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ON SOME ASPECTS OF THE ASYMPTOTIC PROPERTIES OF BAYESIAN
APPROACHES IN NONPARAMETRIC AND SEMIPARAMETRIC MODELS ∗

Judith Rousseau1, Jean-Bernard Salomond2 and Catia Scricciolo3

Abstract. In this paper, we review some recent results obtained in the context of Bayesian non and
semiparametric models in terms of posterior concentration, Bernstein-von Mises theorems and tests.
Then two specific cases are studied in more details. The first concerns tests for monotonicity and the
second some asymptotic properties of empirical Bayes procedures.

Résumé. Cet article est un article de revue et présente un certain nombre de résultats récents sur les
propriété fréquentistes de procédures bayésiennes non et semiparamétriques. Nous donnons notamment
des conditions permettant d’obtenir un théorème de Bernstein - von Mises pour des fonctionnelles de la
densité, des résultats sur la consistance de la loi a posteriori lorsque la loi a priori dépend des données
et enfin un test de monotonicité dans un modèle de régression nonparamétrique.

Introduction

0.1. Overview

The analysis of Bayesian nonparametric statistics started slowly five decades ago. During the last fifteen
years, it became a thriving research field thanks to the availability of massive computational resources, to
algorithmic advances and theoretical breakthroughs. These practical and theoretical developments have allowed
statisticians to develop (parametric and nonparametric) models of increasing complexity. As biostatistics,
machine learning and other data intensive disciplines became hotbeds for Bayesian methods, the necessity to
analyse priors on infinite or at least high dimensional spaces became more and more obvious. So became the
necessity to understand the limiting behaviour of posterior probabilities. The study of asymptotic properties of
Bayesian nonparametric methods methods was initiated by the seminal papers of [Schwartz, 1965,Barron, 1988]
then increased significantly after the works of [Barron et al., 1999, Ghosal et al., 2000a]. Since then posterior
concentration has been extensively studied in various types of models including nonparametric regression [Ghosal
and van der Vaart, 2007], Markov models [Tang and Ghosal, 2007], Gaussian time series [Choudhuri et al.,
2004,Rousseau et al., 2012]. In this paper, we present some recent advances in the study of frequentist properties
of Bayesian nonparametric inference.

Consider a dominated model {fnθ , θ ∈ Θ} where Θ is a measurable, metric space, with metric (or semi
metric) d(., .), a prior probability π on Θ, and a vector Xn of observations distributed from fnθ . There is a vast
literature on possible constructions of nonparametric priors, i.e. on priors on infinite dimensional spaces, see
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for instance [Hjort et al., 2009] for a recent review on Bayesian nonparametric methods. The most popular are
either based on the Dirichlet process or on Gaussian processes.

The posterior distribution is said to concentrate or contract with rate εn at θ0 ∈ Θ if

Pπ [θ; d(θ0, θ) ≥ εn|Xn] = opθ0 (1), (1)

where for all measurable subset B of Θ

Pπ [B|Xn] =

∫
B
fnθ (Xn)dπ(θ)∫

Θ
fnθ (Xn)dπ(θ)

, (2)

is the posterior probability of B. When εn corresponds to the minimax estimation rate for estimating θ under the
loss d(., .) in a given class C ⊂ Θ with θ0 ∈ C we say that εn is the minimax concentration rate and the posterior
is said to concentrate at an adaptive minimax rate. The posterior is said to concentrate at an adaptive minimax
rate if the concentration rate is the (adaptive) minimax rate over a collection of sets Cα, α ∈ I. Minimax and
adaptive minimax concentration rates have been obtained in various cases. For instance, in the case of density
estimation, nonparametric mixtures of Beta distributions and nonparametric mixtures of Gaussian distributions
lead to adaptive minimax concentration rates over collections of Hölder classes up to a log n term, see [Rousseau,
2010] and [Kruijer et al., 2010]. General minimax adaptive concentration rates have been obtained by [van der
Vaart and van Zanten, 2009] using hierarchical Gaussian process priors. Recent extensions of both works to
anisotropic multivariate functional classes have been derived by [Shen et al., 2012, Bhattacharya et al., 2012].
A review of the existing results on posterior concentration rates is given in Section 1.1.

In the semiparametric framework the so-called Bernstein-von Mises property has also been recently inves-
tigated by [Castillo, 2012b, Castillo, 2012a, Rivoirard and Rousseau, 2012, Bickel and Kleijn, 2012, Bontemps,
2011,Leahu, 2011]. The posterior distribution of a quantity of interest ψ(θ) is said to verify the Bernstein-von
Mises property if it is asymptotically Gaussian and satisfies

Pπ
[
vn(ψ(θ)− ψ̂) ≤ z

∣∣∣Xn
]

= ΦV (z) + opθ0 (1), (3)

where vn is a positive sequence going to ∞, ΦV denotes the cumulative distribution function of a Gaussian
random vector with covariance matrix V , and if under Pθ0 , vn(ψ̂−ψ(θ0)) is asymptotically Gaussian with mean
0 and covariance matrix V . The Bernstein-von Mises property implies in particular that credible regions, such
as High Probability Density (HPD) regions or equal tail intervals are also asymptotically confidence regions
with the same levels. Such results are described in Section 1.2 in the context of functionals of a curve.

Moreover, it is common practice to replace some hyperparameters entering in the definition of the prior
distribution by some quantities that are data dependent. Such an approach is called empirical Bayes. The
theory described above cannot be applied in the context of data dependent priors. It is in fact much more
complicated to determine conditions on the model and the data dependent prior that ensure even consistency
of the posterior. Recently, [Petrone et al., 2012] have studied the asymptotic behaviour of empirical Bayes
approaches both in nonparametric and parametric models. In section 2 we review their result.

Another aspect of Bayesian nonparametric inference has also been recently investigated, namely the problems
of tests or model choice when at least one of the hypotheses is nonparametric. Bayesian tests are often based
on the so-called Bayes factor, defined in the following way: let Θ0,Θ1 ⊂ Θ, π0, π1 be prior probabilities over
Θ0 and Θ1 respectively and consider the problem of testing θ ∈ Θ0 versus θ ∈ Θ1. Then the Bayes factor is
defined as

B0/1 =

∫
Θ0
fnθ (Xn)dπ0(θ0)∫

Θ1
fnθ (Xn)dπ1(θ1)

. (4)

and is related to the posterior distribution of Θ0. The test procedure corresponds to rejecting Θ0 if B0/1 is small.
A typical threshold is 1. However the Bayes factor gives more information than the mere 0-1 decision. The test
procedures associated to the Bayes factor are thus said to be consistent if B0/1 converges in probability to infinity
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under Pnθ0 for all θ0 ∈ Θ0 and if it converges in probability to 0 under Pnθ0 for all θ0 ∈ Θ1. Goodness-of-fit tests
have been studied in terms of their asymptotic properties among others by [Dass and Lee, 2006, R. McVinish,
2009, Rousseau, 2007, Rousseau and Choi, 2012], see also [Ghosal et al., 2008]. When both hypotheses are
nonparametric but one is still embedded in the other, the determination of Bayesian test procedures having
good frequentist properties is quite difficult in general. In Section 3 we present a test for monotonicity proposed
by [Salomond, 2013], which is both simple to implement and has asymptotic optimal frequentist properties.

0.2. Notations

Throughout the paper the data Xn are assumed to be distributed according to a statistical model (Pnθ , θ ∈ Θ).
The parameter set Θ is endowed with a sigma-field and prior probability distributions on Θ are denoted by
π. The posterior associated to π is denoted Pπ[.|Xn] and is defined by (2). We consider dominated models
and fnθ designate the density of Pnθ with respect to a given dominated measure µ. We defined Kn(θ0, θ) the
Kullback-Leibler divergence between fnθ0 and fnθ and Vp(θ0, θ) the p- recentered moment of the log-likelihood
ratio:

Kn(θ0, θ) =
∫
fnθ0(xn)[log fnθ0(xn)− log fnθ (xn)]dµ(xn);

Vp(θ0, θ) =
∫
fnθ0(xn)

∣∣log fnθ0(xn)− log fnθ (xn)−Kn(θ0, θ)
∣∣p dµ(xn), p ≥ 2.

We also denote by Enθ [.] expectation with respect to Pnθ , by ln(θ) = log fnθ (Xn) the log - likelihood. The set
of square integrable functions on [0, 1] with respect to Lebesgue measure is denoted by L2([0, 1]) and h(f1, f2)
defines the Hellinger distance between the two-densities f1 and f2:

h(f1, f2)2 =
∫

(
√
f1(x)−

√
f2(x))2dµ(x).

1. A review on the asymptotic behaviour of the posterior distribution in semi
and non parametric models

1.1. Posterior concentration rates

In this section we describe the generic result of [Ghosal and van der Vaart, 2007] which relates properties of
the priors and the model to the posterior concentration rate. We now recall Theorem 3 of [Ghosal and van der
Vaart, 2007]

Theorem 1.1. Let d(., .) be a semi-metric on Θ, εn > 0 converging to 0 such that (nε2n)−1 = o(1). Let
Sn = {θ;Kn(θ0, θ) ≤ nε2n, Vp(θ0, θ) ≤ (nε2n)p/2}, for some p ≥ 2. If there exists Θn ⊂ Θ and a sequence of tests
φn ∈ [0, 1] such that for all j ≥ 1, for some constant κ

π (θ ∈ Θn; jεn < d(θ0, θ) < 2jεn)
π(Sn)

. eκj
2nε2n/2, (5)

for some constant c > 2
π (Θc

n)
π(Sn)

. e−cnε
2
n ,

and the tests φn are such that

Enθ0 [φn] = o(1) sup
θ∈Θn;jεn<d(θ0,θ)<2jεn

Enθ [1− φn] ≤ e−κj
2n2ε2n , (6)
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then for all Mn going to infinity,

Enθ0 (Pπ [d(θ0, θ) > Mnεn|Xn]) = o(1). (7)

There are essentially two key conditions appearing in this theorem: (1) A lower bound on the prior mass of
Kullback-Leibler neighbourhoods of the true distribution and (2) the existence of tests. The lower bound on
Kullback-Leibler neighbourhoods of the true distribution expressed in condition (5) requires to develop some
approximation theory (depending on both the sampling and the prior model), however it has been studied now
in a wide range of models and priors. The existence of tests, as required in condition (6) is discussed below.

The proof of Theorem 1.1 is straightforward and essentially relies on the following control of the posterior
probability: let Bn = {d(θ0, θ) > Mnεn} then

Pπ [d(θ0, θ) > Mnεn|Xn] =
Nn
Dn

:=

∫
Bn

eln(θ)−ln(θ0)dπ(θ)∫
Θ
eln(θ)−ln(θ0)dπ(θ)

Using the Fubini and Markov inequalities,

Enθ0 (Pπ [d(θ0, θ) > Mnεn|Xn]) ≤ Enθ0 [φn] + Pnθ0

(
Dn < e−2nε2nπ(Sn)/2

)
+
e2nε2n

π(Sn)

∫
Bn∩Θn

Enθ [1− φn] dπ(θ) +
e2nε2nπ(Θc

n)
π(Sn)

.

Then Dn is bounded from below by

Dn ≥
∫
Sn

1lln(θ)−ln(θ0)>−2nε2n
eln(θ)−ln(θ0)dπ(θ)

≥ e−2nε2nπ
(
Sn ∩ {ln(θ)− ln(θ0) > −2nε2n}

)
so that

Pnθ0

(
Dn < e−2nε2nπ(Sn)/2

)
≤ Pnθ0

[
π
(
Sn ∩ {ln(θ)− ln(θ0) < −2nε2n}

)
> π(Sn)/2

]
≤

2
∫
Sn
Pnθ0

[
ln(θ)− ln(θ0) ≤ −2nε2n

]
dπ(θ)

π(Sn)
.

In a variety of models, depending on the loss function (or semi-metric) d(., .), some tests with exponential
power as required in condition (6) exist. For instance, in the case of density or conditional density estimation,
Hellinger or L1 tests have been determined by [Birge, 1983]. Other examples of tests can be found in [Ghosal
and van der Vaart, 2007] and in [Rousseau et al., 2012].

Condition (6) leads however to some restriction on the types of loss functions or semi-metric that can be
considered in this context. For example, consider in the case of the white noise model, which when expanded
on an orthonormal basis can be written as

Xi = θi + n−1/2εi, i ∈ N; εi ∼ N (0, 1) independently,

where θ = (θi)i∈N ∈ `2 the set of sequences on R satisfying
∑∞
i=0 θ

2
i < +∞. The following prior leads to good

frequentist properties in terms of the `2 loss but not in terms of the sup-norm (L∞) or pointwise loss. The
prior is defined as follows: Let K ∼ πK where πK is a distribution on the set of integers, say the Poisson or the
Geometric distribution. Then given K, set θi = 0 for all i > K and independently draw θi for i ≤ K from the
density g(./τi)/τi, where g is a density on R and the sequence (τi)i∈N are given beforehand. We call this prior
the sieve prior.
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In [Arbel et al., 2013], it is proved that under some mild conditions on g, πK and the τj ’s, for all 1/2 < α1 <
α2 < +∞ and all L > 0, there exists M > 0 such that

sup
α1≤α≤α2

sup
θ0∈Θα(L)

Eθ0

[
Pπ
[
‖θ − θ0‖2 > M(n/ log n)−α/(2α+1)

∣∣∣Xn
]]

= o(1)

where ΘL(α) = {θ ∈ `2;
∑∞
j=1 j

2αθ2
j ≤ L} is the α - Sobolev ball with radius L. Interestingly if one is interested

in local features of the signal, say ψ(θ) =
∑∞
j=1 θj , then the posterior is not so well-behaved since for all α

inf
θ0∈Θα(L)

Eθ0

[
Pπ
[
|ψ(θ)− ψ(θ0)| ≤M(n/ log n)−(α−1/2)/(2α+1)

∣∣∣Xn
]]

= o(1)

whereas the minimax estimation rate of ψ(θ) on Θα(L) is equal to n−(α−1/2)/(2α). This phenomenon is due to
the fact that under the `2 loss the optimal truncation K is of order Kn = n1/(2α+1) whereas it would be equal
to K̃n = n1/(2α) for the estimation of ψ(θ). Since the posterior distribution is driven by the likelihood ratio
(i.e. driven by the `2 loss in the white noise model), it concentrates on truncation values of order smaller than
n1/(2α+1) and a bias occurs in the estimation of ψ(θ).

Interestingly in the specific case of point-wise loss functions, such as (ψ(θ) − ψ(θ0))2 or the sup-norm loss
function, the study of posterior concentration rates based on the existence of tests is bound to lead to sup-
optimal posterior concentration rates, because of the need to obtain an exponentially small second-type error as
in condition (6), see for instance [Giné and Nickl, 2012]. Recently, a general theory on the possibility of using
the approach proposed in Theorem 1.1 has been proposed in [Hoffmann et al., 2013] based on a lower bound on
the posterior concentration rates.

To conclude this section, it thus appears that Bayesian nonparametric procedures have good frequentist
properties when the loss function under study is somewhat related to the Kullback-Leibler divergence, or to
phrase it differently when tests with exponential second- type error can be constructed. In semiparametric
contexts this is not necessarily the case. The prior has to be chosen carefully for the posterior to have good
frequentist properties. In the following section we describe more precisely some asymptotic aspects of Bayesian
semiparametric approaches, namely the Bernstein-von Mises property.

1.2. On the semiparametric Bernstein - von Mises Theorem

As described in the introduction, the semiparametric Bernstein - von Mises theorem corresponds to determi-
nation of the asymptotic posterior distribution of some finite dimensional quantity of interest ψ(θ) in the form
(3). There are essentially two types of semiparametric problems. First the case where θ = (ψ, η) where ψ ∈ Rd
is the parameter of interest and η ∈ S is an infinite dimensional nuisance parameter. Bernstein - von Mises
theorems have been obtained in this framework by [Castillo, 2012b, Castillo, 2012a, Bickel and Kleijn, 2012] in
the case of regular models and by [Kruijer and Rousseau, 2012] in a specific non regular model. The second type
corresponds to functionals of the whole parameter, such as the cumulative distribution function at a given point
in the density model, or linear functionals of a curve, etc. This has been studied in particular in [Rivoirard and
Rousseau, 2012]. In this section we present the latter case and more precisely the results obtained in [Rivoirard
and Rousseau, 2012], with improvements obtained in [Castillo and Rousseau, 2013], where sufficient conditions
are proposed in the framework of smooth linear functionals of the density.

Let Xn = (X1, · · · , Xn) be a n sample, with density f on [0, 1] with respect to Lebesgue measure, where
f is unknown. Let Ψ(f) =

∫ 1

0
ψ(x)f(x)dx be any continuous linear functional of the density f . The aim

is to determine the asymptotic posterior distribution of
√
n(Ψ(f) − ψ(Pn)), where ψ(Pn) = n−1

∑n
i=1 ψ(Xi),

and to obtain conditions on the prior model so that it is asymptotically Gaussian with mean 0 and variance
V =

∫ 1

0
ψ2(x)f(x)dx−Ψ(f)2, assuming that ψ is bounded. We then have the following theorem
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Theorem 1.2. Under the following two conditions:
C1: Posterior concentration There exist εn converging to 0 and

An ⊂ {f ;h(f0, f) ≤ εn}, with Pπ [An|Xn] = 1 + opf0 (1)

C2: Change of variable Let 0 < |t|, f ∈ An and define

ψ̄t,f (x) = ψ(x) +
√
n

t
log
(∫ 1

0

f(x)e−tψ(x)/
√
ndx

)
.

There exists t0 > 0 such that for all |t| ≤ t0 and f ∈ An,∫
An

eln(fe−tψ̄t,f /
√
n)−ln(f0)dπ(f)∫

An
eln(f)−ln(f0)dπ(f)

dπ(f) = 1 + opf0 (1), (8)

we have:
sup
z∈R

∣∣Pπ [√n(Ψ(f)− ψ(Pn)) ≤ z
∣∣Xn

]
− ΦV (z)

∣∣ = opf0 (1). (9)

As seen in the previous section, there is now an extensive literature on posterior concentration rates so that
the tools described in Section 1.1 can be applied to verify Condition C1. The key condition is (8). To verify
condition (8), one needs to construct a change of parameter Tf = fe−tψ̄t,f/

√
n for all f ∈ An which only slightly

alters the prior π and the set An. To illustrate the phenomena that can occur consider a simple sieve model on
the set of prior densities, similar to the sieve priors described in Section 1.1: for all θ ∈ `2, define densities on
[0, 1] in the form

fθ(x) = exp

 ∞∑
j=0

θjφj(x)− c(θ)

 ,

where (φj)j∈N is an orthonormal basis on L2([0, 1]) satisfying ψ0 = 1 and consider the sieve prior defined above
on θ ∈ `2. We assume that 0 < c0 ≤ f0 = fθ0 ≤ C0 < +∞ where f0 denotes the true density of the observations,
and θ0 ∈ `2. It can be proved that if K ∼ πK where πK is either the Poisson or the Geometric distribution
then the posterior concentration rate in the Hellinger loss is of order (n/ log n)−α/(2α+1) over Sobolev balls, for
all α > 1/2 and condition C1 is satisfied. However to construct the change of parameters f → Tf , we need to
make the change of parameters θ → T̃ θ within each submodel ΘK corresponding to the first K coefficients. To
do so, define ψ[K] = (ψj,[K], j ≤ K) the coefficients of the orthogonal projection of ψ̄t,fθ onto the space spanned
by (φj)j≤K , with respect to the inner product < g1, g2 >=

∫ 1

0
g1(x)g2(x)f0(x)dx. The change of variable is then

constructed as follow: for all K in the asymptotic support of the posterior distribution, set θt,K = θ− tψ[K]/
√
n

for all θ ∈ RK ∩ An with An := {‖θ − θ0‖ ≤ M(n/ log n−α/(2α+1))}. Condition (8) is valid when θ0 ∈ Θα(L),
α > 1/2, L > 0, if

sup
θ∈RK∩An

∣∣∣ln(fθe−tψ̄t,fθ/
√
n)− ln(fθt)

∣∣∣ = opf0 (1)

and

sup
θ∈RK∩An

∣∣∣∣∣∣
K∑
j=0

(
log g((θj − tψj,[K]/

√
n)/τj)− log g(θj/τj)

)∣∣∣∣∣∣ = o(1).

The first condition means that the change of parameters f → Tf can be approximated within each submodel
by θ → θt and the second one that the prior is not modified asymptotically by this change of parameters. Under
some mild conditions on g and (τj)j≥0, the latter is verified for any α > 1/2. For the former to be verified it is
necessary to have K large enough, since the difference between both changes of parameters (in the likelihood)
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is of the same order as the difference
√
n(ψ̄fθ,t −

∑K
j=0 ψj,[K]). Thus for (8) to be valid some no-bias condition

is required, which is true in particular if for all ε > 0,

Pπ

K;
∑
j>K

ψ2
j < εn1/(2α+1)(log n)−2α/(2α+1)

∣∣∣∣∣∣Xn

 = opf0 (1).

Hence, a bias may appear when K is apriori random as shown in an example proposed by [Rivoirard and
Rousseau, 2012]. On the contrary, if K = Kn = bn1/(2β+1)c for some β > 1/2 and α ≥ β, then (9) is valid and
the conclusion of Theorem 1.2 holds.

In both Sections 1.1 and 1.2, the priors do not depend on the data, however it is common practice to replace
some of the hyperparameters defining the prior by some quantity which is data dependent. For instance, in the
case of density estimation, under a Dirichlet mixture of Gaussian prior, the prior puts mass 1 on densities of
the form

f(x) =
∞∑
j=1

pjϕ((x−mj)/σ)/σ,

where the (pj)j≥1 drawn from the stick-breaking distribution, the mj ’s are independent and identically dis-
tributed from a Gaussian prior with mean m0 and variance τ0 and σ follows an inverse Gamma distribution,
see for instance [Ghosh and Ramamoorthi, 2003]. Then it is common practice to center m0 on the empirical
mean and τ0 either on the empirical variance or on the square of the difference between the largest and the
smallest observations. Another typical example where such data dependent prior is used is through the so-called
type-II marginal maximum likelihood estimation, see for instance [Berger, 1985, Clyde and George, 2000, Cui
and George, 2008]. Surprisingly, there are few studies on generic conditions to obtain posterior consistency
under data dependent priors. In the following section we describe the recent work of [Petrone et al., 2012] on
the asymptotic behaviour of empirical Bayes procedures, i.e. under data dependent priors. This paper considers
both parametric and nonparametric models but, for the sake of conciseness we will present here only the results
dealing with posterior consistency.

2. On consistency for empirical Bayes procedures

In this section, we call empirical Bayes procedures, Bayesian approaches associated with data dependent
priors. The general setup is the following, let fnθ , θ ∈ Θ be a statistical model and (πλ, λ ∈ Λ) is a family of
prior distributions where Θ can be either finite or infinite dimensional and Λ ⊂ Rd for some 0 < d < +∞. We
consider two types of empirical Bayes approaches. First, the marginal maximum likelihood approach, which
consists in choosing

λ̂n = argsupλ∈Λ

∫
Θ

fnθ (Xn)dπ(θ|λ) := argsupλ∈Λm(Xn|λ), (10)

which is also known under the name type-II maximum likelihood estimator. The second is the plug-in type
of empirical Bayes, where λ̂n is explicitely defined, like an empirical moment of some given quantity. It may
happen that λ̂n converges to a given value under Pθ0 , but it is not required.

It is common belief that the empirical Bayes posterior should be close to some purely Bayesian posterior,
however as in [Diaconis and Freedman, 1986] to obtain asymptotic merging between the empirical Bayesian and
any other Bayesian posteriors it is necessary that the empirical Bayes posterior is consistent, for some given
topology. We say that the posterior is consistent at θ0 in a given topology if for any neighbourhood U with
respect to this topology,

Pπ [U |Xn] = 1 + o(1),
where the convergence above is either with probability 1 under Pθ0 or with probability going to 1 under Pθ0 . In
this section we present some sufficient conditions to obtain posterior consistency for empirical Bayes procedures.
First note that in the case of a fully Bayesian approach, i.e. if the prior does not dependent on the data, in
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the case of independent and identically distributed observations, the posterior is weakly consistent (i.e. with
respect to the weak topology) if the so-called Kullback-Leibler property holds, see for instance [Barron, 1988],
i.e. if for all ε > 0

π [θ;K∞(fθ0 , fθ) < ε] > 0
where

K∞(fθ0 , fθ) := lim
n→+∞

n−1[ln(θ0)− ln(θ)]

where the limite above is taken as P∞θ0 almost surely. In the case of empirical Bayes posteriors, it is not enough
to assume such a condition. We first present the result in the case of the marginal maximum likelihood empirical
Bayes approach.

2.1. Maximum marginal likelihood empirical Bayes case

In this section we study the asymptotic behaviour of the empirical Bayes posterior defined as

PEB [B|Xn] :=

∫
B
fnθ (Xn)dπ(θ|λ̂n)∫

Θ
fnθ (Xn)dπ(θ|λ̂n)

where λ̂n is defined by (10). We then have the following theorem.

Theorem 2.1. Let λ̂n be the maximum marginal likelihood estimator. Under the following two assumptions:
• C3 There exist constants c1, c2 > 0 such that, for any U neighbourhood of θ0 (associated to a given

topology)

P ∗θ0

[
sup
θ∈Uc

[ln(θ)− ln(θ0)] ≥ −c1nε2
]
≤ c2(nε2)−(1+t)

for some t > 0, where P ∗θ0 denotes the outer measure.
• C4 For each θ0 ∈ Θ, there exists λ0 ∈ Λ such that, for any ε > 0,

π(K∞(fθ0 , fθ) < ε|λ0) > 0.

the EB posterior PEB(·|Xn) = Pπ
(
.|λ̂n, Xn

)
is consistent at θ0: i.e. for any neighbourhood U of θ0,

Pπ(U c|λ̂, Xn)→ 0, a.s. [P∞θ0 ].

On the one hand, condition C4 is the usual Kullback-Leibler condition and it appears in a rather weak form
since it needs only be verified for at least one λ0 ∈ Λ. Condition C3 on the other hand is quite demanding. It has
been proved however in a series of nonparametric models where maximum likelihood estimation is considered,
see for instance [Wong and Shen, 1995]. In [Petrone et al., 2012], a counter example is given where every fully
Bayesian posterior where the prior has full support is consistent everywhere but where the empirical Bayes
approach based on the marginal maximum likelihood estimator is inconsistent. This illustrates the fact that
the Kullback-Leibler condition is usually not sufficient to ensure consistency in empirical Bayes approaches.

2.2. Plug-in case

Another common approach to empirical Bayes is to use a plug-in data dependent value λ̂n. We only require
that there exists a sequence of compact sets Kn ⊆ Λ ⊆ R` such that, with Pθ0–probability one, λ̂n ∈ Kn when
n is large enough. Typically λ̂n can converge to a given value under Pθ0 but this is not necessary. We then have
the following theorem

Theorem 2.2. We consider for all λ, λ′ ∈ Kn, there exists a measurable transformation ψλ, λ′ : Θ → Θ
such that if θ ∼ π(· | λ) then ψλ, λ′(θ) ∼ π(· | λ′) and we assume the following two assumptions on the
transformations:
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• C5 For every δ > 0 and λ ∈ Kn, there exists a sequence un such that u−`n > exp (−cn) for some constant
c > 0 and a set S ∈ B(Θ) such that lim infn infλ∈Kn π(S|λ) > 0 and

∞∑
n=1

u−`n sup
θ∈S

Pnθ0

{
inf

‖λ−λ′‖≤un
(ln(ψλ, λ′(θ))− ln(θ0)) < −nδ

}
<∞;

• C6 For every U , neighbourhood of θ0, there exist η0 > c and tests φn : Xn → [0, 1] such that, for all
λ ∈ Kn,

∑∞
n=1E

n
θ0
{φn(Xn)} <∞, and∫

Uc

∫
Xn
{1− φn(xn)} sup

‖λ−λ′‖≤un
fnψλ, λ′ (θ)(x

n) dµ(xn)dπ(θ | λ) ≤ e−nη0 .

Then, for any neighbourhood U of θ0, Π(U c | λ̂n, Xn)→ 0 with probability one under Pθ0 .

The transformations ψλ,λ′ allow us to transfer the dependence on the data in the prior through λ̂n into a
modification of the likelihood. Since un can typically be choosen as small as n−b for any b > 0, conditions C5
and C6 are rather mild conditions. In [Petrone et al., 2012], they are proved to hold in the nonparametric
density model, where the observations are assumed to be independent and identically distributed and where the
prior on the density f is a Dirichlet process location mixture of Gaussian distributions:∫

R
ϕσ(x− µ)dP (µ), P ∼ DP (αN (λ, τ2)), σ ∼ H

where H is a Gamma distribution and if λ̂n is the empirical mean of the observations, then the empirical Bayes
procedure is consistent for any true positive, continuous and bounded density f0 satisfying∣∣∣∣∫

R
f0(x) log

(
inf

|x−t|≤δ
f0(t)

)
dx

∣∣∣∣ <∞, ∫
R
|x|2+δf0(x)dx < +∞.

These are the same conditions as those considered in [Wu and Ghosal, 2008] in the case where the base measure
of the Dirichlet process is not data dependent.

Sections 1.1 and 2 concern various aspects of Bayesian nonparametric or semiparametric estimation proce-
dures. In the following section we describe another aspect of Bayesian nonparametric inference, namely the
problem of nonparametric tests. When both hypotheses are nonparametric this is a difficult issue and there is
no theoretical result in the Bayesian literature apart from a partial result in [Holmes et al., 2012]. Section 3
deals with the special case of a Bayesian nonparametric test of monotonicity for the regression function.

3. Bayes test for monotonicity

In this Section we consider the test for monotonicity in the Gaussian regression setting. Consider the usual
regression model with regular fixed design zi = i/n

Xi = f(zi) + σεi, where εi
iid∼ N (0, 1), σ > 0, (11)

where f and σ are unknown. Denoting F the set of monotone non increasing functions, we want to test

H0 : f ∈ F versus H1 : f 6∈ F (12)

Many tests have been proposed in the frequentist literature (see for instance [Ghosal et al., 2000b,Baraud et al.,
2005] or more recently [Akakpo et al., 2012]). In this section we describe a simple Bayesian procedure to address
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the testing problem (12), proposed in [Salomond, 2013]. We consider a prior distribution π on f of the form

f = fk,ω :=
k∑
i=1

1l[(i−1)/k,i/k)ωi, dπ(f) = π(k)π(ω1, . . . , ωk|k). (13)

In this case the Bayes factor can lead to inconsistent results, when f has flats parts and is thus at the boundary
of both hypotheses. To tackle this issue, we force the test to accept more easily the null hypothesis while
retaining a good asymptotic power. To do so, we consider a thresholded version of (12), namely

H ′0 : d(f,F) ≤ τ versus H ′1 : d(f,F) > τ

where d(f, g) = n−1
∑n
i=1(f(i/n)−g(i/n))2 is the L2 norm on the design and d(f,F) = infg∈F d(f, g) and τ > 0

is some threshold derived from prior knowledge on the tolerance we can accept for departure from monotonicity
under H0. In many situations, such a knowledge is not available, [Salomond, 2013] thus poposes an automatic
calibration of the threshold such that the test has good asymptotic properties. This idea of test approximation
is similar to the one proposed in [Rousseau, 2007] and to approximation of a point null hypothesis by an interval
hypothesis testing. When f = fω,k as defined in (13) monotonicty can be represented as

H(ω, k) = max
j>i

(ωj − ωi) ≤ 0,

which corresponds to the sup-norm between regression function f and the set of monotone non increasing
functions, when f is piecewise constant. The following theorem gives sufficient conditions on the prior as well as
an automatic calibration for the threshold and the prior such that our test achieve good frequentist properties
together with good finite sample performances.

Theorem 3.1. Assume that the prior on σ has a positive density on R+ with respect to Lebesgue measure and
that conditionnally on k, ω1, · · · , ωk are independent and identically distributed from an absolutely continuous
distribution with respect to Lebesgue measure with positive and continuous density on R. Assume further that
πk satisfies

e−CdkL(k) ≤ πk(k) ≤ e−CukL(k) (14)
where L(k) is either equal to log(k) or to 1, for some positive constants Cd and Cu. Let τkn(M0) = M0

√
k log(n)/n,

for M0 > 0 and δπn the testing procedure

δπn = 1l
{
Pπ
(
H(ω, k) > τkn |Xn

)
> 1/2

}
,

then there exist some M,L > 0 depending on M0 such that for all α ∈ (0, 1]

sup
f∈F,‖f‖∞≤L

Enf (δπn) = o(1)

sup
f,d(f,F)>ρ,f∈H(α,L)

Enf (1− δπn) = o(1)
(15)

for all ρ > ρn(α) = M(n/ log(n))−α/(2α+1)vn where vn = 1 when L(k) = log(k) and vn =
√

log(n) when
L(k) = 1.

Note that the case L(k) = log k is satisfied for instance by any Poisson prior on k, while L(k) = 1 corresponds
for instance to a Geometric distribution. Here both M and L depend on M0.

Similarly to the frequentist test proposed in the literature, our testing procedure has good asymptotic prop-
erties for Hölder smooth functions under the alternative. Note that neither the prior nor the hyperparameters
depend on the regularity α of the regression function under the alternative. Thus our test is adaptive. Inter-
estingly our calibration leads to a separation rate ρn that is the minimax separation rate up to a log n factor.
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The separation rate, which is the minimal value ρ such that (15) is still valid, gives some information on the
amount of tolerance expected using such a test. This can be seen as a criterion of effectiveness of our threshold.

The proof of Theorem 3.1 is as follows. For each k, we approximate the true regression function f0 in the
submodel Gk of piecewise constant functions associated with k bins on {[0, 1/k), . . . [1− 1/k, 1)} by fω0,k which
minimizes the Kullback-Leibler divergence with f0. This leads to a closed form expression for ω0 = (ω0

1 , . . . , ω
0
k):

ω0
i = n−1

i

∑
j,j/n∈[(i−1)/k,i/k)

f0(j/n), ni = Card {j, j/n ∈ [(i− 1)/k, i/k)} (16)

so that fω0,k belongs to F for all k when f0 ∈ F . To prove the first part of (15), note that H(ω, k) ≤
2 max |ωi − ω0

i | if f0 ∈ F so that the threshold τkn needs to be as large as the posterior concentration rate of ω
to ω0 in the misspecified model Gk. Then to prove the second part of (15), we bound from below H(ω, k) by
H(ω0, k)−2 max |ωi−ω0

i | which implies a constraint on the separation rate of the test to ensure that uniformly
over d(f0,F) ≥ ρn and f ∈ H(α,L) we have H(ω, k) > τkn .

Contrarywise to the frequentist test proposed by [Baraud et al., 2005], the least favourable regression function
under the null is not the constant function, although conditionnally on k this is the case. In [Salomond, 2013]
an extensive discussion on ways to calibrate M0 is conducted. To illustrate this theoretical result, we present
some results from a simulation study based on the following prior:

π :=


k ∼ Geom(p)
σ2|k ∼ IG(α, β)

ω|σ, k ∼ Nk
(
m, σ

2

µ Ik

) (17)

for 0 < 1 < p, α, β, µ > 0 and m ∈ Rk. This specific choice has the advantage to allow for exact computations
of the posterior and thus the implementation of the testing procedure is straightforward. The test is run for
the following nine functions considered also in [Baraud et al., 2005,Akakpo et al., 2012]. The testing procedure
in this paper is calibrated so that under constant true regression functions the type I error is approximately of
order 0.05.

f1(x) =− 15(x− 0.5)31lx≤1/2 − 0.3(x− 0.5) + e−250(x−0.25)2

f2(x) =0.15x

f3(x) =0.2e−50(x−0.5)2

f4(x) =− 0.5 cos(6πx)

f5(x) =− 0.2x+ f3(x)

f6(x) =− 0.2x+ f4(x)

f7(x) =− (1 + x) + 0.25e−50(x−0.5)2

f8(x) =− 0.5x2

f9(x) =0

(18)

For each function, we run the testing procedure for 500 repeated samples, from which we compute empirical
type I or type II errors depending on the true function. Functions f1 to f7 are not monotone non increasing and
the results obtained with the testing procedure proposed in [Salomond, 2013] are very similar to those obtained
by [Baraud et al., 2005,Akakpo et al., 2012]. Functions f8 and f9 are monotone non increasing and the Type I
error is smaller than 0.05. The results are presented in Table 1.

The authors would like to thank the anonymous referee for very helpful suggestions on the presentation of the paper.
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Table 1. Percentage of rejection for the simulated examples for 500 samples.

f0 σ2 Barraud et
al. n = 100

Akakpo et
al. n = 100

Bayes Test, n :
100 250 500 1000

H0

f1 0.01 99 99 98.0 100.0 100.0 100.0
f2 0.01 99 100 98.4 100.0 100.0 100.0
f3 0.01 99 98 100.0 100.0 100.0 100.0
f4 0.01 100 99 100.0 100.0 100.0 100.0
f5 0.004 99 99 100.0 100.0 100.0 100.0
f6 0.006 98 99 100.0 100.0 100.0 100.0
f7 0.01 76 68 69.1 100.0 100.0 100.0

H1
f8 0.01 - - 3.0 0.8 1.0 2.8
f9 0.01 - - 5.0 2.8 2.2 3.6
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