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This supplementary material contains technical lemmas and in-
equalities used in the main text of Bayesian semi-parametric esti-
mation of the long-memory parameter under FEXP-priors. It starts
with a series of (in)equalities on integrals (Lemmas 1.1 and 1.2) and a
deviation bound for quadratic forms (Lemma 1.3). In Lemmas 2.1-2.6
(section 2) we prove results on the asymptotic behavior of Toeplitz
matrices. These results require the Holder constants of various func-
tions, which are given in section 3. Finally, the proof of Lemma B.2
is given in section 4.

1. Technical results. Let n; = —1;502/j and recall that éd,k = O +
(do — d)npy- Let the sequence {a;} be defined as a; = 0, ; + (d, — d)n; when
Jj >k and a; = 0 when j < k. In addition, define

00 k
(L1) Hg(z) = Z nj cos(jz), Gr(z) = an cos(jz),
j=1

j=k+1
(1.2) Agr(z) = Z (0o, + (do — d)nj) cos(jz) = Z a;jcos(jx).
j=k+1 j=k+1

Using this notation we can write

(1.3) —2log |1 — | = —log(2 — 2cos(z)) = Gi(x) + Hy(z),
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fan(®) = fapg,, (@) = fo(x)exp{ — Y ajcos(jz)
J=k+1
= fo(x)e_Adﬁk(m) = fo(1;)e(d—d0)Hk(fE)—Ado,k(CE)‘

(1.4)

Given d, k and 6, the sequence {a;} represents the closest possible distance
between f, and fg ¢, since

1

" 2 _ 2

- i>k

(1.5) U(fos far) = U(fos fana,,) =
From (1.4) it also follows that for all d,

0
far = Hyfa-

(1.6) p

LEMMA 1.1.  When 6, € O(8, L,), there exist constants such that for any
positive integer k,

(1.7) < | Hi(x)dr <Ok
(1.8) S 10osl = OG2), 3710, = O(1),
1>k >0

T _ 1428
(1.9) Aty p(@)Hp(@)dz = Y 0oy =0 (k72 ),

- i>k
(1.10) / Af, p(@)de = Zeﬁ’l:o(;ﬁ—w)’

- I>k

(1.11) A2 (@) Hy(w)de = O(/ﬂﬁ—l),
(1.12) Hix)dzr < loik.

—T

When k — oo, the big-O in (1.8)-(1.11) may be replaced by a small-o, since
Dok 9ng2/3 then tends to zero.

PROOF. The result for [ H?(z)dx follows directly from the definition of
Hj,. The assumption that 6, € ©(f, L,) and the Cauchy-Schwarz inequality
imply that

Z‘Qoﬂ < Zﬁz’ll% 25725 — Ok P,

>k >k >k
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proving the first result in (1.8). Similarly, one can prove (1.9). For (1.10),
note that >, 92 < k=28 D oisk 92ll . For the other bounds we omit the
details of the proof They follow from the fact that for all sequences a, b and
C7

2 Z albmcn/ cos(lx) cos(mzx) cos(nx)dx

l,m,n>k
= Z bmcn Z ay / cos(lx) (cos((m + n)x) + cos((m — n)x)) dx
m,n>k >k -
= Z am+nbmcn + Z Am—nbmCn.
m,n>k m,n>k;m—n>k

O]

Before stating the next lemma we give bounds for the functions Hj and
G- Since —2log |1 — €| = —log(x? + O(x*)), there exist positive constants
¢, By, By and By such that

(1.13) |Hi(z)| > Bo|logz|, |z| < ck™1,

(1.14) |Hi(z)| < Bi|logz| 4+ Balogk, € [—m, .

LEMMA 1.2. Letaj = (0o — (d—do)n;)1j>k, asin (1.2). Then forp >1

and q = 2, 3,4 there exist constants c(p, ) such that for all d € (— 2, 2) and
k< exp(|d—d,|™1),
™ A p log k)c(P:a)
(1.15) fak(x) k
+ O((log k)TrPP211=del | g — |75 ¢V,
(1.16)
1 T fo . . 1 2
o " (x) — 1) cos(iz) cos(jx)dx = §ai+j1i+j>k +0 Zaj ,
- ) >k
1 T Jo 2 -1
(1.17) — () — 1) Hi(x)dx = O(|d — do|k™ " log k),
21 J_n \ fak
where the constant By in (1.15) is as in (1.14), and the constants in (1.16)
and (1.17) are uniform in d. The constant c(p,q) in (1.15) equals 0, 3,1

when respectively ¢ = 2,3, 4.
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PROOF. When d = d,, (1.15) directly follows from (1.7) and (1.12), be-
cause of the boundedness of (f,/ f4, r)P = exp{pAg, 1 }. Now suppose d # d,.
Let Cy = max,¢c|_x 7 exp{|Ag, k(7)[} and by, = max,epm 7 |(d — do) Hi ()],
for m = ¢ %I < =L, Since 2720 100,51 < 00, the sequence Cy is bounded
by some constant C. To prove (1.15) we write

o (s ) o
= [ () o [ (G5 ) e

We first bound the last integral in the preceding display, by substitution

of (fo/far)? = exp{pAar} = exp{—p(d — do)Hy, + pAg, 1}. From (1.14) it
follows that

(1.18)

b < |d — do|(Bi|d — do| ™' + Bylogk) < By + By,

as k < exp(|d — d,|~1). Hence we obtain (f,/fsx)? < Ceb™ on (m, ). For
g = 2 and ¢ = 4 the bound on the last integral in (1.18) therefore follows
from (1.7) and (1.12); for ¢ = 3 the bound follows from the Cauchy-Schwarz
inequality.

Next we bound the first integral in (1.18). Because the function z!4~%(log z)?
has a local maximum of 4|d—d,| 2e~2 at 2 = e~ /1=l (log x)? < 4z~ ld=dol|q—

do| 272 for all z € [0,m]. Again using (1.14) we find that

q
S2 <j> U /0 (B1|log z|)? z—PBld=dol gy,

=0

- (4 pmiaad (2B ™ i
<3 (4 <1ogk>q—ﬂ+p32d—do< 1 ) [ artrmsig,
;(]) €|d_do’ 0
< (log k)1PB2ld=dol|g _ g |3 =1/ 1d=dol,

We now prove (1.16).

1 fe , '
or (fd,k; (x) 1) cos(iz) cos(jz)dx

_ 1 " (A k(@) ; ]

- =/ (c 1) cos(iz) cos(jz)da

< 2i <Ad,k($) - %Ai k(x)e(Ad”“(xm) cos(ix) cos(jz)dw.
T ) ’

k(@) 10

/om <f£ok(2)> [Ho|* (= i( )/ (Bi|log z|)? (Bylog k)7 e~Pld—do)H.
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The linear term equals

1 s
o / Ag () cos(iz) cos(jx)dx
TJ_

1
(Z a; cos(lx) ) (cos((i+ j)x) + cos((i — j)x)) dz = iai+j1i+j>k'
For the quadratic term we have
(1. 19)

1 ™
Ad p(T)e (Bak(@)+ cos(iz) cos(jz)dn| < Py Agk(x)e(Ad,k(x))erm
7'(' b

‘ -7

. (14 Cebm) [T

T —T

This is O(>_

and (6_%,71’) as above.

To prove (1.17), write exp(Agr) — 1 = Ag + A? keg with Agr = —(d —
do)Hp(x)+Ag, k() and |d—d,| < vy, substitute (1. 14) and proceed as in the
proof of (1.15) above. The biggest term is a multiple of |d—do| [ _|Hj, () da,
which is O(9,k~1). This is larger than the approximation error when 3 >

3(1+V2). O

ik J) which follows from (1.5) and integration over (0,e” )

LEMMA 1.3. Let A be a symmetric matriz matriz such that |A| =1 and
let Y = (Y1,...,Yn) be a vector of independent standard normal random
variables. Then for any o > 0,

P (Y'AY — tr(A) > n®) < exp{—n®/8}.

PrROOF. Note that ||A| < |A| = 1 so that for all s < 1/4, sytAy <
soy'yl|Al| < y'y/4 and exp{sY'AY} has finite expectation. Choose s = 1/4,
then by Markov’s inequality,

P(Y'AY —tr(A) > n®) < e /gAY )/t
= exp{—no‘/4— %logdet[ln — A/2] —tr(A)/4}
< exp{—n/4 +tr(A%)/4}.

The last inequality follows from the fact that A(I,, —7A/2)~! has eigenvalues
Aj(1—7X;/2)71, where A; are the eigenvalues of A for all 7 € (0,1). Hence,
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tr(A%(I, — 7A/2)72) is bounded by 4tr(A?). The result follows from the fact
that when n is large enough n® > 2tr(A2) = 2. O

2. Convergence of the trace of a product of Toeplitz matrices.
Suppose T, (f;) (j =1,...,p) are covariance matrices associated with spec-
tral densities f;. According to a classical result by Grenander and Szégo
(Grenander and Szegé (1958)),

p T P
Lo | [ 1) | = (2m)2 / [ fi(x)de
J=1 =1

In this section we give a series of related results. We first recall a result from
Rousseau et al. (2010).

LEMMA 2.1. Let 1/2 > t > 0 and LW, M® > 0, p; € (0,1], d; €
[—1/2+1t,1/2 —t] for alli =1,....2p and let f;, (i < 2p) be functions on
[—7, ] satisfying
(2.1)

M® |z —y
)] = a2 gi(a). gi(a)| < MO, [gi() ()] < Y

LO|gp—y|Pi
[ ALyl

and assume that >0, (da;i—1 + d2;) < 5. Then for all € > 0 there exists a
constant K depending only on €,t and ¢ = Z?Zl(dgj,l + daj)+ such that

P

T 2p
tr | TT T (foj—1) T f2y) —(27T)2p1/ I1/i(@)dz
-

]:

2p 2p
<K HM nPitet2a 4 KHM(z —ltqte
=2 \i#j i=1

To prove a similar result involving also inverses of matrices, we need
the following two lemmas. They can be found elsewhere, but as we make
frequent use of them they are included for easy reference and are formulated
in a way better suited to our purpose. The first lemma can be found on p.19
of Rousseau et al. (2010), and is an extension of Lemma 5.2 in Dahlhaus
(1989).

LEMMA 2.2.  Suppose that for 0 <t <1/2 and d € [-1/2+1,1/2 — ]

(2.2) |f(z)| = |z|*g(z), m<|g(z)| <M, |g(z)—g(y)| < Llz -yl
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and assume that 0 < m <1 < M < +oo and L > 1. Then, for all ¢ > 0,
there exists a constant K depending on t and € only such that

1

L — T ()T, ( ! f>T2<f>|23KLM§nl"’“.

m
ProoF. By Lemma 2.1,

3 1 302 3 1 3
[ — T2 (f)Tn (471_2]@) T2 (NI =tr {In =20 (f)Tn (4772f> T:i (f)

T (o ) T (4 ) T

converges to zero, the approximation error being bounded by K[L(1 +
M?/m?) + M?/m?). O

Sol=

The next result can be found as Lemma 3 in Lieberman et al. (2011), and
is an extension of Lemma 5.3 in Dahlhaus (1989).

LEMMA 2.3. Suppose that f1 and fo are such that | f1(z)| > m|z|2h
and | fo(x)| < M|z|=2% for constants di,ds € (—3, %) and m, M > 0. Then

1T 2 (f >3<f2>u<c nld2md) e,

PROOF. In the proof of Lemma 5.3 on p. 1761 in Dahlhaus (1989), the
first inequality only depends on the upper and lower bounds m and M. [

Using the preceding lemmas, the approximation result given in Lemma 2.1
for traces of matrix products can be extended to include matrix inverses.

LEMMA 2.4.  Suppose that f satisfies (2.2) with constants d, p, L, m and
M. For fy, j =1,...,p, assume that (2.1) holds with constants da;, pgj,
L) and M3 (j=1,...,p). For convenience, we denote M(*—1) = m~1
, p2j—1 = p and L% 1) =L (j=1,...,p). Suppose in addition that d, dgj
[—5+t, 5 —1] satisfy >20_ (daj—d)y < 5(p—3), and let g = 3_5_, (daj—d)+.
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Then for all € > 0 there exists a constant K such that

1 _ L [Ty fai(o)
—t T ! Tn o T d
st om g - o [ 1175
2p 2p
(2 3) <K M(Z) L(j)n Pi 4 n 1 H M(Z) n€+2q
7j=2 \i#j 1<2p
p M (P;rl) (1)
i HM(zj) (L) n{1=r) —ltet2g
j=1 "
and setting f = 1/(4n%f),
1 ? T
e T 7 (N Taltg) ¢ = g TT TN T()
=1 =1

(2.4)

(p+1)

P
< HM(ZJ) <LM> P =) B iter2g
N m

j=1

Proor. Without loss of generality, we consider the fy;’s to be nonneg-
ative When this is not the case, we write fa; = f;j — f{j and treat the
positive and negative part separately; see also Dahlhaus (1989) , p. 1755-56.
To prove (2.4), we use the construction of Lemma 5 from Lieberman et al.
(2011), who treat the case p = 1 and dy; = d’. Inspection of their proof
shows that this extends to p # 1 and dy; that differ with j. To prove (2.3),
we use the construction of Dahlhaus’ Theorem 5.1 (see also the remark on
p. 744 of Lieberman and Phillips (2004), after (28)), and apply Lemma 2.1
with fo;_1 = f = ﬁ, j=1,...,p. This gives the first term on the right

in (2.3). The last term in (2.3) follows from (2.4). O

Although the bound provided by Lemma 2.4 is sufficiently tight for most
purposes, certain applications require sharper bounds. These can only be
obtained if we exploit specific properties of f and f3;. In Lemma 2.5 below
we improve on the first term on the right in (2.3). This is useful when for
example b;(x) = cos(jx); the Lipschitz constant L is then of order O(k),
but the boundedness of b; actually allows a better result. In Lemma 2.6 we
improve on the last term of (2.3).
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LEMMA 2.5. Let f(z) = |z|2%g(x) with —1/2 < d < 1/2 and g a
bounded Lipschitz function satisfying m < g < M, with Lipschitz constant
L.

o Let by,...,by, be bounded functions and let ||b||loc denote a common
upper bound for these functions. Then for all € > 0,

MY? ) 2
< on (3] I (Bl + 23 Mol
j=1

p

TGN T ()

i=1

p

117 %)

=1

tr — (2m)Ptr

o Letbj (j > 2) be bounded functions. Let by be such that ||b]|2 < +oo,
and assume that for all a > 0 there exists M'(a) > 0 such that

/ " Jbu(@) || ede < M (a).

—Tr

Then for all a > 0

tr HTn(bif)Tn(f‘l)] — @m)Ptr [T ] Tu(b) ‘
i=1 =1
(2.6) .
<0 (5] Tl (09700 (@) + Lo on]z)

1>2

PrOOF. We prove (2.5); the proof of (2.6) follows exactly the same lines.
We define A, (x) = €@ and L, (z) = n A |z|~! where the latter is an upper
bound of the former. Using the decomposition as on p. 1761 in Dahlhaus
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(1989) or as in the proof of we find that

p
tr HTn(bZ-f)Tn(fl)] — @m)Ptr | ] T (Bs) |
i=1 1=1
<c/ pb(:v ) ﬁf(m—l)—1 An(z1 = 23) ... Ap(29p — 21)d
= i = 1\ 42—1 = f(x2z) 1 2 2p 1
<C / ﬁb (g ) L22=1) ﬁ 2l ) Ay — ) A (e — 21)d
- 2og(@aicy)
+C / H bi(.rgi_l) H ¢ -1 An(:ﬂl — 1‘2) - An(.%'gp — xl)dx
[—m,m]?P i—1 g(in)
M|blls \* / j |91 — x| 3
< - DY n -
B C( [~ iy !mzil/\|x2¢71\)1*“Ln(xl 72) - In(wzp =)

MHbHoo SR
+CL T Z 2 |bj($2j,1)”$2j71 —£U2j|Ln(l'1 —$2)~--Ln($2p _xl)dx

J=1

M]bllos \? ! Mbllss, NP7 3
§0(|b”> nr (/ |x\_1+“dl‘> +CL <”b”10g”> (logn)?~ > [1b;]]2.
m [~ 7] m j=1

O

LEMMA 2.6. Let f = 1/(4n%f), and let p > 1/2 and L > 1, then under

the conditions of Lemma 2./ we have the following alternative bound for
(2.4):

(2.7)

Aomonf i)

< VILn(—r/2)+2q+e S (\/M72p ﬁ M(zl)) X (/7r ’f2p($)’ Hﬁgl(fc)dx) 2

Jj=1 I=j+1 - f(z)

P 1
+ H M@ ( ;22 (x )dx) + 67”7“0?"}
1=2 o

where

p P
error < L3/4p(=30)/4 H M 4 Z v/ L@ p—p2i N (24) H M@
=1 =1 1]
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REMARK 2.1.  The constant appearing on the right hand side of (2.7)
depends on M and m, but in all our applications of Lemma 2.6, the constants
M and m will be bounded and of no consequence.

PROOF. Following the construction of Dahlhaus (1989), equation (13),

we write ]tr{HJ (TN Tn(f25)) — tr{Hé-):l T (F)Tu(f25)} as

p p
[[4-118
(2.8) R

D p [/j—1
= |tr (A1—Bl)HAz+Z<HBz>( HAl ;
1=2 j=2 \i=1

I=j+1

1 1
where A; = T (fo;o) T (N)T7 (foy). By = T (foy—2)Tu(F)TE (f27) and
fo := fop (similarly for pg, L L and M©). When j = p, the factor Hfzj_H Ay
is understood to be the identity. Without loss of generality, the functions fo;
are assumed to be positive (it suffices to write fa; = f2j4 — f2j—). Lemma
2.3 implies that for each j,

M (29) (s —d)s b

(2.9) 1T 2 (F)YT2 (£ <

Using the relations in (1.6) (main paper) it then follows that

2. 10)
| 11 4 < IT 1zt gwrt o
I=j+1 I=j+1

o
< H M@ | 205 (e —d) s (d2y =) +(d2p—d) 1 /0 (2p) 01 (25)

~

I=j+1

First we treat the term (A; — Bi)[[_, A; on the right in (2.8). Writing
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1 L1
R=1,-T7(f)T.(f)T7 (f), it follows that

(2.11)

p
r (A1 — Bl) HAZ
=2

T3 (fop) T ()BT, ()Tl )T * ()T 2 (F)T2 (1) [ A
=3

< IRNTw (ATl )T 2 (DT (o) T 2 (DIIT * éﬁMHmH

1 2 " B :
< Lap(l=p)/2+et3+2 H M@ < ;T(x)da: + error)
1=2 -

p
Lin(l=p)/2+et5+2q H MR
1=2

1
T £2 2
< ;228 ; da + n“2 <L3/ 2 <M<2>)2 n(1=30/2 1 M(Z)L(z)np2)> By

The first inequality follows from the relations in (1.6) (main paper). The
1

N

_1
second inequality follows after writing |7}, 2 (f)Tn(f2)Tn ?(f)| as the sum of
a limiting integral and an approximation error; in addition we use (2.9) and
Lemma 2.2, by which

(2.12) |R|? < KL(M/m)*n'=rte < Lnl=rte,

This follows from Lemma 2.4, which we use to bound the approximation
error. The second term within the brackets in (2.11) constitutes part of the

term error. ‘
Next we bound the term ([T/Z; By)(A; — B;) [T i1 Arin (2.8) for j = 2.
Similar to the preceding decomposmon we have

p

BT (F2) T (f)RTy * ()77 (f2) ] A

=3

< BT (BT * (DIRIIT: (/) fﬁMHmH

tr tr

p
B1(Ay — Bs) HAZ
=3

1 1
The terms |R|, || T 2(f)T37 (fa)|| and || []]_5 A are bounded as in (2.9),
1 Z1
(2.10) and (2.12). For the term |B1T;% (f2)Tn *(f)| we have the decomposi-
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tion

|&ﬁmmﬁmﬁﬂﬂﬂ%nﬂm&&ém><ﬂ

t{&&émmﬂﬁémﬂﬂ4M&ﬁwmwm%ﬂ
+u[ BT () 5mmﬁmﬁmﬂ
< BT (f)T2 () + [BLB|RITE ()T * ()]

Using again Lemmas 2.1, 2.2 and 2.3, we find that the first term on the right
is bounded by

T 2
" {/ \f2p§£)(|f)2($) d 4+ M@ 112 Al —d) 4 +2(doy—d) s e <M(2)Ln7p n L(Z)np2>}
,,r x

and the second term by

T £2 2
n3—5+(da=d)i+e /T () [n f2p(i>f2 (z)

S A €

% (( M@ (M2 ppl=r 4 (P2 @ L@ pl=re | (a1(D)2 p7CP) L<2p>n1—pzp)}

da + M2P) p(2) pa(dz—d)4+2(dzp—d) 4+

Consequently,

tr

By (A — By) HAI

=3

<L % 1ia- p)/2+€+2q\/72pHM2l [/ f2 ‘f2p )|d +M(2p)(M(2))2Ln—p

= =)

+(LLONYY2 01 o) (ag 23720 =(otr2)/2 o (1L 2P) ppCPIY2 (£ (2))2 = (otp2p) /2

1
T f£2 2 2
()2 ( f2(x)f2p(f”)dx> 1O @ )2

D=

Note that

" f3 (@) fop()? >5< (2 7(20)
(ﬂ () de | S MY MW@P),

(LL® MCPY2(Af2)3/2n=(+r2)/2 < LM P)2n =P 4+ L) A2 pp(2e)py=p2

N|=
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and Ln—" < L3/2n(1=30)/2_ Therefore the terms on the right are of the same
order as the right hand side of (2.11). A similar argument applies to the
term (LLGP) M@P)1/2(Af(2))2p—(ptp20)/2,

Finally, we bound the term (H{;ll Bi)(Aj — B)Il]-j;1 A in (2.8) for
j > 3. For j > 3, Lemma 2.1 implies that

j—-1 . , 72 g2
| 11;11 Bg|2 =n ( B f2p(95]22f(2;)—2($) 11;11 ;2;((95)) dx + erro?”j) )

where

j—1 7j—1 2
error; < ne+22 (doy—d)+ H M(QZ)M(QZ 2) (Ln—P + Z Jl\;'((Ql)) n‘ﬂ2l)> .
=1 =1

Consequently, we have for all j > 2

Jj—1 D
<H Bz) (4, -8By ] 4

l=j5+1

<|HBl||R| TT 1A (o) T E T Gy T ()]

l=j5+1
1
Jj—1 2
< [ Anst-p)/2120te /3 (2) H @D (/ fop( fzg x) 11 fgzl(x)derermrj)
I=j+1 =1 f2(z)
for all 7 > 3, which finishes the proof of Lemma 2.6. O

3. Holder constants of various functions.

LEMMA 3.1. Let 0, € O(8,L,). Then f, satisfies condition (2.2) with
p =1 when g > %, and with any p < 8 —% when § < % The Hélder-
constant only depends on L,. When 6 € O (5,L), fare satisfies (2.2) with
p =1, regardless of . The Holder-constant is of order k3B, The function
—log(2 — 2cos(x)) fare satisfies condition (2.1) with p = 1 and Hélder-
constant of order k3B, The functions Gy fare and Hyfqre, with G and
Hy, as in (1.1), satisfy (2.1) with p = 1 and Holder-constant of order k.

PRrROOF. The function > 272 6, ; cos(jz) (i.e. the logarithm of the short-
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memory part of f,), has smoothness p <  — %, since

oo o0
> 180l cos(ja) = cos(iy)l < | D 16013 | |z = yl”
j=0 j=0

1
00 2

2 o0
02 (D) e -yl
§=0 j=0

IN

which is finite only when p < 8 — 1. Since >0l S V'L when 6 € ©(5 —
1/2,L) and 3 > 1, the functions > 72 0; cos(jx) and exp{> 7, 0; cos(jz)}
have the same smoothness; only the values of L and M differ. The same cal-
culation can be made when the FEXP-expansion is finite: when 6 € O(, L),
then for all z,y € [—m, 7],

k k
31) Y 8j(cos(jx) — cos(iy)| < le —yl > 165 S VIk:Plz —yl.
i=0 j=0
Since
k
(32)  |Gu(z) — Gily)l <2 njl cos(jx) — cos(jy)| = O(k)|z — ],
j=1

G, fa k0 has Hélder-smoothness p = 1, its Holder-constant being O(k). The
same result holds for Hy fy g, since Hp(x) = —log(2 — 2cos(z)) — Gi(x)

(see (1.3)) and s B = o(k) for all g > 1. O

4. Proof of Lemma B.2. For easy reference we first restate the result.
Let W,(d) denote any of the quadratic forms

X'T M (far)Bo(d, 041) X — tr [T (fo) Ty ' (fa) Bo(d, Oa)]

in (B.2) (in the main paper). Then for any j < J, (l1,...,l;) € {0,...,k}
and o € S(ly,...,1;), we have

(4.1) Wy (d) — Wo(dy)| = 0p, (|d — do|n2+k™32),

tr [Bg(d’ gd,k:)] —tr [Bg(do, édo)]
(4.2) = (d — do)tr[T1.0(do, k)] + (d — do)20(n 2k~ 2 (1-8/2)+)
= (d — do)tr[T} o (do, k)] + (d — do)?0(n'° /K),
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<4 3)
tr (T (fo) Ty ' (fag) — In) Bo(d, 0a1)] — tr [(Tn(fo) Ty (fas k) — In) Bo(dos Oa, )]
= (d — do)tr[Tao (do, R)] + (d — do)?0(n/k) + (d = dp)o(n " 2k~2).

PrROOF OF LEMMA B.2. We first prove (4.2). Developing the left-hand
side in d we obtain, for all j, (I1,...,l;) € {0,...,k}Y and o € S},

tr [Bg(d, éd,k)] — tr [Bg(do, édo)]
(4.4) i _ -
— (A= [B(dn O, 00) + 2l [Bd5)]

where d € (d, d,), and B’ and B” denote the first and second derivative with
respect to d, respectively. Writing

By (d, k) = T (HeV (i) fare) Ty (fak)
— T0(Vo iy fare) Ty (fae) Tn(Hi fa i) Ty ' (fan),

it follows that B, (d,f4) equals

lo

o(d0ak) = T Tn(Voi) far) Tt (Far) Bogy (d k) [ [ To (Vo) far) T (far)-

i=1 j<i 7>t

We recall the definition of T} , in Lemma B.1 (main paper), and conclude
that B, (d,04%) = Ti,(d, k). Consequently, the first term on the right in
(4.4) equals (d — d,)tr[T1 4 (do, k)].

The second derivative B, (d,fq) equals

lo

2 Z HT ) Fae) T (far) Bog H To(Vo iy fai) T (fag)
11 <t J<i1 11 <j<i2
X By(iy)(d, k) H To(V oy far) Tt (fag)
i2<]

lo]|

+ 3 T T (Vo) far) T (Far) Bogoy (d ) [ | T (Vo) far) T (fa)-
=1 j<i 1<j
We now show that tr [B:,’(d, éd’k)} = o(n“%k*%“l*ﬂ/mﬂ. From Lemma 2.4

and the above expression for B, (d,f4}), it can be seen that tr [B;(d, éd,k)}

converges to zero. To bound the approximation error, we cannot use directly
Lemma 2.4 because the bound in (2.4) becomes too large when 8 < 2 and
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|o| is larger than 1. We therefore use Lemmas 2.1 and 2.6. Let A_ (d, ‘?_de) be
the matrix obtained after replacing every factor T, Y(fax) in B/ (d, 84.1) by
To(fak), for far = f7}/(4n?). We recall from Lemma 3.1 that the Lipschitz
constant of fqy is O(k@*ﬁ”), and for H,gfd,k and I—IZVO.(M)fdJC (m < |o|,
j =1,2) it is O(klog k). Consequently, Lemma 2.1 implies that

r [AL(d.00)]| = Olhne) = ofn+ik3+1-9/2))

when k < k,, and 8 > 1. It follows from Lemma 2.6 that

N[

tr [A:;(d, éd,k)} “tr [B;’(d, éd,k,)} ‘ — O(n}/>ep(1=8/2)+) ( /_ i H,g(x)da:>

— 0(n5+%k:_%+(l_ﬂ/2)+).

Note that in the case where B, (d, 04.1) contains a Toeplitz matrix of the form
Tn(HE fax) or Tn(HEV () fak) then it contains no other Toeplitz matrix
involving Hy and we can set fy = H,f far or fa = H ,fv,,(m) fa and use
Remark 2.1; this leads to the above error rate. Combining the preceding
results for [tr[AL (d, 0a)]| and [tr[AL(d, Oa.1)] —tr[ B (d, B4)]| we obtain that

tr [Bg(d, éd,k)] ’ = 0(n6+%/<;_%+(1—5/2)+) = o(n'~%/k),

which completes the proof of (4.2).
Next, we prove (4.3). Writing f, — far = fo— fd, &+ fd, k — fak, it follows
that the left-hand side of (4.3) equals

tr [T (fo — far) Ty ' (far)Bo(d, Oag)] — tr [Tn(fo — fao )Ty (fao k) Bo(do, Oa, 1))

=t [T (fo — faon) {T0 " (far)Bo(d, 0as) — Ty ' (fao k) Bo(do, Oa, 1) }]

+tr [T (faok — far) Ty ' (far)Bo(d, 4]
= C1 + Cs.

Using (1.4) we write fqr = fdo,ke(djdo)Hk and f, = fdmkeAdoﬁk, and we
develop Cs(d,04) = Tn_l(fd,k)Bg(d, 041) around d = d,. It follows that

Cr =t [Tn(fo — Faon) {Tn "  (Far)Bo(d, 0ag) — Ty ' (fao k) Bo(doy 0y ) }]
= (d = do)tx [Ta(fo = Ji,1)C) (dor B, )]

o [ [T~ fa,)Cl o)
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with d,, = ud 4+ (1 — u)d,. For the first term on the right, we write, using
Lemmas 2.1 and 2.6,

tr[ w(fo = Fao 1) Co(doy Oy 1 )}

—d
=5 / Jo fdm;:m k(z) cos(l1x) . .. cos(l|yz)dx + error,

where o is a partition of {1, ..., j} and the error term is
1
e 0.5(3/2-8)+ VI | L0.5(3/2-8) ( )
O (118, llci(l 4+ KOS/ 050290 (L4 K] lc) ).

which is o(k~1/?n!/279). Similarly, Lemmas 2.1 and 2.6 imply that there
exists ¢ € R such that for al d € (d, — Uy, do + V)

tr [T (fo — faou)Co(d,Bay)

o—d
= / fo = 7 Jo = Dok H}(z) cos(lyx) ... €08(l|5 x)dz + error,
d07

where the error term is of order

e 1o-8), VN | 1o 1 n'~
0 (1184, + 1390 V4 13000 (g ) ) =0 (" ).

This implies that C1 = O(S,(d)). B
Using a Taylor expansion of Cy(d,fg) and of e~(@=4)Hx around d,, it
follows that

Cy = —(d — do)tr [T (fa, k He) Ty ' (fao k) B (dos O, k)]
- %(d — d,)*tr [ w(fa, nHie ~t(d ~dH YO (d, O 1) + 2Tn(fdo,ka)C:y(d,; e_d’,k)} ;

for some d between d and d,. The first term equals tr[T5 ). The second
equals

1 ~ P =
— 5(d = o) [T far kHR)Co (' O ) + 2T fa, s H)Co(d O )|

d—d,)?
= —71(2) HE(z) cos(lz) .. . €08(l|)dz + error,
T

—T

where the error term is O (n€ (k + kOSC=B)+ (nf=1 4 kne)l/Z)) = o(k~1n!79).
Therefore
Cy = (d — do)tl‘[TQJ] + O(’I”L/k?)
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Finally, to prove (4.1), 1
Then for any |d — d,| < Uy, we have

Wg(d) — Wg(do) = Zt(Ad - Ado)Z —tr (Ad — Ado) .
Writing A/, for the derivative of Ay with respect to d, it follows that
(4.5) Ag— Ag, = (d— dO)A&,

for some d between d and d,. Using (1.6), we find that

T2 ()T (Far) T (Hifa ) T (far) T (Bo (d a0 T2 (£,)
TR ()T (far) B(ds Bui) T (fo).

Therefore, Lemma 2 of Lieberman et al. (2011) and the inequalities in (1.6)
(main paper) imply that

= Sl\‘m—t

(4.6)
|Aa — Ag,| < |d - dollA;zl

lo]|

< Cld — do|| T2 ()T, ||2H||T (Fa) Bogoy (0,02 (F10)

+ T (fdk) n(HkNV o) far)Tn (fdk)|

—|d—dorn60(|T (Fa ) T (Hi 1) T (Fa)| + (T (Fa) T (Vo) 1) T

where (i) can also be the empty set, in which case Vo) far = far We
bound the terms between brackets using Lemma 2.4, with p = 2, f = fg,
and g1 = g equalling either Hy fg, or HiV,(;) f- The Holder constants of
these functions are given by Lemma 3.1. Hence we find that

(4.7)
|75, (fdk) n(Hifi)Th (fdk)l =tr [( (fdk) (Hk:fdk))}

= — H,f(m)dm + O (k + k¥ P)) = O(n*Y/ 9 (log n)/(29)).

—T

The last inequality follows from equation (1.7) in Lemma 1.1 and the fact
that k = k,, and 8 > 1. Similarly, it follows that

(48) |T * (F)TulHiV oo f) T 2 (1)l* = O(n' ="/ 9 (10 n)!/29),

et Z="T, (fO)XandletAd— (fo) Y(far)B a(d,éd,k)Té(fo).
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Inserting (4.6), (4.7) and (4.8) in (4.5), we find that |A; — Ag,| < |d —
do|n/?= V4B for all |d — do| < Ty, and all € > 0, when n is large enough.
Consequently, we can apply Lemma 1.3 with A = (A4q— A4,)/|4qd — Aq,|, so
that when n is large enough

(4.9) sup P, (\Wa(d) W (dy)| > |d — do\n%*%*ﬁ) < e /8,

|d—do|<Tpn
Using the above computations with |d — d’| < n~2, we obtain
(Wo(d) — Wo(d)| <n 2T (n+ 2'2).

Hence, for all € < % and ¢ > 0,
(4.10)

P, sup  [Wo(d) = Wo(d)| >n" | <P, (2'Z > n2_2€) <e
|d’—d|<n—2

provided n is large enough. Hence, we obtain (4.1) by combining (4.9) and
(4.10) in a simple chaining argument over the interval (d, — Uy, do + Up).
O
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