ancillary to

third order; that is g̃(a) = g(a). From this we obtain a Bayesian p-value p0
B that

is equal to the frequentist p-value p0
anc to third order. We also show that the pcpred

proposed by Robert & Rousseau (ibid) is equal to this modified Bayesian p-value

and thus to the frequentist ancillary.

For the simple normal example, we will see that the ancillary p-value panc is just

the familiar Student p-value mentioned above and accordingly has good properties.
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Also, in the case where the ancillary contours conform to the statistic t(y), that is,

t(a, θ̂0) = t(a), we have directly from (1.2) that panc is a true p-value in the sense that

it is uniform to the third order. In this paper we prove that this happens generally:

that panc is first order asymptotically uniform for any statistic t(y); that under mild

conditions on the asymptotic behaviour of t(y), it is second order asymptotically

uniform; and that under stronger asymptotic conditions on t(y), it is third order

asymptotically uniform. These asymptotic distributional properties then directly

apply to the Bayesian p-value and to the Bootstrap p-value now to be described.

For a bootstrap p-value we let Gi(t; θ) designate the distribution function for a

variable indexed by i as calculated from the model f(y; θ). Then with p0 designating

some initial function t(y) and with the iteration pi+1 = Gi(pi; θ̂), we have that

p1 = pplug is the plug in p-value, and that p3 = pbs is the proposed bootstrap p-

value; it can also be described as a triple plug-in p-value. In Section 4, we show

that this bootstrap p-value pbs is third order equivalent to the ancillary p-value

panc, under asymptotic normality of the statistic t and some higher order regularity

conditions.

We thus extend Robins et al (2000) in several ways: first by working with a spe-

cialized version of pcpred; second by relaxing the hypotheses on the statistic t(y); and

third by obtaining higher order results. The first and second aspects are important

as a test statistic can often be complicated with no available asymptotic distribution;

see for instance the goodness of fit tests in Robert & Rousseau (2003). Moreover, a

p-value provides a universal scale for a test procedure and can be considered from a

Bayesian perspective as a calibration of such test procedures (Robert & Rousseau,

2003); thus it is important to be as close as possible to the uniform distribution.

Our results are based on large sample likelihood theory for a continuous model

with regularity, and show that general Studentization can be obtained by a fre-

quentist ancillary approach, by a Bayesian ancillary approach, or by a three-level

bootstrap approach, and that the results are equivalent to third-order. We also note
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that the Bayesian and frequentist p-values are available by direct MCMC simula-

tions while the bootstrap values could require double or triple levels and perhaps

not have the same numerical accessibility.

2. The Bayesian and frequentist ancillary

Ancillaries, exact and approximate, provide the basis for extending higher order

approximation methods to quite general contexts, yielding p-values and marginal

likelihoods of high third-order accuracy. These results come from recent theory that

gives the existence of a third order ancillary of dimension n− p. The labeling of the

level surfaces for such an ancillary can be obtained conveniently and intrinsically by

using the points of intersection with a surface say

Sθ̂0 = {y : θ̂(y) = θ̂0};

corresponding to a value for the maximum likelihood statistic θ̂(y), say for conve-

nience the observed value of that statistic. Such a surface has n− p dimensions, is

cross sectional to the contours of the ancillary and thus indexes the ancillary con-

tours. Accordingly we take a = yc where yc designates a point on the surface Sθ̂0

and let da = dyc be the Euclidean measure on that surface. Although a third order

ancillary does not have uniqueness to third order, we do have that the corresponding

density g(a) has such uniqueness (Fraser & Reid, 1995, 2001), up to the labeling of

the coordinates.

The simple normal example illustrates some aspects of this, and for notational

ease we take the null value µ0 to be zero. The observed maximum likelihood surface

has σ̂ = σ̂0 and is the sphere with Σy2
i equal to the observed sum of squares; an

obvious ancillary is the unit direction y/|y| but there are many others. If however

we record the probability for the ancillary where the ancillary contours intersect a

particular maximum likelihood surface we obtain a unique distribution which here

is the uniform distribution on the sphere. This unique distribution on a maximum

likelihood surface is a general likelihood result and is the basis for the third order

p-values and marginal likelihoods.
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For the asymptotic model in the new coordinates (Fraser & Reid, 1995) we have

f(y; θ)dy = exp{`(θ; y)}|`θ;y(θ̂; y)|−1|̂θθ(θ̂; y)|dadθ̂, (2.1)

where `(θ; y) is the log-density, |`θ;y| = |`θ;y(θ̂; y)`′θ;y(θ̂; y)|1/2 is the nominal volume

of the p gradient vectors in the n× p cross Hessian `′θ;y = (∂2/∂θ′∂y)`(θ; y), and ̂θθ

is the observed information.

Integration over θ̂ using the tangent exponential model extension (Fraser & Reid,

1993) of Barndorff-Nielsen’s p∗ formula gives the distribution of the ancillary a:

g(a)da =
(2π)p/2

ec/n
exp{`(θ̂0; a)}|`θ;y(θ̂

0; a)|−1|̂θθ(θ̂
0; a)}|1/2da.

where c is a constant O(1). While the distribution of the ancillary as recorded on

any chosen cross-section Sθ̂0 is unique to third order, subject of course to the coor-

dinate labeling, there still can be various ancillaries as noted for the simple normal

example. Thus when we write a(y) we are implicitly assuming a particular choice

of ancillary and thus a particular linking of points from one maximum likelihood

surface to another. This can raise certain technical issues and lead to different pa-

rameter inference statements, not of interest here. We do note, however, that with

independent scalar coordinates and continuity in the parameter-to-variable relation-

ship the inference issue does not arise, and that for independent vector variables the

inference statements can depend on how the parameter is related to the variables,

as given typically by pivotal or inverted pivotal quantities.

Now consider a Bayesian ancillary density: we marginalize over the prior and then

examine the conditional distribution given the maximum likelihood value:

g̃(a|θ̂) =

∫

Θ
f(a, θ̂; θ)π(θ)dθ

∫

Θ
g(θ̂; θ)π(θ)dθ

.

A Laplace integration on the numerator and on the denominator yields

g̃(a|θ̂) =
exp{`(θ̂0; a)}|`θ:a(θ̂

0; a)|−1|ĵθθ(θ̂
0; a)|1/2eH(θ̂0)/n(1 + OP (n−3/2))

∫

S
θ̂0

exp{`(θ̂0; a)}|`θ:a(θ̂0; a)|−1|ĵθθ(θ̂0; a)|1/2eH(θ̂0)/nda(1 + OP (n−3/2))

= g(a)(1 + OP (n−3/2));

in other words a Bayesian evaluation of the conditional distribution on the maximum

likelihood surface reproduces the frequentist ancillary distribution.
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We thus have the significant result that the Bayesian averaging of probability

in an interval region about the observed maximum likelihood surface generates a

distribution g̃(a) on that surface and that it is equal to the ancillary distribution on

that surface. Or from a somewhat different perspective we can use the prior π(θ) to

average the distribution for y and then calculate the distribution of y on the section

θ̂ = θ̂0. In essence and without loss we have interchanged the order in which we

do a θ̂-sectioning and a θ-marginalization. Either way we obtain the distribution

g(a) = g̃(a), which is the marginal distribution of the ancillary statistic a.

Now consider the Bayesian p-value proposed by Robert & Rousseau (2003). The

posterior distribution from the marginal for θ̂ at the observed θ̂0,

π(θ|θ̂0) = cf(θ̂0; θ)π(θ),

is combined with the conditional distribution for y|θ̂0, producing π(θ)f(y0; θ); this

is then averaged over θ which as we have noted just gives cg̃(a). We thus have that

the proposed modified Bayesian pcpred,

p0
cpred =

∫

Θ

P
{

t(y) < t0|θ̂0; θ
}

π(θ|θ̂0)dθ =

∫

t(a,θ̂0)<t0
g̃(a|θ̂0)da,

is equal to the ancillary and direct Bayesian p-values, to third order.

3. The Bayesian-frequentist p-value is asymptotically uniform

3.1. The effective statistic. An observed data value y0 leads to a maximum like-

lihood value θ̂0 and a related maximum likelihood surface Sθ̂0 . On this surface there

is a unique third-order ancillary density that is typically easy to use ; an integra-

tion for t(y) < t(y0) then gives the observed p-value, say p0. There is however no

immediate assurance with a particular ancillary that contours of t(y) on Sθ̂0 will cor-

respond to those on other maximum likelihood surfaces. In this section we develop

a correspondence and then show that the ancillary p-value is third order uniform,

under mild assumptions : the statistic t(y) is assumed to have some regularity in

addition to the regularity assumptions made on the model.

Let a(y) be a particular third order ancillary that is indexed by points on some

initial maximum likelihood surface S0, say Sθ̂0 . We define a modified statistic t̄(y)
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to be equal to t(y) on S0 and otherwise to be constant on contours of the particular

ancillary; thus t̄(a, θ̂) = t(a, θ̂0) = t̄(a). We have then

P
[

t̄(y) < t0; θ
]

= Pg

[

t̄(a, θ̂0) < t0
]

= p0. (3.1)

The modification t̄(y) however depends on the particular choice of ancillary and on

the coordinates provided by the initial maximum likelihood surface. More specifi-

cally, the related cylinder set associated with the t̄ and p0 is defined by T 0 = {y =

(a, θ̂); t̄(a) < t0}; on other maximum likelihood surfaces the t̄(y) partition may not

agree with the t(y) partition. In order to prove that p0 is uniform we must link these

partitions. For this we develop specialized notation that facilitates this and leads to

an effective statistic t̃(y) corresponding to the use of the ancillary p-value.

First we write the ancillary a to order n−3/2 in terms of (t̄, d) and then use the

recent likelihood theory to examine t̄(y) conditionally given d.

Let f(y; θ, γ) be an embedding model with an additional scalar parameter γ ob-

tained from the initial model by exponential tilting eγt(y) or by translation in a

gradient direction of t(y). This augmented model in effect changes the ancillary

from a(y) with dimension n−p to say d(y) with dimension n−p−1, and from regu-

larity we then have that a is a 1−1 function of (t̄, d). Also the asymptotic theory (for

example, Fraser & Reid, 1993, 2001) shows that the dependence of the conditional

model on the ancillary can be described or parameterized by a finite number say k

of characteristics of the ancillary. Thus for the analysis we can marginalize over the

unneeded characteristics and take the effective dimensions for θ̂, t̄, d to be p, 1, k− 1

respectively, with the total dimension now fixed.

Consider the simple normal example with µ0 = 0: the augmented model by tilting

with respect to ȳ is just that of a sample from the Normal (µ, σ2); the statistic d(y)

corresponds to the location-scale standardized residual and has no effect on the

conditional model; t̄(y) = ȳ/s; and (σ̂, ȳ, d) is equivalent to the initial y.

We now construct the effective statistic t̃(y) which links the different t̄ values from

one maximum likelihood surface to other maximum likelihood surfaces.
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An initial observed y0 gives a maximum likelihood surface S0 = Sθ̂0 together with

observed values t0 = t̄0 and d = d0. The related cylinder set can be expressed as

T 0 = {(θ̂, t̄, d); t̄ < t0};

it has probability content p0 = p0
anc defined by (1.2), and is θ-free. We now construct

a statistic t̃(y) so that on any maximum likelihood surface it has the same contours as

t(y) but typically not the same numerical values on those contours: more specifically

for y on Sθ̂, we compute the corresponding ancillary p-value Gg(t(y); θ̂), then seek

the contour on S0 with the same p-value, then calculate the corresponding t value,

and attribute it to t̃(y); thus

t̃(y) = G−1
g

(

Gg(t(y); θ̂); θ̂0
)

.

3.2. Example. Consider the regression model y = Xβ + σz, where z ∼ N (0, I) in

IRn, I is the identity matrix in IRn and X is the design matrix with full column rank

r. Let t(y) = x′r+1y be a suggested test statistic, with xr+1 linearly independent

of X and thus not in the span L(X) of the vectors X. The maximum likelihood

value is then given by (β̂, σ̂) = (b, s/n1/2) where b is the least square estimate and

s2 =
∑

i(yi − ŷi)
2 is the sum of squares of residuals. Also let ẑ be the residual

standardized by the length s. The observed maximum likelihood surface is Sθ̂0 =

{Xb0+s0ẑ; ẑ ∈ S0} where S0 is the unit sphere in the n−r dimensional space L⊥(X)

orthogonal to the span of X; the likelihood surface is then given as Xb0 + s0S0.

From normal distribution symmetry this gives that the distribution of the ancillary

as recorded on the maximum likelihood surface is uniform with respect to surface

volume on the sphere and correspondingly uniform relative to surface volume on S0.

Any contour of the test statistic t(y), say {y; x′r+1y = t} for fixed t that intersects

Sθ̂0 will do so in a sphere of one less dimension and divide the initial sphere into two

caps. Let p0 be the surface volume of the cap corresponding to {t(y) < t0} taken as

a proportion of the surface volume of the full sphere. The modified t statistic t̄(y)

can be expressed as t̄(y) = x̃′r+1(Xb0 + s0ẑ), where x̃r+1 is the orthogonal projection

of xr+1 on L⊥(X). The set T 0 can then be expressed as

T 0 = {y; x̃′r+1y/s < x̃′r+1y
0/s0},
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and t̃(y) = t̄(y) = x̃′r+1y/s, which is equivalent to the usual Student statistic for

testing regression on xr+1 after eliminating regression on X.

3.3. Asymptotic uniformity. For ease of notation we work with scalar θ̂ and d

but the calculations extend directly to the vector case. We have assumed that t(y)

and (θ̂, t̄, d) are regular in the sense that they have an asymptotic normal distribu-

tion with expansions as discussed in Cakmak et al. (1994, 1998), and we also have

assumed that Gg(t; θ̂) is continuously differentiable in (t, θ̂), with positive density at

θ̂0. This implies that t̃(y) is also asymptotically normally distributed and is differen-

tiable with higher order expansions. For notational convenience we use coordinates

that are standardized to the particular θ = θ̂0; accordingly we have under θ = θ̂0

that (θ̂, t̄, d) is first order standard normal and that g(a) = g(t̄, d) is also first order

standard normal.

We use the modified notation to examine the probability difference between p0

and the p-value associated with t̃.

∆a = P
[

t̃(y) < t0; θ0

]

− P
[

t̄(y) < t0; θ0

]

.

The region {t̃(y) < t0} has boundary {t̃(y) = t0}, here expressed implicitly. We

solve the implicit equation and expand t̄ around (0, 0) as a function of (θ̂, d): t̄ =

t0 + b(θ̂, d). The probability difference ∆a can then be expressed as

∆a =

∫

d

∫

θ̂

{

∫ t0+b(θ̂,d)

t0
f(θ̂, t̄, d)dt̄

}

dθ̂dd, (3.2)

where the inner integral gives a positive or negative contribution according to the

sign of b(θ̂, d). At point (i) of the Appendix, we generate an asymptotic expansion

for the boundary defining function b(θ̂, d) and then evaluate the contributions to the

integral (3.2). We find that ∆a = 0 to third order, and thus that t̃(y) is ancillary

and panc is uniform to third order.

3.4. Asymptotic uniformity under weaker conditions. This completing sub-

section outlines how uniformity to a lower order may be obtained under weaker

assumptions. Robert and Rousseau (2003) prove under relaxed conditions that the

special pcpred is asymptotically uniform to first order, whatever the statistic t(y);
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thus the same holds for panc. This robustness property with respect to the test

statistic is of wide interest as the test statistic may often be too complicated to

yield anything easily concerning its limiting distribution.

We can obtain second order uniformity for pcpred or panc under somewhat stronger

conditions. We do not however require asymptotic normality of the test statistic

t(y) as in Robbins et al (2000), but do require the familiar regularity conditions on

the model as in Bhattacharya and Ghosh (1978) and Bickel and Ghosh (1990); this

provides Laplace and Edgeworth expansions for the posterior and for the maximum

likelihood estimator. We have then the following theorem where we let Z2 be the re-

centered and renormalized vector formed from the linearly independent components

of the matrix of second derivatives of the log-likelihood:

Theorem 1. Given standard regularity conditions on the model f(y; θ) and with a

standardized version of t(y) such that (t, u, Z2) = {t(y),
√

n(θ̂− θ), Z2} converges to

a distribution with density h, then pcpred being Uniform (0,1) to the second order is

equivalent to
∫

h(t, u, Z2)1It<G−1(p|u)

[

u′z2u− tr{i−1(θ0)z2}
]

dtdudZ2 = 0 (3.3)

for all p ∈ [0, 1], where G(t|u) is the asymptotic conditional distribution function of

t(y) given u, and i(θ) is the Fisher information matrix.

The proof is outlined at points (ii) and (iii) of the Appendix.

Note that condition (3.3) is satisfied in particular when the limiting distribution

is Gaussian; it is also satisfied as soon as t is asymptotically independent of θ̂, even

though the limiting distribution might not be Gaussian. Also the methods of the

theorem could be adapted to produce the third order results in the preceding section.

4. The Bootstrap p-value

4.1. Overview. In this Section we show under moderate regularity that the boot-

strap applied to a statistic t(y) reduces the distributional dependence on the pa-

rameter θ by order n−1/2 and thus converts in three stages an initial statistic into a

statistic third-order free of the parameter, which is the Bayesian-frequentist p-value.
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Again we let Gi(t; θ) denote the distribution function of an i-th statistic ti(y) so

that pi+1 = Gi(pi; θ̂) is the plug-in modification of pi; accordingly we show that p3

is the Bayesian-frequentist p-value.

4.2. Alternative coordinates. We assume the conditions in Section 3 and for ease

of exposition work with the scalar parameter case. Also from Section 3 we have that

the modification t̃(y) of t(y) is third order free of the parameter θ and accordingly we

can use the coordinates (θ̂, t̃, d) in place of (θ̂, t̄, d) and then have, with d ancillary,

that the bootstrap process can be examined conditionally given d and thus in effect

work with the simplified coordinates (θ̂, t̃).

For a particular step in the bootstrap process with resampling from a current θ̂0

value we assume that the current variables are standardized so that (θ̂, t̃) is standard

normal and that θ̂ has multiple correlation ρ with t(y) where |ρ| < 1. As t(θ̂0, t̃) = t̃,

we are able to first order reexpress t(y) as t̃(y) +
[

ρ/(1− ρ2)1/2
]

(θ̂ − θ̂0).

4.3. First level bootstrap. For a data point y0 and coordinates relative to the

corresponding θ̂0, the bootstrap distribution of (θ̂, t̃) is Normal (0, I) to first order.

It follows that t(y) is Normal (0, γ2) to first order where γ2 = 1 + ρ2/(1 − ρ2) =

(1− ρ2)−1, and thus that the observed p-value based on the bootstrap sample (θ̂, t̃)

is

p1 = P{t(y) < t0; θ̂0} = Φ{(1− ρ2)1/2t̃}+ OP (n−1/2). (4.1)

As t̃ is Normal (0, 1) it follows that p1 is first order conservative unless ρ = 0.

This gives the result in Robins et al.(2000), as ρ = 0 is equivalent to t(y) having

asymptotic mean independent of θ. Thus the first order bootstrap is uniform (0,1)

if and only if t(y) and θ̂ are asymptotically independent. Towards bootstrap results

to the second order we now use an asymptotic statistic equivalent to p1, which from

(4.1) has the form t1(y) = t̃ + OP (n−1/2).

4.4. Iterated bootstrap. For the the effect of a second bootstrap iteration, we

expand t1 in terms of θ̂ about the current θ̂0:

t1(y) = t̃(y) + c1(t̃)(θ̂ − θ̂0)n−1/2. (4.2)
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To assess the second order effect of the last term we need to use only the first order

standard normal distribution for θ̂; thus

p0
2 = P{t1(y) < t0; θ̂0} = P{t̃(y) < t0; θ̂0} = p0.

To obtain results to the next order we work with an asymptotic statistic equivalent

to p2, which from the preceding has the form t2(y) = t̃(y) + OP (n−1). We then

expand t2 as before in terms of θ̂ about the current θ̂0:

t2(y) = t̃ + c2(t̃)(θ̂ − θ̂0)n−1 (4.3)

And for the last term we again need only the first order standard normal distribution

for θ̂; thus to the third order

p0
3 = P{t3(y) < t0; θ̂0} = P{t̃(y) < t0; θ̂0} = p0.

We do note that these three iterations are needed in general to reach t̃ as the next

order term in each iteration has a component of the form {θ̂ − θ̂0}2 which does not

disappear under the standard normal averaging.

5. Examples and Discussion

For any full exponential family and for any scalar statistic t(y) not a function

of the maximum likelihood statistic, pcpred is equal to the conditional p-value as a

consequence of the sufficiency and is thus exactly uniformly distributed. This covers

Example 2.2 in Bayarri & Berger (2000) for a sample from the scale exponential

using the statistic t(y) = mini yi; it also covers the example in Gelman et al (1995)

for a sample from the Normal (µ, σ2) and the same minimum value statistic. It

also covers the goodness of fit chi-square test: consider the test against a smooth

parametric family F = {fθ, θ ∈ Θ}, and consider the test statistic t(y) =
∑k

j=1(Nj−
npj(θ̂))2/(npj(θ̂)) with a fixed number k of bins and Nj observations in the j-th bin.
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Simple Taylor expansion around the true value θ implies that

t(y) =

k
∑

j=1

(√
n(Nj/n− pj(θ))−

√
n(θ̂ − θ)p′j(θ)

)2

pj(θ)
+ OP (n−1/2)

=
k−1
∑

j=1

W 2
j

[

1

pj(θ)
+

1

pk(θ)

]

+
1

pk(θ)

∑

j 6=l

WjWl + OP (n−1/2),

where Wj =
√

n(Nj/n− pj(θ))−
√

n(θ̂− θ)p′j(θ). Asymptotically and conditionally

on u =
√

n(θ̂−θ), the vector W = (W1, ..., Wk−1) is distributed as N (0, Ω), for some

covariance matrix Ω independent of u, as soon as

i(θ) =

∫

dθf(y1; θ)
2

f(y1; θ)
dy1 >

k
∑

j=1

p′j(θ)
2

pj(θ)
;

otherwise the distribution is degenerate. Therefore t is asymptotically independent

on u and pcpred is second order uniform.
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APPENDIX

(i) Third order uniformity: proof that ∆ = 0. For ease of notation we work with

scalar θ̂ and d but the calculations extend directly to the vector case. We have

assumed that t(y) and the related (θ̂, t̄, d) are asymptotic, in the sense that they

have an asymptotic normal distribution with expansions as discussed in Cakmak

et al (1994, 1998), and that Gg(t; θ̂) is continuously differentiable with respect to

(t, θ̂). Then from its definition (4.2) it follows that t̃(y) is also asymptotic as just

described.



17

Now again for notational convenience we use the standardized coordinates intro-

duced in Section 3 relative to a chosen θ̂0. Accordingly we have that (θ̂, t̄, d) is

Normal (0, I) to first order, and that (t̄, d) has a standard Normal density to first

order.

We expand b(θ̂, d) in a Taylor series around (0, 0) to order O(n−3/2) and make use

of b(0, d) = 0:

b(θ̂, d) = (a10 + a11d/n1/2 + a12d
2/2n)θ̂

+ (a20/n
1/2 + a21d/n)θ̂2/2 + (a30/n)θ̂3/6. (A.1)

The definition of the boundary on each surface Sθ̂ gives

∫

d

{

∫ t0+b(θ̂,d)

t0
g(t̄, d)dt̄

}

dd = O(n−3/2); (A.2)

for each θ̂; thus (A.2) also holds with b(θ, d) replaced by any one of the terms in

(A.1). This eliminates or restricts certain coefficients in (A.1) which can then be

written to O(n−3/2) as

b(θ̂, d) = {a11d/n1/2 + a12(d
2 − 1)/2n}θ̂ + (a21d)θ̂2/2n;

We then have

∆a =

∫

θ̂

∫

d

{b(θ̂, d)f(θ̂, t0, d) + (1/2)b2(θ̂, d)ft̄(θ̂, t
0, d)}dddθ̂

whereft̄(θ̂, t̄, d) designates (∂/∂t̄)f(θ̂, t, d)|t0. Integration over the standard normal

distribution for d shows zero contribution from the O(n−1) terms, and leaves an

O(n−1) term from a11d/n1/2, which in turn leaves no contribution after the integra-

tion with respect to the standard normal for θ̂.

(ii) Connection to a conditional p-value. The proof is straightforward and from

(2.1) we can write

f(y|θ̂0; θ) =
1IS

θ̂0
exp `(θ; y)|`θ;y|−1|ĵ|

f(θ̂0; θ)
,
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where f(θ̂; θ) is the marginal density of θ̂. From (1.2) and then modulating relative

to the true θ0 density we obtain

p0
cpred =

∫

Θ

P{t(y) < t0|θ̂0; θ}π(θ|θ̂0)dθ

=

∫

S
θ̂0

f(y|θ̂0; θ0)1It(y)<t0f(θ̂0; θ0)

∫

Θ
e`(θ;y)−`(θ0;y)π(θ)dθ

∫

Θ
f(θ̂0; θ)π(θ)dθ

da. (A.3)

Under the conditions in Section 2, we use an Edgeworth expansion (Bhattacharya &

Ghosh, 1978) for the density of the maximum likelihood estimator which is uniform

in θ together with the usual Laplace expansions as in Section 2 and obtain
∫

Θ

f(θ̂0; θ)π(θ)dθ = 1 + OP (n−1).

Then for the numerator integral in (A.3), we use a Laplace expansion of the integral

together with an Edgeworth expansion of the density f(θ̂; θ0) and obtain

p0
cpred =

∫

S
θ̂0

f(y|θ̂0; θ0)1It(y)<t0A(y)dyc + Rnn−1, (A.4)

with the adjustment factor A(y) given as

A(y) =
{

1 + H1(u0)/n
1/2

}

{

1 +
1

2

(

u′0{ĵ − i(θ0)}u0 − tr[i(θ0)
−1{ĵ − i(θ0)}]

)

}

,

where u = n1/2(θ0 − θ̂), u0 = n1/2(θ0 − θ̂0), H1(u0) is an odd polynomial function,

and Rn = OP (1). In these calculations we make no assumptions concerning the

behaviour of t(y) but we do invoke the usual regularity conditions on the likelihood

function. The equation (A.4) shows that pcpred is first order equivalent to the con-

ditional p-value: P{t(y) < t0|θ̂0; θ0} = pθ̂0;θ0
(t0) for any t(y), and is thus uniformly

distributed to first order.

(iii) Discrepancy from the conditional p-value. We now examine the discrepancy

between pcpred and pθ̂;θ0
(t0):

∆c = P [pcpred < p]− P
[

pθ̂;θ0
(t0) < p

]

. (A.5)

Consider the expression (A.4) and the form of the adjustment factor A(y) and let

z2 = n1/2{j(θ0)− i(θ0)}. Then ĵ− i(θ0) = z2n
−1/2−u′0µ3(θ0)n

−1/2 +OP (n−1), where

u′0µ3(θ0) is the p×p matrix whose (a, b) component is
∑p

r=1 u0
rEθ0

{Dabr log f(X; θ0)}
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and Dabr designates the third derivative with respect to the parameter coordinates

a, b, r. Let

W (t0, u0) =

∫

S
θ̂0

f(y|θ̂0, θ0)1It(y)<t0{u′0z2u
0 − tr[i(θ0)

−1z2]}/2dyc.

The calculations at (A.4) then show that

pcpred = pθ̂0;θ0
(t0)

{

1 + H2(u0)n
−1/2

}

+ W (t0, u0)n
−1/2 + OP (n−1),

where H2 is an odd polynomial function.

We now compare P (pcpred < p; θ0) with p = P
(

pθ̂0;θ0
(t0) < p; θ0

)

. For this we

assume that a standardized version of t(y), say ts(y), has as n goes to infinity a

limiting conditional density given θ̂0 which is positive under the θ0 distribution. We

denote t0s = ts(y
0) and let G(.|θ̂, θ0) be the distribution function of ts(y) given θ̂ and

θ0. We also let Eθ0
designate the expectation taken with respect to f(y; θ0). We

assume that the transformation from t(y) to ts(y) is monotone increasing, in other

words that {t(y) < t0} ∩ Sθ̂0 = {ts(y) < t0s} ∩ Sθ̂0. In the following expression the

probabilities are calculated under f(y; θ0) and we use the simpler notation G−1(p|u)

instead of G−1(p|u, θ0) and work up to order O(n−1)

∆c = P (pcpred < p; θ0)− P (pθ̂,θ0
< p; θ0)

= P
(

G−1(p|u)<ts < G−1
[

p
{

1−H2(u)n−1/2
}

−Wn{G−1(p|u), u}n−1/2
∣

∣u
])

−P
(

G−1(p|u) ≥ t0s > G−1
[

p
{

1−H2(u)n−1/2
}

−Wn{G−1(p|u), u}n−1/2
∣

∣ u
])

= −Eθ0

[

H2(u)n−1/2 −Wn{G−1(p|u), u}n−1/2
]

.

As H2 is an odd polynomial function in u we find that

∆c = (1/2)n−1/2

∫

fn(t, u, z2)1It<G−1(p|u)

[

u′z2u− tr{i−1(θ0)z2}
]

dtdudz2,

where fn(t, z2, u) is the joint density of {ts(y), z2, n
1/2(θ0−θ̂}. If fn(t, z2, u) converges

almost surely to a density function f(t, u, z2), then ∆c = 0 if and only if
∫

f(t, u, z2)1It<G−1(p|u)

[

u′z2u− tr{i−1(θ0)z2}
]

dtdudz2 = 0. (A.6)

This completes the proof of Theorem 1.
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