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For a Gaussian time series with long-memory behavior, we use
the FEXP-model for semi-parametric estimation of the long-memory
parameter d. The true spectral density fo is assumed to have long-
memory parameter do and a FEXP-expansion of Sobolev-regularity
β > 1. We prove that when k follows a Poisson or geometric prior,

or a sieve prior increasing at rate n
1

1+2β , d converges to do at a

suboptimal rate. When the sieve prior increases at rate n
1
2β however,

the minimax rate is almost obtained. Our results can be seen as a
Bayesian equivalent of the result which Moulines and Soulier obtained
for some frequentist estimators.

1. Introduction. Let Xt, t ∈ Z, be a stationary Gaussian time series
with zero mean and spectral density fo(x), x ∈ [−π, π], which takes the form

(1.1) |1− eix|−2doMo(x), x ∈ [−π, π],

where do ∈ (−1
2 ,

1
2) is called the long-memory parameter, and M is a slowly-

varying bounded function that describes the short-memory behavior of the
series. If do is positive, this makes the autocorrelation function ρ(h) decay
polynomially, at rate h−(1−2do), and the time series is said to have long-
memory. When do = 0, Xt has short memory, and the case do < 0 is referred
to as intermediate memory. Long memory time series models are used in a
wide range of applications, such as hydrological or financial time series; see
for example Beran (1994) or Robinson (1994). In parametric approaches, a
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finite dimensional model is used for the short memory part Mo; the most
well known example is the ARFIMA(p,d,q) model. The asymptotic proper-
ties of maximum likelihood estimators (Dahlhaus (1989) or Lieberman et al.
(2003)) and Bayesian estimators (Philippe and Rousseau (2002)) have been
established in such models and these estimators are consistent and asymp-
totically normal with a convergence rate of order

√
n. However when the

model for the short memory part is misspecified, the estimator for d can be
inconsistent, calling for semi-parametric methods for the estimation of d. A
key feature of semi-parametric estimators of the long-memory parameter is
that they converge at a rate which depends on the smoothness of the short-
memory part, and apart from the case where Mo is infinitely smooth, the
convergence rate is smaller than

√
n. The estimation of the long-memory pa-

rameter d can thus be considered as a non-regular semi-parametric problem.
In Moulines and Soulier (2003) (p. 274) it is shown that when fo satisfies

(1.4), the minimax rate for d is n
− 2β−1

4β . There are frequentist estimators for
d based on the periodogram that achieve this rate (see Hurvich et al. (2002)
and Moulines and Soulier (2003)).

Although Bayesian methods in long-memory models have been widely
used (see for instance Ko et al. (2009), Jensen (2004) or Holan and McEl-
roy (2010)), the literature on convergence properties of non- and semi-
parametric estimators is sparse. Rousseau et al. (2010) (RCL hereafter)
obtain consistency and rates for the L2-norm of the log-spectral densities
(Theorems 3.1 and 3.2), but for d they only show consistency (Corollary 1).
No results exist on the posterior concentration rate on d, and thus on the
convergence rates of Bayesian semi-parametric estimators of d. In this paper
we aim to fill this gap for a specific family of semi-parametric priors.

We study Bayesian estimation of d within the FEXP-model (Beran (1993),
Robinson (1995)), that contains densities of the form

(1.2) fd,k,θ(x) = |1− eix|−2d exp


k∑
j=0

θj cos(jx)

 ,

where d ∈ (−1
2 ,

1
2), k is a nonnegative integer and θ ∈ Rk+1. The factor

exp{
∑k

j=0 θj cos(jx)} models the function Mo in (1.1). In contrast to the
original finite-dimensional FEXP-model (Beran (1993)), where k was sup-
posed to be known, or at least bounded, fo may have an infinite FEXP-
expansion, and we allow k to increase with the number of observations to
obtain approximations f that are increasingly close to fo. Note that the case
where the true spectral density satisfies fo = fdo,ko,θo , is considered in Holan
and McElroy (2010). In this paper we will pursue a fully Bayesian semi-
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parametric estimation of d, the short memory parameter being considered
as an infinite-dimensional nuisance parameter. We obtain results on the con-
vergence rate and asymptotic distribution of the posterior distribution for
d, which we summarize below in section 1.2. These are to our knowledge the
first of this kind in the Bayesian literature on semi-parametric time series.
First we state the most important assumptions.

1.1. Asymptotic framework. For observations X = (X1, . . . , Xn) from a
Gaussian stationary time series with spectral density f , let Tn(f) denote the
associated covariance matrix and ln(f) denote the log-likelihood

ln(f) = −n
2

log(2π)− 1

2
log det(Tn(f))− 1

2
XtT−1

n (f)X.

We consider semi-parametric priors on f based on the FEXP-model de-
fined by (1.2), inducing a parametrization of f in terms of (d, k, θ). Assuming
priors πd for d, and, independent of d, πk for k and πθ|k for θ|k, we study
the (marginal) posterior for d, given by

(1.3) Π(d ∈ D|X) =

∑∞
k=0 πk(k)

∫
D

∫
Rk+1 e

ln(d,k,θ)dπθ|k(θ)dπd(d)∑∞
k=0 πk(k)

∫ 1
2

− 1
2

∫
Rk+1 eln(d,k,θ)dπθ|k(θ)dπd(d)

.

The posterior mean or median can be taken as point-estimates for d, but we
will focuss on the posterior Π(d|X) itself.

It is assumed that the true spectral density is of the form

fo(x) = |1− eix|−2do exp


∞∑
j=0

θo,j cos(jx)

 ,

θo ∈ Θ(β, Lo) = {θ ∈ l2(N) :

∞∑
j=0

θ2
j (1 + j)2β ≤ Lo},

(1.4)

for some known β > 1.
In particular, we derive bounds on the rate at which Π(d ∈ D|X) concen-

trates at do, together with a Bernstein - von -Mises (BVM) property of this
distribution. The posterior concentration rate for d is defined as the fastest
sequence αn converging to zero such that

(1.5) Π(|d− do| < Kαn|X)
Po→ 0, for a given fixed K.
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1.2. Summary of the results. Under the above assumptions we obtain
several results for the asymptotic distribution of Π(d ∈ D|X). Our first main
result (Theorem 2.1) states that under the sieve prior kn ∼ (n/ log n)1/(2β),
Π(d ∈ D|X) is asymptotically Gaussian, and we give expressions for the
posterior mean and the posterior variance. A consequence (Corollary 2.1)
of this result is that the convergence rate for d under this prior is at least

δn = (n/ log n)
− 2β−1

4β , i.e. in (1.5) αn is bounded by δn. Up to a log n term,
this is the minimax rate.

By our second main result (Theorem 2.2), the rate for d is suboptimal
when k is given a a Poisson or a Geometric distribution, or a sieve prior

k
′
n ∼ (n/ log n)

1
1+2β . More precisely, there exists fo such that the posterior

concentration rate αn is greater than n−(β−1/2)/(2β+1), and thus suboptimal.
Consequently, despite having good frequentist properties for the estimation
of the spectral density f itself (see RCL), these priors are much less suitable
for the estimation of d. This is not a unique phenomenon in (Bayesian) semi-
parametric estimation and is encountered for instance in the estimation of a
linear functional of the signal in white-noise models, see Li and Zhao (2002)
or Arbel (2010).

The BVM property means that asymptotically the posterior distribution
of d behaves like α−1

n (d − d̂) ∼ N (0, 1), where d̂ is an estimate whose fre-
quentist distribution (associated to the parameter d) is N (do, α

2
n). We prove

such a property on the posterior distribution of d given k = kn. In regular
parametric long-memory models, the BVM property has been established by
Philippe and Rousseau (2002). It is however much more difficult to estab-
lish BVM theorems in infinite dimensional setups, even for independent and
identically distributed models; see for instance Freedman (1999), Castillo
(2010) and Rivoirard and Rousseau (2010). In particular it has been proved
that the BVM property may not be valid, even for reasonable priors. The
BVM property is however very useful since it induces a strong connection
between frequentist and Bayesian methods. In particular, it implies that
Bayesian credible regions are asymptotically also frequentist confidence re-
gions with the same nominal level. In section 2 we discuss this issue in more
detail.

1.3. Overview of the paper. In section 2, we present three families of pri-
ors based on the sieve model defined by (1.2) with either k increasing at
the rate (n/ log n)1/(2β), k increasing at the rate (n/ log n)1/(2β+1) or with
random k. We study the behavior of the posterior distribution of d in each
case and prove that the former leads to optimal frequentist procedures while
the latter two lead to suboptimal procedures. In section 3 we give a decom-



BAYESIAN SEMI-PARAMETRIC LONG-MEMORY ESTIMATION 5

position of Π(d ∈ D|X) defined in (1.3), and obtain bounds for the terms
in this decomposition in sections 3.2 and 3.3. Using these results we prove
Theorems 2.1 and 2.2 in respectively sections 4 and 5. Conclusions are given
in section 6. In the appendices we give the proofs of the lemmas in section
3, as well as some additional results on the derivatives of the log-likelihood.
The proofs of various technical results can be found in the supplementary
material. We conclude this introduction with an overview of the notation.

1.4. Notation. The m-dimensional identity matrix is denoted Im. We
write |A| for the Frobenius or Hilbert-Schmidt norm of a matrix A, i.e. |A| =√

trAAt, where At denotes the transpose of A. The operator or spectral norm
is denoted ‖A‖2 = sup‖x‖=1 x

tAtAx. We also use ‖·‖ for the Euclidean norm

on Rk or l2(N). The inner-product is denoted | · |. We make frequent use of
the relations

|AB| = |BA| ≤ ‖A‖ · |B|, ‖AB‖ ≤ ‖A‖ · ‖B‖, ‖A‖ ≤ |A| ≤
√
n‖A‖,

|tr(AB)| = |tr(BA)| ≤ |A| · |B|, |xtAx| ≤ xtx‖A‖,

(1.6)

see Dahlhaus (1989), p. 1754. For any function h ∈ L1([−π, π]), Tn(h) is the
matrix with entries

∫ π
−π e

i|l−m|xh(x)dx, l,m = 1, . . . , n. For example, Tn(f)
is the covariance matrix of observations X = (X1, . . . , Xn) from a time series
with spectral density f . If h is square integrable on [−π, π] we note

‖h‖2 =

∫ π

−π
h2(x)dx.

The norm l between spectral densities f and g is defined as

l(f, g) =
1

2π

∫ π

−π
(log f(x)− log g(x))2dx.

Unless stated otherwise, all expectations and probabilities are with respect
to Po, the law associated with the true spectral density fo. To avoid ambigu-
ous notation (e.g. θ0 versus θ0,0) we write θo instead of θ0. Related quantities
such as fo and do are also denoted with the o-subscript.

The symbols oP and OP have their usual meaning. We use boldface when
they are uniform over a certain parameter range. Given a probability law
P , a family of random variables {Wd}d∈A and a positive sequence an, Wd =
oP(an, A) means that

P

(
sup
d∈A
|Wd|/an > ε

)
→ 0, (n→∞).
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When the parameter set is clear from the context we simply write oP(an).
In a similar fashion, we write o(an) when the sequence is deterministic. In
conjunction with the oP and OP notation we use the letters δ and ε as
follows. When, for some τ > 0 and a probability P we write Z = OP (nτ−ε),
this means that Z = O(nτ+ε) for all ε > 0. When, on the other hand,
Z = OP (nτ−δ), we mean that this is true for some δ > 0. If the value of δ
is of importance it is given a name, for example δ1 in Lemma 3.4.

The true spectral density of the process is denoted fo. We denote k-
dimensional Sobolev-balls by

Θk(β, L) =

θ ∈ Rk+1 :

k∑
j=0

θ2
j (1 + j)2β ≤ L

 ⊂ Rk+1.(1.7)

For any real number x, let x+ denote max(0, x). The number rk denotes the
sum

∑
j≥k+1 j

−2. Let η be the sequence defined by ηj = −2/j, j ≥ 1 and
η0 = 0. For an infinite sequence u = (uj)j≥0, let u[k] denote the vector of the
first k + 1 elements. In particular, η[k] = (η0, . . . , ηk). The letter C denotes
any generic constant independent of Lo and L, which are the constants
appearing in the assumptions on fo and the definition of the prior.

2. Main results. Before stating Theorems 2.1 and 2.2 in section 2.3,
we state the assumptions on fo and the prior, and give examples of priors
satisfying these assumptions.

2.1. Assumptions on the prior and the true spectral density. We assume
observations X = (X1, . . . , Xn) from a stationary Gaussian time series with
law Po, which is a zero mean Gaussian distribution, whose covariance struc-
ture is defined by a spectral density fo satisfying (1.4), for known β > 1. It
is assumed that for a small constant t > 0, do ∈ [−1

2 + t, 1
2 − t].

Assumptions on Π. We consider different priors, and first state the
assumptions that are common to all these priors. The prior on the space of
spectral densities consists of independent priors πd, πk and, conditional on k,
πθ|k. The prior for d has density πd which is strictly positive on [−1

2 +t, 1
2−t],

the interval which is assumed to contain do, and zero elsewhere. The prior
for θ given k has a density πθ|k with respect to Lebesgue measure. This
density satisfies condition Hyp(K, c0, β,Lo), by which we mean that for a
subset K of N,

min
k∈K

inf
θ∈Θk(β,Lo)

ec0k log kπθ|k(θ) > 1,

where Lo is as in (1.4). The choice of K depends on the prior for k and θ|k.
We consider the following classes of priors.
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• Prior A: k is deterministic and increasing at rate

(2.1) kn = bkA(n/ log n)
1

2β c,

for a constant kA > 0. The prior density for θ|k satisfies Hyp({kn}, c0, β−
1
2 ,Lo) for some c0 > 0 and has support Θk(β − 1

2 , L). In addition, for

all θ, θ′ ∈ Θk(β − 1
2 , L) such that ‖θ − θ′‖ ≤ L(n/ log n)

− 2β−1
4β ,

(2.2) log πθ|k(θ)− log πθ|k(θ
′) = htk(θ − θ′) + o(1),

for constants C, ρ0 > 0 and vectors hk satisfying ‖hk‖ ≤ C(n/k)1−ρ0 .
Finally, it is assumed that L is sufficiently large compared to Lo.
• Prior B: k is deterministic and increasing at rate

k
′
n = bkB(n/ log n)

1
1+2β c,

where kB is such that k
′
n < kn for all n. The prior for θ|k has den-

sity πθ|k with respect to Lebesgue measure which satisfies condition

Hyp({k′n}, c0, β,Lo) for some c0 > 0 and is assumed to have support
Θk(β, L). The density also satisfies

log πθ|k(θ)− log πθ|k(θ
′) = o(1),

for all θ, θ′ ∈ Θk(β, L) such that ‖θ − θ′‖ ≤ L(n/ log n)
− β

2β+1 . This
condition is similar to (2.2), but with hk = 0, and support Θk(β, L).
• Prior C: k ∼ πk on N with e−c1k log k ≤ πk(k) ≤ e−c2k log k for k large

enough, where 0 < c1 < c2 < +∞. There exists βs > 1 such that for all
β ≥ βs, the prior for θ|k has density πθ|k with respect to Lebesgue mea-

sure which satisfies condition Hyp({k ≤ k0(n/ log n)1/(2β+1)}, c0, β,Lo),
for all k0 > 0 and some c0 > 0, as soon as n is large enough. It has
support included in Θk(β, L) and satisfies

log πθ|k(θ)− log πθ|k(θ
′) = o(1),

for all θ, θ′ ∈ Θk(β, L) such that ‖θ − θ′‖ ≤ L(n/ log n)
− β

2β+1 .

Note that prior A is obtained when we take β′ = β − 1
2 in prior B.

2.2. Examples of priors. The Lipschitz conditions on log πθ|k considered
for the three types of priors are satisfied for instance for the uniform prior on
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Θk(β − 1
2 , L) (resp. Θk(β, L)), and for the truncated Gaussian prior, where,

for some constants A and α > 0,

πθ|k(θ) ∝ IΘk(β− 1
2
,L)(θ) exp

−A k∑
j=0

jαθ2
j

 .

In the case of Prior A, the conditions on log πθ|k and hk in (2.2) are satisfied

for α < 4β − 2. To see this, note that for all θ, θ
′ ∈ Θh(β − 1/2, L),

k∑
j=0

jα|θ2
j − (θ

′
j)

2| ≤ L1/2‖θ − θ′‖kα−β+1/2 = o((n/k)1−δ).

In the case of Prior B and and Prior C we may choose α < 2β, since for
some positive k0

k∑
j=0

jα|θ2
j − (θ

′
j)

2| ≤ L1/2‖θ − θ′‖kα−β = o(1),

for all k ≤ k0(n/ log n)1/(2β+1) and all θ, θ
′ ∈ Θk(β, L) such that ‖θ − θ′‖ ≤

(n/ log n)−β/(2β+1).
Also a truncated Laplace distribution is possible, in which case

πθ|k(θ) ∝ IΘk(β− 1
2
,L)(θ) exp

−a k∑
j=0

|θj |

 .

The condition on πk in Prior C is satisfied for instance by Poisson distri-
butions.

The restriction of the prior to Sobolev balls is required to obtain a proper
concentration rate or even consistency of the posterior of the spectral density
f itself, which is a necessary step in the proof of our results. This is discussed
in more detail in section 3.1.

2.3. Convergence rates and BVM-results under different priors. Assum-
ing a Poisson prior for k, RCL (Theorem 4.2) obtain a near-optimal conver-
gence rate for l(f, fo). In Corollary 3.1 below, we show that the optimal rate
for l implies that we have at least a suboptimal rate for |d − do|. Whether
this can be improved to the optimal rate critically depends on the prior on
k. By our first main result the answer is positive under prior A. The proof
is given in section 4.
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Theorem 2.1. Under prior A, the posterior distribution has the asymp-
totic expansion

Π

[√
nrkn

2
(d− do − bn(do)) ≤ z|X

]
= Φ(z) + oPo(1),(2.3)

where, for rkn =
∑

j≥kn+1 η
2
j and some small enough δ > 0,

bn(do) =
1

rkn

∞∑
j=kn+1

ηjθo,j + Yn + o(n−1/2−δk1/2
n ), Yn =

√
2

√
nrkn

Zn,

Zn being a sequence of random variables converging weakly to a Gaussian
variable with mean zero and variance 1.

Corollary 2.1. Under prior A, the convergence rate for d is δn =

(n/ log n)
− 2β−1

4β , i.e.

lim
n→∞

En0 [Π(d : |d− do| > δn|X)] = 0.

Equation (2.3) is a Bernstein-von Mises type of result: the posterior dis-
tribution is asymptotically normal, centered at a point do + bn(do), whose
distribution is normal with mean do and variance 2/(nrkn). The expressions
for the posterior mean and variance give more insight in how the prior for
k affects the posterior rate for d. The standard deviation of the limiting

normal distribution (2.3) is
√

2/(nrkn) = O(n
− 2β−1

4β (log n)
1

4β ) and bn(do)
equals

1

rkn

∞∑
j=kn+1

ηjθo,j +OPo(k
1
2
nn

1
2 ) + o(n−1/2−δ1k1/2

n ).

From the definition of ηj , kn and rkn and the assumption on θo, it follows
that

(2.4)
1

rkn

∣∣∣∣∣∣
∞∑

j=kn+1

ηjθo,j

∣∣∣∣∣∣ ≤ 1

rkn

√∑
l>kn

θ2
o,lj

2β

√∑
l>kn

j−2β−2 = o(k
−β+ 1

2
n ).

See also (1.9) in the supplement. Hence, when the constant kA in (2.1) is
small enough,

(2.5) |bn(do)| ≤ δn,
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and we obtain the δn-rate of Corollary 2.1. For smaller k, the standard
deviation is smaller but the bias bn(do) is larger. In Theorem 2.2 below it is
shown that this indeed leads to a suboptimal rate.

An important consequence of the BVM-result is that posterior credible
regions for d (HPD or equal-tails for instance) will also be asymptotic fre-
quentist confidence regions. Consider for instance one-sided credible intervals
for d defined by P π(d ≤ zn(α)|X) = α, so that zn(α) is the α-th quantile of
the posterior distribution of d. Equation (2.3) in Theorem 2.1 then implies
that

zn(α) = do + bn(do) +

√
2kn
n

Φ−1(α)(1 + oPo(1)).

As soon as
∑

j≥kn j
2βθ2

o,j = o((log n)−1), we have that

zn(α) = do +
√

2/(nrkn)Zn +
√

2/(nrkn)Φ−1(α)(1 + oPo(1))

and
Pno (do ≤ zn(α)) = P

(
Zn ≤ Φ−1(α)(1 + o(1))

)
= α+ o(1).

Similar computations can be made on equal - tail credible intervals or HPD
regions for d.

Note that in this paper we assume that the smoothness β of fo is greater
than 1 instead of 1/2, as is required in Moulines and Soulier (2003). This
condition is used throughout the proof. Actually had we only assumed that
β > 3/2, the proof of Theorem 2.1 would have been greatly simplified as
many technicalities in the paper come from controlling terms when 1 <
β ≤ 3/2. We do not believe that it is possible to weaken this constraint to
β > 1/2 in our setup.

Our second main result states that if k is increasing at a slower rate than
kn, the posterior on d concentrates at a suboptimal rate. The proof is given
in section 5.

Theorem 2.2. Given β > 5/2, there exists θo ∈ Θ(β, Lo) and a constant
kv > 0 such that under prior B and C defined above,

Π(|d− do| > kvwn(log n)−1|X)
Po→ 1.

with wn = Cw(n/ log n)
− 2β−1

4β+2 and Cw = C1(L+ Lo)
1

4β l
2β−1

2β

0 .

The constant Cw comes from the suboptimal rate for |d − do| derived in
Corollary 3.1. Theorem 2.2 is proved by considering the vector θo defined by
θo,j = c0j

−(β+ 1
2

)(log j)−1, for j ≥ 2. This vector is close to the boundary of
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the Sobolev-ball Θ(β, Lo), in the sense that for all β′ > β,
∑

j j
2β′θ2

o,j = +∞.
The proof consists in showing that conditionally on k, the posterior distribu-
tion is asymptotically normal as in (2.3), with k replacing kn, and that the
posterior distribution concentrates on values of k smaller than O(n1/(2β+1)),
so that the bias bn(do) becomes of order wn(log n)−1. The constraint β > 5/2
is used to simplify the computations and is not sharp.

It is interesting to note that similar to the frequentist approach, a key
issue is a bias-variance trade-off, which is optimized when k ∼ n1/(2β). This
choice of k depends on the smoothness parameter β, and since it is not of
the same order as the optimal values of k for the loss l(f, f ′) on the spectral
densities, the adaptive (near) minimax Bayesian nonparametric procedure
proposed in Rousseau and Kruijer (2011) does not lead to optimal posterior
concentration rate for d. While it is quite natural to obtain an adaptive
(nearly) minimax Bayesian procedure under the loss l(., .) by choosing a
random k, obtaining an adaptive minimax procedure for d remains an open
problem. This dichotomy is found in other semi-parametric Bayesian prob-
lems, see for instance Arbel (2010) in the case of the white noise model or
Rivoirard and Rousseau (2010) for BVM properties.

3. Decomposing the posterior for d. To prove Theorems 2.1 and
2.2 we need to take a closer look at (1.3), to understand how the integration
over Θk affects the posterior for d. We develop θ → ln(d, k, θ) in a point θ̄d,k
defined below and decompose the likelihood as

exp{ln(d, k, θ)} = exp{ln(d, k)} exp{ln(d, k, θ)− ln(d, k)},

where ln(d, k) is short-hand notation for ln(d, k, θ̄d,k). Define

(3.1) In(d, k) =

∫
Θk

eln(d,k,θ)−ln(d,k)dπθ|k(θ),

where Θk is the generic notation for Θk(β−1
2 , L) under prior A and Θk(β, L)

for priors B and C. The posterior for d given in (1.3) can be written as

(3.2) Π(d ∈ D|X) =

∑∞
k=0 πk(k)

∫
D e

ln(d,k)−ln(do,k)In(d, k)dπd(d)∑∞
k=0 πk(k)

∫ 1
2
−t
− 1

2
+t
eln(d,k)−ln(do,k)In(d, k)dπd(d)

.

The factor exp{ln(d, k) − ln(do, k)} is independent of θ, and will under
certain conditions dominate the marginal likelihood. In section 3.2 we give
a Taylor-approximation which, for given k, allows for a normal approxima-
tion to the marginal posterior. However, to obtain the convergence rates in
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Theorems 2.1 and 2.2, it also needs to be shown that the integrals In(d, k)
with respect to θ do not vary too much with d. This is the most difficult part
of the proof of Theorem 2.1 and the argument is presented in section 3.3.
Since Theorem 2.2 is essentially a counter-example and it is not aimed to
be as general as Theorem 2.1, as far as the range of β is concerned, we can
restrict attention to larger β’s, i.e. β > 5/2, for which controlling In(d, k) is
much easier.

3.1. Preliminaries. First we define the point θ̄d,k in which we develop
θ → ln(d, k, θ). Since the function log(2 − 2 cos(x)) has Fourier coefficients
against cos jx, j ∈ N equal to 0, 2, 2

2 ,
2
3 , . . ., FEXP-spectral densities can be

written as

|1− eix|−2d exp


∞∑
j=0

θj cos(jx)

 = exp


∞∑
j=0

(θj + dηj) cos(jx)

 .

Given f = fd,k,θ and f ′ = fd′,k′,θ′ we can therefore express the norm l(f, f ′)
in terms of (θ − θ′) and (d− d′):

(3.3) l(f, f ′) =
1

2

∞∑
j=0

((θj − θ′j) + ηj(d− d′))2,

where θj and θ′j are understood to be zero when j is larger than k respectively
k′. Equation (3.3) implies that for given d and k, l(fo, fd,k,θ) is minimized
by

θ̄d,k := argminθ∈Rk+1

∞∑
j=0

(θj − θo,j + (d− do)ηj)2 = θo[k] + (do − d)η[k].

In particular, θ = θo[k] minimizes l(fo, fd,k,θ) only when d = do; when d 6= do
we need to add (do−d)η[k]. The following lemma shows that an upper bound
on l(fo, fd,k,θ) leads to upper bounds on |d− do| and ‖θ − θo‖.

Lemma 3.1. Suppose that θ ∈ Θk(γ, L) and θo ∈ Θk(β, Lo), where γ ≤
β. Also suppose that for a sequence αn → 0, l(fo, fd,k,θ) ≤ α2

n for all n. Then
there are universal constants C1, C2 > 0 such that for all n,

|d− do| ≤ C1(L+ Lo)
1

4γα
2γ−1

2γ
n , ‖θ − θo‖ ≤ C2(L+ Lo)

1
4γα

2γ−1
2γ

n .
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Proof. For all (d, k, θ) such that l(fd,k,θ, fo) ≤ αn, we have, using (3.3),

2α2
n ≥ 2l(fd,k,θ, fo) = 2(θo,0 − θ0)2 +

∑
j≥1

((θo,j − θj) + ηj(do − d))2

≥
∑
j≥1

(θo,j − θj)2 + (d− do)2
∑
j≥1

η2
j − 2|d− do|

√∑
j≥1

η2
j

√∑
j≥1

(θo,j − θj)2

= (‖θ − θo‖ − |d− do|‖η‖)2 .

The inequalities remain true if we replace all sums over j ≥ 1 by sums over
j ≥ mn, for any nondecreasing sequence mn. Since ‖(ηj1j>mn)j≥1‖2 is of

order m−1
n and ‖(θ− θo‖j1j>mn)j≥1‖2 ≤ m−2γ

n
∑

j>mn
(1 + j)2β(θj − θo,j)2 <

2(L+Lo)m
−2γ
n , setting mn = α

− 1
γ

n gives the desired rate for |d− do| as well
as for ‖θ − θo‖.

The convergence rate for l(fo, fd,k,θ) required in Lemma 3.1 can be found
in Rousseau and Kruijer (2011). For easy reference we restate it here. Com-
pared to a similar result in RCL, the log n factor is improved.

Lemma 3.2. Under prior A, there exists a constant l0 depending only
on Lo and kA (and not on L) such that

Π((d, k, θ) : l(fd,k,θ, fo) ≥ l20δ2
n|X)

Po→ 0,

where δn = (n/ log n)
− 2β−1

4β . Under priors B and C, this statement holds

with εn = (n/ log n)
− β

2β+1 replacing δn.

In the proof of Theorem 2.1 (resp. 2.2), this result allows us to restrict
attention to the set of spectral densities f such that l(f, fo) ≤ l20δ

2
n (resp.

l20ε
2
n). In addition, by combination with Lemma 3.1 we can now deduce

bounds on |d− do| and ‖θ− θ̄d,k‖. These bounds, although suboptimal, will
be important in the sequel for obtaining the near-optimal rate in Theorem
2.1.

Corollary 3.1. Under the result of Lemma 3.2 and prior A, we can
apply Lemma 3.1 with α2

n = l20δ
2
n and γ = β − 1

2 , and obtain

Πd(d : |d− do| ≥ v̄n|X)
Po→ 0, Π(‖θ − θ̄d,k‖ ≥ 2l0δn|X)

Po→ 0,

where v̄n = C1(L+Lo)
1

4β−2 l
2β−2
2β−1

0 (n/ log n)
−β−1

2β . Under priors B and C we

have γ = β; the rate for |d − do| is then wn = Cw(n/ log n)
− 2β−1

4β+2 and the
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rate for ‖θ − θ̄d,k‖ is 2l0εn. The constant Cw = C1(L + Lo)
1

4β l
2β−1

2β

0 is as in
Theorem 2.2.

Proof. The rate for |d− do| follows directly from Lemma 3.1. To obtain
the rate for ‖θ − θ̄d,k‖, let αn denote either l0δn (the rate for l(fo, f) under
prior A) or l0εn (the rate under priors B and C). Although Lemma 3.1
suggests that the Euclidean distance from θo to θ (contained in Θk(β, L)
or Θk(β − 1

2 , L)) may be larger than αn, the distance from θ to θ̄d,k is
certainly of order αn. To see this, note that Lemma 3.2 implies the existence
of d, k, θ in the model with l(fo, fd,k,θ) ≤ α2

n. From the definition of θ̄d,k it
follows that l(fo, fd,k,θ̄d,k) ≤ α2

n. The triangle inequality gives ‖θ − θ̄d,k‖2 =

l(fd,k,θ, fd,k,θ̄d,k) ≤ 4α2
n.

The rates v̄n and wn obtained in Corollary 3.1 are clearly suboptimal; their
importance however lies in the fact that they narrow down the set for which
we need to prove Theorems 2.1 and 2.2. To prove Theorem 2.2 for example
it suffices to show that the posterior mass on kvwn(log n)−1 < |d− do| < wn
tends to zero. Note that the lower and the upper bound differ only by a
factor (log n). Hence under priors B and C, the combination of Corollary
3.1 and Theorem 2.2 characterizes the posterior concentration rate (up to a
log n term) for the given θo. Another consequence of Corollary 3.1 is that we
may neglect the posterior mass on all (d, k, θ) for which ‖θ − θ̄d,k‖ is larger
than 2l0δn (under prior A) or 2l0εn (under priors B and C).

We conclude this section with a result on θ̄d,k and Θk(β, L). In the defini-
tion of θ̄d,k we minimize over Rk+1, whereas the support of priors A-C is the
Sobolev ball Θk(β, L) or Θk(β − 1

2 , L). Under the assumptions of Theorems
2.1 and 2.2 however, θ̄d,k is contained in Θk(β− 1

2 , L) respectively Θk(β, L).
Also the l2-ball of radius 2l0δn (or 2l0εn) is contained in these Sobolev-balls.

Lemma 3.3. Under the assumptions of Theorem 2.1, Bk(θ̄d,k, 2l0δn) is
contained in Θk(β− 1

2 , L) for all d ∈ [do−v̄n, do+v̄n], if L is large enough. In
particular, θ̄d,k ∈ Θk(β− 1

2 , L). Similarly, under the assumptions of Theorem
2.2, Bk(θ̄d,k, 2l0εn) ⊂ Θk(β, L), for all d ∈ [do − wn, do + wn].

Proof. Since the constant l0 is independent of L, θ ∈ Bk(θ̄d,k, 2l0δn)
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implies that for n large enough ,

k∑
j=0

θ2
j (j + 1)2β−1 ≤ 2

k∑
j=0

(θ − θ̄d,k)2
j (j + 1)2β−1 + 2

k∑
j=0

(θ̄d,k)
2
j (j + 1)2β−1

≤ 8δ2(Lo)(n/ log n)
2β−1

2β (kn + 1)2β−1 + 4

kn∑
j=0

θ2
o,j(j + 1)2β−1

+ 16(d− do)2
kn∑
j=1

j2β−3.

The first two terms on the right only depend on Lo, and are smaller than L/4

when L is chosen sufficiently large. Because v̄n = C1(L+Lo)
1

4β−2 l
2β−2
2β−1

0 (n/ log n)
−β−1

2β ,
the last term in the preceding display is at most

C2
1 (L+ Lo)

1
2β−1 l

4β−4
2β−1

0 (n/ log n)
−β−1

β k2β−2
A (n/ log n)

β−1
β ,

which, since β > 1, is smaller than L/2 when L is large enough. We con-
clude that Bk(θ̄d,k, 2l0δn) is contained in Θk(β − 1

2 , L) provided L is chosen
sufficiently large. The second statement can be proved similarly.

3.2. A Taylor approximation for ln(d, k). Provided that the integrals
In(d, k) have negligible impact on the posterior for d, the conditional dis-
tribution of d given k will only depend on exp{ln(d, k) − ln(do, k)}. Let

l
(1)
n (d, k), l

(2)
n (d, k) denote the first two derivatives of the map d 7→ ln(d, k).

There exists a d̄ between d and do such that

ln(d, k) = ln(do, k) + (d− do)l(1)
n (do, k) +

(d− do)2

2
l(2)
n (d̄, k).(3.4)

Defining

bn(d) = − l
(1)
n (do, k)

l
(2)
n (d, k)

,

which is the bn used in Theorem 2.1, we can rewrite (3.4) as

ln(d, k)− ln(do, k) = −1

2

(l
(1)
n (do, k))2

l
(2)
n (d̄, k)

+
1

2
l(2)
n (d̄, k)

(
d− do − bn(d̄)

)2
.

(3.5)

Note that each derivative l
(i)
n (d, k), i = 1, 2, can be decomposed into a cen-

tered quadratic form denoted S(l
(i)
n (d, k)) and a deterministic termD(l

(i)
n (d, k)).



16 W. KRUIJER AND J. ROUSSEAU

In the following lemma we give expressions for l
(1)
n (do, k), l

(2)
n (d, k) and bn,

making explicit their dependence on k and θo. Since k
′
n ≤ kn and wn < v̄n

(see Corollary 3.1) the result is valid for all priors under consideration. The
proof is given in appendix A.

Lemma 3.4. Given β > 1, let θo ∈ Θ(β, Lo). If k ≤ kn and |d−do| ≤ v̄n,
then there exists δ1 > 0 such that

l(1)
n (do, k) := S(l(1)

n (do, k)) +D(l(1)
n (do, k))

= S(l(1)
n (do, k)) +

n

2

∞∑
j=k+1

θo,jηj + o(nε(k−β+3/2 + n−1/(2β))),

l(2)
n (d, k) = l(2)

n (do, k)

(
1 +

k1/2

n1/2+ε
+
k−2β+1+ε

n

)
= −1

2
nrk

(
1 + oPo(n−δ1)

)
,

where S(l
(1)
n (do, k)) is a centered quadratic form with variance

V ar(S(l(1)
n (do, k))) =

n

2

∑
j>k

η2
j (1 + o(1)) =

nrk
2

(1 + o(1)) = O(nk−1).

Consequently,

bn(d) = − l
(1)
n (do, k)

l
(2)
n (d, k)

=
1

rk

∞∑
j=k+1

θo,jηj(1 + oPo(n−δ))

+
2S(l

(1)
n (do, k))(1 + oPo(n−δ))

nrk
+ oPo(nε−1k−β+5/2 + nε−1),

(3.6)

with
2S(l

(1)
n (do, k))

nrk
= OPo(n−

1
2k

1
2 ).

Remark 3.1. Recall from (2.4) that r−1
k

∑∞
j=k+1 θo,jηj is O(k−β+1/2).

The term 2S(l
(1)
n (do, k))/(nrk) is OPo(k

−β+1/2) whenever k ∼ n1/(2β), which
is the case under all priors under consideration.

Substituting the above results on l
(1)
n , l

(2)
n and bn in (3.5), we can give the

following informal argument leading to Theorems 2.1 and Theorem 2.2. If we
consider k to be fixed and In(d, k) constant in d, then (3.5) implies that the
posterior distribution for d is asymptotically normal with mean do + bn(do)
and variance of order k/n.
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3.3. Integration of the short memory parameter. A key ingredient in the
proofs of both Theorems 2.1 and 2.2 is the control of the integral In(d, k)
appearing in (1.3), whose dependence on d should be negligible with respect
to exp{ln(d, k)− ln(do, k)}. In Lemma 3.5 below we prove this to be the case
under the assumptions of Theorems 2.1 and 2.2. For the case of Theorem 2.2
this is fairly simple: the conditional posterior distribution of θ given (d, k)
can be proved to be asymptotically Gaussian by a Laplace-approximation.
For smaller β and larger k the control is technically more demanding. In
both cases the proof is based on the following Taylor expansion of ln(d, k, θ)
around θ̄d,k:

(3.7) ln(d, k, θ)− ln(d, k) =
J∑
j=1

(θ − θ̄d,k)(j)∇jln(d, k)

j!
+RJ+1,d(θ),

where

(θ − θ̄d,k)(j)∇jln(d, k) =
k∑

l1,...,lj=0

(θ − θ̄d,k)l1 . . . (θ − θ̄d,k)lj
∂jln(d, k, θ̄d,k)

∂θl1 . . . ∂θlj
,

(3.8)

RJ+1,d(θ) =
1

(J + 1)!

k∑
l1,...,lJ+1=0

(θ − θ̄d,k)l1 . . . (θ − θ̄d,k)lJ+1

∂J+1ln(d, k, θ̃)

∂θl1 . . . ∂θlJ+1

.

The above expressions are used to derive the following lemma, which gives
control of the term In(d, k).

Lemma 3.5. Under the conditions of Theorem 2.1, the integral In(d, k)
defined in (3.1) equals

In(do, k) exp

{
oPo(1) + oPo

(
|d− do|n

1
2
−δ2

√
k

)
+ oPo

(
(d− do)2n

1−δ2

k

)}
,

for some δ2 > 0. Under the conditions of Theorem 2.2,

In(d, k) = In(do, k) exp {oPo(1)} .

The proof is given in Appendix C, and relies on the expressions for the
derivatives ∇jln given in Appendix B. Lemma 3.5 should be seen in relation
to Lemma 3.4 and the expressions for Π(d|X) and ln(d, k) − ln(do, k) in
equations (3.2) and (3.4). Lemma 3.5 then shows that the dependence on the
integrals In(d, k) on d is asymptotically negligible with respect to ln(d, k)−
ln(do, k). This is made rigorous in the following section.
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4. Proof of Theorem 2.1. By Lemma 3.2 we may assume posterior
convergence of l(fo, fd,k,θ) at rate l20δ

2
n, and, by Corollary 3.1, also conver-

gence of |d− do| at rate v̄n. By Lemma 3.3, we may restrict the integration
over θ to Bk(θ̄d,k, 2l0δn). Let Γn(z) = {d :

√
nrk
2 (d−do−bn(do)) ≤ z}. Under

prior A, it suffices to show that for k = kn,

Nn

Dn
:=

∫
Γn(z) e

ln(d,k)−ln(do,k)
∫
Bk(θ̄d,k,2l0δn) e

ln(d,k,θ)−ln(d,k)dπθ|k(θ)dπd(d)∫
|d−do|<v̄n e

ln(d,k)−ln(do,k)
∫
Bk(θ̄d,k,2l0δn) e

ln(d,k,θ)−ln(d,k)dπθ|k(θ)dπd(d)

=

∫
Γn(z) exp{ln(d, k)− ln(do, k) + log In(d, k)}dπd(d)∫

|d−do|<v̄n exp{ln(d, k)− ln(do, k) + log In(d, k)}dπd(d)
= Φ(z) + oPo(1).

(4.1)

Using the results for ln(d, k) − ln(do, k) and In(d, k) given by Lemmas 3.4
and 3.5, we show that for An ⊂ Rn defined below such that Pno (An)→ 1,

(4.2)
Nn

Dn
≤ Φ(z) + o(1),

Nn

Dn
≥ Φ(z) + o(1), ∀X ∈ An.

Since Pno (An)→ 1 this implies the last equality in (4.1).
Note that Lemmas 3.4 and 3.5 also hold for all δ′1 < δ1 and δ′2 < δ2. In the

remainder of the proof, let 0 < δ ≤ min(δ1, δ2). For notational simplicity,

let D = D(l
(1)
n (do, k), the deterministic part of l

(1)
n (do, k). For a sufficiently

large constant C1 and arbitrary ε1 > 0, let An be the set of X ∈ Rn such
that

|log In(d, k)− log In(do, k)| ≤ ε1 + (d− do)2k−1n1−δ + |d− do|k−
1
2n

1
2
−δ∣∣∣l(1)

n (do, k)−D
∣∣∣ ≤ C1n

1
2k−

1
2
√

log n,
∣∣∣l(2)
n (d, k) + 1

2nrk

∣∣∣ ≤ n1−δk−1

}

for all |d − do| ≤ v̄n. Since k = kn and β > 1, Lemmas 3.4 and 3.5 imply
that Pno (Acn)→ 0. We prove the first inequality in (4.2); the second one can
be obtained in the same way. Using (3.4) and the definition of An, it follows
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that for all X ∈ An,

ln(d, k)− ln(do, k) + log In(d, k)− log In(do, k) ≤ ε1 + (d− do)2n
1−δ

k

+ |d− do|
n

1
2
−δ

k
1
2

+ (d− do)l(1)
n (do, k)− nrk

4
(d− do)2(1− n−δ)

≤ 2ε1 −
nrk
4

(
1− 2

nδ

)(
d− do −

2l
(1)
n (do, k)(

1− 2
nδ

)
nrk

)2

+ |d− do|
n

1
2
−δ

k
1
2

+
(l

(1)
n (do, k))2(

1− 2
nδ

)
nrk

≤ 3ε1 −
nrk
4

(
1− 2

nδ

)(
d− do −

bn(do, k)

1− 2
nδ

)2

+

∣∣∣∣∣d− do − bn(do, k)

1− 2
nδ

∣∣∣∣∣ n
1
2
−δ

k
1
2

+
(l

(1)
n (do, k))2(

1− 2
nδ

)
nrk

,

(4.3)

The third inequality follows from (2.5) and Remark 3.1, by which bn(do) =

O(k−β+ 1
2 ) = O(δn). This implies that |bn(do)|k−

1
2n

1
2
−δ < ε1, again for large

enough n. Similar to the preceding display, we have the lower-bound

ln(d, k)− ln(do, k) + log In(d, k)− log In(do, k)

≥ −3ε1 −
nrk
4

(1 + 2n−δ)

(
d− do −

bn(do, k)

(1 + 2n−δ)

)2

−
∣∣∣∣d− do − bn(do, k)

(1 + 2n−δ)

∣∣∣∣ k− 1
2n

1
2
−δ +

(l
(1)
n (do, k))2

(1 + 2n−δ)nrk
.

(4.4)

Note that

(4.5) exp

{
(l

(1)
n (do, k))2

(1− 2n−δ)nrk
− (l

(1)
n (do, k))2

(1 + 2n−δ)nrk

}
= exp{o(1)},

which follows from the expression for l
(1)
n (do, k) in Lemma 3.4, the definition

of An and the assumption that X ∈ An. Therefore, substituting (4.3) in Nn

and (4.4) in Dn, the terms (l
(1)
n (do,k))2

4nrk
cancel out and by (4.5) we can neglect

the difference between (l
(1)
n (do,k))2

(1±2n−δ )nrk
and (l

(1)
n (do,k))2

nrk
.

To conclude the proof that Nn/Dn ≤ Φ(z) + o(1) for each X ∈ An, we
make the change of variables

u =

√
nrk
2

(1± 2n−δ)

(
d− do −

bn(do)

1± 2n−δ

)
,
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where we take + in the lower bound for Dn and − in the upper-bound for
Nn. Using once more that bn(do) = O(δn), we find that for large enough
n, |u| ≤ v̄n

4

√
nrk implies |d − do| ≤ v̄n. Hence we may integrate over |u| ≤

v̄n
4

√
nrk in the lower-bound for Dn. In the upper-bound for Nn we may

integrate over u ≤ z + ε1.
Combining (4.3)-(4.5), it follows that for all ε1 and all X ∈ An,

Nn

Dn
≤ e7ε1

(
1 + 2n−δ

1− 2n−δ

) 1
2

∫
u<z+ε1

exp{−1
2u

2 + Cn−δ |u|}du∫
|u|≤ v̄n

4

√
nrk

exp{−1
2u

2 − Cn−δ |u|}du

≤ e8ε1

∫
u<z+ε1

exp{−1
2u

2 + Cn−δ |u|}du∫
|u|≤ v̄n

4

√
nrk

exp{−1
2u

2 − Cn−δ |u|}du
→ Φ(z + ε1)e8ε1 .

Similarly we prove that for all ε1, Nn/Dn ≥ Φ(z − ε1)e−8ε1 , when n is large
enough, which terminates the proof of Theorem 2.1.

5. Proof of Theorem 2.2. Let β > 5/2 and θo,j = c0j
−(β+ 1

2
)(log j)−1.

When the constant c0 is chosen small enough, θo ∈ Θ(β, Lo). In view of
Corollary 3.1, the posterior mass on the events {(d, k, θ) : ‖θ− θ̄d,k‖ ≥ 2l0εn}
and {(d, k, θ) : |d − do| ≥ wn} tends to zero in probability, and may be
neglected. Moreover Lemma 3.1 implies that with posterior probability going
to 1, ‖θ − θ0‖ . (n/ log n)−(β−1/2)/(2β+1). However, within the (k + 1)-
dimensional FEXP-model, ‖θ − θo‖ is minimized by setting θj = θo,j (j =
0, . . . , k), and for this choice of θ we have

‖θ − θo‖2 =
∑
l>k

θ2
o,l & k−2β(log k)−2.

Consequently, the fact that ‖θ− θ0‖ . (n/ log n)−(β−1/2)/(2β+1) implies that
k > k′′n := kl(n/ log n)(β−1/2)/(β(2β+1))(log n)−1/β, for some constant kl. We
conclude that

Π
(
k ≤ k′′n|X

)
= oPo(1),

and we can restrict our attention to k > k′′n.
We decompose Πd(|d− do| ≤ kvwn(log n)−1, k > k′′n|X) as∑

m>k′′n

Π(|d− do| ≤ kvwn(log n)−1, k = m|X)

=
∑
m>k′′n

Π(k = m|X)Πm(|d− do| ≤ kvwn(log n)−1|X),
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where Πm(|d − do| ≤ kvwn(log n)−1|X) is the posterior for d within the
FEXP-model of dimension m + 1, i.e. Πm(|d − do| ≤ kvwn(log n)−1|X) :=
Π(|d− do| ≤ kvwn(log n)−1|k = m,X).

To prove Theorem 2.2 it now suffices to show that∑
k′′n≤m≤k

′
n

Π(k = m|X) = Π(k′′n ≤ k ≤ k
′
n|X)

Po→ 1,(5.1)

En0 Πk(|d− do| ≤ kvwn(log n)−1|X)
Po→ 0, ∀k′′n ≤ k ≤ k

′
n.(5.2)

The convergence in (5.1) is a by-product of Theorem 1 in Rousseau and
Kruijer (2011). In the remainder we prove (5.2). For every k ≤ k

′
n we can

write, using the notation of (4.1),

Πk(|d− do| < kvwn(log n)−1|X) ≤
Nn,k

Dn,k

:=

∫
|d−do|<kvwn(logn)−1 exp{ln(d, k)− ln(do, k) + log In(d, k)}dπd(d)∫

|d−do|<wn exp{ln(d, k)− ln(do, k) + log In(d, k)}dπd(d)
.

(5.3)

Let δ2 > 0 and An be the set of X ∈ Rn such that

|log In(d, k)− log In(do, k)| ≤ ε1,∣∣∣l(1)
n (do, k)−D(l

(1)
n (do, k))

∣∣∣ ≤ n 1
2k−

1
2
√

log n,∣∣∣l(2)
n (d, k)−D(l

(2)
n (do, k))

∣∣∣ ≤ ε1n−(2+δ2)/(2β+1)


for all |d−do| ≤ wn and k′′n ≤ k ≤ k′n. Compared to the definition of An in the

proof of Theorem 2.1, the constraints on l
(2)
n (d, k) and In are different. For

the latter, recall from Lemma 3.5 that log In(d, k) = log In(do, k) + oPo(1),
uniformly over d ∈ (do − wn, do + wn). As in the proof of Theorem 2.1, it
now follows from Lemmas 3.4 and 3.5 that Pno (Acn)→ 0. We can write

En0

[
Nn,k

Dn,k

]
≤ Pno (Acn) + En0

[
Nn,k

Dn,k
1An

]
,

and bound Nn,k/Dn,k pointwise for X ∈ An. Since when k ∈ (k′′n, k
′
n),

(l
(1)
n (do, k))2

2|l(2)
n (do, k)|

n−(2+δ2)/(2β+1) = o(1)
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on An, for all δ2 > 0, analogous to (4.3) and (4.4), we find that for all
X ∈ An, by definition of bn(do),

ln(d, k)− ln(do, k) + log In(d, k) ≤ 2ε1 −
|l(2)
n (do, k)|

2
(d− do − bn(do))

2 +
(l

(1)
n (do, k))2

2|l(2)
n (do, k)|

ln(d, k)− ln(do, k) + log In(d, k) ≥ −2ε1 −
|l(2)
n (do, k)|

2
(d− do − bn(do))

2 +
(l

(1)
n (do, k))2

2|l(2)
n (do, k)|

,

when n is large enough since k > k′′n. We now lower-bound bn(do) by bound-
ing the terms on the right in (3.6) in Lemma 3.4. By construction of θo it
follows that

r−1
k

∑
j>k

j−1θo,j = c0r
−1
k

∑
j>k

j−β−
3
2 /(log j) ≥ ck−β+ 1

2 (log k)−1,

for some c > 0. Since X ∈ An, 2S(l
(1)
n (do, k))/(nrk) ≤ 2

√
k/n
√

log n. Since

k ≤ k′n, this bound is o(k−β+ 1
2 (log k)−1). The last term in (3.6) is o(nε−1)

when β > 5/2, and hence this term is also o(k−β−
1
2 (log k)−1). Therefore, the

last two terms in (3.6) are negligible with respect to r−1
k

∑
j>k j

−1θo,j . We de-

duce that bn(do) ≥ ck−β+ 1
2 (log k)−1 ≥ cn−(2β−1)/(4β+2)(log n)−(2β+3)/(4β+2)

for n large enough.
Consequently, when the constant kv is chosen sufficiently small,

√
nrk′n(bn(do)−

kvwn(log n)−1) ≥ (c− kv)n1/(4β+2)(log n)−(β+1)/(2β+1) := zn →∞. We now
substitute the above bounds on ln(d, k)− ln(do, k) + log In(d, k) in the right
hand side of (5.3), make the change of variables u = d − do − bn(do) and
obtain

Nn,k

Dn,k
≤ e5ε1

∫
u≤−kvwn(logn)−1−bn(do)

exp{−nrku
2

4 }du∫
|u|<wn/2 exp{−nrku2

4 }du

≤ e5ε1

∫
v>zn

exp{−v2

2 }dv∫
|v|<wn

√
nrk/8

exp{−v2

2 }dv
= oPo(1).

This achieves the proof of Theorem 2.2.

6. Conclusion. In this paper we have derived conditions leading to
a BVM type of result for the long memory parameter d ∈ (−1

2 ,
1
2) of a

stationary Gaussian process, for the class of FEXP-priors. To our knowledge
such a result has not been obtained before. The result implies in particular
that asymptotically credible intervals for d have good frequentist coverage.
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A by-product of our results is that the most natural prior (Prior C) from
a Bayesian perspective, which is also the prior leading to adaptive minimax
rates under the loss function l on f , leads to sub-optimal estimators in terms
of d. Prior A leads to optimal estimators for d however it is not adaptive.
An interesting direction for future work would be to define an adaptive-
minimax estimation procedure for d.

More broadly speaking, the approach considered here to derive the asymp-
totic posterior distribution of a finite dimensional parameter of interest in
a semi-parametric problems could be used in other non - regular models,
hence completing (not exhaustively) the recent works of Castillo (2010) and
Bickel and Kleijn (2010).

7. Acknowledgements. This work was supported by the 800-20072010
grant ANR-07-BLAN-0237-01 SP Bayes.
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APPENDIX A: PROOF OF LEMMA 3.4

We decompose the first derivative of ln(d, k) as l
(1)
n (d, k) = S(l

(1)
n (d, k)) +

D(l
(1)
n (d, k)), S(l

(1)
n (d, k)) being a centered quadratic form and D(l

(1)
n (d, k))

the remaining deterministic term. To simplify notations, in this proof we

write S = S(l
(1)
n (do, k)) and D = D(l

(1)
n (do, k)). Using (1.6) (supplement)

and defining A = T−1
n (fdo,k)Tn(Hkfdo,k)T

−1
n (fdo,k), we find that

D = −1

2
tr [(Tn(fdo,k)− Tn(fo))A] , S =

1

2

(
XtAX − tr [Tn(fo)A]

)
.

From (1.4) and (1.8) in the supplement it follows that

fo − fdo,k = fdo,k(e
∆do,k − 1) = (∆do,k +

1

2
eξ∆2

do,k)fdo,k

= fdo,kO(k−β+1/2), ξ ∈ (0, (∆do,k)+)).
(A.1)

Consequently, we have

D =
1

2
tr
[
Tn(fdo,k(∆do,k +O(∆2

do,k)))T
−1
n (fdo,k)Tn(Hkfdo,k)T

−1
n (fdo,k)

]
=

n

4π

∫ π

−π
Hk(x)(∆do,k(x) +O(∆2

do,k(x)))dx+ error

=
n

2

∞∑
j=k+1

ηjθo,j +O(nk−2β−1) + error.

The last equality follows from (1.9) and (1.11) in the supplement. We bound
the error term using Lemma 2.4 (supplement) applied to Hkfdo,k and fdo,k,
whose Lipschitz constants are bounded by O(k) and O(k(3/2−β)+ , respec-
tively (see Lemma 3.1 in the supplement). Using that ‖∆do,k‖∞ = O(k−β+1/2)
(see (1.8) in the the supplement) we then find that the error is O(k3/2−βnε).
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The term S is a centered quadratic form with variance 1
2 |T

1
2
n (fo)AT

1
2
n (fo)|2.

Applying once more (A.1), we find that

tr
[
(Tn(fo)A)2

]
= tr

[(
T−1
n (fdo,k)Tn(Hkfdo,k)

)2]
(1 +O(‖∆do,k‖∞))

=
n

2π

∫ π

−π
H2
k(x)dx+O(nεk + ‖∆do,k‖∞) = nrk(1 + o(n−δ)),

where the term nεk comes from Lemma 2.4 in the supplement, associated
to fdo,k and fdo,kHk. This proves the first equality in Lemma 3.4.

Similar to the decomposition of l
(1)
n (do, k), we decompose the second

derivative as l
(2)
n (d, k) = D(l

(2)
n (d, k))− 2S1(l

(2)
n (d, k)) + S2(l

(2)
n (d, k)), where

S1(d) = XtA1,dX − tr[Tn(fo)A1,d], S2(d) = XtA2,dX − tr[Tn(fo)A2,d],

D2(d) := D(l(2)
n (d, k))

= −1

2
tr [Tn(fd,k)A1,d] + tr

[
(Tn(fd,k)− Tn(fdo,k))

(
A1,d −

1

2
A2,d

)]
+ tr

[
(Tn(fdo,k)− Tn(fo))

(
A1,d −

1

2
A2,d

)]
,

(A.2)

A1,d = T−1
n (fd,k)(Tn(Hkfd,k)T

−1
n (fd,k))

2, A2,d = T−1
n (fd,k)Tn(H2

kfd,k)T
−1
n (fd,k).

To control D2(d) we use a first order Taylor expansion around do, implying
thatD2(d) = D2(do)+O(|d−do) sup|d′−do|≤v̄n |D

′
2(d′)|. First we studyD2(do).

At d = do, the right-hand side of (A.2) equals

− n

4π

∫ π

−π
H2
k(x)

(
1 + (e∆do,k − 1)

)
dx+O(knε)

= −−nrk
2

(
1 +O(k−β+1/2 + k2/n1−ε)

)
.

(A.3)

The O(knε) term is obtained from Lemma 2.4 (supplement), applied to
f2j = Hkfdo,k and f2j−1 = fdo,k, with Lipschitz constants O(k) for the
former and O(k(3/2−β)+) for the latter, together with the bound ‖∆do,k‖∞ =
O(k−β+1/2). Using

A′1,d = −3
(
T−1
n (fd,k)Tn(Hkfd,k)

)3
T−1
n (fd,k)

+ 2T−1
n (fd,k)Tn(H2

kfd,k)T
−1
n (fd,k)Tn(Hkfd,k)T

−1
n (fd,k)

(A.4)
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and a similar expression for the derivative of d→ A2,d, it follows that

|D′2(d′)| . tr
[
(Tn(fdo,k)T

−1
n (fd′,k) + In)(Tn(|Hk|fd′,k)T−1

n (fd′,k))
3
]

+ tr
[
(Tn(fdo,k)T

−1
n (fd′,k) + In)(Tn(|Hk|fd′,k)T−1

n (fd′,k))Tn(H2
kfd′,k)T

−1
n (fd′,k)

]
+ tr

[
(Tn(fdo,k)T

−1
n (fd′,k) + In)Tn(|Hk|3fd′,k)T−1

n (fd′,k)
]

We control the first term of the right hand side of the above inequality, the
second and third terms are controlled similarly. Note first that

tr
[
Tn(fdo,k)T

−1
n (fd′,k)(Tn(|Hk|fd′,k)T−1

n (fd′,k))
3
]

= |T
1
2
n (fdo,k)T

−1
n (fd′,k)Tn(|Hk|fd′,k)T−1

n (fd′,k)T
1
2
n (|Hk|fd′,k)|2

≤ ‖T
1
2
n (fdo,k)T

− 1
2

n (fd′,k)‖2

× ‖T−
1
2

n (fd′,k)T
1
2
n (|Hk|fd′,k)‖2|T

− 1
2

n (fd′,k)Tn(|Hk|fd′,k)T
− 1

2
n (fd′,k)|2

. nε|T−
1
2

n (fd′,k)Tn(|Hk|fd′,k)T
− 1

2
n (fd′,k)|2,

(A.5)

where the last inequality comes from Lemma 2.3 in the supplement. Note
also that

|x|−2d′ . fd′(x) . |x|−2d′ and Tn(|Hk|fd′,k) . Tn(|Hk||x|−2d′), Tn(|fd′,k) & Tn(|x|−2d′)

and replace fd′ by |x|−2d′ in (A.5), then

|T−1/2
n (fd′,k)Tn(|Hk|fd′,k)T−1/2

n (fd′,k)|2 .
(n
k

+O(k)
)

using Lemma 2.4 in the supplement associated to |Hk||x|−2d′ which has
Lipschitz constant k. This leads to D2(d′) = O

(
nε nk

)
, which implies that

for all β > 1,

D2(d) = D2(do) + o(|d− do|nε+1k−1) = −nrk
2

(1 + o(n−δ)).

For the stochastic terms in l
(2)
n (d, k) we need a chaining argument to control

the supremum over d ∈ (do − v̄n, do + v̄n). We show that for all ε′ > 0 and

γn = n
1
2

+ε′k−
1
2 ,

Pno

(
sup

|d−do|≤v̄n
|S1(d)| > γn

)
= o(1),(A.6)
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i.e. that S1(d) = oPo(γn). The same can be shown for S2(d) using exactly
the same arguments. Consider a covering of (do − v̄n, do + v̄n) by balls of
radius n−1 centered at dj , j = 1, . . . , Jn with Jn ≤ 2v̄nn. Then

sup
|d−do|<v̄n

|S1(d)| ≤ max
j
|S1(dj)|+ sup

|d−d′|≤n−1

|S1(d)− S1(d)|,

and

Pno

(
sup

|d−do|≤v̄n
|S1(d)| > γn

)
≤ Pno

(
sup

|d−d′|≤n−1

|S1(d)− S1(d′)| > 1

2
γn

)

+ Jn max
1≤j≤Jn

Pno

(
|S1(dj)| >

1

2
γn

)
.

(A.7)

To control the first term on the right in (A.7), note that for a standard
normal vector Z and some d∗ ∈ (d, d′),

S1(d)− S1(d′) = (d− d′)
(
ZtT

1
2
n (fo)A

′
1,d∗T

1
2
n (fo)Z − tr

[
Tn(fo)A

′
1,d∗
])

,

with A′1,d as in (A.4). Using Lemma 2.3 (supplement) and the fact that

‖AB‖ ≤ ‖A‖‖B‖ for all matricesA andB, it follows that ‖T
1
2
n (fo)A

′
1,d∗T

1
2
n (fo)‖ =

O(nε), and hence ZtT
1
2
n (fo)A

′
1,d∗T

1
2
n (fo)Z ≤ ZtZ‖T

1
2
n (fo)A

′
1,d∗T

1
2
n (fo)‖ =

O(nε)ZtZ. Similarly, it follows that tr
[
Tn(fo)A

′
1,d∗

]
. n. Consequently,

when ε = ε′/2 we have

|S1(d)− S1(d′)| . n−1
(
ZtZnε + n

)
,

uniformly over all d, d′ such that |d− d′| ≤ n−1. Since 1 = o(γn),

Pno

(
sup

|d−d′|≤n−1

|S1(d)− S1(d′)| ≥ 1

2
γn

)
≤ P

(
ZtZ > n1−εγn/4

)
= o(1).

To bound the last term in (A.7), we apply Lemma 1.3 (supplement) to

(ZtAZ − tr[A])|A|−1, with A = T
1
2
n (fo)A1,dT

1
2
n (fo) since as seen previously

|A|2 = O(n/k) = o(γ2
nn
−2α) for α small enough, it follows that

Pno

(
S1(d) ≥ 1

2
γn

)
≤ e−nα/8.

Since Jn increases only polynomially with n, this finishes the proof of (A.6).
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APPENDIX B: CONTROL OF THE DERIVATIVES IN θ ON THE
LOG-LIKELIHOOD

Before stating Lemma B.1 we first give a general expression for the deriva-
tives of ln(d, k, θ) with respect to θ. For all j ≥ 1 and l = (l1, . . . , lj) ∈
{0, 1, . . . , k}j , let σ = (σ(1), . . . , σ(|σ|)) be a partition of {1, . . . , j}. Let
|σ| be the number of subsets in this partition and σ(i) the ith subset of
{1, . . . , j} in the partition σ. Denoting lσ(i) the vector (lt, t ∈ σ(i)), we can
write

∇lσ(i)
fd,k,θ(x) =

∏
t∈σ(i)

cos(ltx)fd,k,θ(x).

For notational ease we write∇σ(i)fd,k,θ := ∇lσ(i)
fd,k,θ. The derivative ∂j ln(d,k,θ)

∂θl1 ...∂θlj
can now be written in terms of the matrices

(B.1) Bσ(d, θ) =

|σ|∏
i=1

Bσ(i)(d, θ), Bσ(i)(d, θ) = Tn(∇σ(i)fd,k,θ)T
−1
n (fd,k,θ).

There exist constants bσ, cσ and dσ such that

∂jln(d, k, θ)

∂θl1 . . . ∂θlj

=
∑
σ∈Sj

bσ
(
XtT−1

n (fd,k,θ)Bσ(d, θ)X − tr
[
Tn(fo)T

−1
n (fd,k,θ)Bσ(d, θ)

])
+
∑
σ∈Sj

cσtr [Bσ(d, θ)] +
∑
σ∈Sj

dσtr
[
(Tn(fo)T

−1
n (fd,k,θ)− In)Bσ(d, θ)

]
,

(B.2)

where Sj is the set of partitions of {1, . . . , j}. For the first two derivatives
(j = 1, 2) the values of the constants bσ, cσ and dσ are given below in
Lemmas B.4 and B.5. For the higher order derivatives these values are not
important for our purpose; we will only need that for any j ≥ 1, the constant
cσ is zero if |σ| = 1.

The following lemma states that ln(d, k, θ)−ln(d, k) is the sum of a Taylor-

approximation
∑J

j=1
(θ−θ̄d,k)(j)∇j ln(do,k)

j! and terms whose dependence on d
can be negligible. Since the proof is involved, some of the technical details
are treated in Lemmas B.2 and B.3.

Lemma B.1. Given β > 1, let k ≤ kn and let d and θ be such that
l(fo, fd,k,θ) ≤ l20δ2

n. Then there exists an integer J and a constant ε > 0 such
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that uniformly over d ∈ (do − v̄n, do + v̄n) and θ ∈ Bk(θ̄d,k, 2l0δn),

ln(d, k, θ)− ln(d, k) =

J∑
j=1

(θ − θ̄d,k)(j)∇jln(do, k)

j!

+ (d− do)
J∑
j=2

1

j!
gn,j(θ − θ̄d,k) + Sn(d),

(B.3)

where, for u = θ − θ̄d,k,
(B.4)

gn,j(u) =
k∑

l1,...,lj=0

ul1 · · ·ulj
∑
σ∈Sj

(cσtr [T1,σ(do, k)] + dσtr [T2,σ(do, k)]) ,

T1,σ(do, k) =

|σ|∑
i=1

(∏
l<i

Tn(∇σ(l)fdo,k)T
−1
n (fdo,k)

)
×[

Tn(∇σ(i)fdo,kHk)− Tn(Hkfdo,k)T
−1
n (fdo,k)Tn(∇σ(i)fdo,k)

]
×

T−1
n (fdo,k)

(∏
l>i

Tn(∇σ(l)fdo,k)T
−1
n (fdo,k)

)
,

T2,σ(do, k) = −Tn(Hkfdo,k)T
−1
n (fdo,k)Bσ(do, θ̄do,k),

and Sn(d) denotes any term of order

(B.5) Sn(d) = oPo(1) + oPo

(
|d− do|n

1
2
−δ

√
k

)
+ oPo

(
(d− do)2n

1−δ

k

)
.

When β > 5/2 and k ≤ k′n, we can choose J = 2, and (B.3) simplifies to

(B.6) ln(d, k, θ)− ln(d, k) =

2∑
j=1

(θ − θ̄d,k)(j)∇jln(do, k)

j!
+ oPo(1).

Proof. Recall that by (3.7),

ln(d, k, θ)− ln(d, k) =
J∑
j=1

(θ − θ̄d,k)(j)∇jln(do, k)

j!

+
J∑
j=1

(θ − θ̄d,k)(j)∇j(ln(d, k)− ln(do, k))

j!
+RJ+1,d(θ).

(B.7)
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To prove (B.3) we first show that, writing u = θ − θ̄d,k,

J∑
j=1

u(j)∇j(ln(d, k)− ln(do, k))

j!

=

J∑
j=1

1

j!

k∑
l1,...,lj=0

ul1 . . . ulj

(
∂jln(d, k, θ̄d,k)

∂θl1 . . . ∂θlj
−
∂jln(do, k, θ̄do,k)

∂θl1 . . . ∂θlj

)

= (d− do)
J∑
j=1

1

j!
gn,j(u) +O(Sn(d)).

(B.8)

This result is combined with (B.7) and Lemma B.3 below, by which gn,1(u) =
O(Sn(d)). It then follows that ln(d, k, θ)− ln(d, k) equals

J∑
j=1

(θ − θ̄d,k)(j)∇jln(do, k)

j!
+ (d− do)

J∑
j=2

1

j!
gn,j(u) +RJ+1,d(θ) +O(Sn(d)).

The final step is to prove that RJ+1,d(θ) is oPo(1) and hence O(Sn(d)); to
this end J needs to be sufficiently large.

First we prove (B.8). For the factors ∂j

∂θ ln(d, k, θ̄d,k) − ∂j

∂θ ln(d, k, θ̄do,k)
we substitute (B.2). In Lemma B.2 below we give expressions for each
of the terms therein, which we substitute in (B.8). The main terms are
(d− do)tr[T1,σ(do, k)] and (d− do)tr[T2,σ(do, k)] in (B.13) and (B.14), which

after substitution in (B.8) give the term (d − do)
∑J

j=1
1
j!gn,j(u) on the

right. The other terms in (B.12)-(B.14) that enter (B.8) through (B.2) are
O(Sn(d)). This is due to the summation over ul1 , . . . , ulj in (B.8), and the
Cauchy-Schwarz inequality by which

(B.9)

∣∣∣∣∣∣
k∑

l1,...,lj=0

ul1 . . . ulj

∣∣∣∣∣∣ ≤ (
√
k‖u‖)j ≤ (2l0

√
kδn)j = o(n−δ),

for some δ > 0, as ‖u‖ ≤ 2l0δn and (B.8) is proved. We now control
RJ+1,d(θ).

Combining (3.8) and the first inequality in (B.9), we obtain

|RJ+1,d(θ)| ≤
1

(J + 1)!
(
√
kδn)J+1 max

l1,...,lJ+1

sup
‖θ̃−θ̄d,k‖≤2l0δn

∣∣∣∣∣∂J+1ln(d, k, θ̃)

∂θl1 . . . ∂θlJ+1

(x)

∣∣∣∣∣ .
We give a direct bound on this derivative using (B.2). For all partitions σ of
{l1, . . . , lJ+1} and all (l1, . . . , lJ+1) ∈ {1, . . . , k}J+1, we bound ‖Bσ(i)(d, θ)‖,
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using ‖Bσ(i)(d, θ)‖ ≤ ‖T
1
2
n (∇σ(i)fd,k,θ)T

− 1
2

n (fd,k,θ)‖2 (see (1.6)). We bound

‖T
1
2
n (∇σ(i)fd,k,θ)T

− 1
2

n (fd,k,θ)‖ by application of Lemma 2.3 (supplement) with
f = fd,k,θ and g = ∇σ(i)fd,k,θ. The constant M in this lemma is bounded by

k∑
j=0

|θj | ≤
k∑
j=0

|(θ̄d,k)j |+
k∑
j=0

|θj − (θ̄d,k)j | ≤ 2
√
L+
√
k‖θ − θ̄d,k‖ = O(1),

since
∑k

i=0 |(θ̄d,k)i| ≤ 2
√
L (by Lemma 3.3) and ‖θ − θ̄d,k‖ ≤ δn. Conse-

quently, Lemma 2.3 (supplement) implies that

(B.10) ‖Bσ(i)(d, θ)‖ ≤ K,

where K depends only on L,Lo and not on n, d nor θ. From the relations
in (1.6) and the definition of Bσ it follows that for any σ, d, θ,

|XtBσ(d, θ)X| ≤ XtT−1
n (fo)XK

|σ|‖T
1
2
n (fo)T

− 1
2

n (fd,k)‖2 ≤ XtT−1
n (fo)XK

|σ|nε,

|tr [Bσ(d, θ)] | ≤ nK |σ|‖T
1
2
n (fo)T

− 1
2

n (fd,k)‖2 ≤ n1+εK |σ|.

Therefore we have the bound

(B.11) |RJ+1(d, θ)| ≤ CKJ+1nε(
√
k‖θ − θ̄d,k‖)J+1

(
XtT−1

n (fo)X + n
)
.

Since k ≤ kn, ‖θ − θ̄d,k‖ ≤ δn and the term XtT−1
n (fo)X in (B.11) is the

sum of n independent standard normal variables, there is a constant c > 0
such that

Po

(
sup

|d−do|≤v̄n
sup

‖θ−θ̄d,k‖≤2l0δn

|RJ+1(d, θ)| > n−ε

)
≤ e−cn,

provided we choose J such that (J + 1)(1 − 1/β) > 2. This concludes the
proof of (B.3).

To prove (B.6) we first show that for J = 2, |RJ+1(d, θ)| = oPo(1). Since
k ≤ k′n, β > 5/2 and ‖θ − θ̄d,k‖ ≤ 2l0εn, we can choose J + 1 = 3 >
(2β + 1)/(β − 1

2), and the preceding inequality becomes

Po

(
sup

|d−do|≤wn
sup

‖θ−θ̄d,k‖≤2l0εn

|R3(d, θ)| > n−ε

)
≤ e−cn.

Combining this result with (B.8), it only remains to be shown that (d −
do)gn,1(u) and (d − do)gn,2(u) are oPo(1). Recall from Corollary 3.1 that
|d− do| = o(nε−(β−1/2)/(2β+1)) for all ε > 0. Consequently,

|d−do|n
1
2k−

1
2 = o(nε+1/(2β+1)k−

1
2 ) = o((

√
kεn)−1), (d−do)2n

k
= o((

√
kεn)−1)
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for all β > 2. This implies that Sn(d) = oPo(1) and that, by Lemma B.3,
(d − do)gn,1(u) = o(1). Also, for all (l1, l2) ∈ {1, . . . , k}j and all partitions
σ of (l1, l2), the limiting integral of tr [T1,σ] is equal to 0. Since β > 5/2 the
Lipschitz constants of the functions fdo,k or fo are O(1), so that Lemma 2.4
(supplement) implies tr [T1,σ(do, k)] = O(nεk). Similarly,

tr [T2,σ(do, k)] =
n

2π

∫ π

−π
Hk(x) cos(l1x) cos(ljx)dx+O(nεk).

Thus we have

(d−do)gn,2(u) =
n(d− do)

2π

k∑
l1,l2=0

ul1ul2

∫ π

−π
Hk(x) cos(l1x) cos(ljx)dx+o(1),

which is o(1). This completes the proof of Lemma B.1.

The proof of the following lemma is given in section 4 of the supplement.

Lemma B.2. Let Wσ(d) denote any of the quadratic forms

XtT−1
n (fd,k)Bσ(d, θ̄d,k)X − tr

[
Tn(fo)T

−1
n (fd,k)Bσ(d, θ̄d,k)

]
in (B.2). For any j ≤ J , (l1, . . . , lj) ∈ {0, . . . , k}j and σ ∈ Sj, we have

(B.12) |Wσ(d)−Wσ(do)| = oPo(|d− do|n
1
2

+εk−
1
2 ),

tr
[
Bσ(d, θ̄d,k)

]
− tr

[
Bσ(do, θ̄do)

]
= (d− do)tr[T1,σ(do, k)] + (d− do)2o(nε+

1
2k−

1
2

+(1−β/2)+)

= (d− do)tr[T1,σ(do, k)] + (d− do)2o(n1−δ/k),

(B.13)

tr
[
(Tn(fo)T

−1
n (fd,k)− In)Bσ(d, θ̄d,k)

]
− tr

[
(Tn(fo)T

−1
n (fdo,k)− In)Bσ(do, θ̄do,k)

]
= (d− do)tr[T2,σ(do, k)] + (d− do)2o(n/k) + (d− do)o(nε+

1
2k−

1
2 ).

(B.14)

Lemma B.3. For all β > 1 there exists a constant δ > 0 such that
uniformly over ‖θ − θ̄d,k‖ ≤ δn,

|gn,1(θ − θ̄d,k)| = o(n1/2−δk−1/2).

Proof. For u = θ − θ̄d,k, we have

gn,1(u) = −1

2
tr
[
Tn(Hkfdo,θ̄do,k)T−1

n (fdo,θ̄do,k)Tn(ut∇fdo,θ̄do,k)T−1
n (fdo,θ̄do,k)

]
.
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This follows from (B.4) and Lemma below, by which bσ = dσ = 1
2 and cσ = 0

(the only partition for j = 1 being σ = ({l})). By Lemma 2.4 (supplement)
gn,1(u) converges to zero, but at a rate slower than n1/2−δk−1/2. To obtain
the o(n1/2−δk−1/2) term, we write

gn,1(u) = ∆1 + ∆2 + ∆3,

and bound the terms on the right using the other lemmas in section 2 of the
supplement. We first prove that

∆1 = tr
[
Tn(Hkfdo,k)Tn(f−1

do,k
)Tn(ut∇fdo,k)Tn(f−1

do,k
)
]
−

(16π4)tr
[
Tn(Hk)Tn(utcos)

]
= o(1),

where cos(x) = (1, cos(x), . . . , cos(kx)). We then prove that

∆2 = tr
[
Tn(Hk)Tn(utcos)

]
= 0,

and finally that

∆3 = tr
[
Tn(Hkfdo,k)T

−1
n (fdo,k)Tn(ut∇fdo,k)T−1

n (fdo,k)
]

−tr

[
Tn(Hkfdo,k)Tn

(
f−1
do,k

4π2

)
Tn(ut∇fdo,k)Tn

(
f−1
do,k

4π2

)]
= o(n1/2−δk−1/2).

To bound ∆1 we use Lemma 2.5 (supplement) with b1(x) = Hk(x), b2(x) =
utcos and L = k3/2−β. Equation (2.6) then implies that

|∆1| ≤ C
√
k‖u‖nε

(
1 + k3/2−βk−1/2

)
= o(1).

To bound Delta2 note that for l = 0, . . . , k and all j1, j2 ≤ n,

(Tn(cos(lx)))j1,j2 = I|j1−j2|=l, (Tn(Hk))j1,j2 =
n∑

j=k+1

ηjIj=|j1−j2|.

Therefore

tr [Tn(Hk)Tn(cos(l.)] =

n∑
j1=1

n∑
j2=1

n∑
j=k+1

ηjIj=|j1−j2|I|j1−j2|=l = 0,

since l ≤ k and j > k. We now turn to ∆3. Following Lieberman et al.
(2011), we consider separately the positive and negative parts of Hk and of
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utcos. Hence we may treat these functions as if they were positive. We first
define, for f̃do,k = (4π2fdo,k)

−1,

A1 = Tn(Hkfdo,k)T
−1
n (fdo,k), B1 = Tn(Hkfdo,k)Tn(f̃do,k),

A2 = Tn(ut∇fdo,k)T−1
n (fdo,k), B2 = Tn(ut∇fdo,k)Tn(f̃do,k),

Ã = T
1
2
n (Hkfdo,k)T

−1
n (fdo,k)T

1
2
n (ut∇fdo,k),

B̃ = T
1
2
n (Hkfdo,k)Tn(f̃do,k)T

1
2
n (ut∇fdo,k),

∆ = In − Tn(fdo,k)Tn(f̃do,k).

Using the same computations as in Lieberman et al. (2011), we find that

|∆3| . |tr [B1B2∆] |+ |Ã− B̃||T
1
2
n (Hkfdo,k)Tn(f̃do,k)∆T

1
2
n (ut∇fdo,k)|

+|∆|2
√
k‖u‖nε

.
√
k‖u‖nεk3/2−β + |tr [B1B2∆] |.

The first term on the right is o(n1/2−δk−1/2). We bound the last term using
Lemma 2.5 (supplement) with b1 = Hk, b2 = utcos and b3 = 1, which
implies that tr [B1B2∆] = 0 + O(

√
k‖u‖nεk(3/2−β)+) = o(1). This achieves

the proof of Lemma B.3.

Lemma B.4. Suppose that k ≤ kn and that l(fo, fdo,k) ≤ l20δ
2
n. Then

all elements of ∇lln(do, k) (l = 0, . . . , k) are the sum of a centered quadratic
form, S(∇lln(do, k)) with a variance equal to n

2 (1+o(1)) and a deterministic

term, D(∇lln(do, k)) which is o(k(3/2−β)+nε).

Proof. For all l = 0, . . . , k, we have

∇lln(do, k) = S(∇lln(do, k)) +D(∇lln(do, k)),

where

S(∇lln(do, k)) =
1

2
XtT−1

n (fdo,k)Tn(∇lfdo,k)T−1
n (fdo,k)X

− 1

2
tr
[
Tn(fo)T

−1
n (fdo,k)Tn(∇lfdo,k)T−1

n (fdo,k)
]
,

D(∇lln(do, k)) =
1

2
tr
[(
Tn(fo)T

−1
n (fdo,k)− In

)
Tn(∇lfdo,k)T−1

n (fdo,k)
]
.

Note that this is a special case of (B.2), with j = 1, bσ = dσ = 1
2 and cσ = 0,

the only partition being σ = ({l}). The variance of S(∇lln(do, k)) is equal
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to

tr[(Tn(fo)T
−1
n (fdo,k)Tn(∇lfdo,k)T−1

n (fdo,k))
2]

=
n

2π

∫ π

−π

(
fo
fdo,k

(x)

)2

cos2(lx)dx+ O(nεk),

since Lemma 2.4 (supplement) implies that the approximation error of the
trace by its limiting integral is of order O(nε(k + k2(3/2−β)∨0) = O(nεk).
Since fo

fdo,k
= e∆do,k (see (A.1)), the integral in the preceding equation is

n

2π

∫ π

−π

(
1 + 2∆do,k +O(∆2

do,k)
)

cos2(lx)dx

=
n

2
+ 2na2l(do) +O(nδ2

n) =
n

2
(1 + o(1)),

where al is defined at the beginning of the supplement. Lemma 1.3 (supple-
ment) then implies that the centered quadratic form is of order oPo(nε+1/2).
Similarly, Lemma 2.4 (supplement) implies that

D(∇lln(do, k)) =
n

2π

∫ π

−π

(fo − fdo,k)
fdo,k

(x) cos(lx)dx+ O(nε‖∆do,k‖1k)

=
n

2π

∫ π

−π
cos(lx)∆do,k(x)dx+ O(nk−2β) + O(nεk3/2−β)

= O(nεk(3/2−β)+)

which completes the proof of Lemma B.4.

Lemma B.5. Let A(d) be the (k + 1) × (k + 1) matrix with entries
Al1,l2(d) = al1+l2(d), where al(d) = 1l>k(θo,l − 2l−1(do − d)). Suppose that

k ≤ kn and that l(fo, fd,k) ≤ l20δ
2
n. Then Jn(d, k) = −∇2ln(d, k, θ)

∣∣∣
θ=θ̄d,k

satisfies
(B.15)
∀l1, l2 ≤ k, |(Jn(d, k)−Jn(do, k))l1,l2| = oPo(|d−do|nεk+Sn(d)) = oPo(n/k)

uniformly over d ∈ (do − v̄n, do + v̄n) and k ≤ kn. We also have for all l1, l2

(B.16) [Jn(do, k)− n

2
Ik+1 −

n

2
A(do)]l1,l2 := n(R2s)l1,l2 + n(R2d)l1,l2 ,

where (R2s)l1,l2 is a centered quadratic form of order oPo(n−1/2+ε) and
(R2d)l1,l2 is a deterministic term of order o(knε−1). For the matrix A, we
have ‖A(do)‖ = o(1) and |A(do)| = O(1).
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In particular, (B.16) implies that |Jn(do, k)−n
2 Ik+1−n

2A(do)| = oPo(kn1/2+ε)+
o(k2nε).

Proof. Let d and k ≤ kn be such that l(fo, fd,k) ≤ l20δ
2
n so that d ∈

(do−v̄n, do+v̄n) (see Corollary 3.1). Lemma B.1 implies that for all l1, l2 ≤ k,

(Jn(d, k))l1,l2 − (Jn(do, k))l1,l2

:= −(d− do)
∑

σ∈S(l1,l2)

(cσtr [T1,σ(do, k)] + dσtr [T2,σ(do, k)]) + OPo(Sn(d)).

Lemma 2.4 (supplement) implies that

tr [Ti,σ(do, k)] = O(knε), i = 1, 2

so that (B.15) is satisfied since this term is oPo(n1−δ/k). We then use ex-
pression (B.2), with σ ∈ {({1}, {2}), ({1, 2})} and we denote σ1 and σ2

the first and the second partition respectively. Note that cσ1 = dσ2 = 1/2,
cσ2 = 0 and dσ1 = 1. From Lemma 2.4 (supplement), the quadratic form
in (Jn(do, k))l1,l2 is associated to a matrix whose Frobenius-norm is O(

√
n)

and whose spectral norm is O(nε). Hence, this quadratic form is oPo(n1/2+ε).
Also by Lemma 2.4 (supplement), the deterministic terms can be written as

n

4π

∫ π

−π
cos(l1x) cos(l2x) (1 + ∆do,k) (x)dx+ o(knε)

=
n

2
(Il1=l2 + al1+l2(do)) + o(knε),

and Lemma B.5 is proved.

APPENDIX C: PROOF OF LEMMA 3.5

Under the conditions of Theorem 2.1 we have k = kn and β > 1, and we
may assume (by Lemma 3.2) that l(fo, fd,k,θ) ≤ l20δ

2
n. Fixing d and k, we

develop θ → ln(d, k, θ) in θ̄d,k. From Lemma B.1 in Appendix B it follows
that

ln(d, k, θ)− ln(d, k) =

J∑
j=1

(θ − θ̄d,k)(j)∇jln(do, k)

j!

+ (d− do)
J∑
j=2

gn,j(θ − θ̄d,k)
j!

+ Sn(d),

(C.1)
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where Sn(d) is as in (B.5). Substituting (C.1) in the definition of In(d, k) in
(3.1), we obtain

In(d, k) =

∫
‖θ−θ̄d,k‖≤2l0δn

eln(d,k,θ)−ln(d,k)dπθ|k(θ)

= eSn(d)πθ|k(θ̄d,k)

∫
‖u‖≤2l0δn

e
∑J
j=1

1
j!
u(j)∇j ln(do,k)+(d−do)

∑J
j=2

gn,j(u)

j!
+hkudu

= eSn(d)πθ|k(θ̄do,k)

∫
‖u‖≤2l0δn

e
∑J
j=1

1
j!
u(j)∇j ln(do,k)+(d−do)

∑J
j=2

gn,j(u)

j!
+hkudu.

(C.2)

The first equality follows from the definition of In(d, k) and Lemma 3.3, by
which we may replace the domain of integration by {θ : ‖θ− θ̄d,k‖ ≤ 2l0δn}.
The second equality follows from the assumptions on πθ|k in prior A, the
transformation u = θ−θ̄d,k and substitution of (C.1). Also the third equality
follows from the assumptions on πθ|k: these imply that∣∣log πθ|k(θ̄d,k)− log πθ|k(θ̄do,k)

∣∣ = |do−d||htkη[k]|+o(1) = O(|d−do|(n/k)
1
2
−ε)+o(1),

for some ε > 0. Thus, the factor eSn(d)πθ|k(θ̄d,k) on the second line of (C.2)

may be replaced by eSn(d)πθ|k(θ̄do,k). Because Sn(do) = oPo(1), (C.2) implies
that
(C.3)

In(do, k) = (1 + oPo(1))

∫
‖u‖≤2l0δn

exp

hku+

J∑
j=1

u(j)∇jln(do, k)

j!

 du.

The most involved part of the proof is to establish the bounds

πθ|k(θ̄do,k)

∫
‖u‖≤l0δn

exp

hku+

J∑
j=1

u(j)∇jln(do, k)

j!

 du

≤ In(d, k) = eSn(d)πθ|k(θ̄do,k)

∫
‖u‖≤2l0δn

e
∑J
j=1

1
j!
u(j)∇j ln(do,k)+(d−do)

∑J
j=2

gn,j(u)

j!
+hkudu

≤ πθ|k(θ̄do,k)
∫
‖u‖≤3l0δn

exp

hku+
J∑
j=1

u(j)∇jln(do, k)

j!

 du.

(C.4)

Since the posterior distribution of θ conditional on k = kn and d = do
concentrates at θ̄do,k at a rate bounded by l0δn (this follows from Lemma
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3.2, with the restriction to d = do), the left- and right-hand side of (C.4)
are asymptotically equal, up to a factor (1+oPo(1)). By (C.3), the left- and
right-hand side are actually equal to In(do, k). This implies that In(d, k) =
eSn(d)In(do, k), which is the required result.

In the remainder we prove (C.4). To do so we construct below a change
of variables v = ψ(u), which satisfies

hkv +
J∑
j=1

v(j)∇jln(do, k)

j!
= hku+

J∑
j=1

u(j)∇jln(do, k)

j!

+ (d− do)
J∑
j=2

gn,j(u)

j!
+O(Sn(d)),

(C.5)

for all ‖u‖ ≤ 2l0δn. We first define the notation required in the definition
of ψ in (C.8) below. Recall from (B.4) in Lemma B.1 that gn,j(u) can be
decomposed as

gn,j(u) = n
∑
σ∈Sj

(cσ − dσ)
k∑

l1,...,lj=0

ul1 . . . uljg
(j)
l1,...,lj

, j = 2, . . . J,

where g
(j)
l1,...,lj

depends on σ. For ease of presentation however we omit this

dependence in the notation. Using Lemma 2.4 (supplement) and (B.4) in
Lemma B.1, it follows that for all j ≥ 2 and (l1, . . . , lj) ∈ {0, . . . , k}j ,

(C.6) g
(j)
l1,...,lj

= γ
(j)
l1,...,lj

+ r
(j)
l1,...,lj

,

γ
(j)
l1,...,lj

=
1

2π

∫ π

−π
Hk(x) cos(l1x) · · · cos(ljx)dx.

Let Ḡ(2) denote the matrix with elements γ
(2)
l1,l2

, and G(2) the matrix with

elements g
(2)
l1,l2

. By direct calculation it follows that

(C.7) γ
(2)
l1,l2

= Il1+l2>k
1

2(l1 + l2)
.

Similarly, for all j ≥ 3 and l1, . . . , lj ∈ {0, 1, . . . , k} we define

(G(j)(u))l1,l2 =
k∑

l3,...,lj=0

g
(j)
l1,...,lj

ul3 . . . ulj , (Ḡ(j)(u))l1,l2 =
k∑

l3,...,lj=0

γ
(j)
l1,...,lj

ul3 . . . ulj .
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In contrast to G(2) and Ḡ(2), G(j)(u) and Ḡ(j)(u) depend on u. For no-
tational convenience we will also write G(2)(u) and Ḡ(2)(u). Finally, let
Ĩk = Jn(do, k)/n be the normalized Fisher information.

We now define the transformation ψ:

(C.8) ψ(u) = (Ik+1 − (d− do)D(u))u, with

D(u) = (Ĩk + L(u))−1Gt(u), G(u) =

J∑
j=2

1

j!

∑
σ∈Sj

(cσ − dσ)G(j)(u),

(C.9) (L(u))l1,l2 = −
J∑
j=3

1

n(j − 1)!

k∑
l3,...,lj=0

ul3 . . . ulj∇l1,...,lj ln(do, k).

The construction of G(u) is such that

(C.10) nutG(u)u =
J∑
j=2

gn,j(u).

Analogous toG(u) andD(u) we define Ḡ(u) =
∑J

j=2
1
j!

∑
σ∈Sj (cσ−dσ)Ḡ(j)(u)

and D̄(u) = (Ĩk + L(u))−1Ḡt(u). After substitution of v = ψ(u), and using
(C.25) in Lemma C.1 it follows that

J∑
j=3

(v(j) − u(j))∇jln(do, k)

j!
=

− (d− do)
J∑
j=3

k∑
l1,...,lj=0

(D(u)u)l1ul2 . . . ulj
∇l1,...,lj ln(do, k)

(j − 1)!
+ O(Sn(d)).

The definitions of D(u) and L(u) and (C.10) imply that

− n(v − u)tĨku = n(d− do)utDt(u)Ĩku = n(d− do)utG(u)(Ĩk + L(u))−1Ĩku

= n(d− do)utG(u)
(
Ik+1 − (Ĩk + L(u))−1L(u)

)
u

= (d− do)
J∑
j=2

1

j!
gn,j(u)− n(d− do)(D(u)u)tL(u)u

= (d− do)
J∑
j=2

1

j!
gn,j(u)− (d− do)

J−1∑
j=3

k∑
l1,...,lj=0

(D(u)u)l1ul2 . . . ulj
∇l1,...,lj ln(do, k)

(j − 1)!
.
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At the same time, the definition of Ĩk implies that

1

2

(
v(2) − u(2)

)
∇2ln(do, k) = −n(v − u)tĨku−

n(v − u)tĨk(v − u)

2
.

Combining the preceding results, we find that

hkv +
J∑
j=1

v(j)∇jln(do, k)

j!
−

hku+
J∑
j=1

u(j)∇jln(do, k)

j!
+ (d− do)

J∑
j=2

gn,j(u)

j!


= hk(v − u) + (v − u)t∇ln(do, k)− n(v − u)tĨk(v − u)

2
+O(Sn(d))

= (v − u)t∇ln(do, k) +O(Sn(d)),

where the last equality follows from (C.24) below in Lemma C.1, together
with the assumption on hk in prior A in (2.2).

Apart from the term (v − u)t∇ln(do, k) on the last line, the preceding
display implies (C.5). Hence, to complete the proof of (C.5) it suffices to
show that

(C.11) (v − u)t∇ln(do, k) = −(d− do)utDt(u)∇ln(do, k) = O(Sn(d)).

The proof of (C.11) consists of the following steps:

|ut(D(u)− D̄(u))t∇ln(do, k)| = oPo(n
1
2
−δk−

1
2 ),(C.12)

(d− do)utD̄t(u)D (∇ln(do, k)) = O(Sn(d)),(C.13)

(d− do)utD̄t(u)S (∇ln(do, k)) = O(Sn(d)),(C.14)

where S (∇ln(do, k)) denotes the centered quadratic form in ∇ln(do, k), and
D (∇ln(do, k)) the remaining deterministic term. We will use the same no-
tation below for L(u).

Equation (C.12) follows from Lemma B.4 and (C.22) in Lemma C.1 be-
low, which imply that the left-hand side equals oPo((

√
k‖u‖)2n−1+εk

√
n) =

oPo(n
1
2
−δk−

1
2 ), for some δ > 0. For the proof of (C.13), note that Lemma

B.4 implies

|utD̄t(u)D(∇ln(do, k))| . ‖D̄(u)u‖
√
kk(3/2−β)++ε.

Combined with Lemma C.1, this implies that the left-hand side isO(
√
kk5/2−2β+ε),

which is O(Sn(d)). The proof of (C.14) is more involved. Recall that D̄(u)
is defined as D̄(u) = (Ĩk + L(u))−1Ḡt(u). Using (B.16) in Lemma B.5, we
obtain

(Ĩk + L(u))−1 = 2[Ik+1 − (A(do) +R2s +R2d + L(u))(1 + oPo(1))].
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Substituting this in D̄(u), it follows that (C.14) can be proved by controlling
Ḡ(j)S(∇ln(do)), Ḡ

(j)A(do)S(∇ln(do)), Ḡ
(j)R2dS(∇ln(do)), Ḡ

(j)D(L(u))S(∇ln(do)),
Ḡ(j)R2sS(∇ln(do)) and Ḡ(j)S(L(u))S(∇ln(do)) for all j = 3, . . . , J . To do so,
first note that Lemma B.5 implies that ‖Ḡ(j)R2sS(∇ln(do))‖ = oPo(nε

√
k).

Hence,
|utḠ(j)R2sS(∇ln(do))| = oPo(k−β+1+ε) = oPo(1),

which clearly is O(Sn(d)). The terms Ḡ(j)S(∇ln(do)), Ḡ
(j)A(do)S(∇ln(do)),

Ḡ(j)R2dS(∇ln(do)) and Ḡ(j)D(L(u))S(∇ln(do)) can be written as quadratic
forms ZtMZ − tr[M ], where, for a sequence (bl)

k
l=0 and a function g with

‖g‖∞ <∞, M is of the form

T
1
2
n (fo)T

−1
n (fdo,k)Tn

(
g(x)fdo,k(x)

∑
l

bl cos(lx)

)
T−1
n (fdo,k)T

1
2
n (fo),

Z being a vector of n independent standard Gaussian random variables.
Using Lemma 2.4 (supplement) it can be seen that |M |2 ≤ n(

∑
l b

2
l + k/n).

Lemma 1.3 (supplement) with α = ε+ 1/2 then implies that

(C.15) Po

|ZtMZ − tr[M ]| > nε+
1
2

(∑
l

b2l +
k

n

) 1
2

 ≤ e−cnε .
For all j ∈ {3, . . . , J}, the four terms above can now be bounded for a
particular choice of g and bl.

• Bound on Ḡ(j)S(∇ln(do)). For all l2, . . . , lj ∈ {0, . . . , k}, set bl =

γ
(j)
l2,l,l4,...,lj

and g(x) = 1. Then we have

k∑
l=0

blS(∇ln(do)))l1 = oPo

n 1
2

+ε

(∑
l

b2l

) 1
2

 .

By induction it can be shown that

1

2π

∫ π

−π
cos(l0x) cos(l1x) cos(l2x) · · · cos(ljx)dx

= 2−j
∑

ε1,...,εj∈{−1,1}

I
l0+

∑j
i=1 εili=0

(C.16)

Consequently,
∑

l b
2
l = O(k−1) for all l2, l4, . . . , lj ∈ {0, . . . , k}. Us-

ing the fact that
∑

l |ul| = o(1), we obtain that (Ḡ(j)S(∇ln(do)))l2 =
oPo(n1/2+εk−1/2), for all l2 ∈ {0, . . . , k}. This implies that

(C.17) ‖Ḡ(j)S(∇ln(do))‖ = oPo(n1/2+ε) = O(Sn(d)).
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• Bound on A(do)S(∇ln(do)). Set bl = Il+l1≥kθo,l+l1 and g(x) = 1, then

(A(do)S(∇ln(do)))l1 = oPo(n1/2+εk−β), ∀l1 ∈ {0, . . . , k}.

Combined with Lemma C.1 this implies that

‖Ḡ(j)A(do)S(∇ln(do))‖ = oPo(n1/2+εk−β+1/2).

• Bound on Ḡ(j)R2dS(∇ln(do). Set bl = (R2d)l1,l and g(x) = 1, for all
l1 = 0, . . . , k, then Lemmas B.5 and C.1 lead to

‖Ḡ(j)R2dS(∇ln(do))‖ = oPo(n1/2+εk2n−1) = oPo(n−1/2+εk2).

• Bound on Ḡ(j)D(L(u))S(∇ln(do)). For all l1, l3, . . . , lj , l
′
3, . . . , l

′

j′
∈ {0, . . . , k},

set

bl =
1

n
tr

T−1
n (fdo)Tn

 k∑
l2=0

γ
(j)
l1,l2,...,lj

cos(l2x)g1(x)fdo(x)

×
T−1
n (fdo)Tn(cos(lx)g2(x)fdo(x)) · · ·T−1

n (fdo)Tn(gr(x)fdo(x))
]

where g1(x), ..., gr(x) are products of functions of the form cos(l
′
ix)

and g1(x)....gr(x) = cos(l
′
3x)... cos(l

′

j′
x). Lemmas 2.1 and 2.6 in the

supplement, together with (C.16), imply that
(C.18)∑

l

b2l = O(k−1), and ‖Ḡ(j)D(L(u))S(∇ln(do))‖ = oPo(nε+1/2).

Consequently, the contribution to all these terms in (v − u)t∇ln(do, k) is
of order O(Sn(d)).

We control utḠ(j)S(L(u))S(∇ln(do, k)), by bounding ‖Ḡ(j)S(L(u))‖ using
a similar idea. Indeed, for all l1, l2 ≤ k, (Ḡ(j)S(L(u)))l1,l2 can be written as
a sum of terms of the form (ZtMl1,l2Z − tr(Ml1,l2))/n, where Z is a vector
of n independent standard Gaussian random variables, and Ml1,l2 has the
form

T
1
2
n (fo)T

−1
n (fdo,k)

(∏
i<i0

Tn(∇σ(i)fdo,k)T
−1
n (fdo,k)

)
×

Tn

(
k∑
l=0

γ
(j)
l,l1,l2,...,lj−1

cos(lx)∇σ(i0)−{l}fdo,k

)
T−1
n (fdo,k)

∏
i<i0

Tn(∇σ(i)fdo,k)T
1
2
n (fo).
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We can use the same argument as in (C.15) since for all l1, l2, . . . , lj−1

|Ml1,l2| . |T−
1
2

n (fdo,kTn
( k∑
l=0

γ
(j)
l,l1,l2,...,lj−1

cos(lx)∇σ(i0)−{l}fdo,k
)
T
− 1

2
n (fdo,k)|

= O(n1/2+εk−1/2).

Hence, it follows that n−1[ZtMl1,l2Z − tr(Ml1,l2)] = oPo(n−1/2+εk−1/2) and

(C.19) utḠS(L(u))S(∇ln(do, k)) = oPo(‖u‖nεk) = oPo(n1/2−δk−1/2).

Combining (C.19) and (C.17)-(C.18), we obtain (C.14). This in turn finishes
the proof of (C.11), since

(v − u)t∇ln(do, k) = oPo(|d− do|n
1
2
−δk−

1
2 ) = O(Sn(d)).

We now prove that ψ(u) is a one-to-one transformation. First note that
ψ(u) is continuously differentiable for all ‖u‖ ≤ 2l0δn. This follows from the
definition ψ(u) = (Ik+1 − (d− do)(Ĩk + L(u))−1Gt(u))u, the fact that G(u)
and L(u) are polynomial in u and Lemma C.1, by which ‖L(u)‖ = oPo(1).
To prove that ψ(u) is also one-to-one, we bound the spectral norm of the
Jacobian

ψ′(u) = Ik+1 − (d− do)D(u)− (d− do)(D′(u)u),

where (D′(u)u) is the (k + 1)× (k + 1) matrix with elements

k∑
l=0

ul
∂(D(u))l1,l

∂ul2
, l1, l2 = 0, . . . , k.

For ψ(u) to be one-to-one, it suffices to have ψ′(u) = Ik+1(1 + oPo(1)).
By (C.24) in Lemma C.1 below, we have |d− do|‖D(u)‖ = OPo(|d− do|).

Therefore we only need to control the spectral norm of D′(u)u. For all l1, l2,
we have
(C.20)

(D′(u)u)l1,l2 =

[
−(Ĩk + L(u))−1∂L(u)

∂ul2
(Ĩk + L(u))−1Gt(u)u+ (Ĩk + L(u))−1∂G

t(u)

∂ul2
u

]
l1

.

Both (G(u))l1,l2 and (L(u))l1,l2 can be written as

Fl1,l2(u; τ, b) :=
J∑
j=2

τj

k∑
l3,...,lj=0

ul3 · · ·uljbl1,l2,...,lj ,
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where the constants τj , bl1,...,lj are different for G and L, and b is symmetric
in its indices. In particular, τ2 = 0 in the case of L. Using this generic
notation for G(u) and L(u), we find that for all v ∈ Rk+1 and all l1, l2 ≤ k,(
∂F (u; τ, b)v

∂ul2

)
l1

=

J∑
j=3

τj(j − 3 + 1)

k∑
l3,...,lj=0

vl3ul4 · · ·uljbl1,l2,...,lj := F (v, u; τ ′, b),

where τ ′j = τj(j − 3 + 1), j = 3, . . . , J . It therefore has the same form as
F (u; τ ′, b), with v replacing one of the u’s. Applying this to the first term of
(C.20), with v = (Ĩk + L(u))−1Gt(u)u, we find that

|(Ĩk + L(u))−1F (v, u; τ ′, b)| . |F (v, u; τ ′, b)| = O(1),

where we used (C.21) and (C.24) from Lemma C.1. The second term of
(C.20) is treated similarly with v = u so that we finally obtain

|D′(u)u| = O(1),

and ψ is one-to-one on {u : ‖u‖ ≤ 2l0δn}. Using the above bounds we also
deduce that the Jacobian is equal to exp(O(Sn(d))), since

log det[Jac] = log det
[
Ik+1 − (d− do)D(u)− (d− do)D′(u)u

]
= O[(d− do)(|tr[D(u)]|+ tr[D′(u)u]) + (d− do)2(|D(u)|2 + |D′(u)u|2))]

= O(
√
k(d− do) + k(d− do)2) = O(Sn(d)).

This finishes the proof of (C.4), and hence the proof of Lemma 3.5.

Lemma C.1. Let v = ψ(u), with ψ as in (C.8). Under the conditions of
Lemma 3.5, we have

|L(u)| = oPo(n−1/2+εk) = oPo(1),(C.21)

|G− Ḡ| = oPo(n−1/2+εk) = oPo(1),(C.22)

|D(u)| = OPo(1),(C.23)

‖u− ψ(u)‖ . |d− do|OPo(‖u‖),(C.24)

and

J∑
j=3

(v(j) − u(j))∇jln(do, k)

j!

= −(d− do)
J∑
j=3

k∑
l1,...,lj=0

(D(u)u)l1ul2 . . . ulj
∇l1,...,lj ln(do, k)

(j − 1)!
+O(Sn(d)),

(C.25)

uniformly over ‖u‖ ≤ 2l0δn.
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Proof. We first prove (C.21). From (B.2), we recall that ∇l1,...,lj ln(do, k)
is the sum of a centered quadratic form S(∇l1,...,lj ln(do, k)) and a determin-
istic term D(∇l1,...,lj ln(do, k)). For all l1, . . . , lj , S(∇l1,...,lj ln(do, k)) equals

Xt

T−1
n (fdo,k)

∑
σ∈Sj

bσBσ(do)

X − tr

Tn(fo)T
−1
n (fdo,k)

∑
σ∈Sj

bσBσ(do)

 ,
with Bσ(do) := Bσ(do, θ̄do,k) as defined in (B.1). Using Lemma 1.3 (supple-
ment) together with (B.10) we obtain that for all l1, . . . , lj , S(∇l1,...,lj ln(do, k)) =

oPo(n
1
2

+ε), and its contribution to |L(u)| is oPo(k(
√
k‖u‖)j−2n−

1
2

+ε) =
oPo(n−1/2−δk). The deterministic term in (B.2) is

D(∇l1,...,lj ln(do, k)) =
∑
σ

cσtr [Bσ(do)] +
∑
σ

dσtr
[
(Tn(fo)T

−1
n (fdo,k)− In)Bσ(do)

]
.

We bound the contribution of the first term to |L(u)|; the second term
can be treated similarly. Let L̃(u) be the matrix when in (C.9) we replace
∇l1,...,lj ln(do, k) by

∑
σ cσtr[Bσ(do)]. Hence,

(C.26) (L̃(u))l1,l2 = −
J∑
j=3

1

(j − 1)!

∑
σ∈Sj

cσ

k∑
l3,...,lj=0

ul3 . . . ulj
tr [Bσ(do)]

n
,

(C.27) where
1

n
tr [Bσ(do)] =

1

2π

∫ π

−π
cos(l1x) . . . cos(ljx)dx+ Eσ,

Eσ being the approximation error. For each σ and j ≥ 4, the contribution
of the integral in (C.27) to (L̃(u))l1,l2 is O(

∫ π
−π |u

tcos|j−2(x)dx) = O(‖u‖2);

hence its contribution to |L̃(u)| is k‖u‖2 = o(n−1/2−δk). For j = 3, we have

1

4π

k∑
l3=1

ul3

∫ π

−π
cos(l1x) cos(l2x) cos(l3x)dx =

1

2

(
ul1+l2Il3=l1+l2 + u|l1−l2|Il3=|l1−l2|

)
,

and the contribution of this term to |L̃(u)| is of order
√
k‖u‖ = o(n−1/2+εk).

Next we bound the contribution to |L̃(u)| of the error term Eσ in (C.27).
Note that we can write the last sum in (C.26) as
(C.28)

k∑
l3,...,lj=0

ul3 . . . ulj
tr [Bσ(do)]

n
=

1

n
tr

[
p∏
i=1

Tn (bi(x)fdo,k)T
−1
n (fdo,k)

]
,
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where

(C.29) bi(x) = (utcos(x))|σ(i)|−δ1(i)−δ2(i) cos(l1·)δ1(i) cos(l2·)δ2(i),

δ1(i) = I1∈σ(i), δ2(i) = I2∈σ(i) and p = |σ|. If p ≤ 3, then Lemma 2.4
(supplement) implies that

(C.30) Eσ = O((
√
k‖u‖)j−2nε−1[k2(3/2−β)+ + k]) = o(n−1−δk).

If p ≥ 4, then Lemma 2.6 (supplement) together with (C.28), with

f = fdo,k, f2i = bifdo,k, i ≤ |σ|,

L = k(3/2−β)+ , M,m−1 = O(1), M (i) = O((
√
k‖u‖)|σ(i)|−δ1(i)−δ2(i) and

L(i) = O(k(
√
k‖u‖)|σ(i)|−δ1(i)−δ2(i)), leads to the bound

k∑
l3,...,lj=0

ul3 . . . ulj
tr [Bσ(do)]

n
− 1

n
tr

 |σ|∏
i=1

Tn(bifdo,k)Tn

(
1

4π2fdo,k

)
= o(k(3/4−β/2)+n−1/2+ε‖u‖(

√
k‖u‖)j−3) = o(n−1/2−δ).

Using Lemma 2.1 (supplement) we finally obtain that

1

n
tr

 |σ|∏
i=1

Tn(bifdo,k)

− 1

2π

∫ π

−π
(utcos)j−2(x) cos(l1x) cos(l2x)dx = o(n−1−δk).

Therefore the contribution of the approximation error Eσ in |L̃(u)| is of
order o(n−1/2−δk). Using a similar argument we control the terms in the
form tr

[
Tn(fo)(T

−1
n (do, k)− In)Bσ(do)

]
and (C.21) is proved.

We now prove (C.22) and bound

(G− Ḡ)l1,l2 =
J∑
j=2

1

j!

∑
σ∈Sj

(cσ − dσ)
k∑

l3,...,lj=0

r
(j)
l1,...,lj

ul3 . . . ulj ,

with r
(j)
l1,...,lj

as in (C.6). These are the approximation errors which occur

when replacing 1
ntr[T1,σ(do, k)] and 1

ntr[T2,σ(do, k)] by their limiting integrals

(see also (B.4)). Therefore, for each σ ∈ Sj ,
∑k

l3,...,lj=0 r
(j)
l1,...,lj

ul3 . . . ulj is a
combination of terms of the form

1

n
tr

[
p∏
i=1

Tn (bi(x)fdo,k)T
−1
n (fdo,k)

]
− 1

2π

∫ π

−π
(utcos(x))j−2Hk(x) cos(l1x) cos(l2x)dx,
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with p ∈ {|σ|, |σ| + 1} and the functions bi defined as in (C.29) apart
from b1(x) = Hk(x)(

∑k
l=0 ul cos(lx))|σ(1)|−δ1(1)−δ2(1) cos(l1.)

δ1(1) cos(l2.)
δ2(1).

Therefore, using the same construction as in (C.28)-(C.30), we obtain that

|(G− Ḡ)l1,l2 | = O(n−1/2+ε), |G− Ḡ| = O(n−1/2+εk) = o(1).

To prove (C.23), we use the just obtained bound on |G− Ḡ|, and in addi-
tion establish a bound |Ḡ|. We treat each termG(j) inG(u) =

∑J
j=2

1
j!

∑
σ∈Sj (cσ−

dσ)G(j)(u) separately. First we show that |Ḡ(2)| = O(1), which follows from
definition (C.7), by which

tr
[
(Ḡ(2))2

]
=

k∑
l1,l2,l1+l2≥k

1

(l1 + l2)2
≤ 1.

Consequently, |Ḡ(2)| ≤ 1. For j ≥ 3, note that for all 0 ≤ l1, l2 ≤ k,

∣∣∣Ḡ(j)
l1,l2

(u)
∣∣∣ =

∣∣∣∣∣∣
k∑

l3,...,lj=0

γ
(j)
l1,l2,...,lj

ul3 . . . ulj

∣∣∣∣∣∣
≤

k∑
l4,...,lj=0

|ul4 . . . ulj |
∫ π

−π
|Hk(x)|

∣∣∣∣∣∣
k∑

l3=0

cos(l3x)ul3

∣∣∣∣∣∣ dx
≤ (
√
k‖u‖)j−3 ‖u‖√

k
= (
√
k)j−4(‖u‖)j−2.

Therefore, |Ḡ(j)(u)| ≤ k(
√
k)j−4(‖u‖)j−2 = (

√
k‖u‖)j−2 = o(1), for all j ≥

3. Hence |Ḡ(u)| = O(1), which combined with ‖(Ĩ+
k L(u))−1‖ = OPo(1) (see

Lemma B.5) and (C.21)), imply that

|D̄(u)| = |(Ĩk + L(u))−1Ḡt(u)| = O(1),

uniformly over ‖u‖ ≤ 2l0δn. It follows that

|D(u)| ≤ ‖(Ĩk + L(u))−1‖
(
|Ḡ| + |G− Ḡ|

)
= OPo(1).

This concludes the proof of (C.23); (C.24) directly follows from this result
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since ‖u− ψ(u)‖ ≤ |d− do||D(u)|‖u‖. Finally, we prove (C.25). We have

J∑
j=3

(v(j) − u(j))∇jln(do, k)

j!
= −(d− do)

J∑
j=3

k∑
l1,...,lj=0

(D(u)u)l1ul2 . . . ulj
∇l1,...,lj ln(do, k)

(j − 1)!

+ (d− do)2
J∑
j=3

(
j

2

) k∑
l1,...,lj=0

(D(u)u)l1(D(u)u)l2 . . . ulj
∇l1,...,lj ln(do, k)

(j − 1)!

+ . . .+ (−1)J
k∑

l1,...,lJ=0

(D(u)u)l1(D(u)u)l2 . . . (D(u)u)lJ
∇l1,...,lJ ln(do, k)

(J − 1)!

Using the same argument as in the proof of (C.21), we find that for all for
all j ≥ 3

k∑
l1,...,lj=0

(D(u)u)l1(D(u)u)l2ul3 . . . ulj
∇l1,...,lj ln(do, k)

j!

= n

∫ π

−π
(D(u)u)tcos(x))2(utcos(x))j−2dx

+ (
√
k‖u‖)j−1O(

√
nnε(
√
k‖u‖) + k +

√
n‖u‖k1/2(3/2−β)+)

= o(n1−δk−1), for some δ > 0.

Similarly, the higher-order terms in the above expression for
∑J

j=3
(v(j)−u(j))∇j ln(do,k)

j!
can be shown to be O(Sn(d)), which terminates the proof of Lemma C.1.
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