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Abstract

In this paper, we study consistency in nonparametric Bayesian es-
timation of a nonincreasing density on R+. Since such a density can
be written as a mixture of uniform densities, it is natural to consider
Bayesian procedures that are based on nonparametric mixture models.
In this paper, we consider in particular as priors the Dirichlet mix-
ture process and finite mixtures with unknown number of components.
We show that for finite mixture priors, the Kullback-Leibler property
is not satisfied, and we propose an alternative condition that still en-
sures consistency of the posterior distributions and which is satisfied in
those models. A simulation study is provided at the end of the paper
to illustrate the results.

Keywords: Nonparametric Bayesian inference, Consistency, entropy,
Kullback-Leibler, k-monotone density, kernel mixture.

1 Introduction

In this paper we study the properties of Bayesian nonparametric estimation
of a monotone nonincreasing density. Nonparametric estimation of a mono-
tone nonincreasing density is a well known problem and has been considered
both from theoretical and applied perspectives in the frequentist literature,
see for instance the introduction in Balabdaoui and Wellner [3] for a review
on the subject. In particular, monotone density estimation has applica-
tions in reliability, and serves as a preliminary analysis in survival analy-
sis. Monotone nonincreasing densities on R+ have a mixture representation
which allows for likelihood based inference, see for instance Balabdaoui and
Wellner [3]. Alternative to the frequentist Maximum Likelihood approach
is a Bayesian approach, also based on the likelihood. Since Williamson [26]
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and Lévy [14] (see also Gneiting [7]) it is known that a density f is monotone
nonincreasing on R+ if and only if it can be written as a mixture of uniform
densities; i.e.,

f(x) =
∫ ∞

0

1
θ

I(0,θ)(x)dP (θ) (1.1)

where P is a mixing distribution on R+ and I(0,θ)(x) is the indicator function
on the interval (0, θ). Note that if F is the cdf of f inversion of (1.1) yields
the formula P (] −∞, x]) = F (x) − xf(x), which is valid for all continuity
points x of P . Herefater, f will be denoted by fP so that the dependence
on the corresponding mixing distribution is made explicit.

Let F be the set of nonincreasing densities on R+. Characterizing mono-
tone nonincreasing densities via (1.1) leads naturally to a mixture type prior
on the class F . In Bayesian nonparametric estimation of densities, many
different types of priors have been used in the litterature for mixture mod-
els. For instance, Ferguson [6] and Lo [15] have introduced Dirichlet mix-
tures, Brunner and Lo[1989][] have considered Bayesian procedures for sam-
pling from a unimodal density and Kottas and Krnjaic [2009][] extended
the Bayesian semiparametric models using DPM for the error distribution,
Petrone and Wasserman [19] studied, among others, the properties of Bern-
stein polynomials, Robert and Rousseau [21] and Rousseau [22] obtained
consistency and rates of convergence for general mixtures of Betas, and Per-
ron and Mengersen [20] and McVinish et al. [16] studied mixtures of tri-
angulars, the well known family of Gaussian mixtures has been studied in
particular by Ghosal and Van der Vaart (2001) [10] and Scricciolo (2001)
[28]. A more general study on approximation properties of mixture models
can be found in Wu and Ghosal [27].

We construct a prior on F by determining a prior on the mixing distribu-
tion P living on R+. In this paper, we are interested in two types of discrete
distributions generating P :

• Dirichlet process priors: P ∼ DP(H,α), where H is a probability
measure on R+ and α as a concentration parameter is a positive real
number .
• Finite mixtures: Set P =

∑K
j=1wjδθj

, with K ∈ N∗, w = (w1, ..., wK)
is in the K dimensional simplex : {w = (w1, ..., wK), wi ≥ 0,

∑
iwi =

1}, 0 ≤ θ1 ≤ · · · ≤ θK , and δθj
is the Dirac distribution putting all its

mass at θj . The prior on P is then defined by: K ∼ Q a probability
distribution on N∗, and conditionally on K, (w1, ..., wK) ∼ πw,K and
θ = (θ1, ..., θK) ∼ πθ,K , where πw,K and πθ,K are probabiliy distribu-
tions. A typical example is to take πw,K to be a Dirichlet distribution

2



and the θj ’s the order statistics ofK independently distributed random
variables with density α on R+.

Nonparametric Bayesian procedures seem to present the following para-
dox. On the one hand, they do not require precise information of the shape
of the parameter (here function). On the other hand, they require the con-
struction of a distribution on an infinite dimensional space, and this cannot
be accomplished in a purely subjective way. Hence, as argued by Diaconis
and Freedman [5] or illustrated by Lijoi et al. [25], strong consistency of the
posterior distribution is a major issue in nonparametric Bayesian statistics.

Our aim in this article is to study the consistency of posterior distribu-
tions on F based on either of the two types of priors described above. More
precisely let Xn = (X1, ..., Xn) be a sample of independently and identically
distributed observations with a common probability distribution F0 having
a nonincreasing density f0 with respect to Lebesgue measure. Let π be a
probability measure on F and π[.|Xn] denote the posterior distribution as-
sociated with π. We recall that strong consistency is satisfied when for all
ε > 0,

π [{f ∈ F ; d(f0, f) ≤ ε}|Xn]→ 1, P∞0 a.s., (1.2)

where d denotes either the L1 distance or the Hellinger distance between f0

and f . Note that in the case of the nonincreasing densities, Lijoi et al. [25]
have proved that strong consistency is equivalent to weak consistency, so
that it is enough to prove the above convergence for weak neighbourhoods
of f0. Most results on posterior consistency (weak or strong) are based on
the Kullback-Leibler property, i.e.

π [{f ∈ F ; KL(f0, f) ≤ ε}|Xn] > 0, ∀ε > 0, (1.3)

where KL(f1, f2) =
∫
f1 log(f1/f2)dx is the Kullback-Leibler divergence be-

tween f1 and f2. If π satisfies the above condition, f0 is said to be in the
Kullback-Leibler support of π (hereafter calleds KL-support of π). General
conditions on Bayesian mixture models are presented in Wu and Ghosal
[27] to verify (1.3). In particular, they proved that Dirichlet process priors
satisfy (1.3) in the framework of nonincreasing densities on R+ under mild
conditions on the base measure and on f0. The study of finite mixtures is
more delicate since (1.3) is usually not valid. This point will be discussed
in Section 2. To circumvent this problem, we prove a result (Theorem 2.1)
where posterior weak consistency is established under conditions alternative
to the usual KL condition in (1.3). This result has interest in its own right
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and could be used in other contexts. Hence it is provided in a separate sec-
tion. Furthermore, we show consistency of the posterior distribution under
Dirichlet process and finite mixture priors on [0,1] and on R+ in Sections
2.3.2 and 2.3.3 respectively.

Finally, a simulation study was carried out with the goal of illustrat-
ing the theory for the Dirichlet process mixture priors. Description of the
simulations and the obtained results can be found in Section 3.

2 Asymptotic properties of the posterior distribu-
tion

Let M be the set of probability distributions on R+. We denote by Π a
probability measure onM. Recall that fP denotes the nonincreasing density
with mixing distribution P (as defined in (1.1)). Let F0, F and FP be the
cumulative distribution functions associated with f0, f and fP .

The posterior probability of any measurable set A of M given the ob-
served sample Xn is given by

Π(A|Xn) =

∫
A

∏n
i=1 fP (Xi)dΠ(P )∫

M
∏n
i=1 fP (Xi)dΠ(P )

. (2.1)

2.1 Remarks on the Kullback-Leibler condition

Wu and Ghosal [27] and Ghosh and Ramamorti [8] obtained some interesting
results on weak consistency in Bayesian estimation of nonincreasing densi-
ties. They proved that if the weak support of Π isM, then any continuous
nonincreasing density f0 satisfying∫

f0(x) |log f0(x)| dx <∞

is in the KL support of the prior, which implies weak consistency of the
posterior at f0. However, the condition on the weak support of Π can be
very strong and quite difficult to prove. Thus, we propose an alternative set
of conditions which can be, in some cases, easier to deal with.

As an example, consider the finite mixture type of priors described in
Section 1. Recall that a realization under such a prior is written as

P =
K∑
j=1

wjδθj
.
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Assume that the conditional probabilities πw,K and πθ,K given K are abso-
lutely continuous with respect to Lebesgue measure. Then if f0(x) > 0 for
all x ∈ R+, we have that

Π({P : KL(f0, fP ) =∞}) = 1. (2.2)

Indeed, if dP (θ) =
∑K

j=1wjδθj
(θ) with 0 < θ1 < ... < θK , then for all

x > θK , fP (x) = 0 and KL(f0, fP ) = ∞. Thus, Wu and Ghosal’s result
implies that such a prior does not have M as a weak support. Proving
directly that a prior does not admitM as a weak support would have been
a much more difficult task, as opposed to showing (2.2) and appealing to the
result of Wu and Ghosal [27]. Next, we show that despite violation of the
weak support condition, the posterior can still be consistent at f0.

2.2 Consistency without the Kullback-Leibler property

Here, we give a general result that avoids the Kullback-Leibler property and
still gives weak consistency of the posterior. It is not specific to the context of
nonincreasing densities, and hence can be exploited in other situations. The
result is given in Theorem 2.1 and will be applied to the case of nonincreasing
densities.

Consider now a sequence (θ1n, θ2n)n such that (F0(θ2n))n and (F0(θ1n))n
converge to 1 and 0 respectively as n goes to infinity and denote

f0,n(x) =
f0(x)

F0(θ2n)− F0(θ1n)
1lθ1n≤x≤θ2n and

fn(x) =
f(x)

F (θ2n)− F (θ1n)
1lθ1n≤x≤θ2n .

Set

Sn(ε,M)

=

{
f ; KL(f0,n, fn) ≤ ε;

∫
f0,n(x)

(
log
(
f0(x)
f(x)

))2

dx ≤M,

∫ θ2n

θ1n

f(x)dx ≥ 1− ε

}
.

Then, we have the following theorem:

Theorem 2.1. Let π be a prior probability on the set of densities on R
satisfying: there exists c > 0 such that for all ε > 0, there exists M > 0

lim inf
n

ecnεπ [Sn(ε,M)] > 0, (2.3)
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with F0(θ2n)n → 1 and (1− F0(θ1n))n → 1 for n large enough.
Then for any weak neighbourhood U of f0 we have that

π [U |Xn]→ 1

in probability.

Note that the above result is weaker in the sense that the convergence
is not occuring almost surely. The condition on the prior mass of Sn(ε,M)
is of a different nature than Le Cam’s condition on posterior consistency;
see Ghosh and Ramamoorthi [8]. Indeed, we do not require a bound from
below for the prior mass of neighbourhoods with radii ε/n (in L1), but we
rather prove that we need not control the ratio f0/f everywhere in x but
only on compacts. This allows to accept nonparametric prior models where
the approximating functions f have support smaller than that of f0. An
almost sure convergence could be obtained by considering neighbourhoods∫
f0,n(x)

[
log
(
f0(x)
f(x)

)]2p
dx with p > 1 and an extra condition on the close-

ness to 1 of F0(θ2n)− F0(θ1n). However we are mainly interested in conver-
gence in probability and obtaining an almost sure convergence would only
make the presentation more cumbersome. We now prove the above theorem.
Proof of Theorem 2.1:
Note that by Theorem 4.2 of Ghosh and Ramamoorthi lemma 8.1 of Ghosal
et al (2000) it is enough to prove that for all ε, ε′ > 0,

Pn0
[
enεDn<ε

′] = o(1),

where

Dn =
∫
F

f(Xn)
f0(Xn)

dπ(f). (2.4)

For u > 0, set

Ωn = {(f,Xn); ln(f)− ln(f0) > −3nu}

where ln is the log-likelihood, and

An = {Xn,∀i, θ1n ≤ Xi ≤ θ2n}.

Then,

Dn ≥ e−3nu

∫
Sn(u,M)

1lΩn(f)dπ(f) = e−3nuπ[Sn(u,M) ∩ Ωn].
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Now choose u(c + 3) < ε. Since there exists ρ > 0 such that for n large
enough ecnuΠ [Sn(u,M)] > ρ we can write

Pn0
[
enεDn < ε′

]
≤ Pn0

[
en(ε−3u)Π[Sn(u,M) ∩ Ωn] < ε′

]
≤ Pn0

[
en(ε−(c+3)u)Π[Sn(u,M) ∩ Ωn] <

ε′

ρ
Π [Sn(u,M)]

]
≤ Pn0

[
Π[Sn(u,M) ∩ Ωc

n] >

(
1− e−n(ε−(c+3)u)ε′

ρ

)
Π [Sn(u,M)]

]

≤
2
∫
Sn(u,M) P

n
0 [Ωc

n(f)] dΠ(f)

Π [Sn(u,M)]
.

Moreover, for all f ∈ Sn(u,M) we have that

mn,u := En0 [(ln(f0)− ln(f))1lAn ]

= n(F0(θ2n)− F0(θ1n))n−1

∫ θ2n

θ1n

f0(x) log
(
f0(x)
f(x)

)
dx

= n(F0(θ2n)− F0(θ1n))n
[
KL(f0n, fn) + log

(
F0(θ2n)− F0(θ1n)
F (θ2n)− F (θ1n)

)]
≤ n(F0(θ2n)− F0(θ1n))n [u− log (1− u)]
≤ 2nu(1 + u)

and

Pn0 [Ωc
n(f)] = Pn0 [ln(f)− ln(f0) < −3un]

= Pn0 [{ln(f)− ln(f0) < −3un} ∩An] + o(1)

≤
En0
[
(1lAn(ln(f0)− ln(f))−mn,u)2

]
n2u2(1− u)2

+ o(1).

Now, note that

vn,u := En0
[
(1lAn(ln(f0)− ln(f))−mn,u)2

]
= n(F0(θ2n)− F0(θ1n))n

∫ θ2n

θ1n

f0n log2

(
f0(x)
f(x)

)
dx

+n(n− 1)(F0(θ2n)− F0(θ1n))n
(∫ θ2n

θ1n

f0n log
(
f0(x)
f(x)

)
dx

)2

−m2
n,u

≤ n(F0(θ2n)− F0(θ1n))n
∫ θ2n

θ1n

f0n log2

(
f0(x)
f(x)

)
dx+m2

n,u((F0(θ2n)− F0(θ1n))−n − 1)

≤ nM +m2
n,u((F0(θ2n)− F0(θ1n))−n − 1).
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We finally obtain that

Pn0 [Ωc
n(f)] ≤ M

nu2(1− u)2
+

4(1 + u)2

(1− u)2
((F0(θ2n)− F0(θ1n))−n − 1) = o(1)

and Theorem 2.1 is proved. �

2.3 Application to nonincreasing densities

In this section we apply Theorem 2.1 to the case of decreasing densities
on [0, 1] and on R+. The basis for obtaining consistency of the posterior
distribution is to construct a sequence of densities of the form fP , with P a
discrete distribution, that approximates f0. The construction follows mainly
the approach of Groenenboom [12], which we recall in the following section
with a few changes for the sake of a better adaptation.

2.3.1 Approximative construction

The following constructive approximation is obtained on a compact interval
R+, [0, L] say. We therefore assume here that f0 has support [0, L], where L
can be expressed as L = sup{x ≥ 0; f0(x) > 0}.

Let ε > 0 and construct fε in a manner similar to Groeneboom [12]: for
M ≥ f0(0), define m ∈ N∗ such that (1 + ε)m − 1 = M (the value of M can
be always adjusted such that such an m exists), and define for i = 1, ...,m

yi = (1 + ε)i − 1, θi =
L

M

[
(1 + ε)i − 1

]
, Ii = [θi−1, θi), li = θi − θi−1.

Following Groenboom’s notation, set f̄i = l−1
i

∫
Ii
f0(x)dx. For all i =

1, ...,m, there exists a unique j ∈ {1, ....,m} such that f̄i ∈ [yj−1, yj). Now
construct the stepwise function gε such that for x ∈ Ii gε(x) = yj . Note that
our approach differs from that of Groenenboom’s in that we do not consider
the closest value to f̄i among {yj−1, yj}. Then following Groenenboom [12],
if fi = f0(θi) then∫ L

0
|f0 − gε|(x)dx ≤ ε

m∑
i=1

li(1 + f̄i) +
m∑
i=1

li(fi−1 − fi)

≤ 2(L+ 1)ε,

and if g = gε/
∫ L

0 gε(x)dx then∫ L

0
|f0 − g|(x)dx ≤ 4(L+ 1)ε. (2.5)
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We will now construct a discrete probability measure P on [0, L] such that
fP is an approximation of g. Recall that g is piecewise constant, and set
gj = g on Ij . Let

P (θ) =
m∑
i=1

piδθi
(θ), pm = Lgm, pi = θi(gi − gi+1), i = m− 1, ...., 1. (2.6)

so that fP = g and
∫ L

0 |fP − f0|(x)dx ≤ 4(L + 1)ε. Note that fP ≥ gm ≥
y1 = ε implying f0/fP ≤ M/ε. Applying Lemma 8 in Ghosal and Van der
Vaart [?]2007 together with Le Cam’s inequality between Hellinger and the
L1 distance, we obtain that

KL(f0, fP ) ≤ C

∫ L

0
|f0(x)− fP (x)|dx

(
1 + log

(∣∣∣∣ f0

fP

∣∣∣∣
∞

))
≤ 2C ′(L+ 1)ε(1 + | log ε|). (2.7)

We now use the above construction to approximate the two families of
discrete priors as described in Section 1. We first consider the case where f0

is compactly supported on [0,1], or on some subinterval thereof.

2.3.2 Nonincreasing densities on [0, 1]

We have the following theorem.

Theorem 2.2. Let f0 be a monotone nonincreasing density on [0, 1], such
that f0(0) <∞. Consider a Dirichlet process prior DP(H,α) with α > 0 and
H be a positive probability density on [0, 1] or a finite mixture model with

Q(K) ≥ e−CK log(K), πw,K ≥ K−KcKwa1
1 ...w

aK
K , θi ∼ H i.i.d,

for some positive constants C, c, a1, ..., aK . Then the posterior distribution is
strongly consistent at f0.

The proof is given in Appendix A. Note that consistency of the posterior
distribution under a Dirichlet type of prior has already been proved by Wu
and Ghosal [27] under the condition that f0 is continuous. Hence, Theorem
2.2 extends their result to the case of nonincreasing densities f0 admitting
discontinuies. Consistency under a general finite mixture prior with unknown
number of components is new, and presents a particular interest since the
Kullback-Leibler support property is not satisfied in this case.
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2.3.3 Nonincreasing Densities on R+

This section is an extension of the result of Wu and Ghosal [27] to the case
where f0 is not necessarily continuous and when the prior probability on the
mixing distribution P does not have full support. In particular we consider
both the Dirichlet process and the finite mixture priors; in the latter case
the prior does not have full support (see Section 2.1).

Define the generalized inverse of f0 as follows: for all 0 ≤ u ≤ f0(0),
f−0 (u) = inf{x ∈ R+; f0(x) ≤ u}, f−0 is also nonincreasing. Since f0 is
noincreasing and integrable, recall that

lim
x→+∞

xf0(x) = 0.

We have the following result:

Theorem 2.3. Assume that f0(0) < +∞ and that f0 is decreasing on R+.
Assume also that

lim
u→∞

(1− F0)(f−0 (u))(log u)2 = 0 (2.8)

then under the Dirichlet process prior or under finite mixture prios satisfying
the same conditions as in Theorem 2.2, with R+ replacing [0, 1] and with the
measure H satisfying H(θ) ≥ θ−a for some a > 0, the posterior distribution
is strongly consistent at f0 in probability.

Condition (2.8) is in particular satisfied if
∫
f0(x)(log f0)2(x)dx < +∞.

Indeed, if f−0 is bounded as u goes to 0, then f0 is compactly supported
and (2.8) is satisfied since f−0 (u) converges towards the upper bound of the
support of f0. Now, if we assume that f−0 is not bounded, then integrability
of f0(log f0)2 implies that

∫∞
f−0 (u) f0(x)(log f0(x))2dx = o(1). Choose u < 1.

Then (log f0(x))2 is increasing on (f−0 (u),+∞) and condition (2.8) is verified.

Proof of Theorem 2.3:
The proof is based on constructing an approximation of f0 as in Section
2.3.1, but this time on slices of R+. Let ε > 0 be small and put zj = f−0 (εj).
Assume that zj goes to infinity with j (the case when zj is bounded is much
easier to handle). Define θn similarly to before, i.e. satisfying Fn(θn)n ∈
(1− ε, 1− ε/2). Let Jn be the smallest j such that zj ≥ θn. On each interval
[zj , zj+1], construct the function gj(x) to approximate f0j(x) = f0(x)/εj

following the scheme of Section 2.3.1, for all 1 ≤ j ≤ Jn. On [0, z1], consider
a similar approximation scheme, associated to ε2 instead of ε. For each j ≥ 1
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f0j(zj) ≤ 1 and gj is piecewise constant and the number of pieces is smaller
than m = log(2)/ log(1 + ε). Since

∫ zj+1

zj
f0j(x)dx ≤ zj+1 − zj , we have that∫ zj+1

zj

|gj−f0j | ≤ 4ε(zj+1−zj), and
∫ zj+1

zj

|g−f0|(x)dx ≤ 4εj+1(zj+1−zj),

where g(x) = gj(x)εj on (zj , zj+1). Hence,

∫ zJn

z1

|g − f0|(x)dx ≤ 4
Jn−1∑
j=1

εj+1(zj+1 − zj) = 4
Jn−1∑
j=1

εj+1(f−0 (εj+1)− f−0 (εj))

≤ 4
Jn−1∑
j=1

∫ zj+1

zj

f0(x)dx ≤ 4
∫ ∞
z1

f0(x)dx = o(1)

and by construction f0/g = f0j/gj ≤ 1/ε on [zj , zj+1]. Note that the con-
struction of g on [0, z1] implies also that∫ z1

0
|g − f0|(x)dx ≤ 4ε2z1,

where g is piecewise constant and the number of pieces on [0, z1] is bounded
by m1 ≤ log(M + 1)/ log(1 + ε2). Since xf0(x) goes to zero as x goes to ∞,
if ε is small enough, z1 ≤ 1/(2ε) and∫ z1

0
|g − f0|(x)dx ≤ 2ε

and we can normalize g such that the above properties remain valid. Note
that f0/g(x) ≤M/ε2 and define f0n = f01l[0,θn]/F0(θn), then

KL(f0n, g) ≤ C

(
ε+

∫ ∞
f−0 (ε)

f0(x)dx

)
(1 + | log ε|)

∫ θn

0
f0(x)

(
log
(
f0

g
(x)
))2

dx ≤ C

(
ε+

∫ ∞
f−0 (ε)

f0(x)dx

)
(1 + | log ε|)2

Condition (2.8) implies that the right hand term of the first inequality above
goes to zero and the second is bounded, when ε goes to 0. Moreover, condi-
tion (2.8) implies that we can define

un := log(εJn−1)2(1− F0)(zJn−1) = o(1)
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and by definition of Jn, 1− F (zJn−1) ≥ 1− F0(θn) ≥ c1ε/n so that,

(Jn − 1)2 log2(ε) ≤ un(1− F0(θn))−1 ≤ unn/(c1ε).

Therefore, there exists C > 0 such that for ε > 0 small enough

Jn − 1 ≤ Cu1/2
n ε−1/2n1/2.

Similarly to the construction on [0, 1], let P be such that fP = g, i.e. P (θ) =∑Jn
j=0

∑m
i=1wj,iδθj,i

(θ) and the number of components is bounded by Jnm1 ≤
unn

1/2ε−5/2. Define W the set of P ′ satisfying the same conditions as in the
proof of Theorem 2.2, i.e. if Uj,i = (θj,i − ε3, θj,i + ε3), j = 0, ..., Jn − 1 and
i = 1, ...,m1 − 1 and Uj,m = (zj+1, zj+1 + ε3)

|P ′(Uj,i)− wj,i| ≤
ε3

m1Jn
, with U0 = [0, εJn ] ∩ (∪iUi)c ,

then f0n/fP ′n ≤ 1/ε, by construction
∫∞
θn
fP ′(x)dx ≤ ε and

KL(f0n, fP ′) ≤ C (|f0 − fP |+ |fP ′ − fP |) (1 + | log ε|),

≤ C

(
3ε+

∫ ∞
f−0 (ε)

f0(x)dx

)
(1 + | log ε|),

∫ θn

0
f0(x)

(
log
(
f0

g
(x)
))2

dx ≤ C

(
3ε+

∫ ∞
f−0 (ε)

f0(x)dx

)
(1 + | log ε|)2.

Thus, for any ε′ > 0, by choosing ε > 0 small enough, W ⊂ Sn(ε′, 1). In
the case of a Dirichlet process prior, Lemma 10 of [11] implies that the prior
probability of W is bounded from below by

P
[
D(AH(U0), ...., AH(UmJn)) ∈ (wj,i ± ε3/mJn, j = 0, ...., Jn − 1, i = 1, ...,m)

]
≥ exp

cε−1(ε−1 log(H(z1)) +
Jn∑
j=1

log(H(zj))


Using a similar argument as in the case z1, zj ≤ ε−j and log(H(zj)) ≥
aj log(ε), therefore

P
[
D(AH(U0), ...., AH(UmJn)) ∈ (wj,i ± ε3/mJn, j = 0, ...., Jn − 1, i = 1, ...,m)

]
≥ exp

(
−caε−2| log ε|J2

n log n
)

Since Jn = o(
√
n) condition (2.3) is verified. The same types of computations

are applied to the finite model case, so that in both cases condition (2.3) is
verified and Theorem 2.3 is proved. �.
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3 Simulation study

We now present some simulations, in the case of a Dirichlet mixture. Our
prior on F is defined by: P ∼ DP (H,α), whereH is base measure with α > 0
as scale parameter. The use of an inverse Gamma distribution allows to
have explicit full conditional distributions. Recall that the Dirchlet process
mixture model can be express using the following hierarchical representation:

Xi|θi ∼ U[0,θi], independently (3.1)
θi|P ∼ P= IG(a, b) i.i.d (3.2)
P ∼ DP (H,α). (3.3)

Using the Sethuraman [24] representation of the Dirichlet process,

P =
∞∑
j=1

pjδZj , where Zj ∼ H, j = 1, 2, ... (3.4)

and
p1 = V1, pj = Vj

∏
i<j

(1− Vi), Vj ∼ Beta(1, α) i.i.d.

we use the retrospective MCMC sampling algorithm proposed by Papaspillopou-
los and Roberts [18] . When considering the model in (3.1) and (3.4), there is
a number of quantities of which we may want to provide posterior inference.
These include the allocation variables K = (K1, ...,Kn), defined by Ki = j
if and only if θi = Zj , the number of clusters in the population, the weights
pj and the density fP . In our case, we are primarily interesed in fP .

We now introduce some notations. Define sj =
∑n

i=1 1{Ki=j} for j =
1, 2, ... the number of observations in the jth class. Furthermore, let

J (a) = {j ∈ N : sj > 0}, J (d) = {j ∈ N : sj = 0} = N \ J (a)

so that J (a) and J (d) are the sets of all “alive” and “dead” components re-
spectively.

From Proposition 1 of Papaspillopoulos and Roberts [18], we have that
Z and V are independent conditionally on X and K with

Zj |Xn,K ∼

 ba

Γ(a)( 1
Zj

)a+1e
− b

Zj , for j ∈ J (d)∏
{i:Ki=j}

ba

Γ(a)( 1
Zj

)a+2e
− b

Zj , for j ∈ J (a).
(3.5)

13



Conditionally on K, the random variable V is independent of (X,Z) and its
conditional distribution is given by

Vj |K ∼ Beta(sj + 1, n−
j∑
i=1

sj + α) for all j = 1, 2, ... (3.6)

Also, conditionally on (Xn, V, Z) we have that

P (Ki = j|Xn, V, Z) ∝ pj
1lXi≤Zj

Zj
for all j = 1, 2, ... (3.7)

where pj is defined by (3.4).
We obtain the conditional distribution of (V,Z) given K and X. Hence,

the (Zj , Vj) are independent and for each j their conditional distribution is
given by

P (Vj , Zj |K,Xn) (3.8)

=

 ba

Γ(a)( 1
Zj

)a+1e
− b

Zj
Γ(α+1)

Γ(α) (1− v)(1− α), for j ∈ J (d)∏
{i:Ki=j}

ba

Γ(a)( 1
Zj

)a+2e
− b

Zj Beta(sj + 1, n−
∑j

i=1 sj + α), for j ∈ J (a).

Note that given a realisation (Vj , Zj), j∈N from the posterior distribution
we can compute the corresponding fP (x) from:

fP (x) =
max{K}∑
j=1

pj
Zj

I(x6Zj) +
∞∑

j=max{K}+1

pj
Zj

I(x6Zj)

d=
max{K}∑
j=1

pj
Zj

I(x6Zj) + f̃P (x)
max{K}∏
j=1

(1− Vj) (3.9)

where f̃P is sampled from the prior, using Guglielmi and Tweedie [13] and
where the second equality is an equality in distribution.

Our aim is to compute the posterior mean f̂(x) = EΠ(fP (x)|Xn) as a
Bayesian estimate of fP , and evaluate the corresponding loss L1, d1(f̂ , f0) =∫
|f̂(x)− f0|(x)dx, and posterior risks EΠ[d(fP , f0)|Xn].

To this end, let us consider the grid on R+ defined by GR+ = {F−1
0 ( gG); g =

1, ..., G}, where G is a large integer. For a given density f computed on GR+

we approximate d(f, f0) by

d̂(f, f0) =
1
G

G∑
g=1

∣∣∣∣ f(xg)
f0(xg)

− 1
∣∣∣∣ .
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Algorithm
Initialisation of K0, Z0 and V 0

for (t ∈ {0, ..., T − 1}) do
Generate (Zt, V t) given Xn and Kt from (??) and (??) respectively
Generate Kt given (Xn, Zt, V t) from (3.6)
Generate f̃P (xg) from the prior
Generate (f t(xg))Gg=1 using (3.8)

end for
Compute the estimator 1

T

∑T
t=1 f

t(xg), g = 1, ..., G
Compute the estimated loss d̂(f t, f0) end.

Table 1: Pseudo-code of retrospective MCMC algorithm to compute f̂ .

The algorithm thus becomes: For large T > 0 the posterior mean, f̂ , is
approximated by

f̃(x) =
1
T

T∑
t=1

fP t(x), x ∈ GR+ ,

the distance between f̂ and f0 is approximated by d̂(f̂ , f0) = d̂(f̃ , f0) and
the posterior risk by

Êπ[d(f, f0)|Xn] =
1
T

T∑
t=1

d̂(f t, f0).

We have designed our simulation study with f0(x) = e−x.
In the following table, we give estimates of the frequentist expectation

of the posterior risk E0[Eπ[d(f0, fP )|Xn]] under different sample sizes to
illustrate the convergence of the posterior distribution. Following Gadja et al.
[17], we have use importance sampling approximations to compute the above
expectation. More precisely for a given sample size n we have simulated
M i.i.d samples of size n distributed according to f0, say x(1), ...., x(M),
where x(j) = (x1,(j), ...., xn,(j)). We have run the above MCMC algorithm
to compute the posterior distribution given x(1), PΠ[.|x(1)], we have then
approximated EΠ[d(f, f0)|x(j)] for j = 2, ...,M by∑T

t=1 d̂(f t, f0)w(t, x(j), x(1))∑T
t=1w(t, x(j), x(1))

, w(t, x(j), x(1)) =

∏n
i=1 f

t(xi,(j))∏n
i=1 f

t(xi,(1))
.
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Figure 1: posterior means and 95% credible intervals of the density. Left:
n = 100, right: n = 1000

A definite decrease can be observed, at a rate which seems to be slightly
slower than n−1/3.

Figure 1 shows the posterior mean estimates of the density, for two sample
sizes : n = 100 and n = 1000, together with the true density (f0, in dotted
lines) and the pointwise 95 % credible intervals. The improvement due to
the increase of n is quite significant.

Number of observation n = 100 n = 500 n = 1000 n = 5000
Posterior mean 0.3530083 0.1944597 0.1246980 0.1027860

Table 2: Estimation of posterior expectation of L1-distance between fP and
f0.
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A Proof of Theorem 2.2

To prove Theorem 2.2, we use Theorem 2.1. Let ε > 0 and θn = 1− ε
2nf0(0)

then 1 − F0(θn) ≤ f0(θn)ε/(2nf0(0)) ≤ ε/(2n) and F0(θn)n ≥ 1 − ε for n
large enough. We now construct fP such that

KL(f0n, fPn) ≤ ε′

for ε′ > 0, where f0n and fPn are the restrictions of f0 and fP respectively
on [0, θn]. Consider the construction of Section 2.3.1, with L = θn then
applying (2.7) we obtain that

KL(f0n, fPn) ≤ C ′ε(L+ 1)(1 + | log ε|) ≤ 2C ′ε(1 + | log ε|)

choosing ε small enough implies that KL(f0n, fPn) ≤ ε′. Moreover, using
Lemma 8 of Ghosal and Van der Vaart [11],∫

f0n log2 (f0n/fPn) ≤ C ′′ε(1 + | log ε|)2 ≤ 1

16



if ε is chosen small enough. We also have that by construction fP has support
[0, θn] so that

∫ θn

0 fP (u)du = 1.
Let P ′ be the mixing distribution associated with {m, θ′1, ..., θ′m−1, w

′
1, w

′
2, ..., w

′
m}

with
∑m−1

j=1 w′j = 1. Recall that |θj−θj+1| ≥ ε/(2M). Choose 0 < δ < 1 and
define Uj = (θj − ε3, θj + ε3) if j ≤ m− 1 and Um = (θn, θn + ε(1− θn)∧ ε3).
We construct P ′ such that: θ′j ∈ Uj and |wj − w′j | ≤ ε2/m. Then w′m ≥ ε/2
and

f0n(x)
fP ′n(x)

≤ 2f0(0)
ε
≤ 2M

ε
.

By definition, if ε is small enough Uj ∩ Ui = ∅ if i 6= j and |θ′j − θj | ≥ εθj .
Thus there exists C1 > 0 such that∫ θn

0
f0 log

(
f0

fP ′

)
(x)dx

≤ C1 (ε+ |fP − fP ′ |1) (1 + | log ε|)

≤ C1

ε+
[

max
j≤m

∣∣∣∣∣∣
∑
i≥j

(
w′i
θ′i
− wi
θi

)∣∣∣∣∣∣+ (1 + ε)
m−1∑
j=1

wj
θj
|θj − θ′j |

] (1 + | log ε|)

≤ C1

(
2ε+ (1 + ε)ε2

)
(1 + | log ε|).

Generally speaking, denote by U0 = [0, 1]∩
(
∪mj=1Uj

)c
and byW = {P ′; |P ′(Uj)−

wj | ≤ ε2/m, j = 1, ....,m}, if P ′ ∈ W, we also obtain∫ θn

0
f0 log

(
f0

fP ′

)
(x)dx ≤ C1

(
2ε+ (1 + ε)ε2

)
(1 + | log ε|),

and similarly∫ θn

0
f0

(
log
(
f0

fP ′

))2

(x)dx ≤ C ′1
(
2ε+ (1 + ε)ε2

)
(1 + | log ε|)2 ≤ 1

if ε is small enough. Note also that for all P ′ ∈ W,∫ 1

θn

fP ′(x)dx ≤ fP ′(θn)(1− θn) ≤ ε

n
.

For all ε′ > 0 there exists ε > 0 such that for all n large enough

W = {P ′; |P ′(Uj)− wj | ≤ ε2/m, j = 1, ....,m} ⊂ Sn(ε′,M).
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In the case of the Dirichlet process prior

Π [W] = Pr
[
D(αH(U0), ..., αH(Um)) ∈ (wj ± ε2/m, j = 0, ...,m)

]
, w0 = 0

≥ cε(1− θn)
≥ cεε/(2n),

for some cε > 0, which achieves the proof of the consistency of the posterior
in the case of a Dirichlet prior. In the case of a finite mixture prior, we write

W = {P ′(θ) =
m∑
j=1

w′jδθ′j (θ), |w′j − wj | ≤ ε2/m, |θ′j − θj | ≤ ε3}

and similarly to before,

Π(W) ≥ c′ε(1− θn), c′ε > 0

so that Theorem 2.2 is proved. �
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