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In this paper, we study the asymptotic posterior distribution of
linear functionals of the density. In particular, we give general condi-
tions to obtain a semi-parametric version of the Bernstein-von Mises
theorem. We then apply this general result to non-parametric priors
based on infinite dimensional exponential families. As a byproduct,
we also derive adaptive non-parametric rates of concentration of the
posterior distributions under these families of priors on the class of
Sobolev and Besov spaces.

1. Introduction. The Bernstein-von Mises property, in Bayesian anal-
ysis, concerns the asymptotic form of the posterior distribution of a quantity
of interest, and more specifically it corresponds to the asymptotic normality
of the posterior distribution centered at some kind of maximum likelihood es-
timator with the variance being equal to the asymptotic frequentist variance
of the centering point. Such results are well know in parametric frameworks,
see for instance [16] where general conditions are given. This is an impor-
tant property for both practical and theoretical reasons. In particular the
asymptotic normality of the posterior distributions allows us to construct
approximate credible regions and the duality between the behavior of the
posterior distribution and the frequentist distribution of the asymptotic cen-
tering point of the posterior implies that credible regions will have also good
frequentist properties. These results are given in many Bayesian textbooks
see for instance [19] or [1].

In a frequentist perspective the Bernstein-von Mises property enables the
construction of confidence regions since under this property a Bayesian credi-
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2 V. RIVOIRARD AND J. ROUSSEAU.

ble region will be asymptotically a frequentist confidence region as well. This
is even more important in complex models, since in such models the con-
struction of confidence regions can be difficult whereas the Markov Chain
Monte Carlo algorithms usually make the construction of a Bayesian cred-
ible region feasible. However the more complex the model the harder it is
to derive Bernstein-von Mises theorems. In infinite dimensional setups, the
mechanisms are even more complex.

Semi-parametric and non-parametric models are widely popular both
from a theoretical and practical perspective and have been used by frequen-
tists as well as Bayesians although their theoretical asymptotic properties
have been mainly studied in the frequentist literature. The use of Bayesian
non-parametric or semi-parametric approaches is more recent and has been
made possible mainly by the development of algorithms such as Markov
Chain Monte-Carlo algorithms but has grown rapidly over the past decade.

However, there is still little work on asymptotic properties of Bayesian
procedures in semi-parametric models or even in non-parametric models.
Most of existing works on the asymptotic posterior distributions deal with
consistency or rates of concentration of the posterior. In other words it con-
sists in controlling objects of the form P7 [U,|X"] where P™[.|X"] denotes
the posterior distribution given a n vector of observations X™ and U, de-
notes either a fixed neighborhood (consistency) or a sequence of shrinking
neighborhoods (rates of concentration). As remarked by [6] consistency is
an important condition since it is not possible to construct subjective prior
in a non-parametric framework. Obtaining concentration rates of the pos-
terior helps to understand the impact of the choice of a specific prior and
allows for a comparison between priors to some extent. However, to obtain
a Bernstein-von Mises theorem it is necessary not only to bound P™ [U,,| X "]
but to determine an equivalent of P™ [U,,|X™] for some specific types of sets
U,. This difficulty explains that there is up to now hardly any work on
Bernstein-von Mises theorems in infinite dimensional models. The most well
known results are negative results and are given in [7]. Some positive results
are provided by [8] on the asymptotic normality of the posterior distribu-
tion of the parameter in an exponential family with increasing number of
parameters. In a discrete setting, [2] derive Bernstein-von Mises results, in
particular satisfied by Dirichlet priors. Nice positive results are obtained in
[14] and [15], however they rely heavily on a conjugacy property and on the
fact that their priors put mass one on discrete probabilities which makes the
comparison with the empirical distribution more tractable.

In a semi-parametric framework, where the parameter can be separated
into a finite dimensional parameter of interest and infinite dimensional nui-
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BVM FOR LINEAR FUNCTIONALS OF THE DENSITY 3

sance parameter, [3] obtains interesting conditions leading to a Bernstein-
von Mises theorem on the parameter of interest, clarifying an earlier work
of [20].

In this paper we are interested in studying the existence of a Bernstein-von
Mises property in semi-parametric models where the parameter of interest is
a functional of the density of the observations. The estimation of functionals
of infinite dimensional parameters such as the cumulative distribution func-
tion at a specific point, is a widely studied problem both in the frequentist
literature and in the Bayesian literature. There is a vast literature on the
rates of convergence and on the asymptotic distribution of frequentist esti-
mates of functionals of unknown curves and of finite dimensional functionals
of curves in particular, see for instance [23] for an excellent presentation of
a general theory on such problems.

One of the most common functionals considered in the literature is the
cumulative distribution function calculated at a given point, say F'(z¢). The
empirical cumulative distribution function is a natural frequentist estimator
and its asymptotic distribution is Gaussian with mean F'(x¢) and variance
F(x0)(1 — F(x9))/n.

The Bayesian counterpart of this estimator is the one derived from a
Dirichlet process prior and it is well known to be asymptotically equiva-
lent to F,(zp), see for instance [11].This result is obtained by using the
conjugate nature of the Dirichlet prior, leading to an explicit posterior dis-
tribution. Other frequentist estimators, based on density estimates such as
kernel estimators have also been studied in the frequentist literature. Hence
a natural question arises. Can we generalize the Bernstein-von Mises theo-
rem of the Dirichlet estimator to other Bayesian estimators? What happens
if the prior has support on distributions absolutely continuous with respect
to the Lebesgue measure?

In this paper we provide an answer to these questions by establishing
conditions under which a Bernstein-von Mises theorem can be obtained for
linear functional of the density of f such as F'(xo).We also study cases where
the asymptotic posterior distribution of the functional is not asymptotically
Gaussian but is asymptotically a mixture of Gaussian distributions with
different centering points.

1.1. Notation and aim. In this paper, we assume that, given a distribu-
tion P with a compactly supported density f with respect to the Lebesgue
measure, X1, ..., X, are independent and identically distributed according
to P. We set X" = (Xjy,...,X;,) and denote F' the cumulative distribution
function associated with f. Without loss of generality we assume that for
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4 V. RIVOIRARD AND J. ROUSSEAU.

any i, X; € [0,1] and we set

]—“—{f 0,1 — R st. /f dx—l}

We denote £, (f) the log-likelihood associated with the density f and if f
is parametrized by a finite dimensional parameter 6, we set £,,(0) = £,(fg).
For any integrable function g, we set F(g) = fol f(uw)g(u)du. We denote by
< .,. >y the inner product and by |.|s the associated norm in

Lo(F) = {g s.t. /92($)f(x)d$ < +oo}.

We also consider the classical inner product in L3 [0, 1], denoted < .,. >4, and
|.]2, the associated norm. The Kullback-Leibler divergence and the Hellinger
distance between two densities f and f’ will be respectively denoted K (f, f’)
and h(f, f'). We recall that

K(f, f")=F(log(f/f), h(f f)= V (F W) ]

In the sequel, we shall also use

V(f, ') = F ((og(f/£))?).

Let Py be the true distribution of the observations X; whose density and
cumulative distribution function are respectively denoted fo and Fjy. We
consider usual notation on empirical processes, namely

S9X0), Gale) = S lo(X0) - Fifo)

and F;, is the empirical distribution function. Now, we simply denote < .,. >
and |.| instead of < .,. > and |.|f, respectively.

For any given ¢ € L[0,1], we consider ¥ the functional on M, the set
of finite measures on [0, 1], defined by

(1.1) V) = [vdn, pem.
In particular, we have
ﬂ)(f%) ::<F%(¢0 = Z:l;%(j(i)‘
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BVM FOR LINEAR FUNCTIONALS OF THE DENSITY 5

Most of the time, to simplify notation when p is absolutely continuous with
respect to the Lebesgue measure with g = Z—;‘, we use ¥(g) instead of W(u).
A typical example of such functionals is given by

Voo (f) = F(z0) = /ﬂxgzof(x)dm, z0 € R.

Now, we consider a prior 7 on the set F. The aim of this paper is to study
the posterior distribution of ¥(f) and to derive conditions under which

(1.2) P"[Vn(¥(f)— V(P,)) < z|X"] — ®y,(2) in Py-probability,

where Vj is the variance of \/nW¥(P,) under Py and ®y;(z) is the cumulative
distribution function of a centered Gaussian random variable with variance
Vb. Note that under this duality between the Bayesian and the frequentist
behaviors, highest posterior credible regions for U(f) (such as equal tail or
one-sided intervals) have also the correct asymptotic frequentist coverage.

In this paper we propose general conditions leading to (1.2) and we study
in detail the special case of infinite dimensional exponential families as de-
scribed in the following section.

1.2. Infinite dimensional exponential families based on Fourier and wavelet
expansions. Fourier and wavelet bases are the dictionaries from which we
build exponential families in the sequel. We recall that Fourier bases con-
stitute unconditional bases of periodized Sobolev spaces W7 where + is the
smoothness parameter. Wavelet expansions of any periodized function h take
the following form:

400291

h(a;) = 9_1011[071] (l’) + Z Z ijgojk(x), T € [0, 1]
3=0 k=0

where 6_19 = fol h(zx)dx and 0, = fol h(zx)pji(x)dz. We recall that the func-
tions ¢, are obtained by periodizing dilations and translations of a mother
wavelet ¢ that can be assumed to be compactly supported. Under stan-
dard properties of ¢ involving its regularity and its vanishing moments (see
Lemma 4.1), wavelet bases constitute unconditional bases of Besov spaces
By, for 1 < p,qg < +o00 and v > max (0,%— %) We refer the reader to
[12] for a good review of wavelets and Besov spaces. We just mention that
the scale of Besov spaces includes Sobolev spaces: W7 = By ,. In the se-
quel, to shorten notation, the considered orthonormal basis will be denoted

D = (da)aen, where ¢g = 1ljg ;) and
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6 V. RIVOIRARD AND J. ROUSSEAU.
- for the Fourier basis, if A > 1,
dor—1(x) = V2sin(2nAz),  dan(x) = V2 cos(2mAz),
- for the wavelet basis, if A = 2/ +k, with j € Nand k € {0,...,2/ — 1},

DA = Qjk-

Now, the decomposition of each periodized function h € L]0, 1] on (¢x)ren
is written as follows:

h(x) = Z Orga(z), = €[0,1],

AeN

where 0) = fol h(xz)px(x)dx. We denote |.|, and |.|,p,q the norms associated
with W7 and B} , respectively.

We use such expansions to build non-parametric priors on F in the fol-
lowing way: For any k& € N*, we set

k
Fi = {f@ = exp (Z Orx — c(9)> st. e Rk} ,

A=1

where

1 k
(1.3) c(0) = log (/0 exp (Z c9,\¢)\(:n)> dm) .
A=1

So, we define a prior 7w on the set Foo = UpFr C F by defining a prior p
on N* and then, once k is chosen, we fix a prior m; on Fj. Such priors are
often considered in the Bayesian non-parametric literature. See for instance
[21]. The special case of log-spline priors has been studied by [9] and [13],
whereas the prior considered by [24] is based on Legendre polynomials. For
the wavelet case, [13] considered the special case of the Haar basis.

We now specify the class of priors 7 on these models.

DEFINITION 1.1.  Given 3 > 1/2, the prior p on k satisfies one of the
following conditions:

[Case (PH)| There exist two positive constants ¢1 and cy such that for
any k € N*,

(1.4) exp (—c1kL(k)) < p(k) < exp (—c2kL(k)),
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BVM FOR LINEAR FUNCTIONALS OF THE DENSITY 7
where L is the function that can be either L(x) =1 or L(z) = log(x).
[Case (D)] If ki =nl/(6+1)

p(k) = 0k (K),
where 0y denotes the Dirac mass at the point ky,.

Conditionally on k the prior m on Fy, is defined by

GA iid —283
—— ~ g, T\=ToA 1 <A<k,
VA

where Ty s a positive constant and g is a continuous density on R such that
for any x,

Ay exp (~&.Jaf?") < glx) < Boexp (~eal™),

where py, Ay, By, Cx and ¢, are positive constants.

Observe that the prior is not necessarily Gaussian since we allow for
densities g to have different tails. In the Dirac case (D), the prior on k is non
random. For the case (PH), L(x) = log(x) typically corresponds to a Poisson
prior on k and the case L(xz) = 1 typically corresponds to hypergeometric
priors.

1.3. Organization of the paper. After emphasizing difficulties raised by
natural heuristics for proving Bernstein-von Mises theorems in non-parametric
setups (see Section 2.1), Theorem 2.1 of Section 2.2 gives the asymptotic
posterior distribution of W(f) which can be either Gaussian or a mixture
of Gaussian distributions, when the prior is based on infinite dimensional
exponential families. Corollary 2.2 illustrates positive results with respect
to our purpose, but Proposition 2.1 shows that some bad phenomenons may
happen. Theorem 2.1 is derived from Theorem 2.2, a more general result
established in Section 2.3. These theorems depend on concentration rates
established in Theorem 3.1. Since our purpose is not to focus on such re-
sults, Theorem 3.1 is postponed in Section 3. Proofs of the results are given
in Section 4.

2. Bernstein-von Mises theorems.

2.1. Some heuristics for proving Bernstein-von Mises theorems. We first
introduce some notions that are useful in the study of asymptotic properties
of semi-parametric models. More details can be found, for instance, in [23].
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8 V. RIVOIRARD AND J. ROUSSEAU.

As in Chapter 25 of [23], the usual way to study the asymptotic behav-
ior of semi-parametric models is to consider local 1-dimensional differen-
tiable paths around the true parameter fj, namely submodels of the form:
u — fy for 0 < u < g, for some up > 0 such that for each path there
exists a measurable function s called the score function for the submodel
{fus st 0<u<wug} at u =0 satisfying

x 1/20y _ f1/2(, 2
(2.1) lim ( u’sl @) = 1o )—;s(az) &/2(1')) dx = 0.

u—0 JR u

We denote by Fp, the tangent set, i.e. the collection of score functions s
associated with these differentiable paths. Using (2.1), F§, can be identified
with a subset of {s € La(Fp) s.t. Fy(s) = 0}. For instance, when consider-
ing all probability laws, the most usual collection of differentiable paths is
given by

(22) Jia(@) = d(w) fo(w)e™*™

with |s|ec < oo and d such that d(0) = 1 and d’(0) = 0. In this case,
s is the score function. Note that as explained in [23], the collection of
differentiable paths of the form f; (x) = 2d(u)fo(x)(1 + exp(—2us(z))) !
(with previous conditions on d), leads to the tangent space given by {s €
LQ(FO) s.t. F(](S) = 0}

Consider a functional ¥ associated to a function ¢ € L[0, 1], as defined
in Section 1.1, then for any differentiable path u — f;; ; with score function s,

12 @) — 3w

Whisl YD yysto ot + U

u

(x)dx

u

« 1/20,0 /20,
42 ¢<x>(“’s @k ()—;S(w)féﬂ(x)) 72 @)da

u
= <1,s>+o(1).

Then, we can define the efficient influence function ¢ belonging to lin(Fy,)
(the closure of the linear space generated by Fy,) that satisfies for any
S € ]ﬁbv

/@(x)S(x)fo(x)dx = /@b(x)s(g;)fo(x)dm
This implies:
(2.3) i 2s) = (o)

=<1,5>.
u—0 u
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BVM FOR LINEAR FUNCTIONALS OF THE DENSITY 9

The efficient influence function, which is a key notion to characterize asymp-
totically efficient estimators (see Section 25.3 of [23]), will play an important
role for our purpose. To shed lights on these notions, we consider the follow-
ing three examples:

EXAMPLE 2.1. As in Section 1.1, for fixred xo € R, consider for any
density function f whose cdf is F,

W, (f) = / gy f (2)da = F(a)

so that in this case, if Fy, is the subspace of Lo(Fo) of functions s satisfying
Fo(s) = 0 then ¢(x) = o<a, — Fo(wo).

EXAMPLE 2.2.  More generally, for any measurable set A consider (x) =
Nzca. For any density function f

Va(f) = [ Moeaf(@)do

satisfies the above conditions and P (x) = lyea — [, fo(x)dz.

EXAMPLE 2.3. If fo has bounded support, say on [0,1], then the func-
tional

1
W) =By X)) = [ ef(@)de
satisfies the above conditions. Then, (z) = x and ¢(x) = = — B [X1].

In this framework, the Bernstein-von Mises theorem could be derived from
the convergence of the following Laplace transform defined for any ¢ € R by

Ln(t) = ET[exptvn(¥(f) — ¥(Fn)))|X"]
Jexp (tv/n(¥(f) = ¥ (Pn)) + la(f) = €u(fo)) dm(f)
fexp (&z(f) - en(fO)) dﬂ(f) ‘

Now, let us set fJ7, = fi , ifu= n~2. We have:
Vi (V) = B(R)) = Vi 9@ (@) - fola))dz - Gu()
= An(s)+ <5 > =Gn(d),

with
An(s) = Vi (D(f20) = W(fo)) = < s>
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10 V. RIVOIRARD AND J. ROUSSEAU.

Furthermore,
2
GF) — ) = Bus) + Guls) — T2,
with ()
s Fo(s
R, (s) =nP, (log ( I )) — Gn(s) + 5
So,
tv/n (U(F5) = U (o)) + bal £5) = Eulfo)
= R,(s) — FO(;Q) + Gpls — th) + tA(s) +t < 1h, s >
= Rn(S — tl;) + Gn(s — tfl/;) - FO((S g tw)Q) + t2F02(1/}2) + Un(3)7

with B

Un(s) =tA,(s) + Ru(s) — Ru(s — t).
Lemma 25.14 of [23] shows that under (2.1), R,(s) = o(1) and (2.3) yields
A, (s) = o(1) for a fixed s. It is not enough however to derive a Bernstein-von

Mises theorem. Nonetheless if we can choose a prior distribution m adapted
to the previous framework to obtain uniformly U, = o(1) and

Vi (U(F) = () + Ga(f23) = ta(f) = o1)

2 By (12 R (s—t3) 4G (s— 1)) — F0l=t0)%)
L) = e () I =) (14 o))
2 R (8)+Gin (s)— Fols2)
J e En=T5 ()

(24) = exp <t2F02(w2)> (14 0(1))

if

feR“(S*“/;)JFG”(S’“Z’)*Md7r(f) B Jexp (6n(f) — £n(f0)) dﬂ-(fs+t1Z)
f eRn(s)-‘an(s)—%‘SQ)dﬂ.(f) B feXp (En(f) - gn(fO)) dﬂ-(f)

(2.5) = 1+0(1).

However s +— U,(s) is not uniformly bounded on Fy,. We thus consider an
alternative approach, which uses however some of the ideas described above
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BVM FOR LINEAR FUNCTIONALS OF THE DENSITY 11

but allows for a better control of a term similar to U,(s) but of a slightly
different nature. A condition similar to (2.5) will still be required. Since it
may be hard to prove and even to handle this condition in many setups, we
first focus, in Section 2.2, on a specific family of non-parametric priors.

In the sequel, we consider a functional ¥ as defined in (1.1) associated
with the function ¢ € L0, 1] and we set

(2.6) P(z) = P(x) — Fo(4).

Note that this notation is coherent with the definition of the influence func-
tion associated with the tangent set {s € La(Fp) s.t. Fy(s) = 0}.

2.2. Bernstein-von Mises in infinite dimensional exponential families. In
this section, we consider the non-parametric models (priors) defined in Sec-
tion 1.2. Assume that fy is 1-periodic and fy € Foo. Let @ = (é))ren be
one of the bases introduced in Section 1.2, then there exists a sequence
0o = (Boa)ren+ such that

fo(z) = exp (Z Oorpa(x) — 0(90)) :
AEN*

We denote IIy, , the projection operator on the vector space generated by
(éx)o<r<k for the scalar product < .,. > and

Ay = =0 = ¥ — L 4,
where 9 is defined in (2.6). We expand the functions ¥ and 11 fmkl; on &:
z) =Y haoa(z), g ud(z Z Praoa(z), x€0,1]
AeN =

so that (1x)ren and (¢y) A<k denote the sequences of coefficients of the
expansions of the functions ¢ and II fo, 1t respectively. We finally note:

Q)Z;l[_]f} = (1/311,1, ceey TZ;H,k)-

Now, we consider the sequence (€,), decreasing to zero defined in Theo-
rem 3.1 (see Section 3). We use the sequence L(n) introduced in Defini-
tion 1.1 for the case (PH) and, in the sequel, we set L(n) = 1 in the case (D)
by convention. Using Definition 1.1, for all @ > 0, there exists a constant
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12 V. RIVOIRARD AND J. ROUSSEAU.

lo > 0 large enough so that P, (k > lg(lfl?) < e~ From [9], it implies
that there exists ¢ > 0 and [y large enough such that

lon62

Py [P™ | k> =

0[ ( L(n)

Define [, = lgne2 /L(n) in the case (PH). In the case (D) we set [,, = k. We
have the following result.

X”) <e ] =1+o0(1).

THEOREM 2.1.  We assume that | log(fo)|- < 0o andlog(fo) € B, with
p>2,1<qg<o00and~y >1/2 is such that

B<1/24+~ if pe<2 and  B<~y+4+1/pe if p«>2.

Let us also assume that the prior is defined as in Definition 1.1 and assume
that for allt € R, for all 1 < k <,, uniformly on

k b (logn)32
0 € R¥ s.t Z9A—90A < €n (s

- L(n)2 "
we have:
(2.7) % = 1+o0(1)
)
and

ogn)3
o8 s {u 5 datnle + VAl zwmnz} (")

In A>k A>k

(replace k < l,, with k = l,, in the case (D)). Then, for all z € R,

(29)  PT[Va(U(f) = U(P,)) < 2X"] = p(k|X") By, (2 + fink) + 0ry (1),
k
where
- Vor = Fo(¢?) — Fo(AZ, ),
- Hnk = V/nFo (Aw,k D oAsk+1 90,\<75,\) + Gn(Ay k).
In the case (D), if

(2.10) S i=o <n2§11‘1>

A>kz
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BVM FOR LINEAR FUNCTIONALS OF THE DENSITY 13
then
(211) BT [Va(B(f) - B(P) < 21X = Dy, (=) + opy(1),
where Vo = Fy(42).

Note that condition (2.10) is satisfied if v > f+1/2 orif v > f and ¢ is a
piecewise constant function, or a smooth fuction like a continuously differen-
tiable function in the case of the Fourier basis. The proof of Theorem 2.1 is
given in Section 4.3. This result is a consequence of Theorem 2.2 depending
on three assumptions (A1), (A2) and (A3). More precisely, Conditions (A1)
and (A2) are verified using Theorem 3.1 so that (2.7) and (2.8) are required
to prove assumption (A3). Condition (2.7) corresponds to the heuristics we
have given in Section 2.1 and connects (A3) to a change of parametrization
(see Section 2.3). Condition (2.8) requires some minimal smoothness on 1)
through the decay to zero of its coefficients. These two extra conditions are
rather mild as will be shown in the few examples below, so that quite gen-
erally, the posterior distribution of \/n(¥(f) — ¥(FP,)) is asymptotically a
mixture of Gaussian distributions with variances Vp — FO(A%D,k) and mean
values —pp, 1, with weights p(k|X™). To obtain an asymptotic Gaussian dis-
tribution with mean zero and variance Vj it is necessary for ji, j, to be small
whenever p(k|X™) is not. This is satisfied in the case of a prior of type (D).
In full generality, we have not proved that priors of type (PH) cannot lead
to this result. Nevertheless we give below a counter-example for which the
Bernstein-von Mises property is not satisfied in the case (PH) and we be-
lieve that in most cases, the asymptotic posterior distribution is either not a
Gaussian distribution or it does not have the correct mean or variance. We
also give a counter-example where the asymptotic normality with correct
mean and variance is not satisfied in the case of a prior of type (D) when
v < . We now discuss condition (2.7) in three different examples. For the
sake of simplicity, we only consider the case p = ¢ = 2.

COROLLARY 2.1.  Assume that log(fo) € W7. Condition (2.7) is satisfied
in the following cases:

- g is the standard Gaussian density and v > [ — 1/4 for the case
(PH), v > 3 —1/2 for the case (D).

- g is the Laplace density g(z) < e~ I*| and v > B for the case (PH),
v, 8> 1/2 for the case (D).

- g is a Student density g(z) x (1 + 22/d)~4TV/2 under the same
conditions as for the Gaussian density.
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14 V. RIVOIRARD AND J. ROUSSEAU.

Corollary 2.1 holds for any bounded function . For the special case
Y(z) = lly<gq,, conditions on v and § can be relaxed. In particular, in the
case (PH), if g is the Laplace density, (2.7) is satisfied as soon as v > f—1/2.
By choosing 1/2 < 8 < 1, this is satisfied for any v > 1/2 as imposed by
Theorem 2.1. Note that in the case (PH), Theorem 3.1 implies that the
posterior distribution concentrates with the adaptive minimax rate up to a
logarithmic term, so that choosing (3 close to 1/2 is not restrictive.

Interestingly, Theorem 2.1 shows that sieve models (increasing sequence
of parametric models) have a mixed behavior between parametric and non-
parametric models. Indeed if the posterior distribution puts most of its mass
on k’s large enough, the posterior distribution has a Bernstein-von Mises
property centered at the empirical (non-parametric MLE) estimator with
the correct variance. On the contrary, if the posterior probability of small
k’s is positive, then the posterior distribution is neither asymptotically Gaus-
sian with the right centering, nor with the right variance. An extreme case
corresponds to the situation where Fg(Afp’k) # o(1) under the posterior
distribution, which is equivalent to

ko, s.t. Ve >0 liminf, o Pg [P™ [ko|X"] > €] > 0.

For each fixed k, if infycpr K (fo, fo) > 0, since the model is regular, there
exists ¢ > 0 such that Py [P™ [k| X"] > e~ "] — 1. Therefore, FO(AzQp,k) # o(1)
under the posterior distribution if there exists ko such that infy pr, K(fo, fo) >
0, i.e. if there exists §p € R¥0 such that fy = fo,- In that case it can be proved
that P™[ko|X"] = 1 + op,(1), see [4], and the posterior distribution of W(f)
is asymptotically Gaussian with mean W( féko), where éko is the maximum
likelihood estimator in Fj,, and the variance is the asymptotic variance of
U( féko). However, even if Ay, = o(1), the posterior distribution might not
satisfy the non-parametric Bernstein-von Mises property with the correct
centering. See below for an illustration of these facts.

We illustrate this issue in the special case of the cumulative distribution
function calculated at a given point zg: ¢(z) = lly<z,. We recall that the
variance of G, (¢) under Py is equal to Vo = Fy(x0)(1— Fo(xo)). We consider
the case of the Fourier basis (the case of wavelet bases can be handled in
the same way). Straightforward computations lead to the following result.

COROLLARY 2.2. Assume that i is a piecewise constant function. Con-
sider the prior defined in Section 1.2 in the case (D) with g being the Gaus-
sian or the Laplace density. Then if fo € W7, with v > > 1/2, the pos-
terior distribution of \/n(F(xo) — Fn(xo)) is asymptotically Gaussian with
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BVM FOR LINEAR FUNCTIONALS OF THE DENSITY 15

mean 0 and variance Vy. If g is the Student density and if v > 8 > 1, the
same result holds.

We now illustrate the fact that when k is random, the Bernstein-von Mises
property may be not valid.

PropPoOSITION 2.1. Let
fo(z) =exp | Y foroa(x) — c(bo)
A>ko
where ko is fived and for any X, 0g2x4+1 = 0 and

Ooo — sin(27Axp)
0.2 = A +1/2,/Tog Xlog log A’

Consider the prior defined in Section 1.2 with g being the Gaussian or the
Laplace density but the prior p is now the Poisson distribution with param-
eter v > 0. If kg is large enough, there exists xo such that the posterior dis-
tribution of \/n(F(xo) — Fn(x0)) is not asymptotically Gaussian with mean
0 and variance Fy(zo)(1 — Fo(xo)).

Actually, we prove that the asymptotic posterior distribution of F'(z¢) —
F,(x0) is a mixture of Gaussian distributions with means s, ;, and variance
Fo(x0)(1 — Fy(xp))/n and the support of the posterior distribution of & is
included in {m € N* s.t. m < ck,} where c is a constant and k,, is defined
in (4.23). Furthermore, we show that for all k& < cky, |pn x| > Cv/Iogn for
some positive constant C.

2.3. Bernstein-von Mises theorem: general case. To prove Theorem 2.1,
we use a general result stated in this section. The subsequent theorem may
deserve interest in its own right and can be used for other families of priors.

For each density function f, we define h such that for any =,

f(x) : h(z)
h(z) = /nlog ( or equivalently f(x) = fo(z)exp | —= | .
Jo(@) vn
For the sake of clarity, we sometime write fj, instead of f and hy instead of
h to emphasize the relationship between f and h. Note that in this context
h is not the score function since Fy(h) # 0. Then we consider the following
assumptions.
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16 V. RIVOIRARD AND J. ROUSSEAU.
(A1) The posterior distribution concentrates around fy. More precisely,

there exists u, = o(1) such that if A}, ={f € F st. V(fo, ) <u?}
the posterior distribution of A} satisfies

P {4, 1X"} =1+ o, (1).

(A2) The posterior distribution of the subset A, C A} of densities such

that
3
@12) o (L) (e + s do = o)
satisfies
P™ [An|X"] = 1+ op, (1),
(A3) Let

Fo(h?)
2

Ry (h) = v/nFy(h) +

and for any x, for any ¢,

e (o (-3

We have for any t,

— _tn 2 o 7
Ja, exp (= BUEL) 4 G (g — ) + BBy — tirn) ) de(f)

[a. exp (— BUD L Gohy) + Rn<hf>) dr(f)

(2.13) =1+ op,(1).

Before stating our general result, let us discuss these assumptions. Condition
(A1) concerns concentration rates of the posterior distribution and there
exists now a large literature on such results. See for instance [22] or [9] for
general results. The difficulty here comes from the use of V instead of the
Hellinger or the IL; distances. However since u,, does not need to be optimal,
deriving rates in terms of V' from those in terms of the Hellinger distance is
often not a problem (see below).

Condition (A2) is a refinement of (A1) but can often be derived from (A1)
as illustrated in the case of exponential families.

The main difficulty comes from condition (A3). Roughly speaking, the
reason for (A3) can be glimpsed in the heuristic arguments given in Sec-
tion 2.1, where computations made under the very strong uniform condition
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BVM FOR LINEAR FUNCTIONALS OF THE DENSITY 17

(2.5) lead quite naturally to (2.4). This actually also helps to understand
what (A3) means, i.e. the possibility of considering a change of parame-
ter (transformation T') of the form T'(fn) = f4_4y, ., Where Yt.p is of order
1/4/n, and such that the prior is hardly modified by this transformation.
In parametric setups, continuity of the prior near the true value is enough
to ensure that the prior would hardly be modified by such a transformation
and this remains true in the semi-parametric setups where we can write the
parameter as (6,n) with 6 the (finite dimensional) parameter of interest.
Indeed as shown in [3], under certain conditions, the transformations on fy .,
can be transferred to transformations on 6. Our setup is more complex since
T applies on the infinite dimensional parameter f, so that a condition of the
form dm(T(f)) = dn(f)(1 4 o(1)) does not necessarily make sense.
Now, we can state the main result of this section.

THEOREM 2.2. Let fo be a density on F such that |log(fo)|eo < o0.
Assume that (A1), (A2) and (A83) are true. Then, we have for any z, in
Po-probability,

(214)  PT{VA(E(f) = U(P)) < 2| X"} — By g (2) = 0.

The proof of Theorem 2.2 is given in Section 4.2. It is based on the
asymptotic behavior of the Laplace transform of /n(¥(f) — U (P,))lly,
calculated at the point ¢ which is proved to be equivalent to exp(t2Fy(1/?)/2)
times the left hand side of (2.13) under (A1) and (A2), so that (A3) implies
(2.14). We do not establish that (A3) is equivalent to (2.14) under (Al)
and (A2) (the proof is based on the limit of the asymptotic behavior of the
Laplace transform and not of the characteristic function), but we believe
that it is close to being so.

3. Posterior rates for infinite dimensional exponential families.
Since one of the key conditions needed to obtain a Bernstein-von Mises
theorem is a concentration rate of the posterior distribution of order ¢, we
now give two general results on concentration rates of posterior distributions
based on the two different setups of orthonormal bases: the Fourier basis and
the wavelet basis. These results have their own interest since we obtain in
such contexts optimal adaptive rates of convergence. In a similar spirit [21]
considers infinite dimensional exponential families and derives minimax and
adaptive posterior concentration rates. Her work differs from the following
theorem in two main aspects. Firstly she restricts her attention to the case
of Sobolev spaces and Fourier basis, whereas we consider Besov spaces and
secondly she obtains adaptivity by putting a prior on the smoothness of
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18 V. RIVOIRARD AND J. ROUSSEAU.

the Sobolev class whereas we obtain adaptivity by constructing a prior on
the size k of the parametric spaces, which to our opinion is a more natural
approach. Moreover [21] merely considers Gaussian priors. Also related to
this problem are the works of [13] and [10] who derive a general framework to
obtain adaptive posterior concentration rates, the former applies her results
to the Haar basis case. The limitation in her case, apart from the fact that
she considers the Haar basis and no other wavelet basis is that she constraints
the 0)’s in each k dimensional model to belong to a ball with fixed radius.

Note also that the family of priors defined in Section 1.2 has also been
used in the infinitely many means model (equivalently in the white noise
model) by [26] where minimax but non adaptive rates were obtained for the
Lo-risk.

THEOREM 3.1.  We assume that |log(fo)|c < 0o andlog(fo) € By, with
p>2,1<qg<oo0and~y > 1/2 is such that

B<1/24~ if p.<2 and B<y+1/p. if p.>2.

Then,
- logn n
(3]‘) P {f@ s.1. h(foafe) < m€n|X } =1 +OIP’0(]')’
and
1
(3.2) P™ {f9 s.t. 6o —0)e, <logn l(_/)(gqgen\X”] =1+ op,(1),

where in the case (PH),

in the case (D), L(n) =1,

_B
en = €o(logn)n” 25+1,  ify > [

.
€n =€on 28+1 f y < B

and €y is a constant large enough.

The proof of Theorem 3.1 is given in Section 4.1. If the density g only
satisfies a tail condition of the form

g(x) < Gyl [P,
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BVM FOR LINEAR FUNCTIONALS OF THE DENSITY 19

where Cj is a constant and p, > 1, then, in the case (PH), if v > 1, the
rates defined by (3.1) and (3.2) remain valid. Note that in the case (PH)
the posterior concentration rate is, up to a logn term, the minimax rate
of convergence, whereas in the case (D) the minimax rate is achieved only
when v = S.

4. Proofs. In this section we prove results stated previously. We first
prove Theorem 3.1. Then the proof of Theorem 2.2 is given. From these
results, we finally deduce the proofs of Theorem 2.1 and of the related results.
In the sequel, C' denotes a generic positive constant whose value is of no
importance and may change from line to line.

4.1. Proof of Theorem 3.1. We first give a preliminary lemma which will
be extensively used in the sequel.

4.1.1. Preliminary lemma.

LEMMA 4.1. Set K, ={1,2,...,k,} with k, € N*. Assume either of the
following two cases:

- v>0, p=q=2 when @ is the Fourier basis
-0<y<r,2<p< o0, 1< q< o0 when @ is the wavelet basis with r
vanishing moments (see [12]).

Then the following results hold.

- There exists a constant ci1.¢ depending only on ® such that for any

0= (0\)r € RF,

(4.1) ST 0o < croVEnlOle,-

AeKn ~

- If log(fo) € B} ,(R), then there exists ca depending on vy only such
that

(4.2) D Oy < ey Rk
MK,

- If log(fo) € B} ,(R) with v > %, then there exists c3 ¢ depending on
@ and v only such that:

1
(4.3) 7 Oada|| < czen REZ

A Kn o
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20 V. RIVOIRARD AND J. ROUSSEAU.

PROOF. Let us first consider the Fourier basis. We have:

> 0o < > 10 X [dalls
AeKn - AeKn
< éles D 164l
AeK,

which proves (4.1). Inequality (4.2) follows from the definition of By , = W7.
To prove (4.3), we use the following inequality: for any x,

A

> Ooada(z)

T

< dlos Y 160al

AEKn

1 1

3 3

[oloo | D IAP763, > T
MK, MKy

Now, we consider the wavelet basis. Without loss of generality, we assume
that logy(ky, + 1) € N*. We have for any =z,

< (Z Gi) (Z qﬁ(w))
ANeK, NeK ),

< H@||e2< ) Zso?k(w)),

—1<j<logy(kn) k<27

IN

> 0xoa(x)

AeKy

NI

with ¢_19 = 1o ). Since ¢(z) = 0 for z ¢ [~ A, A], for j > 0,
card {k € {0,...,21 =1} st @j(z) #0} <324 +1).

(see [17], p. 282 or [18], p. 112). So, there exists ¢, depending only on ¢
such that

2

< H9Hz2( > 3(2A+1)2j63,) ,

OSjSIOgQ (kn)

> i)

AEK,

which proves (4.1). For the second point, we just use the inclusion B} ,(R) C
B; (R) and

271 2
- R
2 _ 2 2 -2 -2
> = > bR Y 2 sk
AEKy j>logy(kn) k=0 j>logy (kn)
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BVM FOR LINEAR FUNCTIONALS OF THE DENSITY 21

Finally, for the last point, we have for any z:

27 -1 3 251 3
Z Oorpa(z)| < Z Z G(Q)jk (Z @?k(x)
ANEKy, j>logy(kn) \ k=0 k=0
< Cki,
where C' < R(3(2A +1))2c,(1 — 2277)~1, 0

4.1.2. Proof of Theorem 3.1. To prove Theorem 3.1, we use the following
version of theorems on posterior convergence rates. Its proof is not given,
since it is a slight modification of Theorem 2.4 of [9)].

THEOREM 4.1. Let fy be the true density and let @ be a prior on F
satisfying the following conditions: There exist (€,), a positive sequence de-
creasing to zero with ne2 — 400 and a constant ¢ > 0 such that for any n,
there exists F,; C F satisfying

- (4) 2
P {f;};C} _ 0(6_(C+2)n6").

- (B) For any j € N*, let
Sp,j = {feF, st jen, <h(fo,f) <+ 1en},

and Hy ; the Hellinger metric entropy of Sy ;. There exists Jo, (that
may depend on n) such that for all j > Jop,

Hy,; < (K —1)nj%e,

where K is an absolute constant.

- (C) Let
Bn(en) = {f eF st K(fo,f) < 57217 V(f07f) < f%}
Then,
P™ {B,(en)} > e~ .
We have:

PT{f st h(fo,f) < Jonen| X"} =1+ opy(1).

To prove Theorem 3.1 it is thus enough to verify conditions (A), (B) and
(C). We consider (A,,), the increasing sequence of subsets of N* defined by
A, ={1,2,...,1,} with [, € N*. For any n, we set:

Fn = {fa € Fi, st fo=exp ( > Oy — 0(9)) , 0]e, < wn} :

AEA,
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22 V. RIVOIRARD AND J. ROUSSEAU.
with
wy, = exp(wen’(logn)?), p>0, ¢g€R.
Recall that
- €y = eonfﬁ(log n)ﬁ and [, = lz?jl in the case (PH),

__B_ 1
- €, = €on 28+1 and [, =k = n25+T in the case (D).

Condition (A):. Since 8 > 1/2, >>, 7a < oo and for the sake of simplic-
ity, without loss of generality, we assume that > , 7\ < 1. Using the tail
assumption on g,

T{F} < D p(A)+P" { > 63> wi}

A>1y A<y

2
< Cexp(—cal,L(ly)) + Z P {i’\ > wi}
A

A<lp
9 P+ D=
< com(comd) + £ ¥ {on (S ) o ()
A<l 27y
<

Dx
Cexp (—@lonei) + Cl,, exp (— C*g)” >

< Cexp (—CQZOne%) + Cexp (—nH)
for any positive H > 0. Hence,
T {F;} < Cexp (—eslo — 1)ne?)

and Condition (A) is proved for [y large enough.

Condition (B):. We apply Lemma 4.1 with K,, = A,, and k,, = [,,. For this
purpose, we show that the Hellinger distance between two functions of F
is related to the fs-distance of the associated coefficients. So, let us consider
fo and fp belonging to F,; with

fo =exp ( D O0xga - 0(9)) ,  Jo=exp ( > 0hon - 0(91)) :

AEA, A€A,

Let us assume that |0' — 0]y, < ¢1e,ln /2 with & a positive constant. Then,

> (0 =0 < COVI]0 —ble, < OVIL]6" —Ole, < Clren — 0

AEA,

o0
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BVM FOR LINEAR FUNCTIONALS OF THE DENSITY 23

and
1
le(8) = (0)] = |log /0 fo(x)exp | D (05— 02)da(2)
>\6A'Il
< |log (1 +C| Z (05 — 9A)¢A”OO)
AEA,
< Cl Y () — 0x2)alo-
AEA,

Then,

2
W (fo, for) = /fe (exp ( > (05— 0\)oa(x) + % (c(8) — 0(9'))) — 1) dx

AEA,
1 2
< / fo(z) (eXp (CII > (05 —06)) ¢A||oo) - 1) da
0 AEM,
< Ol Y (0a—00)al%
AEA,

(44) < ClLlo - 017 < CLlo— 0l
The next lemma establishes a converse inequality.

LEMMA 4.2, Let ¢g = infyeoq) fo(x) > 0. There exists a constant ¢ <
1/2 depending on vy, B3,R and & such that if

(j +1)2%€21, < ¢ x min (co, (1-— 671)2)

then for fg € Sy j,
1
160 — 017, < @(bgn)QhQ(fo,fe)-

1
2

PrOOF. Using Theorem 5 of [25], with M; = (fl i (x ) , if
W (fo, fo) < 51— 7V,
we have
(45) V(fovfe) < 5h2(f07f9> (‘IOgMﬂ _log(h<f07f9))2'
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24 V. RIVOIRARD AND J. ROUSSEAU.

But

My = /fo z)exp | Y (o — 0\)oa(x) + Y oada(x) — c(6o) + c(6) | da
A

AEAR

1 1
< [ fo@)exp (CL/T160 — Ol + B} = c(00) +<(6) ) o
by using (4.1) and (4.3). Furthermore,

(4.6) c(00) — @) < OVl — O, + R 1.

So,
| log M| < C[v/1n]60 — 9He2+Rl2 .

Finally, since fy € S, j for j > 1,
Vo o) < 582 Jo) (OO0 — 0l + R 7]~ logfen))
< Ch(fo, fo) (nllbo — OIF, + (logn)?)
Since fo(x) > ¢o for any x and fol oa(x)dz = 0 for any X € A,,, we have
(4.7) V(fo.fo) > colbo— 0|7,
Combining (4.4) and (4.7), we conclude that
100 =0, < 2Ccg*(logn)*h*(fo, fo),

if h2(fo, fo)ln < (j + 1)2€2l, < cp/(2C). Lemma 4.2 is proved by taking
¢ = (max(C, 1)) 1/2. O

Now, under the assumptions of Lemma 4.2, using (4.4), we obtain
H, ; <log ((C’ln(j +1)log n)l") <lplog (Cegl\/zlog n) .
Then, we have H,, ; < (K — 1)nj%e2 as soon as j > Jo,, = v/jolognL(n)~1

where jo is a constant and condition (B) is satisfied for such j’s. Now, let j
such that

(4.8) c(j +1)%1, >mln<c2 ;(1—6 1)2).
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BVM FOR LINEAR FUNCTIONALS OF THE DENSITY 25

In this case, since for fy € F,

100e, < V3l0ler < Vinwn,

for n large enough,
In
H,; <log ((Cznwnegl) > < 21, log(wy) < 2wolyn’(log n)Y.

Choosing wy, ¢ and p small enough such that [2(logn)? < n'~”, together
with (4.8), implies condition (B).

Condition (C). Let k, € N increasing to oo and K, = {1, ..., k,}, define

A(up) = {9 s.t. 0\ =0 for every \ ¢ K,, and Z (Box — 02)% < u%} ’
MK,

where wu, goes to 0 such that

(4.9) VEkpun, — 0.
We define for any A,

\(fo) = /01 o () fo(x)da

Denote

for,, = exp ( > boada(x) — ¢ 90Kn)> , for, = exp ( > Boada(z) — ¢ 90Kn)) :

At AEK
We have
K(anfOKn) = Z HOAﬂ/\(fO)—{—C(QOKn) —6(90)
AEK
= Z 00)\/3)\ fo + log (/ f[) ZAgKn 90A¢>>\($)dx> '
AEK

Using inequality (4.3) of Lemma 4.1, we obtain

/1 fo (:U)e_ ZAeK” 90>\¢/\(5U)dx
0

2
= 1- > fBa(fo) + = /fo (Z Borda(x ) dz x (1+0(1)).

AEKn MK,
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26 V. RIVOIRARD AND J. ROUSSEAU.

We have
> 6oaBa(fo)| < | foll2 ( > 93,\>
MK, MKy
and
) 2
/ fo(z) ( > 90,\<15A(90)) dr < lfollo D> Oox
0 MK, MK,
So,
! ~ 3 e, Boréa(@) 1 2
log (/ fo(z)e &rgrn 70X da:) = - Z BoxBx(fo) — B Z BoxBx(fo)
0 MKy, MKy
1 /1 : 9
b5 | o) [ 3 tononta) | duto( X 6],
0 AEEK K,
and

2 2
K(fo, for,) = ;/01 fo(z) ( > 90A¢A(ZU)) dfﬂ—% ( > QOABA(JCO)) +o0 ( > G(Q)A) :

K, K, MK,

This implies that for n large enough,

K(fo. for,) < I follse > 65y < Cky ™.
AR

Now, if 8 € A(uy,) we have

K(fo.fo) = K(fo, for,)+ Y (Box — 0x)Br(fo) — c(Box,) + c(6)

AEK,

< Ck, + Y (Box — 0x)Ba(fo) — c(box,) + c(6).
ek,

We set for any z, T'(z) = Y \ck, (Ox — Oox)or(z). Using (4.1), [T, <
CvVknu, — 0. So,

1 1 1
/ Jox, (z) exp(T(x))dx = 1+/ fok, (:L‘)T(:E)dx—l—/ fox, (2)T?(z)v(n, x)dz,
0 0 0
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where v is a bounded function. Since log(1 + u) < u for any u > —1, for
0 € A(uy,) and n large enough,

o / fore, ()7 Vo

1
/ fox, (x (x)daH—/ fox, (2)T?(z)v(n, z)dx

< Y (0x — 00)Br(fox,) + Chnup.
AeKn

_C(QOK,L) + C(g)

IA

So,

K(fo,fo) < Ck*+ > (6ox — 05) (Br(fo) — Ba(fox,))

AeKn
Clky Y + up| fo — fox, |2

IN

Besides (4.3) implies

2
1
1fo— foral3 < ||f0||§o/0 (16Xp( PRNONE: 690Kn)+0(90))) dx

AEE,
and
(o) — c(Bo)l < | D foadalleo-
AEK,
Finally,
1
Ifo = forcll2 < Cl Y~ Oordallos < CkZ ™
MK,
and
(4.10) K(fo, f) < Ok + Cukd .

We now bound V' ( fo, fg). For this purpose, we refine the control of |¢(fyxk,, ) — c¢(6p)]:

|c(Boxk,) — c(fo)| = |log (/01 fo(z) exp (- > 90,\45,\(95)) dl’) |

AEK

2
1
= IOg/O Jo@) | 1= > Ooaoa(z) +w(n,z) (Z Oorda(x ) dzx|,

AEKn MKy
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where w is a bounded function. So,

2
C | D 160aBr(fo)l +/01 ( > 90A¢,\($)) dx

le(bok,) — c(bo)] <
A KL MKy,
1
2
< C ( > egA) < Ck;".
AEK,

In addition,

lc(Bor,,) —c(@)] < D 10x — Oorl [Br(for, )| + Chnul
AeKn

< ([ fo = forallz + I foll2) + Chnu,
Finally,
(4.11) V(fo.fo) < ul+Cky” + Cklu,.

Now, let us consider the case (PH). We take k,, and w,, such that

_1
(4.12) k, = koeglh and u, = uge,kn 2,

where ko and ug are constants depending on | fo|oeo, 7, R and @. Note that
(4.9) is then satisfied. If ¢ is large enough and wy is small enough, then, by
using (4.10) and (4.11),

K(fo, fo) < e and V(fo, fo) < €.
So, Condition (C) is satisfied if
P {A(up)} > e,
where A(uy,) is defined in (4.9). We have:

P {A(u,)} > P" {9 st Y (Oh—60a)* <up
AEK,

kn} X exp (_ClknL(kn)} .

imsart-aos ver. 2007/12/10 file: BVM-revil.tex date: March 15, 2010



BVM FOR LINEAR FUNCTIONALS OF THE DENSITY 29

—1/2

.

The prior on # implies that, with Gy = \? o7

P1 = P" {9 s.t. Z ((9)\ — 90)\)2 S u%

AEK,

> PTG st Y ‘\/%A—ﬂGA—GOA‘ < up|
AeK
_1 _1
= P70 st Y NPG— 1 2N, | < 7 Pual K
AEKp
= g(xx)dxy
/ / ZAeK Bloy— TO )\690>\ <7'0 Qun} )\g{n
>

/"'/1{3% A—ﬂ\ynsf{%un}

_1
When v > 3, we have sup¢ g, ’TO 2)\%00

_1
II ¢ (yA + 7 2)\590A> dyn.
AeKy,

_1
< oo and sup,, {7'0 ngun} < oo0.

Using assumptions on the prior, there exists a constant D such that

P> / / dyx
Z/\GK AT ﬁ‘y/\|<7—0 un} Ag{n
(4.13) > exp(—Ck,logn).

When v < 3, there exist a and b > 0 such that V|y| < M for some positive
constant M
9(y + u) > aexp(—blulP*).

Using the above calculations we obtain if p, < 2

P > Dknexp C A\P+0 90)\:0*/ / 1 dyy
SCRIRU NS (5 ety Ll

AeKy, AEK,

Y

exp {—Ck,lL P/ 24P+ (A= W)} exp (—Cky,logn)
exp (—Chkplogn) if3<1/2+~

\%

and if p, > 2, Syex, APP|0pa|P+ < kBP~P<Y 50 that

P > DFrexp{—C Z APB1605 [P+ } exp (—Clhy, log n)
AeK,
> exp(—Ckylogn) if 8 <~v+41/p..

Condition (C) is established by choosing ky small enough. Similar compu-
tations lead to the result in the case (D).
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30 V. RIVOIRARD AND J. ROUSSEAU.
4.2. Proof of Theorem 2.2. Let Z, = \/n(¥(f)— ¥(P,)). We have
(4.14) P™{A,|X"} =1+ op,(1).

So, it is enough to prove that conditionally on A, and X", the distribution
of Z,, converges to the distribution of a Gaussian variable whose variance is
Fo(10?). This will be established if for any ¢ € R,

n—-4o00

2 ~
(4.15) lim L,(t) =exp <t2F0 {@Z)ﬂ) ,
where L, (t) is the Laplace transform of Z,, conditionally on A, and X™:

Ly(t) = E7 [exp(tv/n((f) — ¥ (Pn)))[An, X"]
E™ lexp(ty/n(Y(f) — W (Pn)))a, ()| X"]
Pr{An[ X"}
Ja,, exp (Vn(U(f) = W(Pn)) + la(f) = u(fo)) dm(f)
fAn exp (Un(f) — Ln(fo)) dm(f) .

We set for any x,
1

(4.16) Bin(z) = / (1 = w)eh@ Vg,
0

So,

W) = W(P) = —1Go(D)+ i [ Ga) (@) fola))de )

:—@mewm+%%Wmm>

Since
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we have

Ja,, &0 (Gulh — 1) + tFo(h) + = Fo(h* By ) — 2295 4 Ry () dr(f)
Lut) =

2
Ja, exp (— ”*h>-+<:<h> Ry (h)) dn(f)
Mﬁm(iﬂt@@3+e<—%@@+R<—%@@+U n) dr(f)
Ja, exp (=287 4 Gu(h) + Ro(h)) dn(f)

Y

where straightforward computations show that

_ _ 2
Unn = tFo(h(d — ) + =

5 FO(3E,)  Rulh) = Rl ) + = Fo(h By )

— tFy(hd) + o (fin) + —=Fo(h>Bpnd)

ﬁ ~
= tFo(h@/N)) + nlog (Fg [exp (\hf ?) ) + \;EFO (hZmaz/;) .

Now, let us study each term of the last expression. We have

A w0 0(n-3
Folexp<f \Fﬂ —Fo[ef<1 \/ﬁ+ d))] 0(n~2)

- -l Enlehe]
So,
Fy {e%hﬁqﬂ] = F()\[/}%Q’Z]—I-Fo[hth’n&]; Fy [e\%?f}?] = Fj {1/72]+F0%2]+F0[h2ih’n&2].

Note that, on A, we have Fy(h?) = 0(nu?) and Fy (h®By,,) = o(n). There-
fore, uniformly on A,,

R [exp ( h 751!7 >‘| o1 L <F0[h7j}] n F()[hQBh’nqz)]>

NG v\ vn o )
+i (Fo 9?] + FO\[%Q] + FO[hQih’”w2]> +o(nY)
- 1! [Fo[hij] M O[hzﬁl""‘ﬂ I 0552) + 0(1)]
= 1+o0(n'7?)
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32 V. RIVOIRARD AND J. ROUSSEAU.

and
nlog (F() [exp <;ﬁ — f;%)]) = —t [Fo(hzﬁ) + Fo[hi/Bgz,nlﬁ] - tFOéwQ) + o(1).
Finally,

2

Unp = %Fo Wﬂ +o(1)

and up to a multiplicative factor equal to 1 + o(1),

Ja exp (—w + G(h = thu) + Ru(h — 1) ) dr(f)

t2 ~
Ln(t) = exp <2F0 { QD [a. exp (_%’ﬂ) + Gn(h) + Rn(h)) dr(f)

Finally (A3) implies (4.15) and the theorem is proved.

4.3. Proof of Theorem 2.1. We apply Theorem 2.2 of Section 2.3, so
we prove that conditions (A1), (A2) and (A3) are satisfied. Let €, be the
posterior concentration rate obtained in Theorem 3.1. Let us consider f =
fo € Fy for 1 < k <, where [,, is defined in Section 2.2. First, using (4.5),
we have

(4.17) V(fo. f) < Cllogn)’e;.,
as soon as h(fo, f) < vlogne,. Thus, using (3.1), we have
P {4} X"} =1+ 0p, (1)

with u, = ug(logn)3e2, for a constant ug large enough. Note that we can
restrict ourselves to A}, N (Ug<y, Fi), since Py [(Ug<z, Fi)¢] < e~ for any
¢ > 0 by choosing [y large enough.

To establish (A2), we observe that

[log fo —log folse < | > (Box = Ox)daloe + [(6) — c(60)
AEN*

1_
c (mne—eon@ i ) — o(1),

by using v > 1/2, Lemma 4.1 and (4.6). So, (A2) is implied by (A1). Now,
let us establish (A3). Without loss of generality, we can assume that A,

IN
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the set defined in assumption (A2), is included into (U<, F). For any ¢,
we study the term

Ja exp (—w + Gplhy — tdin) + Ru(hy — tzﬁm)) dr(f)
i, 50 (=252 + Gulhg) + Ralhg)) ()

—t 2 — _
et POR) [, exp (— ) 4 G (hy = 1) + Ru(hy — tn) ) dr(f)

I, =

Shevet, 20 Ly, oz, 050 (~252 + Gulhy) + Bulhy)) ()

If we set

tIL s xib — 1)
bt = fo’klf/ﬁ vmo _ f Z Prada,

we have, using (4.1) and since k < [,,,

CtVk
lbnktloo < T”Hfoklb ¢H0||fo

Ct\1, , ~
Jn

<

Recall that for fy € Fp,

AEN*

h@ = \/’ﬁ ( Z (9)\ — 90)\)(]5)\ — 0(9) + 0(90))

7i[k] ~ ~ ~
so, for ¢/ =0 — t%, with Hy, = (hg — ty)//n and Ay, = ¢ — Ilg, 40

7 [%]
hg = hg—/nby s +/n (C(‘g) —c (9 - t\}%))

) _ ) Fo(eHn 10/ Vi
— hy— —1 _ J/nl
hg — t3)gp + (2 fo.k?) — v/nlog [ Fo(efn)
= hg— thyp + tAy s — Ay,
with
B Fo(eHn+tA¢,k/\/ﬁ)
A, = +/nlog l Fo(efin)
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34 V. RIVOIRARD AND J. ROUSSEAU.

Now, as previously, (4.6) implies |hgloo/v/2 < Vke, = o(1) and since
F(A7 ) =00), [Ap il = OWIn) = O(V/ney),

Fy(efnttAvr/Viy = R (eH" <1+ \/% + 27;% +O(F(A12/z,k)”$/2)

tAy L t2A2 k €
= Fyfefl (1422 v, 0 (")
0 (6 ( * NZD * 2n * n

t t? 1
= Fy <€Hn) + %Fo(eHnAiﬁ,k) + %Fo(eHnA’lQb,k) + o0 <7’I,> .

Furthermore, for any function v satisfying Fy(|v|) < oo,

(4.18) Fy(efmv) = Fy (veh‘*/‘/ﬁ) - \/tﬁFo <v6h9/‘/ﬁ"&) +0 (i) .

Note that in the case v = 1 since Fy(e®/ \/ﬁ) = 1 we can be more precise
and we obtain

Fy(eflny = 1— \/%F0 (V) + O(1/n)

_ o tBGed) (e 1) (L
(4.19) =1 - +O<\/ﬁ+n>_1+ (\/ﬁ)
Moreover,
(4.20) Fy (ve"/V™) = Fo(v) + o Fo([v])).

Therefore, using (4.18) with v = AZ  leads to

Fy(eHnttBy k/Vny t Fole"nAyg) 12 ) (1)
=1+———"""+ —Fy(A =
Fo(efin) * vn o Fy(efin) o 0(Ay) +o n)’

and using (4.18) with v = Ay together with (4.19) and using (4.20)

t H _ .t hotviy ~ 1
%Fo(e Aypr) = %FO (Aw,ke o ) nFO (AWW) +o n)"
Moreover,
1 1
FO (Aw,kehe/\/ﬁ) = % |:F0 (h@Awa) + %FO (thhe’nAd;’k)} 3
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where By, is defined by (4.16). Since Fy(e'/V™)) = Fo(1) + o(1) = o(1),

Fo(e") =1+ 0 (=) and Fy($Ayx) = Fo(A2 ;) we obtain

Fy(eflnttBun/viy t ho /T t2 ) 1
FO(eHn) = 1 + %FO (6 0 A,d)’k) — %FO (Aw’k) + o0 (n)
and finally,
B FO(@Hn—i_tAw’k/\/ﬁ)
A, = \/ﬁlOg [ Fo(eH")
= tFy <6h0/\/ﬁA k) — iFQ (A2 ) +o <1>
k)T oy m ATk NG
t Fy thh WA K t 1
- lFo (hosya) + 0B B0t) _ Lgn ) 4o ().

Moreover
Fo (h§Bhy k) = %Fo (h3us) + o0 (Fo (R31Aual))
and by using (4.17),

Fo (hg] Ay k)
NG

Fy (h2
18l 222
< CllApsllov(ogn)?

To bound |Ay koo, We set Yyp =D yop 1;,\@\, SO

Ay =P — g p(Vig).

IA

Then by using (4.1),

1A kloo < l¥akloo + [T sy k¥ rkloo
< [Wskloo + CVETL 1bkl s,
< [vskloo + CVE[P4] 5,
< Wskloe + OVE[Yk]o.
Under (2.8), we obtain
An = By oy p) — LRy(A20)| + o(n172).
Vn R g
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36 V. RIVOIRARD AND J. ROUSSEAU.

Note that A, = o(1). Finally,
Fo(hgy)
2
= Ru(hg — trn) — VR, — t;Fo(A?M) + tFy(hoAy k) — AnFo(hg) + o(1)
= Ry(hg — thrn) — AnFo(hg) + o(1).

Recall that h@/ = ho — tl;t,n + tAw,k — An, An = 0(1) and Fo(Aw7k> = 0.
Note also that

Rn(he) = /nFy(he) +

Bunl@) = () + V2 1og (Fo(e™)) = d(a) + o()

so that Fy(Ay xtin) = Fo(Ai x) +o(1) and

)

Fo(h3, Fo((hg — then)?)  Fo((tAyx — Ay)? _
_0(29) - _ 0((hg . Yin)”)  Fo(( w,g )?) — Fo((he — tn) (tD g — A))
Fo((hg — thyn)?)  t2Fo(A2
- ollho 9 Yin) )+ 0(2 ) — tFo(hoAy k) + AnFo(hg) + o(1).
Furthermore,

Gn(hgl) = Gn(hg — tq;t,n) -+ th(Aw’k).
We set
pne = —Fo(he Ay k) + Gn(Ay k)
and we finally obtain,
Fo((he)?
—0((2")) + Gn(he) + Ru(he)

F — ta) n 2 7y )
_ 0((he 2t¢t, )%) + Ry (hg — t¢t,n) + G (hg — WJt,n) + pin i
2 Fy(A2
0(2W +o(1).

Note that FQ(h@Ad)’k) = —\/FLF()[(@; — Hfo,k"z) Z)\Zk-‘rl 90)\(;5)\] so that ke
7,Lk]
does not depend on # and setting T,0 = 60 — t% for all 8, we can write

— b 2 — _
fAnm}‘k €xp (_M + Gn(hf - td}t,n) + Rn(hf - t¢t,n)) dﬂ-k’(f)

Faueim 50 (=252 4 Gulhg) + Ralhy) ) dm(5)

Fo(h%,
( o ) +Gn(the)JfR"(th")de(e)

2
Fy (th) +Gn(hg)+Rn(he) dﬂ.k (9)

Jp =

t2Fy(A2 ) -
k e
e_ 5 Y, e_t,un,k f@kﬂA;.L

(1+0(1)),

f@kmA;l e
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BVM FOR LINEAR FUNCTIONALS OF THE DENSITY 37

where Al = {0 s.t. fp € An}. Moreover, for k < 1,, WI[?] le, < C. So, if we
set

Tk(A%) = {9 S @kﬂA; s.t. 9+tq\p/n> c A }

for all 0 € Ty (A)),

2t2C? 5 3
10— 6ol7, < 2(logn)’e; + = < 2¢; (logn)*(1 + o(1))
n

(logn)3/2¢p,
2

since ne2 — +oo. For all § € ©, N A/, such that |0 — 6], <

6+th c Al ne;

NG

for n large enough and we can write
logn 3/2en
1= {e € Al: 10— ol, < “”2)} A= {0 10—tz < 3(ogm)* e, )
then

(4.22) OrNA;,, CTi(A),) COLNA,,

and under assumption (2.7),

Fo(h )

FO(A2’ ) f@ nA’ +Gn(h9)+Rn(h9)d7rk(0)
Jo € et et e (1+ o(1)),
Jonay, €T ¥Gn 0+ R k) g ()
_F (h )
LFo(a2 ) Jounar € 00 +Gn n(ho)+Rn(ho) drr, ()

J > et etk ol (14 o0(1)).

- 0( 2)
f@mA’ne +Gn(ho)+EBn(ho) gr, (9)

Therefore,

G(t) = ET[exp(tv/n(T(f) = U(Pn)))lla, (f)|1X"]

2R @) | &
= ¢ TET Y pIX) | (14 o(1))
k=1
In L it e
< Do pkIX ™) ey zpe” ke 2 (1+0(1))
k=1
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38 V. RIVOIRARD AND J. ROUSSEAU.

and

R & Fo(ay,
Glt) = Y prfxme e T [ X0 ].
k=1

Besides under the above conditions on the prior, with probability converging
to 1,
™ [(A], )X < e,

for some positive constant ¢ > 0. Then uniformly over k such that ©3 N
AL #0
7 [ (A7) X7 k] etk = o(1)

and

@ & P8
Gult) = ¢ Y p(RIX ) loyna, 00 ke T2 (L4 0(1)).
k=1
This proves that the posterior distribution of /n(¥(f) — W(P,)) is asymp-
totically equal to a mixture of Gaussian distributions with variance Vp, =

Fo(y?) — FO(A?/)JC)’ means —y, , and weights p(k|X™). Now if |Ay x| = o(1)
(k — 400) Gn(Ay,k) = op,(1) and with probability converging to 1,

400 1/2 +o0 1/2
sl < CVR | DD 43 > 05y +o(1).
A=kt 1 A=k+1

Thus, under (2.10), Equality (2.11) is proved.

4.4. Proof of Corollary 2.1. Let k < I, (k = k}; in the case (D)) and
A < k. If 0y ~ N(0,722~27), we have:

Ao “J)%[,,\)‘Qﬂ Ck?8
n - n
S Oad AN

§ = 0= [10=0oleh® + (2 £ 1)] ).

Similar computations hold when ¢ is the Student density since

k
> log (1+ CA63) —log (1 + CA*(0x — tihna/v)?)
A=1

k
=0 (Z N |(0x =t/ V) — 9§‘> :
A=1
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BVM FOR LINEAR FUNCTIONALS OF THE DENSITY 39

Under conditions of Corollary 2.1, above terms are negligible when n goes
to 0 if Y5, (0x — Oox)? < (logn)*€2 /L(n)2. If ¢ is the Laplace density,

Oy — tdup/vn\\ Oy ||V
e o (212)) s o ()] =

so that

7 (k]
(0 — tﬁ) Z’)f\zl /\ﬁWH,/\’ EB+1/2
eI | B SO(xm>_d”

log

4.5. Proof of Proposition 2.1. We set
(4.23) ki = 07D (log n) = 74D (log log ) =/ 47+
Let J; > 3. We have

1
YN <Y 5
>y e Alog A(loglog \)
I, ozt :
de = ——,
5 zlogz(loglogx)? log log J;
and similarly
1 s 1
Oor < < / dx
>\>ZJ1 > )\;1 A27t1log A(loglog A)? 5 227t log z(loglog x)?
1 o]
{ 2v227 log x(log loggr:)Q]J1 (1+0(1))
1
(4.24) = (1 + o(1))

2v.J7" log J; (log log J; )2
when J; — oo. Thus, for k; large enough,
Pk < k1kn| X" =14 o(1).

We now study the terms p,, , and we show that there are some k’s for which
neither p,; nor p(k|X"™) can be neglected. First note that when k& — oo
Gn(Ayk) =o(1) and

fnk = VnFy (Azp,k > 90/\¢)\) +o(1)

A>Ek+1

- \/ﬁ/AM ST oo — \/ﬁ/(l — fo)Ayx Y Boada +o(1)

A>k+1 A>k+1
= Unk1 T k2t 0(1)
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40 V. RIVOIRARD AND J. ROUSSEAU.

We first consider i, 1:

Pnk1l = \f/w Z Bordr = Vn Z 90A/1u<m0¢,\

A>k+1 A>k+1

in(2mlzg) _ Vn sin?(2mlwg)
= \/% Z (90 ngln( 0 Z .
1>(k41)/2 2nl V2w i), DTV loglloglogl

With zg = 1/4, we finally obtain:

vn 1
Mk, = ,
1 \[W S (i1 a—1/2 (2m+ 1)7+3/210g/2(2m + 1) log log(2m + 1)

so that there exist two constants ¢; and ¢y such that for all k < k,,,

ltnge1| > erv/nky, 7 "V2(log kn) "2 (loglog ky) ' > c2v/logn.

Now, let us deal with i, 1 2. We have

s s s (50

A>k+1 ASkt1
and
2
O | DS Dadx < C Y 3.
ASFH1 ASkt1
So,
1/2 1/2
ke < CVlfo—1le | D ¥3 > 0y
AS 1 ASFA1
L= v—1/2
< C o
< COVnllfo—1| gk loglog k'

By choosing kg large enough || fo — 1||cc can be made as small as needed,
so that we finally obtain that there exists ¢ > 0 such that for all & < k,

|t k| > c\/logn.
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