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Summary. The choice of the summary statistics in Bayesian inference and in par-
ticular in ABC is paramount to produce a valid outcome. We examine necessary
and sufficient conditions on those statistics for a corresponding Bayes factor to
be convergent. The conditions thus obtained are then usable in ABC settings to
determine which summary statistics are appropriate, following a standard Monte
Carlo validation.

1. Introduction

1.1. Summary statistics
In ?, the authors showed that the now popular ABC (approximate Bayesian
computation) method (Tavaré et al., 1997, Pritchard et al., 1999, Toni et al.,
2009, Marin et al., 2011) is not necessarily validated when applied to Bayesian
model choice problems, in the sense that the resulting Bayes factors may fail
to pick the correct model even asymptotically. The ABC algorithm is getting
more and more accepted as a component of the Bayesian toolbox for handling
intractable likehoods. Since ABC is not the central topic of this article, but
rather both a motivation and an immediate application domain, we do not em-
bark upon a complete description of its implementation, refering to Marin et al.
(2011) and ? for details. We simply recall here that the core feature of this ap-
proximation technique is to run simulations (θ, z) from the prior distribution and
the corresponding sampling distribution until a statistic T (z) of the simulated
pseudo-data z is close enough to the corresponding value of the statistic T (y) at
the observed data y. The degree of proximity (also called the tolerance) can be
improved by an increase in the computational power. However the choice of the
statistic T is particularly crucial in that the resulting (approximately Bayesian)
inference relies on this statistic and only on this statistic. It thus impacts the
resulting inference much more than the choices of the tolerance distance and of
the tolerance value.



When conducting ABC model choice (Grelaud et al., 2009, ?), the outcome
of the ideal algorithm associated with zero tolerance is the Bayes factor

BT
12(y) =

∫
π1(θ1)gT

1 (T (y)|θ1) dθ1∫
π2(θ2)gT

2 (T (y)|θ2) dθ2
,

which unsurprisingly is the Bayes factor for testing M1 versus M2 based on the
sole observation of T (y). This value most often differs from the Bayes factor
B12(y) based on the whole data y. As discussed in Didelot et al. (2011) and ?,
in the specific case when the statistic T (y) is sufficient for both M1 and M2,
the difference between both Bayes factors can be expressed as

B12(y) =
h1(y)
h2(y)

BT
12(y) , (1)

where the ratio of the gi(y)’s often behave like likelihoods of same order as the
data size n. The discrepancy revealed by the above is such that ABC model
choice cannot be trusted without further checks. Indeed, even in the limiting
ideal case, i.e. when the ABC algorithm uses an infinite computing power to
achieve a zero tolerance, the ABC odds ratio does not take into account the
features of the data besides the value of T (y). ? warn that this difference
can be such that BT

12(y) leads to an inconsistent model choice. (The same is
obviously true for point estimation, e.g. when considering the special case of an
ancillary summary statistic T (y).)

Beyond ABC applications, note that many fields report summary statistics
in their publications rather than the raw data, for various reasons ranging from
confidentiality to storage, to proprietary issues. For instance, a dataset may be
replaced by several p-values, pi(y), against several specific hypotheses. Handling
a model choice problem based solely on T (y) = (p1(y), . . . , pk(y)) is therefore a
relevant issue, with the coherence of the correponding Bayes factor at stake.

The purpose of the current paper is to study asymptotic conditions on the
statistic T under which the Bayes factor for testing M1 versus M2 based on the
sole observation of T (y) either converges or diverges. We obtain a precise char-
acterisation of consistency in terms of the limiting distributions of the summary
statistic T (y) under both models, namely that the true asymptotic mean of the
summary statistic T (y) cannot be recovered under the wrong model, except for
nested models. As explained in the paper, this characterisation implies that using
point estimation statistics as summary statistics is rarely pertinent for testing.
The main result shows that a practical choice of summary statistics providing
convergent model choice is available for ABC algorithms. The practical side is
computational in that the mean values of the summary statistics can be checked
by simulation. Further properties of the vector of summary statistics can also
be tested via these simulations, including the comparison of several summary
statistics or, equivalently, the selection of the most discriminant components of
the above vector.
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1.2. Insufficient statistics
The above connection between the Bayes factor based on the whole data y and
the Bayes factor based on the summary T (y) is only valid when the latter is
sufficient for both models. In this setting, and only in this setting, the extra
term in (1) is equal to one solely when the statistic T is furthermore sufficient
across models M1 and M2, i.e. for the collection (m,θm) of the model index
and of the parameter. A rather special instance where this occurs is the case of
Gibbs random fields (Grelaud et al., 2009). Otherwise, the conclusion drawn on
T (y) necessarily differs from the conclusion drawn on y. The same is obviously
true outside the sufficient case, which implies that the selection of a summary
statistic must be evaluated against its performances for model choice, because
it is not garanteed per se. The following example illustrates this point:

Example 1. To illustrate the impact of the choice of a summary statistic
on the Bayes factor, we consider the comparison of model M1 y ∼ N (θ1, 1) with
model M2 y ∼ L(θ2, 1/

√
2), the Laplace or double exponential distribution with

mean θ2 and scale parameter 1/
√

2, which has a variance equal to one.
In this formal setting, four natural statistics can be considered (as suggested

by one referee of ?):

(a) the sample mean y;
(b) the sample median med(y);
(c) the sample variance var(y);
(d) the median absolute deviation mad(y) = med(|y −med(y)|);

Given the models under comparison, the first statistic is sufficient only for the
Gaussian model, the second statistic is not sufficient but its distribution depends
on θi in both models, while both the sample variance and the median absolute
deviation are ancillary statistics. As explained later (Section 2.3), the most
important feature of those statistics is that the first three statistics have the
same expectation under both models (using appropriate values of the θi’s under
both models) while the median absolute deviation has a different expectation
under model 1 and model 2.

Since we are facing standard models in this artificial example, the computa-
tion of the true Bayes factor would be possible (even in the Laplace case, see
Appendix 1). However, if we base our inference only on one or several of the
above statistics, the computation of the corresponding Bayes factors requires
an ABC step. Fig. 1 shows the distribution of the posterior probability that
the model is normal (as opposed to Laplace) when the data is either normal or
Laplace and when the summary statistic in the ABC algorithm is the collec-
tion of the first three statistics above. The outcome is thus that the estimated
posterior probability has roughly the same predictive distribution under both
models, hence ABC based on those summary statistics is not discriminative.
Fig. 2 represents the same outcome when the summary statistic used in the
ABC algorithm is only made of the median absolute deviation of the sample.
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In this second case, the two distributions of the estimated posterior probability
are quite opposed under each model, concentrating near zero and one respec-
tively. Hence, this summary statistic is highly discriminant for the comparison
of the two models. From an ABC perspective, this means that using the median
absolute deviation is then satisfactory, as opposed to the first three statistics.

J
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Fig. 1. Comparison of the distributions of the posterior probabilities that the data is from
a normal model (rather than a Laplace model) when the data is made of 25 observations
either from a normal (brown) or Laplace (blue) distribution with mean zero and when
the summary statistic in the ABC algorithm is the made of the collection of the sample
mean, median and variance. The ABC algorithm uses 105 proposals from the prior and
selects the tolerance ε as the 1% distance quantile. The densities are estimated by a
kernel estimator density() and rely on 100 replicas.

The above example illustrates very clearly the major result of this paper,
namely that the mean behaviour of the summary statistic T (y) under both
models under comparison is fundamental for the convergence of the Bayes factor,
i.e. of the Bayesian model choice based on T (y). This result, described in the
next section, thus brings an almost definitive answer to the question raised in ?
about the validation of ABC model choice, although it may require additional
simulation experiments in realistic situations.

The paper is organised as follows: Section 2 contains the theoretical deriva-
tion of the asymptotic behaviour of the Bayes factor based on a summary statis-
tic, Section 2.1 covering our main assumptions, Section 2.2 exhibiting the asymp-
totic behaviour of the marginal likelihods, Section 2.3 detailing the consequences
of this result for model choice based on summary statistics. Section 3 illustrates
the relevance of our criterion for evaluating summary statistics. Section 4 con-
cludes the paper with a short discussion.
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Fig. 2. Same figure as Fig. 1 when ABC is based on the median absolute deviation of
the sample as the sole summary statistic.

2. Convergence of Bayes Factors using summary statistics

Let y = (y1, . . . , yn) be the observed sample, not necessarily iid. We de-
note by y ∼ Pn the true distribution of the sample, and by T (y) = T n =
(T1(y), T2(y), · · · , Td(y)) a d-dimensional vector of summary statistics, T n ∼
Gn. The distribution Gn is the projection of Pn under the map T n : Rn 7→ Rd
and we denote its density by gn.

There are two competing models M1 and M2 that we wish to compare:

– under M1, y ∼ F1,n(·|θ1) where θ1 ∈ Θ1 ⊂ Rp1

– under M2, y ∼ F2,n(·|θ2) where θ2 ∈ Θ2 ⊂ Rp2

The distributions of T n under M1 and M2 are denoted by G1,n(·|θ1) and
G2,n(·|θ2), respectively. We also assume that the distribution functions Fi,n(·|θi),
Gi,n(·|θi) have densities fi(·|θi) and gi(·|θi) with respect to some dominating
measures µi,X and µi,T (i = 1, 2), respectively. Under the respective prior
distributions π1 and π2 on θ1 and θ2, the posterior distributions given T n are
denoted by π1(·|T n) and π2(·|T n).

2.1. Assumptions
Before provinding the main result in the paper, let us state our theoretical as-
sumptions on the models and the summary statistics under which the main result
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holds.
We start with a brief primer on our notations. The letter C denotes a pos-

itive constant, whose value may change from one occurrence to the next, but
is independent of everything else. We write a ∧ b to denote min(a, b). For two
sequences {an}, {bn} of real numbers, an . bn (resp. &) means an ≤ Cbn (resp.
an ≥ Cbn). Similarly, an ∼ bn means that

1/C ≤ lim inf
n→∞

|an/bn| ≤ lim sup
n→∞

|an/bn| ≤ C .

The symbol n→∞; denotes convergence in distribution.
The necessary assumptions are as follows:

([A1]) There exist a sequence of positive real numbers {vn} converging to +∞, a
distribution Q that is absolutely continuous with respect to the Lebesgue
measure on Rd with a positive, continuous and bounded version of the
density function, q(·), a symmetric, d × d positive definite matrix V0 and
a vector µ0 ∈ Rd, such that

vnV
−1/2
0 (T n − µ0) n→∞; Q, under Gn ,

and for all M > 0

sup
vn|t−µ0|<M

∣∣∣|V0|1/2v−dn gn(t)− q
{
vnV

−1/2
0 (t− µ0)

}∣∣∣ = o(1) .

([A2]) For every θi ∈ Θi, i ∈ {1, 2}, there exist d× d symmetric positive definite
matrices Vi(θi) and vectors µi(θi) ∈ Rd such that

vnVi(θi)−1/2(T n − µi(θi))
n→∞
; Q, under Gi,n(·|θi) .

([A3]) For every i ∈ {1, 2}, there exist sieves Fn,i ⊂ Θi and constants εi, τi, αi > 0
such that

πi(Fcn,i) = o(v−τin ) (2)

and, for all τ > 0,

sup
θi∈Fn,i

Gi,n

[
|T n − µ(θi)| > τ |µi(θi)− µ0| ∧ εi

∣∣θi]
(|µi(θi)− µ0| ∧ εi)−αi

. v−αin . (3)

([A4]) Define the sets Sn,i ⊂ Fn,i (i ∈ {1, 2}) as

Sn,i(u) =
{
θi ∈ Fn,i; |µi(θi)− µ0| ≤ u v−1

n

}
, u > 0 .

If inf{|µi(θi)− µ0|; θi ∈ Θi} = 0, then there exists a constant

di < τi ∧ (αi − 1)

such that

πi(Sn,i(u)) ∼ udiv−din , ∀u . vn , (4)

where τi and αi are defined in assumption [A3].
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([A5]) If inf{|µi(θi) − µ0|; θi ∈ Θi} = 0, there exists U > 0 such that for any
M > 0,

sup
vn|t−µ0|<M
θi∈Sn,i(U)

∣∣∣|Vi(θi)|1/2v−dn gi(t|θi)− q
{
vnVi(θi)−1/2(t− µ(θi)

})∣∣∣ = o(1) (5)

and

lim
M→∞

lim sup
n

πi

(
Sn,i(U) ∩

{
||Vi(θi)−1||+ ||Vi(θi)|| > M

})
πi(Sn,i(U))

= 0 .

Here ||Vi(θi)|| and |Vi(θi)| denote the largest eigenvalue and the determinant
of the matrix Vi(θi), respectively.

Even though these assumptions might look overwhelming, we claim that
[A1]-[A5] are both mild and relatively easy to check in applications. Below we
discuss briefly the implications of each of those and how to verify them. We
will later (Section 3.1) illustrate why they hold in the Gaussian versus Laplace
example.

Conditions [A1]-[A2] can be usually verified by means of the Central Limit
theorem and are satisfied by many summary statistics. For instance, when the
summary statistics are empirical means or empirical quantiles, conditions [A1]-
[A2] are satisfied with vn =

√
n with the Gaussian distribution being the limiting

Q (a most common occurence). Obviously, condition [A1] is redundant when
the true distribution belongs to one of the two models under comparison.

Condition [A3] controls the large deviations of the estimator T n from the esti-
mand µ(θ) under each model. For instance, when T n is an empirical mean, i.e.,
T n = n−1

∑n
i=1 h(yi) for a given function h, Markov’s inequality implies that

for every θi ∈ Θi,

Gi,n
[√
n|T n − µi(θi)| > u

]
≤

E
[
|
∑n
i=1{h(yi)− µi(θi)}|

p
]

up np/2
≤ κ(θi)u−p, (6)

for large values of p and under very weak assumptions (much weaker than the
i.i.d case). The main difficulty in this condition comes from the fact that, for
our arguments to operate, the factor κ(θi) in (6) must be controlled uniformly in
θ. This is obviously much easier if the parameter space is compact. Otherwise,
this control can still be achieved by choosing a power αi that is smaller than p
in the following way: consider θi’s such that |µi(θi)− µ0| ≤ ε, for some positive
ε, assuming that µ0 ∈ {µi(θi); θi ∈ Θi} and u =

√
n|µi(θi)− µ0| & 1 (otherwise

we bound the above probability by 1), then (6) implies that

Gi,n [|T n − µi(θi)| > |µ0 − µi(θi)|] ≤ κ(θi)n−p/2|µ0 − µi(θi)|−p

≤ (
√
n|µ0 − µi(θi)|)−α ,
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provided κ(θi)|µ0 − µi(θi)|−(p−α) ≤ n(p−α)/2 on Fn,i. Furthermore, if Θi is not
compact, we usually have

sup
θ∈Θi

κ(θi) =∞ .

In such situations we use the sieves Fn,i (which typically are compact subsets of
Θi) to recover uniform bounds on the constant κ(θi) in (6). On the complement
of the sieves Fn,i, we need the additional assumption that the tail probability
of the prior distribution decays sufficiently quickly for large n. This argument
is illustrated in the Gaussian versus Laplace example detailed in Section 3.1.

Condition [A4] is a condition on the prior distribution under either model, as
often encountered in asymptotic analyses of the posterior distribution, see for
instance Ghosal and van der Vaart (2007). Usually referred to as the prior mass
condition, it corresponds to the fact that if the prior vanishes in regions where
the likelihood is not too small (i.e., near µ0 in our case) then the marginal
becomes very small. The exponents di can be viewed as effective dimensions of
the parameter under the posterior distributions, as discussed after Corollary 1.
If the maps θi 7→ µi(θi) are locally invertible near µ0, under the usual continuity
conditions on the maps θi 7→ |µ0 − µi(θi)|, for any u > 0, there exists a finite
collection of points θ∗ij ∈ Θi such that the sets Sn,i(u) can bounded both from
above and below by sets of the form

J⋃
j=1

{θj : |θj − θ∗ij | . uv−1
n }, J ∈ N . (7)

Thus if the prior density πi is bounded from above and below near the points
θ∗ij , we immediately deduce that πi{Sn,i(u)} ∼ udv−dn and di = d verifying [A4].
In most cases we will have di ≤ d, since assuming that di > d implies that the
prior density of µ(θ) explodes at µ0.

Condition [A5] is a slightly stronger version of [A2], since it not only requires
that vn(T n − µi) converges in distribution to Q but also that, near the set of
θi’s such that µi(θi) = µ0, the density of vn(T n − µi) is close to q (up to a
rescaling factor). There are many examples of summary statistics that satisfy
this assumption. In particular, empirical means of continuous variables, under
moment and mixing assumptions, verify this condition uniformly over T n, see
for instance Bhattacharya and Rao (1986). The (absolute) continuity of the
observations y that we require is not necessary but it is nearly so, since the key
criteria to obtain uniform approximation of the densities is the so-called Cramer
condition, see Bhattacharya and Rao (1986) for details. Condition [A5] may
become difficult to check when the sets Sn,i(u) are not compact, which is typically
the case when the sets {θi;µi(θi) = µ0} are not compact. The important point
to note here is that, in such cases, the posterior distribution πi(·|T n) is not
informative (at least no more than the prior) on the whole parameter θi but
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only on a fraction of it, summarized by µi(θi). In such a case, for condition [A5]
to be nonetheless verified, it is important to impose tail conditions on the prior
so that the sieves Fn,i are not too large or to ensure that the distributions Gi,n
of T n do not depend on θi.

The last part of condition [A5] is trivially satisfied if the map θi 7→ µi(θi)
can be inverted as described above so that the sets Sn,i(C) can be bounded
(from above and below) by balls in θi as mentioned in (7) and if θi → Vi(θi)−1

is continuous or at least bounded on compact sets. If the map θi 7→ µi(θi) is not
invertible, tail conditions on the prior will typically be enough to imply that the
constraints ||Vi(θi)−1|| > M or ||Vi(θi)−1|| < M−1 can be neglected for M large
enough. (See the Gaussian versus Laplace example in Section 3.1 below for the
illustration of this point).

2.2. Asymptotic behaviour of marginal likelihoods
The following result provides some control on the marginal likelihoods. In
Lemma 1, m1(·) and m2(·) denote the marginal densities of T n under models
M1 and M2, respectively, namely (i = 1, 2)

mi(t) =
∫

Θi

gi(t|θi)πi(θi) dθi . (8)

Lemma 1. Under assumptions [A1]–[A5], for i = 1, 2, there exist constants
Cl, Cu = OPn(1) such that if inf{|µi(θi)− µ0|; θi ∈ Θi} = 0

Clv
d−di
n ≤ mi(T n) ≤ Cuvd−din (9)

and if inf{|µi(θi)− µ0|; θi ∈ Θi} > 0,

mi(T n) = oPn [vd−τin + vd−αin ]. (10)

The above lemma, or more precisely (9), gives an equivalent to the marginal
distribution mi(T n) when µ0 ∈ {µi(θi), θi ∈ Θi} but it does not specifically
require that Gn is in model Mi. See Appendix 2 for the proof of Lemma 1. The
following result is a corollary on the use of T n for estimation purposes beyond
model choice:

Corollary 1. Under the assumptions of Lemma 1, if µ0 ∈ {µi(θi); θi ∈
Θi}, the posterior distribution of µi(θi) given T n is consistent at the rate 1/vn
provided αi, τi > di.

Proof. Indeed Equation (9) of Lemma 1 yields that

mi(T n) & vd−din
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with large probability. For all sequences {wn} converging to +∞, calculations
performed in the proof of Lemma 1 (see Appendix 2) yield that∫

Sn,i(wn)c
gi(T n|θi)πi(θi) dθi . w−αin vd−αin + vd−τin = o(vd−din ) .

Therefore the posterior distribution of µi(θi) has its tail probability given by

πi(|µ0 − µi(θi)| > wnv
−1
n |T

n) =

∫
Sn,i(wn)c

gi(T n|θi)πi(θi) dθi
mi(T n)

= oPn(1)

and the corollary follows.

Note again that di can be seen as an effective dimension of the model under
the posterior πi(·|T n), since if µ0 ∈ {µi(θi); θi ∈ Θi},

mi(T n) ∼ vd−din and gn(T n) ∼ vdn .

Thus v−din appears as the penalization coming from integrating θi out in model
Mi, in the same spirit as the effective number of parameters used in DIC (Spiegel-
halter et al., 2002) or as discussed in Rousseau (2007) or in ?.

2.3. Consequences of the main result
Lemma 1 implies that the asymptotic behaviour of the Bayes factor is driven by
the asymptotic mean value of T n under both models. To see this assume that
the true distribution is in M1 and consider first the case where

inf{|µ0 − µ2(θ2)|; θ2 ∈ Θ2} = 0

or vice-versa. Under assumptions [A1]-[A5]

Clv
−(d1−d2)
n ≤ m1(T n)

m2(T n)
≤ Cuv−(d1−d2)

n ,

where Cl, Cu = OPn(1), irrespective of the true model. Thus the asymptotic
behaviour of the Bayes factor depends solely on the difference d1 − d2. For
instance if d1 < d2 (as in the embedded case) and Gn is in M1, the Bayes factor
goes to 0, instead of infinity. Note that the asymptotic behaviour remains the
same even when Gn is in neither model provided

inf{|µ0 − µ2(θ2)|; θ2 ∈ Θ2} = inf{|µ0 − µ1(θ1)|; θ1 ∈ Θ1} = 0 .

On the opposite if the true distribution is in model M1 (say) and if

inf{|µ0 − µ2(θ2)|; θ2 ∈ Θ2} > 0 ,
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then the Bayes factor, under assumptions [A1]-[A5], satisfies

m1(T n)
m2(T n)

≥ C` min
(
v−(d1−α2)
n , v−(d1−τ2)

n

)
,

and if min(α2, τ2) > d1,

lim
n→+∞

m1(T n)
m2(T n)

= +∞.

The conclusion of the above discussion is summarized by the following result:

Theorem 1. Under assumptions [A1]− [A5], if

inf{|µ0 − µ2(θ2)|; θ2 ∈ Θ2} = inf{|µ0 − µ1(θ1)|; θ1 ∈ Θ1} = 0 ,

then the Bayes factor BT
12 has the same asymptotic behaviour as v−(d1−d2)

n irre-
spective of the true model. Therefore, it always asymptotically selects the model
having the smallest effective dimension di.

If the true distribution Gn belongs to model Mω and if µ0 cannot be repre-
sented in the other model M3−ω,

0 = inf{|µ0 − µω(θω)|; θω ∈ Θω} < inf{|µ0 − µ3−ω(θ3−ω)|; θ3−ω ∈ Θ3−ω}

and if if min(α3−ω, τ3−ω) > dω, then the Bayes factor BT
12 is consistent.

An important practical consequence of Theorem 2 is that the Bayes factor
is merely driven by the means µi(θi) and the relative position of µ0 in both
sets {µi(θi); θi ∈ Θi}, i = 1, 2. If Gn is in neither model but µ0 belongs to
{µ1(θ1), θ1 ∈ Θ1} but not to {µ2(θ2), θ2 ∈ Θ2}, then the Bayes factor will
asymptotically favor M1.

Suppose the summary statistics (appropriately rescaled) are asymptotically
normal (thus Q is the standard Gaussian distribution) and assume that the con-
vergence in distribution of

√
n(T n−µi(θi)) can be written in terms of Kullback-

Leibler divergence between gn and gi(·|θi). That is, assume the Kullback-Leibler
divergence between gn and gi(·|θi) is close to the Kullback-Leibler divergence be-
tween

√
n|V0|−1/2q(

√
nV
−1/2
0 (T n−µ0)) and

√
n|Vi(θi)|−1/2q(

√
nVi(θi)−1/2(T n−

µi(θi)). Then

1
n
KL(g0(T n), gi(T n|θi)) ≈

(µ0 − µi(θi))tVi(θi)−1(µ0 − µi(θi))
2

+ o(1),

so that the difference between µ0 and µi(θi) is the key measure to evaluate the
distance between gn and gi,n(·|θi).

Interestingly, the best statistics T n to be used in an ABC - Bayes factor
context are ancillary statistics which have different mean values under both
models. Indeed if T n depends asymptotically on some of the parameters of one
of the models, say model M1, then it is quite likely that there exists θ2 ∈ Θ2
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such that µ2(θ2) = µ0 even though model M2 is misspecified, specially if d the
dimension of T n is the same or smaller than the dimension of θ2. To illustrate
this remark consider the case where d = 1 and {µ1(θ1), θ1 ∈ Θ1} = R (or a
large enough interval) then T n is not a satisfactory statistic for discriminating
between models M1 and M2, when M2 is true. Consider the example of the
Laplace versus the Gaussian distribution with T n = n−1

∑n
i=1X

4
i , and assume

that the true distribution is the Laplace with mean 1, so that µ0 = 13. Since
under the Gaussian model µ(θ) = θ4 + 3 + 6θ2, the value θ∗ =

√√
19− 3 leads

to µ0 = µ(θ∗) and a Bayes factor associated to such a statistic is not consistent
(here d1 = d2 = 1).

However if T n is ancillary (asymptotically), {µ1(θ1), θ1 ∈ Θ1} is a singleton
and it is sufficient that this singleton is different from µ0. These remarks are
illustrated in Section 3.

In the special case of M1 being a submodel of M2, and if the true distribution
belongs to the smaller model M1, any summary statistic satisfies

µ0 ∈ {µ1(θ1); θ1 ∈ Θ1} ⊂ {µ2(θ2); θ2 ∈ Θ2},

so that the Bayes factor is of order v−(d1−d2)
n . If the summary statistic is in-

formative merely on a parameter which is the same under both models, i.e., if
d1 = d2, then the Bayes factor is not consistent. Else, d1 < d2 and the Bayes
factor is consistent under M1. If the true distribution does not belong to M1,
then the same phenomenon as described above occurs and the Bayes factor is
consistent only if µ1 6= µ2 = µ0.

3. Illustrations

3.1. Gaussian versus Laplace distributions
In this example, θi ∈ R, for i = 1, 2. We denote by M1 the Gaussian model
and by M2 the Laplace model. In each model, the prior on θi is a centered
Gaussian distribution with variance 2, and in each case the data are simulated
under θi = 0. We consider the following summary statistics :

• Fourth empirical moment : T n = n−1
∑n
i=1 y

4
i . In that case µ1(θ) =

θ4 + 3 + 6θ2, µ2(θ) = θ4 + 6 + 6θ2, while V1(θ) and V2(θ) are polynomial
functions in θ2 with degree 3.

• Sixth empirical moment : T n = n−1
∑n
i=1 y

6
i . In that case µ1(θ) = θ6 +

15 + 45θ2 + 15θ4, µ2(θ) = θ6 + 90 + 15θ4 + 90θ2, while V1(θ) and V2(θ) are
polynomial functions in θ2 with degree 5.

• Sixth and fourth empirical moments : T n = n−1
∑n
i=1(y4

i , y
6
i ). The means

and marginal variances are the same as before, and the determinant of the
covariance matrix is a positive polynomial function in θ2 with degree 8.

12



We now endeavour to check that assumptions [A1]–[A5] hold for those statis-
tics. Given that they are empirical moments, condition [A2] is trivially satisfied
as a consequence of the Central Limit theorem, with vn =

√
n and µi(θi), Vi(θi)

defined above. Condition [A1] is redundant with [A2] in that we only consider
the cases where one of the two models is the true model.

For both models, we set Fn,1 = Fn,2 = {|θ| ≤ u
√

log n} = Fn for condition
[A3], where u >

√
2 so that

π1(Fcn,1) = π2(Fcn,2) = o(n−u
2/4)

which implies τi = u2/2. The second part of condition [A3] is verified using
Markov inequalities. First, for M > 0 large enough, there exists cM such that
(θ) ≤M implies that |θ| < cM . For instance, in the case of the fourth empirical
moment, if |θ| ≤ cM

Gi,n

∣∣∣∣∣∣n−1
n∑
j=1

(y4
j − µi(θ))

∣∣∣∣∣∣ > τ |µi(θ)− µ0|

∣∣∣∣∣∣ θ
 ≤ Ei[(Y 4 − µi(θ))4|θ]

n2τ4|µi(θ)− µ0|4

≤ O(n−2|µi(θ)− µ0|−4)

uniformly. On the other hand, if |θ| > cM , then there exists εi > 0 such that
|µi(θ)− µ0| > εi and

Gi,n

∣∣∣∣∣∣n−1
n∑
j=1

(y4
j − µi(θ))

∣∣∣∣∣∣ > τεi

∣∣∣∣∣∣ θ
 ≤ Ei[(Y 4 − µi(θ))4|θ]

n2τ4ε4i
≤ O(n−2(log n)6).

since, in Fn, Ei[(Y 4−µi(θ))4|θ] ≤ Ci(log n)6. Thus, assumption [A3] is satisfied
for any αi < 4.

Concerning [A4], in model M1, in the case of the fourth empirical moment,
if µ0 = 3 (resp. 15 and (3, 15) for the other summary statistics) and in model
M2 if µ0 = 6 (resp. 90 and (6, 90)), Sn,1(C) and Sn,2(C) can be bounded from
above and below by balls of the form

|θ| ≤ cC1/2n−1/4 ,

so that d1 = d2 = 1/2 in those cases. Otherwise if µ0 > 3 (resp. > 15 ) in model
M1 and µ0 > 6 (resp. > 90) in model M2, Sn,1(C) and Sn,2(C) can be bounded
from above and below by balls in the form

|θ2 − θ2
∗| ≤ cCn−1/2, |θ∗| > 0

so that d1 = d2 = 1 in those cases. For the bi-dimensional summary statistic, as
soon as θ0 6= 0 Sn,i(C) 6= ∅ for n large enough only if Mi is the true model.

In our simulation study, we have considered θ0 = 0, so that if the true
distribution belongs to model M2 (Laplace) µ0 ∈ {µi(θ); θ ∈ R} for both i = 1, 2

13



and we have d1 = 1 and d2 = 1/2. On the other hand if the true distribution
belongs to model M1 (Gaussian) then d1 = 1/2 and inf{|µ0−µ2(θ2)|; θ2 ∈ R} >
0. Following from Theorem 2, The Bayes factor is consistent in both cases but
at the rate n−1/4 under model M2 and to some extent accidentally (it is merely
due to the fact that in that case d1 > d2). If θ0 6= 0 but is small then a similar
argument leads to non consistency of the Bayes factor under model M2 since
then d1 = d2 = 0 and µ0 ∈ {µi(θ); θ ∈ R}, for both i = 1, 2.

Since Y 6 allows for any moment under both distributions, and since both
distributions satisfy Cramer condition, T n allows for an Edgeworth expansion
under both models, which can be made uniform in sets in the form {|θi| ≤
Cn−1/4}, see Bhattacharya and Rao (1986). Hence condition [A5] is satisfied.

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

12

posterior probabilities

De
ns

ity

Fig. 3. Same figure as Fig. 1 when ABC is based on the 4th empirical moment as the
sole summary statistic, for 250 observations simulated from either the Gaussian or the
Laplace model.

3.2. Quantile distributions
We consider the simulation from the four-parameter g-and-k distribution, defined
through its quantile function

Q(p;A,B, g, k) = A+B

(
1 +

1− exp(−gz(p))
1 + exp(−gz(p))

)(
1 + z(p)2

)k
z(p)

where z(p) is the pth standard normal quantile and the parameters A,B, g and
k represent location, scale, skewness and kurtosis, respectively. The parameter
c measures the overall asymmetry and, following historical practice, is fixed at
0.8 (Haynes et al., 1997). While the quantile function F−1(p; θ) is well-defined,
there is no closed-form expression for the corresponding density function, which
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Fig. 4. Same figure as Fig. 4 when ABC is based on the 4th and 6th empirical moments
as summary statistic.

makes the implementation of an MCMC algorithm quite delicate. We fix A = 0
and B = 1 and consider model M1 such that g = 0 and k ∼ U [−1/2, 5] versus
model M2 such that g ∼ U [0, 4] and k ∼ U [−1/2, 5]. Model M1 is a sub-model
of model M2. For such a case, we consider an ABC procedures which use 105

proposals from the prior and select the tolerance as the 1% quantile of the L1

distances between some empirical quantiles. First, we use the empirical quantile
of order 10% as summary statistics. Then, we use the empirical quantiles of
order 10, 40, 60 and 90%. The results are presented in Figures 5 and 6. They
are quite satisfactory when the fourth empirical quantiles are used.

4. Discussion

The fact that the true asymptotic mean of the summary statistic cannot be
recovered under the wrong model if model choice is to take place (in a convergent
manner) is both natural, in that the asymptotic normality implies that only first
moments matter, and fundamental, in that it drives the choice of summary
statistics in practical ABC settings. Indeed, Theorem 2 implies that estimation
statistics should not be used in ABC algorithms aiming at model comparison.
This means that (a) different statistics should be used for estimation and for
testing and (b) that they should not be mixed in a single summary statistic.
Note that the distinction differs from the sufficient versus ancillary opposition
found in classical statistics (Cox and Hinkley, 1994) in that it is enough that
the summary statistic T n has a different asymptotic mean under both models.
As shown in the normal-Laplace example, some ancillary statistics may not be
appropriate for testing.
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Fig. 5. Comparison of the distributions of the posterior probabilities that the data is from
model M1 when the data is made of 100 observations either from model M1 (brown) or
M2 (blue) distribution when the summary statistic in the ABC algorithm is the empirical
quantile of order 10%. The densities are estimated via the R kernel estimator procedure
density() and rely on 100 replicas.
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Appendix 1

Laplace marginal likelihood

Consider a sorted sample x1, . . . , xn from the Laplace (double-exponential) L(µ, 1/
√

2)
distribution

f(x|µ) =
1√
2

exp{−
√

2|x− µ|} .
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Fig. 6. Same figure as Fig. 5 when ABC is based on the empirical quantiles of order 10,
40, 60 and 90% as set of summary statistics.

Under a normal N (0, σ2) prior, the marginal likelihood is given by

m0(x1, . . . , xn) =

Z
2−n/2

nY
i=1

exp{−
√

2|xi − µ|} exp{−µ2/2σ2} dµ/
√

2πσ

= 2−n/2
nX
i=0

Z xi+1

xi

iY
j=1

e
√

2xj−
√

2µ
nY

j=i+1

e−
√

2xj+
√

2µe−µ
2/2σ2

dµ/
√

2πσ

= 2−n/2
nX
i=0

Z xi+1

xi

e
√

2
Pi
j=1 xj−

√
2

Pn
j=i+1 xj+

√
2(n−2i)µe−µ

2/2σ2
dµ/
√

2πσ

= 2−n/2
nX
i=0

e
√

2
Pi
j=1 xj−

√
2

Pn
j=i+1 xj+2(n−2i)2σ2/2

×
Z xi+1

xi

e−{µ−
√

2(n−2i)σ2}/2σ2
dµ/
√

2πσ

= 2−n/2
nX
i=0

e
√

2
Pi
j=1 xj−

√
2

Pn
j=i+1 xj+2(n−2i)2σ2/2

×
h
Φ({xi+1 −

√
2(n− 2i)σ2}/σ)− Φ({xi −

√
2(n− 2i)σ2}/σ)

i
with usual conventions when i = 0 (x0 = −∞) and i = n (xn+1 = +∞).

Appendix 2

Proof of Lemma 1
Recall that Gn is the true distribution of T n. Let us first assume that inf{|µ0 −
µi(θi)|; θi ∈ Θi} = 0 and let Sn,i be as defined in assumption [A4]. Fix constants
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δ, U > 0 and let Mδ be such that

Q
“
{X ∈ Rd : |V 1/2

0 X| > Mδ}
”

= δ .

Note that Mδ goes to infinity as δ goes to 0. Fix an M1 satisfying (see assumption
[A5])

πi
“
Sn,i(U) ∩ {||Vi(θi)−1||+ ||Vi(θi)|| > M1}

”
πi(Sn,i(U))

< 1/2 . (11)

Set cδ = inf{q(x); |x| ≤ (Mδ + U)M1} and define the (random) set

En =
n
θi ∈ Θi ; vn|Vi(θi)−1/2(T n − µi(θi))| ≤ (Mδ + U)M1

o
. (12)

From (8) we have

mi(T
n) ≥

Z
Sn,i(U)

1lEn(θi) gi(T
n|θi)πi(θi) dθi

≥ cδ v
d
n

2

Z
Sn,i(U)

|Vi(θi)|−1/2 1lEn(θi)πi(θi) dθi , (13)

where the last inequality follows from the fact that on the set Sn,i (see (5) in [A5]) we
have

gi(T
n|θi) = |Vi(θi)|−1/2 vdn [q(vnVi(θi)

−1/2(T n − µ(θi)) + o(1)]

≥ 1

2
|Vi(θi)|−1/2 vdn inf

|x|≤(Mδ+U)M1
q(x) =

1

2
|Vi(θi)|−1/2 cδ v

d
n.

Set

S̃n,i = Sn,i(U) ∩
n
||Vi(θi)||+ ||Vi(θi)−1|| ≤M1

o
.

Note that from (11) it follows that πi(S̃n,i(U)) ≥ 1
2
πi(Sn,i(U)). From (13) we deduce

that,

mi(T
n) ≥ 1

2
cδ v

d
nM

−1/2
1 πi

“
S̃n,i ∩ En

”
.

Since Mδ > 2U for δ small enough, using Markov’s inequality we obtain

Gn
“
πi
`
S̃n,i ∩ Ecn

´
≥ πi(S̃n,i)

2

”
≤ 2

R
S̃n,i

Gn
`
Ecn
´
πi(θi) dθi

πi(S̃n,i)

≤ 2

R
S̃n,i

Gn
`
vn|T n − µ0| > Mδ

´
πi(θi) dθi

πi(S̃n,i)

≤ 3δ

for n large enough. Thus we deduce that πi
`
S̃n,i ∩ En

´
≥ πi(S̃n,i)

2
with probability

(1− 3δ). Putting it all together and using (4) in [A4] we obtain the lower bound,

mi(T
n) & cδ v

d
n πi

`
Sn,i

´
& vd−din (14)
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with probability greater than 1− 3δ.
We now obtain an upper bound for mi(T

n). Using (8) we write,

mi(T
n) =

Z
Fn,i

gi(T
n|θi)πi(θi) dθi +

Z
Fcn,i

gi(T
n|θi)πi(θi) dθi .

As before fix δ > 0 and let Mδ be a constant such that

Gn
`
|T n − µ0| > Mδ v

−1
n

´
< 3δ/2 ,

for n large enough. Note that from assumption [A1]

sup
|t−µ0|≤Mδv

−1
n

gn(t) . vdn |V0|−1/2 [ sup
x∈Rd

q(x) + δ] . vdn. (15)

Applying Markov’s inequality together with (15) we obtain that, for all ε > 0,

Gn
“Z
Fcn,i

gi(T
n|θi)πi(θi) dθi > ε vdn πi(Sn,i)

”
≤ Gn[|T n − µ0| > Mδv

−1
n ]

+

Z
Fcn,i

||V0||−1/2 vdn
ε

Z
vn|t−µ0|≤Mδ

gn(t)gi(t|θi)dt πi(θi) dθi

≤ Gn[|T n − µ0| > Mδv
−1
n ]

+

 
sup

|x|≤Mδ||V0||
q(x) + δ

!Z
Fcn,i

||V0||−1/2 vdn
ε

Z
Rd
gi(t|θi)dt πi(θi) dθi

. δ +
vdn
ε
π(Fcn,i) ≤ 2δ,

(16)

when n is large enough.

We now express Fn,i as a finite disjoint union of the following sets:

Fn,i =

Jn+1[
j=0

Hj , Jn = J0vn, for some J0 ∈ N ,

Hj = Sn,i((j + 1)Mδ) ∩ Sn,i(jMδ)
c, j ≤ Jn ,

HJn+1 = Fn,i ∩ Scn,i(MδJn) .

Now we have Z
Fn,i

gi(T
n|θi)πi(θi) dθi =

JnX
j=0

Z
Hj

gi(T
n|θi)πi(θi) dθi . (17)

If j = 0, H0 = Sn,i(Mδ) and if K is a constant such that K > di, using (15) we obtain

Gn

"Z
Sn,i(Mδ)

gi(T
n|θi)πi(θi) dθi > MK

δ v
d−di
n

#
.

vdn

MK
δ v

d−di
n

πi(Sn,i(Mδ)) + δ

= O(Mdi−K
δ ) + δ, (18)
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where the last inequality follows from (4) in [A4]. Since lim supδ→0 Mδ = ∞, the
bound in (18) goes to 0 as δ goes to zero. Using assumption [A3] and (15), we obtain
that for 0 < j ≤ Jn,

Gn
“Z
Hj

gi(T
n|θi)πi(θi) dθi > MK

δ v
d−di
n

”
.

vdin
MK
δ

Z
Hj

Gi,n
`
|T n − µ(θi)| > (j − 1/2)Mδv

−1
n |θi

´
πi(θi) dθi

+Gn (vn|T n − µ0| > Mδ/2)

. Q({X ∈ Rd : |V 1/2
0 X| > Mδ/2}) +Mdi−αi−K

δ jdi−αi ,

for n large enough, and similarly

Gn
“Z
HJn+1

gi(T
n|θi)πi(θi) dθi > vd−din

”
. vdin

Z
HJn+1

Gi,n (|T n − µ(θi)| > J0/2|θi) πi(θi) dθi

+Gn (vn|T n − µ0| > Mδ)

. 3δ/2 + vdi−αin ≤ 2δ,

(19)

for n large enough, under assumption [A4]. Combining the above inequalities with
(17), we obtain for n large enough,

Gn
“Z
Fn,i

gi(T
n|θi)πi(θi) dθi > (2MK

δ +1)vd−din

”
. Gn

„
vn|T n − µ0| >

1

2
Mδ

«
+Mdi−K

δ

which can be made arbitrarily small by choosing δ small enough. Combining the above
with (16) implies that Z

Θi

gi(T
n|θi)πi(θi) dθi = OPn(vd−din ) .

The above estimate together with the lower bound obtained in (14) proves the first
claim (Equation (9)) of Lemma 1.

Now suppose inf{|µi(θi) − µ0|; θi ∈ Θi} > 0. Then there exists j0 > 0 such that
Sn,i(j vn) = ∅ for all j ≤ j0. An identical computation as in (19), together with (16)
yields

Gn
“Z
Fn,i

gi(T
n|θi)πi(θi) dθi > ε(vd−τin + vd−αin )

”
. Gn (vn|T n − µ0| > Mδ) +

vdin
ε

Z
Fn,i

Gi,n (|T n − µi(θi)| > j0vn/2) πi(θi) dθi + 2δ

≤ 3δ,

for all n large enough and ε > 0. This proves the second claim (Equation (10)) of
Lemma 1. 2

20



References

Bhattacharya, R. N. and R. R. Rao (1986). Normal Approximation and Asymp-
totic Expansions. New-York: Wiley Series in Probability and Mathematical
Statistics.

Cox, D. and D. Hinkley (1994). Theoretical statistics. Chapman & Hall.

Didelot, X., R. Everitt, A. Johansen, and D. Lawson (2011). Likelihood-free
estimation of model evidence. Bayesian Analysis 6 (1), 1–28.

Ghosal, S. and A. van der Vaart (2007). Convergence rates of posterior distri-
butions for non iid observations. Ann. Statist. 35 (1), 192–225.

Grelaud, A., J.-M. Marin, C. Robert, F. Rodolphe, and F. Tally (2009).
Likelihood-free methods for model choice in Gibbs random fields. Bayesian
Analysis 3(2), 427–442.

Haynes, M. A., H. L. MacGillivray, and K. L. Mengersen (1997). Robustness of
ranking and selection rules using generalised g-and-k distributions. J. Statist.
Plann. Inference 65 (1), 45–66.

Marin, J., P. Pudlo, C. Robert, and R. Ryder (2011). Approximate Bayesian
computational methods. Statistics and Computing . (To appear.).

Pritchard, J., M. Seielstad, A. Perez-Lezaun, and M. Feldman (1999). Population
growth of human Y chromosomes: a study of Y chromosome microsatellites.
Molecular Biology and Evolution 16, 1791–1798.

Rousseau, J. (2007). Approximating interval hypotheses: p-values and Bayes
factors. In J. M. Bernardo, M. Bayarri, J. O. Berger, A. P. Dawid, D. Heck-
erman, A. F. M. Smith, and M. West (Eds.), Bayesian Statistics 8. Oxford:
Oxford University Press.

Spiegelhalter, D. J., N. G. Best, B. P. Carlin, and A. van der Linde (2002).
Bayesian measures of model complexity and fit (with discussion). J. Royal
Statist. Society Series B 64 (2), 583–639.
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