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Abstract

Consistency, asymptotic normality and e¢ ciency of the maximum likelihood es-

timator for stationary Gaussian time series, were shown to hold in the short memory

case by Hannan (1973) and in the long memory case by Dahlhaus (1989). In this

paper, we extend these results to the entire stationarity region, including the case of

antipersistence and noninvertibility. In the process of proving the main results, we

provide a useful theorem on the limiting behavior of a product of Toeplitz matrices

under strictly weaker conditions than those employed by Dahlhaus (1989).



1 Introduction

Let Xt, t 2 Z; be a stationary Gaussian time series with mean � and spectral density

f� (!) ; ! 2 � � [��; �] and denote the true values of the parameters by �0 and

�0. We are concerned with spectral densities f� (!) that belong to the parametric

family ff� : � 2 � � Rpg, such that for all � 2 �

f� (!) � j!j��(�) L� (!) as ! ! 0; (1)

where � (�) < 1 and L� (!) is a positive function that varies slowly at ! = 0. Xt

is said to have long memory (or long-range dependence) if 0 < � (�) < 1, short

memory (or short-range dependence) if � (�) = 0 and antipersistence if � (�) < 0.

The range � (�) � �1 corresponds to noninvertibility and our results cover this

case as well. Two examples of parametric models that are consistent with (1) are

the fractional Gaussian noise (Mandelbrot and Van Ness, 1968) and the ARFIMA

models (Granger and Joyeux 1980, Hosking 1981).

The asymptotic properties of the Gaussian maximum likelihood estimator (MLE)

for short memory dependent observations were derived by Hannan (1973). For the

Gaussian ARFIMA(0; d; 0) model, the memory parameter is d, which corresponds

to � (�) =2 in (1). Yajima (1985) proved consistency and asymptotic normality of

the MLE when 0 < d < 1
2
and asymptotic normality of the least squares estimator

when 0 < d < 1
4
. Dahlhaus (1989, 2006) established consistency, asymptotic nor-
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mality and e¢ ciency for general Gaussian stationary processes with long memory

satisfying (1) and 0 < � < 1. Similar results for the parametric Gaussian MLE

under antipersistence and noninvertibility do not appear to be documented in the

literature.

In the semiparametric framework, Robinson (1995a) established consistency and

asymptotic normality of the log-periodogram estimator when �1 < � < 1. Velasco

(1999a) extended these results by showing that consistency still holds for the range

�1 < � < 2 and asymptotic normality for �1 < � < 3=2. Moreover, with a suitable

choice of data taper, a modi�ed version of this estimator was shown to be consistent

and asymptotically normal for any real �.

For the Whittle MLE, Fox and Taqqu (1986) proved consistency and asymptotic

normality under the condition 0 < � < 1. Velasco and Robinson (2000) extended

these results to the range �1 < � < 2 and with adequate data tapers, to any

degree of nonstationary. Lately, Shao (2009) considered a nonstationarity-extended

Whittle estimation which is shown to be consistent and asymptotically normal for

any � > �1 (except � = 1; 3; 5; :::) and to enjoy higher e¢ ciency than Velasco and

Robinson�s (2000) tapered Whittle estimator in the nonstationary case.

The local Whittle estimator was shown by Robinson (1995b) to be asymptotically

normal for �1 < � < 1, while Velasco (1999b) extended these results by proving

consistency for �1 < � < 2 and asymptotic normality for �1 < � < 3=2. As with

the �ordinary�Whittle MLE, with suitable tapering, the results are extended to any
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� � 1. Abadir, Distaso and Giraitis (2007) developed an untapered nonstationarity-

extended local Whittle estimation and proved consistency and asymptotic normality

when the generating process is linear, for any � > �3 (except � = �1; 1; 3; :::) with

higher e¢ ciency than Velasco�s (1999b) tapered local Whittle estimator.

For the exact local Whittle estimator, Shimotsu and Phillips (2004) proved as-

ymptotic normality for any real �, if the true mean of the series is known, and

Shimotsu (2006) showed that similar results hold in the case where the process has

an unknown mean and a linear time trend, for � 2 (�1; 4).

The purpose of the paper is to continue this line of literature and �ll the gap

concerning the asymptotic properties of the Gaussian-MLE by extending it to the

case � < 1.

Non-invertible processes may arise in practice by over-di¤erencing to eliminate

stochastic and deterministic trends, see Beran et al. (2003). Antipersistence be-

havior was also noticed as a feature of �nancial time series including, for example,

Peters (1994) and Shiryaev (1999) who modeled implied and realized volatility of the

S&P500 index, and Karuppiah and Los (2005) who investigated nine FX rates and

concluded that most rates are antipersistent. For other examples of antipersistent

processes, we refer the reader to Tsai (2009) and the references therein.

While there are simulations studies that analyze the performance of these esti-

mators in long-, short memory and antipersitence, (see Sowell 1992, Cheung and

Diebold 1994, Hauser 1999, and Nielsen and Frederiksen 2005), we emphasize that
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todate, consistency, asymptotic normality and e¢ ciency of the Gaussian MLE an-

tipersistence and noninvertibility case have not been established. We prove these

properties without making apriori assumptions on the memory-type of the series.

By this it is meant that the researcher is free to �nd the MLE over the entire range

� < 1.

In practice, todate, if the MLE for the memory of a given data set was found to be

negative and the process was assumed to have positive memory, the value of the MLE

was censored to zero. In various simulation experiments, this resulted in a pile-up of

MLE values at zero, and essentially this amounts to restricted maximum likelihood

estimation, rather than the unrestricted analogue. See, for instance, Lieberman and

Phillips (2004a). By establishing a theory for the range � < 1, the pile-up at zero

is avoided.

Our set of assumptions are not stronger than those of Dahlhaus (1989, 2006) and

are satis�ed in the stationary ARFIMA (p; d; q) model, allowing for the possibility

that d � �1=2.

The outline of the paper is as follows. Section 2 states the model and main

results of the paper. Section 3 concludes. Appendix A gives the main proof, while

all auxiliary results and their proofs are collected in Appendix B.
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2 Assumptions and Main Results

As in Dahlhaus�s (1989) notation, let

rg� =
�
@

@�j
g�

�
j=1;:::;p

and r2g� =

�
@2

@�j@�k
g�

�
j;k=1;:::;p

:

We denote by kAk the spectral norm of an N�N matrix A and by jAj the Euclidean

norm of A, that is,

kAk = sup
x2Cn

�
x�A�Ax

x�x

�1=2
; jAj = [tr (A�A)]1=2 :

where A� is the conjugate transpose of A. We require the following assumptions:

(A.0) (a) Xt, t 2 Z; is a stationary Gaussian sequence with mean � 2 R and

spectral density f� (!) ; ! 2 � � [��; �]. The true values of the parameters of the

process are �0 and �0 2 � � Rp. If � and �0 are distinct elements of �, we assume

that the set f!jf� (!) 6= f�0 (!)g has a positive Lebesgue measure.

(b) The parameter �0 lies in the interior of � and � is compact.

There exists � : �! (�1; 1) such that for each � > 0:

(A.1) f� (!) ; f
�1
� (!) ; @=@!f� (!) are continuous at all (!; �), ! 6= 0, and

f� (!) = O
�
j!j��(�)��

�
; f�1� (!) = O

�
j!j�(�)��

�
;
@

@!
f� (!) = O

�
j!j��(�)�1��

�
:

(A.2) @f� (!) =@�j and @2f� (!) =@�j@�k are continuous at all (!; �), ! 6= 0,
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and

@

@�j
f� (!) = O

�
j!j��(�)��

�
; 1 � j � p;

@2

@�j@�k
f� (!) = O

�
j!j��(�)��

�
; 1 � j; k � p;

@3

@�j@�k@�l
f� (!) = O

�
j!j��(�)��

�
; 1 � j; k; l � p

(A.3) @2f� (!) =@!@�k are continuous at all (!; �), ! 6= 0, and

@2

@!@�k
f� (!) = O

�
j!j��(�)�1��

�
; 1 � j � p:

(A.4) The function � (�) is continuous, and the constants appearing in the

O (�) above can be chosen independently of � (not of �).

We also assume that �̂N , the estimator of �0; ful�lls the following condition.

(A.5) For each � > 0

�̂N = �0 + op
�
Nf�(�0)�1g=2+�

�
:

Assumptions (A.0)-(A.4) are modi�cations of Dahlhaus�s (1989) assumptions

(A0), (A2), (A3) and (A7)-(A9). The most important aspect of the assumptions is

that � (�) may have values in the interval (�1; 1), extending Dahlhaus�s (1989) as-

sumptions, which limited � (�) to the interval (0; 1). Assumption (A.5) corresponds

to the assumption on �̂N in Theorem 3.2 of Dahlhaus (1989). This condition is
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ful�lled, for example, by the arithmetic mean and linear M-estimates (see Beran,

1991), for � (�0) 2 (�1; 1), but Samarov and Taqqu�s (1988) showed that it does

not hold for the arithmetic mean when � (�0) < �1. Adenstedt (1974) proved that

(A.5) is in fact satis�ed for the GLS estimator for all � (�0) < 1, which is not a

feasible estimator, but we can easily extend his result for any estimator �̂N of the

form

�̂N = (1
0�N (f

�)1)
�1
10�N (f

�)X;

where 1 is an N�1 vector of 1�s, X = (X1; :::; XN)
0, �N (f�) is the covariance matrix

of X, given by

�N (f) =

�Z �

��
ei(r�s)!f (!) d!

�
r;s=1;:::;N

; (2)

f � = f��, with �
� any value in � satisfying �(��) = inf�2� �(�) (by compactness

of � there exists at least one such value) or even f �(�) = (1 � cos�)���=2, where

�� � inf�2� �(�). Indeed, we can then bound

E (�̂N � �0)
2 = E

��
10�N (f

�)�1 1
��1

10�N (f
�)�1 (X� �01)

�2
�

�
10�N (f

�)�1 1
��2 ��10�N (f �)�1�N (f�0) �N (f �)�1 1��

�
�
10�N (f

�)�1 1
��1 


�N (f �)�1=2�N (f�0) �N (f �)�1=2




� KN���1+(�(�0)���)+� � KN�1+�(�0)+�;8� > 0;

where the last line is deduced from Theorem 5.2 of Adenstedt (1974) for the term
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10�N (f
�)�1 1 and from Lemma 2 in Appendix B. It is to be noted that this re-

sult could be guessed from Theorem 7.2 of Adenstedt (1974) where he proved that

underestimating � does not change the rate at which the BLUE estimator of �

converges.

Assumptions (A.0)(a) and (A.1)-(A.4) hold if Xt � �0 is a fractional Gaussian

noise with self-similarity parameter 0 < H < 1, or Gaussian ARFIMA process

with a di¤erencing parameter d < 1
2
. Finally, note that as in Dahlhaus (1989), our

Assumption (A.1) allows neither a pole nor a zero outside the origin, which excludes

processes such as seasonally (possibly fractionally) di¤erenced series.

Denote by �̂N the estimator obtained by minimizing the�1=N -normalized Gaussian

plug-in log-Likelihood function

LN (�) =
1

2N
log det�N (f�) +

1

2N
(X� �̂N1)

0�N (f�)
�1 (X� �̂N1)

with respect to �. The main results of the paper are stated in the following theorem.

It establishes consistency, asymptotic normality and e¢ ciency of the Gaussian MLE,

�̂N .

Theorem 1 Under Assumptions (A.0)-(A.2) and (A.4)-(A.5):

(i)

�̂N !p �0:
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(ii)

p
N
�
�̂N � �0

�
!
d
N
�
0;� (�0)

�1� ; (3)

where �(�) is the Fisher information matrix, given by

�(�) =
1

4�

Z �

��
(r log f� (!)) (r log f� (!))0 d!:

The main e¤ort in the proof is in the establishment of consistency. Because of the

nonuniform behavior of the quadratic form (X� �̂N1)
0�N (f�)

�1 (X� �̂N1) around

� (�0) � � (�) = 1, implied by Theorem 5 of Appendix B, in our proof we consider

separately the regions of � with � (�0)�� (�) < 1 and with � (�0)�� (�) � 1. A simi-

lar distinction between the two cases was made by Fox and Taqqu (1987), Terrin and

Taqqu (1990), Robinson (1995b) and Velasco and Robinson (2000). Using Theorem 5

of Appendix B, we derive a uniform limit for the plug-in log-likelihood function which

is valid on any compact parameter subspace of � in which max� (� (�0)� � (�)) < 1.

To handle the region of �0s on which � (�0)� � (�) � 1, we adopt a similar idea to

that of Velasco and Robinson (2000, Theorem 1), who proved that in this region, the

discrete �1=N -normalized Whittle log-Likelihood converges to +1 a.s. as N !1.

The reason for the aforementioned break is that the limiting behavior of the trace

of a product of Toeplitz matrices is very di¤erent when � (�0)�� (�) < 1 and when

� (�0) � � (�) � 1. These terms appear in the cumulants of the log-likelihood and

its derivatives. In the process of proving the main results, we generalize Theorem
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5.1 of Dahlhaus (1989) and prove it under strictly weaker conditions. This result

is of use and interest by its own right. It continues a very long tradition on the

limiting behavior of Toeplitz matrices. See, among others, Kac (1954), Grenander

and Szegö (1958), Taniguchi (1983), Fox and Taqqu (1987), Avram (1988), Bercu

et. al. (1997) and Lieberman and Phillips (2004b).

3 Conclusions

There is a very large body of literature on long memory processes and in particular,

on the asymptotic properties of various estimators in this context under di¤erent

conditions. The main contribution that this paper makes is in the establishment

of consistency, asymptotic normality and e¢ ciency of the Gaussian MLE when the

memory parameter satis�es � (�0) < 1. This range includes all types of memory un-

der stationarity and allows for the possibility of noninvertibility. This work therefore

extends Dahlhaus�s (1989, 2006) seminal contribution, which was done under long

memory only, i.e., under the condition 0 < � (�) < 1. Similar progress has already

been made in the semiparametric literature recently (e.g., Velasco 1999a, 1999b, Ve-

lasco and Robinson 2000, Shimotsu 2006), but up to this point in time, the results

for the parametric Gaussian case were con�ned to the long memory range only.
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Appendix A: Main Results

Throughout the Appendix, whenever no confusion occurs, we shall use � to

denote �(�) with the relevant � 2 � and �0 to denote �(�0). Also, K denotes a

generic positive bounding constant which may vary from step to step.

Proof of Theorem 1 (i) Set Y = X��01 and Z = �N(�0)�1=2Y, so that Z �

N (0; IN). Using the positive and negative parts of rf� together with Chebyshev�s

inequality, Theorem 5.2 of Adenstedt and Lemma 2, we have for any � 2 �

��10��1N (�)�N(jrf�j)��1N (�)Y�� � K(Z0Z)1=2N (�(�0)��(�))+=2+1=2��(�)=2+�; 8� > 0:

(4)

Using the mean value theorem with mean value �� and applying (4), we obtain

A(�; �0) � jLN(�)� LN(�0)j (5)

=
1

2N

��Y0[�N(f�)
�1 � �N(f�0)�1]Y + log det

�
�N(f�)�N(f�0)

�1���
+
(�0 � �̂N)2

2N

��10[�N(f�)�1 � �N(f�0)�1]1��+ j�0 � �̂N jN

��10[�N(f�)�1 � �N(f�0)�1]Y��
� j� � �0j

2N

�
jY0[�N(f��)

�1�N(rf��)�N(f��)�1]Yj+ jtr
�
�N(f��)

�1�N(rf��)
�
j
�

+K
j� � �0j
2N

�
N�1+�0+�10�N(f��)

�1�n(jrf��j)�N(f��)�11

+KN (�0��(��))+=2+�0=2��(��)=2+�(Z0Z)1=2
�
; 8� > 0:
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Thus, using Lemma 2 for the �rst two terms, there exists a 
 2 (1;1) such that

A(�; �0) � j� � �0jK
2N

�
Z0ZN
 +N
+1 +N
(Z0Z)1=2

�
; 8� > 0:

Hence, setting cN � N�
��=2, for any � > 0

P�0

"
sup

j���0j<cN
jA(�; �0)j > �

#
� P�0

�
Z0Z

N
> �N �=2

�
+ o(1) = o(1): (6)

Let LN(�) = LN(�; �0), we see that

jLN (�)� LN (�)j =
1

2N

��(X� �̂N1)0�N (f�)�1 (X� �̂N1)�Y0�N (f�)
�1Y

�� (7)
� 1

N
j�0 � �̂N j

��10�N (f�)�1Y��+ 1

2N
j�0 � �̂N j

2 10�N (f�)
�1 1:

Let �+(�) = f� 2 �;�(�) � �0; j�� �0j � �g, ��(�) = f� 2 �;�(�) � �0; j�� �0j �

�g, �+ = �+(0), �� = ��(0). Using Theorem 5.2 of Adenstedt (1974), we obtain

sup�2�+ 1
0�N (f�)

�1 1 � KN1��+� � KN1��0+�; 8� > 0 so that together with

Assumption (A.5), this implies

1

2N
j�0 � �̂N j

2 10�N (f�)
�1 1 = oP (N

�1+�); 8� > 0; (8)
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uniformly in � 2 �+. Similarly, with probability going to one, uniformly in � 2 �+

and 8� > 0,

1

N
j�0 � �̂N j

��10�N (f�)�1Y�� � KN�3=2+�0=2+�
�
10�N (f�)

�1 1
�1=2

(Z0Z)
1=2 j

�jj�N(�0)1=2�N(�)�1=2jj

= oP (1): (9)

Equations (8) and (9) imply that (7) is oP (1) uniformly on �+. Together with (6),

we have for all � > 0

P�0

"
sup

j�0��j<cN ;�0;�2�+
jLN(�0)� LN(�)j > �

#
� P�0

"
sup

j���0j<cN ;�0;�2�+
jA(�; �0)j > �=2

#
+o(1) = o(1): (10)

We now prove that for all � > 0, P�0
�
inf�2�+(�) LN(�)� LN(�0) < �

�
!N!1 0:

Consider a covering of �+, with balls of radii cN and centers �j, j = 1; :::; JN ,

where JN � KNpK1. Such a covering is possible, because of the compactness of �+.

18



Applying the chaining lemma (Polard (1984)) and using (6), for all � > 0,

P�0

�
inf

�2�+(�)
LN(�)� LN(�0) < �

�
� P�0

"
sup

j�0��j<cN ;�0;�2�+
jLN(�0)� LN(�)j > �=2

#

+

JNX
j=1

P�0 [LN(�j)� LN(�0) < �=2]

�
JnX
j=1

P�0 [LN(�j)� LN(�0) < �=2] + o(1): (11)

Continuing, each term in (11) can be written as

P�0 [LN(�1)� LN(�0) < �=2] = P�0
�
Y0[�N(�0)

�1 � �N(�1)�1]Y ��N > 0
�
;

where �N is given by �N = ��N + log det[�N(�1)�N(�0)
�1]: Since �0 � �(�1) on

�+, an application of Cherno¤�s inequality, with 0 < s < 1, yields

P�0
�
Y 0[�N(�0)

�1 � �N(�1)�1]Y ��N > 0
�

(12)

� exp

�
s�N=2� sNK(f�0 ; f�1) +

s2

2
tr
�
(IN � �N(�1)�1�N(�0))2

��
;

where

K(f1; f2)N =
�
tr[�N(f1)�N(f2)

�1 � IN ]� log det[�N(f2)�1�N(f1)]
�
=2:
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As in Dahlhaus (1989, p 1755), uniformly in �+,

K(f�0 ; f�1) �
K

N
tr
�
(IN � �N(�0)�N(�1)�1)2

�
; (13)

implying that

P�0
�
Y 0[�N(�0)

�1 � �N(�1)�1]Y ��N > 0
�
� exp

�
�N=2�Ktr

�
(IN � �N(�1)�1�N(�0))2

�	
:

(14)

By Theorem 5, for any 0 < u < 1, uniformly in �+(�) \ f�;�(�) � �1 + ug, there

exists a b1(�) > 0 such that for a large enough N ,

tr
�
(IN � �N(�1)�1�N(�0))2

�
=
N

4�

Z �
f�0(!)

f�1(!)
� 1
�2
d! � Nb1(�): (15)

Further, uniformly in �+(�) \ f�;�(�) < �1 + ug, because �(�) < 0, we have

�N(�1)
�1 � KIN , and

tr
�
(IN � �N(�1)�1�N(�0))2

�
� NC2

Z
(f�1(!)� f�0(!))

2 d! � Nb2(�); (16)

for some b2(�) > 0. It follows from (12)-(16) that we can choose � > 0 small enough

such that

P�0 [LN(�1)� LN(�0) < �=2] � e�NKb(�)=2: (17)
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Combining (11) with (17), we see that for some constant K 0 > 0

P�0

�
inf

�2�+(�)
LN(�)� LN(�0) < 0

�
� K 0�NKb(�)NpK1 + o(1) = o(1): (18)

To proceed, we decompose ��(�) as ��(�) = �1� [ �2�, with �1� = f� 2

��(�);�(�) � �1 + �0 + �0g and �2� = ��(�) r �1�, for some small �0 > 0.

With very similar calculations to those leading to (18), we obtain

P�0

�
inf

�2�1�
LN(�)� LN(�0) < �

�
= o(1): (19)

We now study the behaviour of Ln(�) over �2�. Let c > 0 and b 2 R be such

that g(x) = cx�b � inf�2� f�(x); and f2 (x) = C jxj��0+1��
0
such that f2 (x) �

sup�2� f� (x) : Such functions exists by the compactness of �. Note that for all

� 2 �2�,

LN(�) �
1

2N
[Y0�N(f2)

�1Y � 2(�̂N � �0)1�N(f2)�1Y + log j�N(g)j]:

Because (�̂N � �0)1�N(f2)�1Y = op (1) and the fact that

1

N
log j�N(g)�N(f0)�1j !N!1

1

2�

Z �

��
(log g(!)� log f0(!))d!;
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uniformly in �2�, we have

LN(�)� LN(�0) �
1

2N

�
Y0(�N(f2)

�1 � �N(�0)�1)Y
�
�K;

with probability going to 1. If �0 � 0, then �0 � 1 + �0 > �1 and by Theorem 5

1

N
tr
�
�N(�0)�N(f2)

�1 � IN
�
� 1

2�

Z �

��

h
K!�1+�

0 � 1
i
d! � K

�0
:

If �0 � 0, then Lemma 7 implies that for all A > 0 if �0 is su¢ ciently small

1

N
tr
�
�N(�0)�N(f2)

�1 � IN
�
� A:

Hence for any � > 0; by setting A > 2(K + �) and �0 small enough, we get

P�0

�
inf

�2�2�
LN(�)� LN(�0) < �

�
(20)

� P�0

�
1

2N

�
Y0(�N(f2)

�1 � �N(�0)�1)Y
�
� �+K

�
� P0

�
Y0(�N(�0)

�1 � �N(f2)�1)Y + tr
�
�N(�0)�N(f2)

�1 � IN
�
� 1

2
tr
�
�N(�0)�N(f2)

�1 � IN
��

�
4tr
h�
�N(�0)

1=2�N(f2)
�1�N(�0)

1=2 � IN
�2i

(tr [�N(�0)1=2�N(f2)�1�N(�0)1=2 � IN ])2

� 8[j�N(�0)1=2�N(f2)�1=2j2jj�N(f2)�1=2�N(�0)1=2jj2 +N ]
j�N(�0)1=2�N(f2)�1=2j4

= o (1) :

Equations (18), (19) and (20) complete the proof of consistency.
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(ii) By the mean value theorem,

rLN
�
�̂N

�
�rLN (�0) = r2LN

�
�N ; �̂N

� �
�̂N � �0

�
; (21)

with
���N � �0�� � ���b�N � �0���. Since �0 lies in the interior of �, for all " > 0,�p

NrLN
�
�̂N

�
> "
�
!p 0: Also,

p
NrLN (�0) =

1

2
p
N
tr
�
��1�0 �r;�0

	
� 1

2
p
N
(X� �̂N1)

0�N (f�)
�1�N (rf�) �N (f�)�1 (X� �̂N1) :

Using similar decompositions to (7), sup�2�
p
N jrLN (�0)�rLN (�0)j !p 0 and

p
NrLN (�0) =

p
Nr2LN

�
�N ; �̂N

� �
�̂N � �0

�
+ op(1):

We now prove that

LN
�
�N ; �̂N

�
=
1

4�

Z �

��

rf�0rf�0
f 2�0

(!)d! + op(1): (22)
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Set JN = 1
4�

R �
��

rf�0rf�0
f2�0

(!)d!, write �� = �N (f�), �r;� = �N (rf�), �r2;� =

�N
�
r2f�

�
,

r2LN (�) = � 1

2N
tr
�
��1� �r;��

�1
� �r;�

�
+

1

2N
tr
�
��1� �r2;�

�
+
1

N
(X� �̂N1)

0��1� �r;��
�1
� �r;��

�1
� (X� �̂N1)

� 1

2N
(X� �̂N1)

0��1� �r2;��
�1
� (X� �̂N1) ;

so that

r2LN (�)�r2LN (�) =
1

N

�
2Y0A�1(�0 � �̂N) + (�0 � �̂N)210A�1

�
; (23)

where A� is a linear combination of matrices of the form ��1� �r;��
�1
� �r;��

�1
� and

��1� �r2;��
�1
� . On an application of Lemma 2, the absolute value of (23) is less

than or equal to K
h
N�1+�0=2+(�0��(�))++� (Z0Z)1=2 +N�1+�0+�

i
= o(1); uniformly

on U� (�0) = f�; j� � �0j � �g, with � > 0 small. By similar calculations to those

involving (5), letting cN = N�
 for some 
 > 0, it can be seen that for all �0 > 0,

P�0

"
sup

j���0j�cN

��r2LN (�)�r2LN (�
0)
�� > �0# = o(1) (24)

and

P�0
���r2LN (�; �0)�r2LN (�0; �0)

�� > u� � e�cN1�2�u2 ; (25)
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for some c > 0 and � < 1=2, which can be chosen as small as need be. Inequalities

(24) and (25) imply that

P�0

"
sup

j���0j<�

��r2LN (�; �0)�r2LN (�0; �0)
�� > �0# = o(1):

Lemma 8 or Theorem 5 imply (22). Note that JN � cIN for some positive constant

c > 0. Therefore, we set ZN =
p
NJ

�1=2
N rLN(�0; �0). Since jj�

�1=2
�0

�
1=2
jrj j;�0jj

2 � CN �

and since JN � cIN for N large enough, the following Laplace transform satis�es

E(t) = EN0

h
et
0ZN
i

= e
t0J�1=2

N
tr[��1�0 �r;�0 ]
2
p
N

�����id+ 2t0J
�1=2
N �

�1=2
�0

�r;�0�
�1=2
�0

2
p
N

�����
�1=2

= e

tr

�
f��1�0 (t0J

�1=2
N

�r;�0)g
2�

4N
+ 1

6N3=2
tr

"��
IN+2u�

�1=2
�0

�
t0J

�1=2
N �r;�0

�
�
�1=2
�0

��1
�
�1=2
�0

�
t0J

�1=2
N �r;�0

�
�
�1=2
�0

�3#
:

It is quite easy to verify that

tr

�n
��1�0

�
t0J

�1=2
N �r;�0

�o2�
4N

=

Pk
j=1 t

2
j

2
+ o(1)

We thus need only prove that the second term is o(1). We have already proven that

�
IN + 2u�

�1=2
�0

�
t0J

�1=2
N �r;�0

�
�
�1=2
�0

�
> IN=2
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Thus the second term is bounded by

1

6N3=2
tr

"��
IN + 2u�

�1=2
�0

�
t0J

�1=2
N �r;�0

�
�
�1=2
�0

��1
�
�1=2
�0

�
t0J

�1=2
N �r;�0

�
�
�1=2
�0

�3#

� 4

3N3=2
tr

�n
�
�1=2
�0

�
t0J

�1=2
N �r;�0

�
�
�1=2
�0

o3�
� CN�1=2jj��1=2�0

�
1=2
jrj j;�0jj

6

� CN ��1=2; 8� > 0 = o(1)

This leads to E(t) = ejtj
2=2(1 + o(1)) for all t so that Zn ! N (0; Ip) and (ii) of

Theorem 1 is proved. �

Appendix B: Auxiliary Results

The following Lemma generalizes Lemma 5.3 of Dahlhaus (1989) to the negative

exponents case. The proof is similar to that of Dahlhaus (1989) and is omitted for

brevity.

Lemma 2 Let f (!) and g (!) be positive, nonnegative and symmetric functions

such that f�1 (!) = O (j!j�), g (!) = O
�
j!j��

�
, and �; � < 1. Then




�N (f)�1=2�N (g)1=2


2 = 


�N (g)1=2�N (f)�1=2


2 = O �N (���)+
�
:

We shall make extensive use of the following Lemma, which is Theorem 2 of

Lieberman and Phillips (2004b).

Lemma 3 Let fj (!) and gj (!) be positive symmetric functions such that gj (�) =
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O
�
j�j��

�
, fj (�) = O

�
j�j��

�
, � < 1, � < 1, j = 1; :::; p, and p (�+ �) < 1. As-

sume that 8t > 0, 9Mt1 Mt2, such that supj�j>t jf 0 (�)j � Mt1 and supj�j>t jg0 (�)j �

Mt2. Then 8" > 0

���� 1N tr ��pj=1�N (gj) �N (fj)�� (2�)2p�1
Z �

��
�pj=1 (gj (�) fj (�)) d�

���� = O �N�1+p(�+�)++"
�
:

We remark that Lemma 3 is a stronger version of Theorem 1(a) of Fox and Taqqu

(1987), who gave an o (1) upper bound instead.

The following result is the main building block in the proof of Theorem 5, pre-

sented below.

Lemma 4 Let fj (!) and gj (!) be positive symmetric functions such that gj (�) =

O
�
j�j����

�
, fj (�) = O

�
j�j����

�
, f�1j (�) = O

�
j�j���

�
, 8� > 0, �1 < � < 1,

� < 1, j = 1; :::; p. Assume that 8t > 0, 9Mt1 Mt2, such that supj�j>t
��f 0j (�)�� �Mt1

and supj�j>t
��g0j (�)�� �Mt2, j = 1; :::; p. Let hj (!) = (2�)

2 fj (!). Then 8� > 0

��tr ��pj=1�N (gj) �N �h�1j ��� tr ��pj=1�N (gj) ��1N (fj)
��� = O �Np(���)++�

�
:
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Proof of Lemma 4: First, we consider the case p = 1. Let A1 = �N(g)�N(f)�1

and B1 = �N(g)�N (h�1). We have,

tr[A1 �B1] = tr[�N(g)�
�1
N (f)(IN � �N(f)�N

�
h�1
�
)]

= tr[�N(g)(�
�1
N (f)� �N

�
h�1
�
)(IN � �N(f)�N

�
h�1
�
)]

+tr[�N(g)�N
�
h�1
�
(IN � �N(f)�N

�
h�1
�
)]

= aN + bN ;

say. The �rst term is

aN = tr[�N(g)(�
�1
N (f)� �N

�
h�1
�
)(IN � �N(f)�N

�
h�1
�
)]

� jj�N(g)1=2��1=2N (f)jj2jIN � �1=2N (f)�N
�
h�1
�
�
1=2
N (f)j2:

By Lemma 2, the �rst term above is O(N (���)++�) and by Lemma 3, the second

term is O
�
N �
�
. Hence, aN = O(N (���)++2�). Further, using Lemma 3, in the case

p(� � �) < 1 and Theorem 1(b) of Fox and Taqqu (1987) in the case p(� � �) � 1,

bN = tr[�N(g)�N
�
h�1
�
(IN � �N(f)�N

�
h�1
�
)] = O(N (���)++�):

Next, we consider the case p > 1. LetAj = �N(gj)�N(fj)�1, ~Aj = �
1=2
N (gj)�

�1
N (fj)�

1=2
N (gj+1),

Bj = �N(gj)�N
�
h�1j
�
, ~Bj = �

1=2
N (gj)�N

�
h�1j
�
�
1=2
N (gj+1), ~�j = IN��1=2N (fj)�N

�
h�1j
�
�
1=2
N (fj),
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and �j = IN � �N(fj)�N
�
h�1j
�
. Note that

j ~Aj � ~Bjj = j�1=2N (gj)�
�1=2
N (fj) ~�j�

�1=2
N (fj)�

1=2
N (gj+1)j

� j ~�jjjj�1=2N (gj)�
�1=2
N (fj)jjjj�1=2N (gj+1)�

�1=2
N (fj)jj

= O(N (���)++�);8� > 0:

We proceed by using complete induction. Assume that for all k < p

j
kY
j=1

~Aj �
kY
j=1

~Bjj = O(Nk(���)++�);8� > 0: (26)

Applying the decomposition used in eq�n (13) of Dahlhaus (1989) and the inequality

jA+Bj � jAj+ jBj, we have

j
pY
j=1

~Aj �
pY
j=1

~Bjj �
pX
k=1

j
k�1Y
j=1

~Bj( ~Ak � ~Bk)

pY
j=k+1

~Ajj =
pX
k=1

ak; (27)

say. In (27) and elsewhere, when k = 1, a term such as
Qk�1
j=1

~Bj is simply equal

unity. We have,

ak = � j(
k�1Y
j=1

~Bj �
k�1Y
j=1

~Aj)( ~Ak � ~Bk)

pY
j=k+1

~Ajj+ j
k�1Y
j=1

~Aj( ~Ak � ~Bk)

pY
j=k+1

~Ajj

� j
k�1Y
j=1

~Bj �
k�1Y
j=1

~Ajj j ~Ak � ~Bkj
pY

j=k+1




 ~Aj



+

k�1Y
j=1




 ~Aj


��� ~Ak � ~Bk

��� pY
j=k+1




 ~Aj


 : (28)
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By the induction hypothesis (26), (28) is bounded by two terms of the order

O
�
Np(���)++�

�
. Hence,

j
pY
j=1

~Aj �
pY
j=1

~Bjj = O
�
Np(���)++�

�
; (29)

as required. Next,

tr

"
pY
j=1

Aj �
pY
j=1

Bj

#
=

pX
k=1

tr

"
k�1Y
j=1

BjBk�k

pY
j=k+1

Bj

#

+

pX
k=1

tr

"
k�1Y
j=1

BjBk�k(

pY
j=k+1

Aj �
pY

j=k+1

Bj)

#
(30)

+

pX
k=1

tr

"
k�1Y
j=1

Bj(Ak �Bk)�k

pY
j=k+1

Aj

#
:

By Lemma 3 and Theorem 1(b) of Fox and Taqqu (1987), the �rst term in (30) is

tr

"
k�1Y
j=1

BjBk�k

pY
j=k+1

Bj

#
= tr

 
pY
j=1

Bj �
kY
j=1

Bj�N (fk) �N
�
f�1k
� pY
j=k+1

Bj

!
= O(Np(���)++�):

The second term in (30) involves

jbkj �
�����tr
 
k�1Y
j=1

BjBk�k(

pY
j=k+1

Aj �
pY

j=k+1

Bj)

!�����
�

�����
k�1Y
j=1

~Bj�
1=2
N (gk)�N(f

�1
k )(IN � �N(fk)�N(f�1k ))�

1=2
N (gk+1)

�����
�����

pY
j=k+1

~Aj �
pY

j=k+1

~Bj

����� :

30



The �rst term on the rhs of the above inequality can be written as the square root

of

tr(
kY
j=1

�N(gj)�N
�
h�1j
�
(IN � �N(fk)�N(f�1k ))�N(gk+1)(IN � �N(f�1k )�N(fk))

�
2Y
j=k

�
�N
�
h�1j
�
�N(gj)

�
�N(f

�1
1 )) = O(N

2k(���)++�);

so that, using (29), jbkj = O(Np(���)++�). Finally, the last term in (30 ) involves

jckj �
�����tr
"
k�1Y
j=1

Bj(Ak �Bk)�k

pY
j=k+1

Aj

#�����
� j

k�1Y
j=1

~Bj �
k�1Y
j=1

~Ajjj�1=2N (gk)�
�1=2
N (fk) ~�

2
k�N(fk)

�1=2�
1=2
N (gk+1)

pY
j=k+1

~Ajj(31)

+jj�1=2N (gk)�
�1=2
N (fk)jjj ~�kj2jj�N(fk)�1=2�1=2N (gk+1)jj

pY
j=k+1




 ~Aj


 k�1Y
j=1




 ~Aj



= O(Np(���)++�);

where, for the �rst term (31), we have used (29). Hence, we have completed the

proof of the Lemma. �

The following Theorem provides a uniform version of Theorem 5.1 of Dahlhaus

(1989), allowing for the possibility of antipersistence. Part (a) of Theorem 5 was

stated in Theorem 5.1 of Dahlhaus (1989) under the stronger condition p (� � �) <

1=2. This condition is too restrictive for our larger parameter space. Hence, we need

the result under the condition p (� � �) < 1, as stated below.
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Theorem 5 Let �� be a compact subset of � \ f� : �1 < � (�) < 1g, p 2 N [ f0g,

and f
�;j
(!) and g

�;j
(!) ; j = 1; :::; p, be symmetric, real-valued functions on �.

Suppose that for each j = 1; :::; p; f
�;j
(!) satis�es Assumptions (A.1) and (A.4) on

��, with exponent � (�), and that for each � > 0 , jg�;j (!)j � K (�) j!j��(�)�� , as

j!j ! 0, with � (�) < 1, continuous on ��. We have the following.

(a) If p (� (�)� � (�)) < 1 for all � 2 ��,

lim
N!1

1

N
tr

"
pY
j=1

�
�N (f�;j)

�1�N (g�;j)
	#
=
1

2�

Z �

��

(
pY
j=1

g�;j (!)

f�;j (!)

)
d!

uniformly in � 2 ��.

(b) If p (� (�)� � (�)) � 1 for all � 2 ��,

tr

"
pY
j=1

�
�N (f�;j)

�1�N (g�;j)
	#
= o

�
Np(�(�)��(�))+�� ;8� > 0;

uniformly in � 2 ��.

Proof of Theorem 5: The proof is an immediate consequence of Lemmas 3

and 4. �

Lemma 6 Let A be an n � n symmetric matrix satisfying jjAjj � KN �, for some

0 < � < 1=2. If Z � N (0; IN), then for all � > 0, there exists a c > 0, such that

P [Z 0AZ � tr (A) � �N ] � exp
�
�cN1�2��2

�
:
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Proof of Lemma 6: We prove the lemma by applying Cherno¤�s inequality.

For all s � N��=4K, with 1=2 > � > 0, IN � sA > IN=2 for N large enough and

P�0 [Z
0AZ � tr (A) > �N ] � exp

�
�s�N � str (A)� 1

2
log jIN � 2sAj

�
:

Using a second-order Taylor expansion of log jIN � 2sAj around zero, bounding

IN � 2sA from below by IN=2, and using the fact that tr (A2) � N jjAjj2,

P�0 [Z
0AZ � tr[A] > �N ] � exp

�
�s�N + 2s2KN1+2�

�
� exp

�
��

2N1�2�

8K

�
;

which completes the proof. �

The following lemma deals with the case in which the spectral density is of a

non-invertible process.

Lemma 7 Let g2(!) = C j!j��0+1�� ; g0(!) = C j!j��0 and �0 � 0. For all

A > 0, there exists an �A > 0 and an NA > 0 such that 8� � �A and 8N � NA,

tr
�
�N(g2)

�1�N(g0)
�
� AN:

Proof of Lemma 7: Note that we cannot use directly Lemma 3 since when

�0 < 0 1��0 > 1. ForM > 0, let gM(!) = g2(!) if g2(!) � 1=M and gM(!) = 1=M

if g2(!) < 1=M . Then gM is bounded from below and above. For all t > 0, by Lemma
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3,

jIN � �1=2N (gM)�N(1=(4�
2gM))�

1=2
N (gM)j � K(M)N t;

and because �0 � 0,

���� 1N tr ��N(1=(4�2gM))�N(g0)�� 1

2�

Z �

��

g0
gM
d!

���� � K(M)N�1+t:

Putting both relations together, and using the same argument as in Lemma 4, we

get

tr[�N(gM)
�1�N(g0)] � tr

�
�N(1=(4�

2gM))�N(g0)
�
�K(M)N t

� N

�
1

2�

Z �

��

g0
gM
d! �K(M)N t�1

�
:

Note that gM(!) = g2(!) i¤ j!j �M�1=(1��0��). Therefore

tr[�N(gM)
�1�N(g0)] � N

�
1

��

�
�� �M��=(1��0��)

�
�K(M)N t�1

�
:

LetM > 1 and � > 0 small enough. Using the inequalities �� � 1 and 1� e�z � z=2

where the latter applies for any z 2 (0; z0) for some �xed unspeci�ed positive z0, we

get that if � � �M � min( z0
logM

; 1� �0);
�
�� �M��=(1��0��)

�
��1 � 1

2(1��0��) log(M);

Hence for large enough N ,

tr[�N(gM)
�1�N(�0)] �

N logM

�(1� �0 � �)
�K(M)N t � N logM

2(1� �0 � �)
:
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We remark that g2 � gM and hence, �N(g2)�1 � �N(gM)
�1 for all M . Setting

logM= a0=� and � small enough, N�1tr[�N(g2)
�1�N(�0)] can be made as large as

desired. �

The following Lemma is the analogue of Theorem 5 when the parameter is in

the noninvertible region.

Lemma 8 Let p � 1 and f�, fj;�, j = 1; ::::; p be symmetric, real-valued functions

on �., where

fj;�(!) = O(j!j��(�)��); f�(!) = O(j!j��(�)); �(�) < 1; 8� > 0;

Let �0 2 � such that �(�0) � �1 + �0, for some 0 < �0 < 1=2. Assume that the

function � is continuous on fj� � �0j � �0g and assume that fj;�; g� are continuous

in � 2 �; ! 6= 0 and satisfy

@fj;�(!)

@!
= O

�
j!j��(�)�1��

�
;
@f�(!)

@!
= O

�
j!j��(�)�1��

�
; 8� > 0:

Then if � > 0 is small enough, there exists 1 > c > 0, such that uniformly on

f�; j� � �0j � �g,

����� 1N tr
"

pY
j=1

�N(f�)
�1�N(fj;�)

#
� 1

2�

Z �

��

pY
j=1

fj;�(!)

f�(!)
d!

����� � N�c:
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Proof of Lemma 8: For M > 0, consider the function gM(!) = f�(!) if

f�(!) � 1=M and gM(!) = 1=M if f�(!) < 1=M . For all x; y such that xy > 0,

sup
j���0j��

j1=gM(x)� 1=gM(y)j � Cjx� yj[M3+�0+� + 1] 8� > 0:

Therefore there exists a 
 � 0, such that uniformly in f�; j� � �0j � �g,

����� 1N tr h��N(f�)�N(1=(4�2gM))� IN�2i� 1

2�

Z �

��

�
f�(!)

gM(!)
d! � 1

�2����� � KM
N�1+t;

(32)

for any t > 0 and N � N0 where N0 is some large integer, independent of M .

Because

1

2�

Z �

��

�
f�(!)

gM(!)
d! � 1

�2
� K

Z
f�(!)�1=M

d! � KM1=�(�); with �(�) < 0;

(32) implies that

tr
h�
�N(f�)�N(1=(4�

2gM))� IN
�2i � KN �M1=�(�) +M
N�1+t� :

Choose M = N r with r < 1=
. Then

tr
h�
�N(f�)�N(1=(4�

2gM))� IN
�2i � K(N1+r=�(�) +N t+r
) = o(N); 8t > 0:
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For simplicity�s sake we not fj;� by fj in the following calculations. Using the

developments in the proof of Lemma 4, we have

�����tr
"

pY
j=1

�N(f�)
�1�N(fj)

#
� tr

"
pY
j=1

�N(1=(4�
2gM))�N(fj)

#�����
� j�N(f�)1=2�N(1=(4�2gM))�N(f�)1=2 � IN j 

pX
j=1

�����Y
i�j
�N(1=(4�

2gM))�N(fi)

�����
pY

i=j+1

jj�N(f�)�1=2�N(fi)1=2jj2

+

pX
j=2

�����Y
i<j

�N(1=(4�
2gM))�N(fi)

�����
pY
i=j

jj�N(f�)�1=2�N(fi)1=2jj2
!

� CN �+1=2(N1=2+r=(2�(�)) +N �+r
=2)
�
1 +N r
(p)N�1+��

� N1�c

for some 0 < c < 1=2, by choosing r > 0 small enough. This ends the proof. �
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