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A stationary Gaussian process is said to be long-range depen-
dent (resp. anti-persistent) if its spectral density f(λ) can be written
as f(λ) = |λ|−2dg(|λ|), where 0 < d < 1/2 (resp. −1/2 < d < 0),
and g is continuous. We propose a novel Bayesian nonparametric ap-
proach for the estimation of the spectral density of such processes.
Within this approach, we prove posterior consistency for both d and
g, under appropriate conditions on the prior distribution. We estab-
lish the rate of convergence for a general class of priors, and apply
our results to the family of fractionally exponential priors. Our ap-
proach is based on the true likelihood function, and does not resort to
Whittle’s approximation, which is not valid in a long memory set-up.

1. Introduction. Let X = {Xt, t = 1, 2, . . . } be a real-valued sta-
tionary zero-mean Gaussian random process, with spectral density f , and
covariance function γf (τ) = E(XtXt+τ ), so that

(1) γf (τ) =
∫ π

−π
f(λ)eiτλdλ (τ = 0,±1,±2, . . . ).

This process is long-range dependent (resp. anti-persistent) if there exist
C > 0 and a value d, 0 < d < 1/2 (resp. −1/2 < d < 0), such that
f(λ)|λ|2d → C when λ→ 0. This may be conveniently rewritten as f(λ) =
λ−2dg(|λ|), where g : [0, π] → R+ is a continuous function.
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Interest in long-range dependent and anti-persistent time series has in-
creased steadily in the last fifteen years; see Beran (1994) for a compre-
hensive introduction and Doukhan et al. (2003) for a review of theoretical
aspects and fields of applications, including telecommunications, economics,
finance, astrophysics, medicine and hydrology. Research in parametric infer-
ence for long and intermediate memory processes have been pioneered by
Mandelbrot and Van Ness (1968), Mandelbrot and Wallis (1969), and contin-
ued by Fox and Taqqu (1986), Dahlhaus (1989), Giraitis and Taqqu (1999),
Geweke and Porter-Hudak (1983), and Beran (1993), among others. Unfor-
tunately, parametric inference can be highly biased under mis-specification
of the true model. This limitation makes semiparametric approaches partic-
ularly appealing (Robinson, 1995).

For instance, under the representation f(λ) = |λ|−2dg(|λ|), one would like
to estimate d as a measure of long-range dependence, without resorting to
parametric assumptions on the nuisance parameter g; see Liseo et al. (2001)
for a Bayesian approach to this problem, and Bardet et al. (2003) for an
exhaustive review of classical approaches. However, practically all the ex-
isting procedures either exploit the regression structure of the log-spectral
density in a small neighborhood of the origin (Robinson, 1995), or use an
approximate likelihood function based on Whittle’s approximation (Whittle,
1962), where the original vector of observations Xn = (X1,X2, . . . ,Xn) gets
transformed into the periodogram I(λ) computed at the Fourier frequencies
λj = 2π j/n, j = 1, 2, . . . , n, and the artificial observations I(λ1), . . . , I(λn)
are, under short range dependence, approximately independent. Unfortu-
nately, Whittle’s approximation is not valid in in the presence of long range
dependence, at least for the smallest Fourier frequencies.

We propose a Bayesian nonparametric approach to the estimation of the
spectral density of the stationary Gaussian process based on the true likeli-
hood, without resorting to Whittle’s approximation. We study the asymp-
totic properties of our procedure, including consistency and rates of con-
vergence. Our study is based on standard tools for an asymptotic analysis
of Bayesian approaches, e.g. Ghosal et al. (2000), i.e. quantities of interest
are the prior probability of a small neighborhood around the true spectral
density, and some kind of entropy measure for the prior distribution. Most
technical details differ however, as the observed process is long-range depen-
dent.

The paper is organised as follows. In Section 2, we introduce the model
and the notations. In Section 3, we provide a general theorem that states
sufficient conditions to ensure consistency of the posterior distribution, and
of several Bayes estimators. We also introduce the class of FEXP (Fractional
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Exponential) priors, based on the FEXP representation of Robinson (1991),
and show that such prior distributions fulfil these sufficient conditions for
posterior consistency. In Section 4, we study the rate of convergence of the
posterior in the general case, and specialise our results for the FEXP class.
Section 5 gives the proofs of the main theorems of the two previous Sections.
Section 6 discusses further research. The Appendix contains several technical
lemmas.

2. Model and notations. The model consists of an observed vector
Xn = (X1, . . . ,Xn) of n consecutive realizations from a zero-mean Gaussian
stationary process, with spectral density f , which is either long-range de-
pendent, short-range dependent, or anti-persistent. The likelihood function
is

(2) ϕ(Xn; f) = (2π)−n/2|Tn(f)|−1/2 exp{−1
2
Xt

nTn(f)−1Xn}

where Tn(f) is the Toeplitz matrix associated to γf , see (1), i.e. Tn(f) =
[γf (j − k)]1≤j,k≤n.

This model is parametrised by the pair (d, g), which defines f = F (d, g)
through the factorisation

F : (−1/2, 1/2) × C0[0, π] → F
(d, g) → f : f(λ) = |λ|−2dg(|λ|),

where C0[0, π] is the set of continuous functions over [0, π], and F denotes the
set of spectral densities, that is, the set of even functions f : [−π, π] → R+

such that
∫ π
−π |f(λ)| dλ < +∞.

The model is completed with a nonparametric prior distribution π for
(d, g) ∈ (−1/2, 1/2) × C0[0, π]. (There should be no confusion whether π
refers to either the constant or the prior distribution in the rest of the
paper.) All our results will assume that the model is valid for some true’
parameter (d0, g0), associated to some ‘true’ spectral density f0 = F (d0, g0),
where d0 ∈ (−1/2, 1/2); conditions on g0 are detailed in the next section.

We introduce several pseudo-distances on F . The Kullback-Leibler diver-
gence for finite n is defined as

KLn(f0; f) =
1
n

∫

Rn
ϕ(Xn; f0) {logϕ(Xn; f0) − logϕ(Xn; f)} dXn

=
1
2n

{
tr
[
Tn(f0)T−1

n (f) − In

]
− log det(Tn(f0)T−1

n (f))
}
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where In represents the identity matrix of order n. Letting n → ∞, we can
define, when it exists, the quantity

KL∞(f0; f) =
1
4π

∫ π

−π

[
f0(λ)
f(λ)

− 1 − log
f0(λ)
f(λ)

]
dλ.

We also define a symmetrised version of KLn, i.e.

hn(f0, f) = KLn(f0; f) + KLn(f ; f0);

and its limit as n → ∞:

h(f0, f) =
1
4π

∫ π

−π

[
f0(λ)
f(λ)

+
f(λ)
f0(λ)

− 2
]
dλ =

1
2π

∫ π

0

(
f0(λ)
f(λ)

− 1
)2 f(λ)

f0(λ)
dλ.

For technical reasons, we define also the pseudo-distance

bn(f0, f) =
1
n

tr
[(

Tn(f)−1Tn(f0 − f)
)2
]

and its limit as n → +∞,

b(f0, f) =
1
4π

∫ π

−π

(
f0(λ)
f(λ)

− 1
)2

dλ.

Finally, we consider the L2 distance between the spectral log-densities (Moulines
and Soulier, 2003),

&(f0, f) =
∫ π

−π
{log f0(λ) − log f(λ)}2 dλ.(3)

For the models considered in this paper, this distance always exists, whereas
the L2 distance may not.

3. Consistency. We first state and prove the strong consistency of the
posterior distribution under very general conditions on both π and f0 =
F (d0, g0), i.e. as n → ∞, and for ε > 0 small enough,

P π[Aε|Xn] → 1, a.s.,

where P π[.|Xn] denotes posterior probabilities associated with the prior π,
and

Aε = {(d, g) ∈ (−1/2, 1/2) × C0[0, π] : h(f0, F (d, g)) ≤ ε}.

From this, we shall deduce the consistency of Bayes estimators of f and d.
Finally, we shall introduce the class of FEXP priors, and show that they
allow for posterior consistency.
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3.1. Main result. Consider the following sets:

G(m,M) =
{
g ∈ C0[0, π] : m ≤ g ≤ M

}

G(m,M,L, ρ) =
{
g ∈ G(m,M) :

∣∣g(λ) − g(λ′)
∣∣ ≤ L|λ− λ′|ρ

}

G(t,m,M,L, ρ) = [−1/2 + t, 1/2 − t] × G(m,M,L, ρ)

for ρ ∈ (0, 1], L > 0, m ≤ M , t ∈ (0, 1/2). Restricting the parameter space to
such sets makes the model identifiable (boundedness of g, provided m > 0),
and ensures that normalized traces of products of Toeplitz matrices that
appear in the distances defined in the previous section converge (Hölder in-
equality).

We now state our main consistency result.

Theorem 3.1. For ε > 0 small enough

P π [Aε|Xn] → 1, a.s.

provided the following conditions are fulfilled:

1. There exist t,m,M,L > 0, ρ ∈ (0, 1], such that the set G(t,m,M,L, ρ)
contains both the pair (d0, g0) that defines the true spectral density
f0 = F (d0, g0) and the support of the prior distribution π.

2. For all ε > 0, π(Bε) > 0, where Bε is defined by

Bε = {(d, g) ∈ G(t,m,M,L, ρ) : h(f0, F (d, g)) ≤ ε, 16|d0 − d| < ρ+ 1 − t} .

3. For ε > 0 small enough, there exists a sequence Fn such that π(Fn) ≥
1 − e−nr, r > 0, and a net (i.e. a finite collection)

Hn ⊂ {(d, g) ∈ [−1/2 + t, 1/2 − t] × G(m,M,L, ρ) : h(f0;F (d, g)) > ε/2}

such that, for n large enough, for all (d, g) ∈ Fn ∩ Ac
ε, f = F (d, g),

there exists (di, gi) ∈ Hn, fi = F (di, gi), such that 8(di−d) ≤ ρ+1− t,
f ≤ fi, and:

(a) if 8|di − d0| ≤ ρ+ 1 − t,

1
2π

∫ π

−π

(fi − f)(λ)
f0(λ)

dλ ≤ h(f0, fi)/4;

(b) if 8(di − d0) > ρ+ 1 − t,

b(fi, f) ≤ b(f0, fi)| log ε|−1;
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(c) otherwise, if 8(d0 − di) > ρ+ 1 − t,

1
2π

∫ π

−π

(fi − f)(λ)
fi(λ)

dλ ≤ b(fi, f0)| log ε|−1.

4. The cardinality Cn of the net Hn defined above is such that log Cn ≤
nε/log(ε).

A proof is given in Section 5.1. Note that, in the above definition of the
net Hn, the | log ε| terms are here only to avoid writing inequalities in terms
of awkward constants in the form m/M . If need be, we can replace the | log ε|
by the correct constants as expressed in Appendix B. The definition of the
above entropy is non-standard. The interest in expressing it in this general
but non-standard form lies in the difficulty in dealing with spectral densities
which diverge at 0. In practise, the way one constructs the net Hn should
vary according to the form of the prior on the short memory part g.

3.2. Consistency of point estimates. As explained in §2, we focus on the
quadratic loss function & with respect to the logarithm of the spectral density.
The corresponding Bayes estimator is

d̂ = Eπ[d|Xn], ĝ : λ→ exp {Eπ[log g(λ)|Xn]} , f̂ = F (d̂, ĝ).

Often, the real parameter of interest is d, and g is a nuisance parameter.
Consistency for d̂ can be deduced from Theorem 3.1.

Corollary 1. Under the assumptions of Theorem 3.1, for ε > 0 small
enough,

P π [{|d − d0| > ε}|Xn] → 0

and d̂ → d0 as n → ∞.

Proof. Lemma 10, see Appendix D, implies that

P π[Ac
ε|Xn] ≥ P π [{|d − d0| > ε′

}
|Xn

]
→ 0 a.s.

as n → +∞, for some ε′ > 0 and, by Jensen’s inequality,

(d̂ − d0)2 ≤ Eπ[(d − d0)2|Xn] → 0, a.s.

Consistency results for a point estimate of f can also be deduced:
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Corollary 2. Under the assumptions of Theorem 3.1, one has, as n →
∞,

&(f0, f̂) → 0, a.s.

Proof. For f = F (d, g), f0 = F (d0, g0), one has &(f0, f) ≤ h(f0, f), since
x2 ≤ ex + e−x − 2 for all x, and &(f0, f) ≤ C for some well chosen constant
C, provided g, g0 ∈ G(m,M). Thus, by Jensen inequality, and for all ε > 0,

&(f0, f̂) ≤ Eπ[&(f0, f)|Xn] ≤ ε+ CP π[Ac
ε|Xn].

3.3. The FEXP prior. Following Hurvich et al. (2002), we consider the
FEXP parameterisation of spectral densities, i.e. f = F̃ (d, k, θ), where

F̃ : T → F

(d, k, θ) → f : f(λ) = |1 − eiλ|−2d exp






k∑

j=0

θj cos(jλ)




 .(4)

and T = (−1/2+t, 1/2−t)×
{
∪+∞

k=0{k} × Rk+1
}
, for some fixed t ∈ (0, 1/2).

This FEXP representation is equivalent to our previous representation f =
F (d, g), provided g = ψ−dew, w(λ) =

{∑k
j=0 θj cos(jλ)

}
and ψ(λ) = |1 −

eiλ|2/λ2 = 2(1 − cosλ)/λ2 for λ += 0, ψ(0) = 1. The function ψ is bounded,
infinitely differentiable and positive for λ ∈ [0, π]. Thus g and w share the
same regularity properties, i.e. w is bounded and Hölder with exponent
ρ implies that g is bounded and Hölder with exponent ρ, and vice versa.
Under this parameterisation, the prior distribution π is expressed as a trans-
dimensional prior distribution on the random vector (d, k, θ), which, for
convenience, factorises as πd(d)πk(k)πθ(θ|k).

We assume that π puts mass one on the following Sobolev set:

(5) S(β,L) =




(d, k, θ) ∈ T :
k∑

j=0

θ2j (j + 1)2β ≤ L






for some β > 1/2, L > 0. This ensures that the Fourier sum w, and thus the
short-memory component g of the spectral density f , as explained above,
belong to some set G(m,M,L′, ρ), i.e., both w and g are bounded and Hölder,
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for ρ < β − 1/2. To see this, note that, for (d, k, θ) ∈ S(β,L):

k∑

j=0

|θj | jr ≤
k∑

j=0

θ2j (j + 1)2β +
k∑

j=0

|θj| jr1l
(
|θj|jr ≥ θ2j (j + 1)2β

)

≤ L +
+∞∑

j=0

(j + 1)2r−2β < +∞,(6)

provided 2r − 2β < −1. By taking r = 0, one sees that w is bounded, and
by taking r = ρ, for any ρ, 0 < ρ<β − 1/2, one sees that w is Hölder, with
coefficient ρ, since, for λ, λ′ ∈ [−π, π],

∣∣w(λ) − w(λ′)
∣∣ ≤ 2

k∑

j=0

|θj| ×
∣∣{cos(λj) − cos(λ′j)

}
/2
∣∣ρ

≤ 21−ρ




k∑

j=0

|θj|jρ


∣∣λ− λ′
∣∣ρ .

Finally, we assume that π assigns positive prior probability to the intersec-
tion of S(β,L) with any rectangle set of the form

(ad, bd) × {k} ×
k∏

j=1

(aθj , bθj ).

Alternatively, one could assume that the support of π is included in a
set of the form {(d, k, θ) ∈ T :

∑k
j=0 |θj |jρ ≤ L}. However Sobolev sets

are more natural when dealing with rates of convergence, see Section 4.2,
and are often considered in the non parametric literature, so we restrict our
attention to these sets.

In the same spirit, we assume that the true spectral density admits a
FEXP representation associated to an infinite Fourier series,

f0(λ) = |1 − eiλ|−2d0 exp






+∞∑

j=0

θ0j cos(jλ)




 ,

i.e., f0 = F (d0, g0) with g0 = ψ−d0ew0 and w0(λ) =
{∑+∞

j=0 θ0j cos(jλ)
}
. In

addition, we assume that w0 satisfies the same type of Sobolev inequality,
namely

(7) L0 =
+∞∑

j=0

θ20j(j + 1)2β < L < +∞,
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which, as explained above, implies that g0 ∈ G(m,M,L, ρ), for some well
chosen constants m,M,L, ρ. Note that it is essential to have a strict inequal-
ity in (7), i.e. L0 < L.

Theorem 3.2. Let π be a prior distribution πd(d)πk(k)πθ(θ|k) which ful-
fils the above conditions, and, in addition, such that πk(k) ≤ exp(−Ck log k)
for some C > 0 and k large enough. Then the conditions of Theorem 3.1
are fulfilled, and the posterior distribution is consistent.

Proof. Condition 1 of Theorem 3.1 is a simple consequence of (7) and
(5), as explained above. For Condition 2, we noted, see (6), that

∑+∞
j=0 θ

2
0j(j+

1)2β ≤ L implies that
∑+∞

j=0 |θ0j| ≤ L′ < +∞. Let k such that
∑∞

j=k+1 |θ0j | ≤
ε/14, θ = (θ0, ..., θk) such that

∑k
j=0 |θ0j −θj| ≤ ε/14, d such that |d − d0| ≤

ε/7, and let f = F̃ (d, k, θ). Using Lemma 14, see Appendix D, one has
h(f, f0) ≤ ε. Note that it is sufficient to prove that π(Bε) > 0 for ε small
enough, hence we assume that ε/7 < (ρ + 1 − t)/16. Thus, Condition 2 is
verified as soon as the intersection of S(β,L) and the rectangle set

[d0 − ε/7, d0 + ε/7] × {k} ×
k∏

j=1

[θ0j − ε/14k, θ0j − ε/14k]

is assigned positive prior probability. Now consider Condition 3. Let ε > 0
and take

Fn = {(d, k, θ) ∈ S(β,L) : k ≤ kn} ,

where kn = ,αn/ log n-, for some α > 0, so that, for some r depending on
α, π(Fc

n) ≤ πk(k > kn) ≤ e−nr. Let f = F̃ (d, k, θ), fi = (2e)cεF̃ (di, k, θi),
such that k ≤ kn, di − cε ≤ d ≤ di, and

∑k
j=0 |θj − θij| ≤ cε, for some c > 0,

then

f(λ)
fi(λ)

= (2e)−cε [2(1 − cos λ)]di−d exp






k∑

j=0

(θj − θij) cos(jλ)




 ≤ 1,

and

f(λ)
fi(λ)

≥ (1 − cosλ)cε2−cεe−2cε.

If c is small enough, fi − f verifies the three inequalities considered in Con-
dition 3. The number Cn of functions fi necessary to ensure that, for any f
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in the support of π, at least one of them verify the above inequalities, can
be bounded by, for n large enough, and some well chosen constant C,

Cn ≤ kn(Ckn/ε)kn+2 ≤ k3kn
n

≤ exp {3αn [1 + (logα− log log n) / log n]}
≤ exp {6αn}

so Condition 4 is satisfied, provided one takes α = ε/6 log ε.

A convenient default choice for π is as follows: πd is uniform over (−1/2+
t, 1/2 − t), πk is Poisson, and πθ|k has the following structure: the sum
S =

∑k
j=0 θ

2
j (j +1)2β has a Gamma distribution truncated to interval [0, L],

independently of S, the vector (θ20, θ2122β , . . . , θ2k(k + 1)2β)/S is Dirichlet
with some coefficients α1,k, . . . , αk,k, and the signs of θ0, . . . , θk have equal
probabilities. In particular one may take αj,k = 1 for all j ≤ k, or, if one
needs to generate more regular spectral densities, αj,k = j−κ, for some fixed
or random κ > 0. Another interesting choice for the prior on θ is the following
truncated Gaussian process: for each k, and each j ≤ k, θj ∼ N (0, τ2

0 (1 +
j)−2β) independently apart from the constraint, for some fixed, large L > 0:

k∑

j=1

(1 + j)2βθ2j ≤ L.

Note that we can easily restrict ourselves to the important case d ≥ 0, i.e.
processes having long or short memory but not intermediate memory.

4. Rates of convergence. In this section we first provide a general
theorem relating rates of convergence of the posterior distribution to condi-
tions on the prior. These conditions are, in essence, similar to the conditions
obtained in the i.i.d. case (e.g. Ghosal et al., 2000): i.e. a condition on the
prior mass of Kullback-Leibler neighborhoods of the true spectral density,
and an entropy condition on the support of the prior. We then present results
specialised to the FEXP prior case.

4.1. Main result.

Theorem 4.1. Let (un) be a sequence of positive numbers such that
un → 0, nun → +∞, and B̄n a sequence of balls belonging to G(t,m,M,L, ρ),
and defined as

B̄n = {(d, g) : KLn(f0;F (d, g)) ≤ un/4, bn(f0, F (d, g)) ≤ un, d0 ≤ d ≤ d0 + δ} ,
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for some δ, L > 0, 0 < m ≤ M , ρ ∈ (0, 1]. Let π be a prior which satisfies
all the conditions of Theorem 3.1, and, in addition, such that:

1. For n large enough, π(B̄n) ≥ exp(−nun/2).
2. There exists ε > 0 and a sequence of sets F̄n ⊂ {(d, g) : h(F (d, g), f0) ≤
ε}, such that, for n large enough,

π
(
F̄c

n ∩ {(d, g) : h(F (d, g), f0) ≤ ε}
)
≤ exp(−2nun).

3. There exists a positive sequence (εn), ε2n ≥ un, ε2n → 0, nε2n ≥ C log n,
for some C > 0, satisfying the following conditions. Let

Vn,l = {(d, g) ∈ F̄n; ε2nl ≤ hn(f0, F (d, g)) ≤ ε2n(l + 1)},

with l0 ≤ l ≤ ln, with fixed l0 ≥ 2 and ln = /ε2/ε2n0 − 1. For each
l = l0, · · · , ln, there exists a net (i.e. a finite collection) H̄n,l ⊂ Vn,l,
with cardinality C̄n,l, such that for all f = F (d, g), (d, g) ∈ Vn,l, there
exists fi,l = F (di,l, gi,l) ∈ H̄n,l such that fi,l ≥ f and

0 ≤ gi,l(x) − g(x) ≤ lε2ngi,l/32 0 ≤ di,l − d ≤ lε2n(log n)−1,

where
log C̄n,l ≤ nε2nlα, with α < 1.

Then, there exist C,C ′ > 0 such that, for n large enough,

En
0

[
P π
(
hn(f0, F (d, g)) ≥ l0ε

2
n

∣∣∣Xn

)]
≤ Cn−3 + 2e−C′nε2n + e−nun/16.(8)

A proof is given in Section 5.2.
The conditions given in Theorem 4.1 are similar in spirit to those con-

sidered for rates of convergence of the posterior distribution in the i.i.d.
case. The first condition is a condition on the prior mass of Kullback-Leibler
neighborhoods of the true spectral density, the second one is necessary to
allow for sets with infinite entropy (some kind of non compactness) and the
third one is an entropy condition. The inequality (8) obtained in Theorem
4.1 is non asymptotic, in the sense that it is valid for all n. However, the
distances considered in Theorem 4.1 heavily depend on n and, although they
express the impact of the differences between f and f0 on the observations,
they are not of great practical use. For these reasons, the entropy condition
is awkward and cannot be directly transformed into some more common
entropy conditions. To state a result involving distances between spectral
densities that might be more useful, we need to consider some specific class
of priors. In the next section, we obtain rates of convergence in terms of
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the & distance for the class of FEXP priors introduced in Section 3.3. The
rates obtained are the optimal rates up to a (log n) term, at least on certain
classes of spectral densities. It is to be noted that the calculations used when
working on these classes of priors are actually more involved than those used
to prove Theorem 4.1. This is quite usual when dealing with rates of con-
vergence of posterior distributions, however this is emphasized here by the
fact that distances involved in Theorem 4.1 are strongly dependent on n.
The method used in the case of the FEXP prior can be extended to other
types of priors.

4.2. Rates of convergence for the FEXP prior. We apply Theorem 4.1
to the class of FEXP priors introduced in Section 3.3. Recall that under
such a prior a spectral density f is parametrised as f = F̃ (d, k, θ), see (4).
We make the same assumptions as in Section 3.3. In particular, the prior
π(d, k, θ) factorises as πd(d)πk(k)πθ(θ|k), the right tail of πk is such that

exp {−Ck log k} ≤ πk(k) ≤ exp{−C ′k log k},

for some C, C ′ > 0, and for k large enough, and there exists β > 1/2 such
that the Sobolev set S(β,L) contains the support of π. The last condition
means that S =

∑k
j=0 θ

2
j (j + 1)2β ∈ [0, L] with prior probability one. In

addition, we assume that the support of πd is [−1/2 + t, 1/2 − t], and, for
d ∈ [−1/2 + t, 1/2 − t], πd(d) ≥ cd > 0. Similarly, we assume that πθ|k is
such that the random variable S =

∑k
j=0 θ

2
j (j + 1)2β is independent of k,

and admits a probability density πS(s) with support [0, L], and such that
πS(s) ≥ cs > 0 for s ∈ [0, L].

Theorem 4.2. For the FEXP prior described above, there exist C,C ′ >
0 such that, for n large enough

En
0

{
P π
[
&(f, f0) >

C log n

n2β/(2β+1)

∣∣∣∣Xn

]}
≤ C

n2
(9)

where f = F̃ (d, k, θ) and

En
0

[
&(f̂ , f0)

]
≤ C ′(log n)

n2β/(2β+1)
,(10)

where log f̂(λ) = Eπ [log f(λ)|Xn].

A proof is given in Appendix C.

5. Proofs of Theorems 3.1 and 4.1.
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5.1. Proof of Theorem 3.1. For the sake of conciseness, we introduce the
following notations: for any pair (f, f0) of spectral densities,

A(f0, f) = Tn(f)−1Tn(f0),
B(f0, f) = Tn(f0)1/2[Tn(f)−1 − Tn(f0)−1]Tn(f0)1/2.

The proof borrows ideas from Ghosal et al. (2000). The main difficulty
is to formulate constraints on quantities such as hn(f, f0) or KLn(f, f0) in
terms of distances between f, f0, independent on n, and uniformly over f .
One has

P π [Ac
ε|Xn] =

∫
1lAc

ε
(f)ϕ(Xn; f)/ϕ(Xn; f0)dπ(f)

∫
ϕ(Xn; f)/ϕ(Xn; f0)dπ(f)

∆=
Nn

Dn
.

Let δ ∈ (0, ε) and Pn
0 be a generic notation for probabilities associated to

the distribution of Xn, under the true spectral density f0 = F (d0, g0). One
has

(11) Pn
0

{
P π [Ac

ε|Xn] ≥ e−nδ
}

≤ Pn
0

[
Dn ≤ e−nδ

]
+ Pn

0

[
Nn ≥ e−2nδ

]

The following Lemma bounds the first term.

Lemma 1. There exists C > 0 such that

(12) Pn
0

[
Dn ≤ e−nδ

]
≤ Cn−3.

Proof. Lemma 4 implies that, when n is large enough, B̃n ⊃ Bδ/8, where

B̃n = {(d, g) ∈ [−1/2+ t, 1/2− t]×G(m,M,L, ρ) : KLn(f0, F (d, g)) ≤ δ/4}.

and Condition 2 implies that, for n large enough, π(B̃n) ≥ π(Bδ/8) ≥
2e−nδ/2. Consider the indicator function

Ωn = 1l
[
−Xt

n

{
Tn(f)−1 − Tn(f0)−1

}
Xn + log detA(f0, f) > −nδ

]
,

with implicit arguments (f,Xn), then, following Ghosal et al. (2000),

Pn
0

[
Dn ≤ e−nδ

]
≤ Pn

0

(∫
Ωn1lB̃n

(f)
ϕ(Xn; f)
ϕ(Xn; f0)

dπ(f) ≤ e−nδ/2π(B̃n)
2

)

≤ Pn
0

(
Eπ
{
Ωn1lB̃n

(f)
}

≤ π(B̃n)/2
)

≤ Pn
0

(
Eπ
{
(1 − Ωn)1lB̃n

(f)
}

≥ π(B̃n)/2
)

≤ 2
π(B̃n)

∫

B̃n

En
0 {1 − Ωn} dπ(f).
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by Markov inequality. Besides,

En
0 {1 − Ωn} = Pn

0

{
Xt

n

{
Tn(f)−1 − Tn(f0)−1

}
Xn − log det A(f0, f) > nδ

}

= PY

{
YtB(f0, f)Y − tr [B(f0, f)] > D(f0, f)

}

where Y ∼ Nn(0n, In), and, for f ∈ B̃n

D(f0, f) ∆= nδ + log detA(f0, f) − tr [B(f0, f)] > nδ/2

thus

En
0 [1 −Ωn] ≤ PY

{
YtB(f0, f)Y − tr[B(f0, f)] > nδ/2

}

≤ 16
n4δ4

EY

[{
YtB(f0, f)Y − tr[B(f0, f)]

}4
]

≤ C

n3δ4
,

which concludes the proof.

A bound for the second term in (11) is obtained as follows:

Pn
0

[
Nn ≥ e−2nδ

]
≤ 2e2nδπ(Fc

n) + p

≤ 2e−n(r−2δ) + p(13)

using Condition 3, where

p
∆= Pn

0

[∫
1l(Ac

ε ∩ Fn)
ϕ(Xn; f)
ϕ(Xn; f0)

dπ(f) ≥ e−2nδ/2
]
.

Assuming 2δ < r, we consider the following likelihood ratio tests for each
fi ∈ Hn, and for some arbitrary values ρi,

φi = 1l
{
Xt

n

[
T−1

n (f0) − T−1
n (fi)

]
Xn ≥ nρi

}
.

Lemmas 7, 8 and 9 given in Appendix B prove that, for each of the three
cases in Condition 3 of Theorem 3.1, and well-chosen values of ρi, one has

(14) En
0 [φi] ≤ e−nC1ε, En

f [1 − φi] ≤ e−nC1ε,

for all fi, for f close to fi (in the sense defined in cases a,b, and c in Condition
3), where C1 > 0 is a constant that does not depend on fi, and En

f stands for
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the expectation with respect to the likelihood ϕ(Xn; f). Then one concludes
easily as follows. Let φ(n) = maxi φi, then, using Markov inequality, for n
large enough,

p ≤ En
0

[
φ(n)

]
+ 2e2nδ

∫

Ac
ε∩Fn

Ef

[
1 − φ(n)

]
dπ(f)

≤ Cne−nC1ε + 2e2nδ−nC1ε

≤ e−nC1ε/2,(15)

provided δ < C1ε/4. Combining (12), (13) and (15), there exists δ > 0 such
that

Pn
0

[
P π[Ac

ε|Xn] > e−nδ
]
≤ Cn−3

for n large enough, which implies that P π[Ac
ε|Xn] → 0 a.s.

5.2. Proof of Theorem 4.1. This proof uses the same notations as the
previous Section, e.g. C, C ′ denote generic constants, f , dπ(f) are short-
hands for f = F (d, g), dπ(d, g), respectively, A(f, f0) and B(f, f0) have
the same definition, and so on. In the proof of Theorem 3.1, we showed
that En

0 [P π(h(f, f0) ≥ ε|Xn)] ≤ Cn−3 for ε small enough, n large enough.
Thanks to the uniform convergence Lemmas 3 and 4 in Appendix A, one
sees that the same inequality holds if h is replaced by hn. Therefore, to
obtain inequality (8), it is sufficient to bound the expectation of the sum of
the following probabilities:

P π ((d, g) ∈ Wn,l|Xn) =

∫
1lWn,l(d, g) ϕ(Xn;f)

ϕ(Xn ;f0)
dπ(f)

∫ ϕ(Xn;f)
ϕ(Xn;f0)

dπ(f)
=

Nn,l

Dn
,

for l0 ≤ l ≤ ln, where

Wn,l =
{
(d, g) : h(f, f0) ≤ ε, ε2nl ≤ hn(f0, f) ≤ ε2n(l + 1)

}
,

and Vn,l = Wn,l ∩ F̄n. Following the same lines as in Section 5.1, one has

En
0




ln∑

l=l0

Nn,l

Dn



 ≤ Pn
0

(
Dn ≤ e−nun/2

)

+En
0




ln∑

l=l0

Nn,l

Dn
1l
(
Dn ≥ e−nun/2

)


 .(16)
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The first term is bounded as in Lemma 1, see Section 5.1:

Pn
0

(
Dn ≤ e−nun/2

)
≤ Pn

0

(

Dn ≤ e−nun/2π(B̄n)
2

)

≤
2
∫
Bn

En
0 [(1 − Ωn(f))] dπ(f)

π(B̄n)
,

where Ωn is the indicator function of
{
(Xn, f);Xt

n(T−1
n (f) − T−1

n (f0))Xn − log det[A(f0, f)] ≤ nun

}
,

and, for f ∈ B̄n, using Chernoff-type inequalities as in Lemma 7, together
with the fact that there exists s0 > 0 fixed such that for all s ≤ s0

In(1 + 2s) − 2sTn(f0)1/2Tn(f)−1Tn(f0)1/2 ≥ In/2,

for f = F (d, g), d ≥ d0, g > 0, we have for all 0 < s ≤ s0

En
0 [1 − Ωn]

≤ exp
{
− snun − s log |Tn(f0)Tn(f)−1|

−1
2

log
∣∣∣In(1 + 2s) − 2sTn(f0)1/2Tn(f)−1Tn(f0)1/2

∣∣∣
}

≤ exp
{
−snun + 2snKLn(f0, f) + 4s2nbn(f0, f)

}

≤ exp
{
−snun

2
(1 − 8s)

}

≤ e−Cnun ,

where the second inequality comes from a Taylor expansion in s of log |In +
2s(In −Tn(f0)1/2Tn(f)−1Tn(f0)1/2)|, the third from the definition of B̄n and
the last from choosing s = min(s0, 1/16). Note that s0 ≥ m/(Mπ) and that
the constant C in the above inequality can be chosen as C = m/(32Mπ).
The second term of (16) equals

En
0




ln∑

l=l0

Nn,l

Dn
1l
(
Dn ≥ e−nun/2

)
(φ̄l + 1 − φ̄l)





≤
ln∑

l=l0

En
0

[
φ̄l
]
+ 2enun

ln∑

l=l0

En
0

[
Nn,l(1 − φ̄l)

]
(17)

where φ̄l = maxi:fi,l∈H̄n,l
φi,l, φi,l is a test function defined as in Section 5.1,

φi,l = 1l
{
X′

n(T−1
n (f0) − T−1

n (fi,l))Xn ≥ tr
[
In − Tn(f0)T−1

n (fi,l)
]
+ nhn(f0, fi,l)/4

}
.
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Using inequality (30) in Lemma 7, one obtains:

log En
0 [φi,l] ≤ −Cnhn(f0, fi)min

(
hn(f0, fi)
bn(f0, fi)

, 1
)

,(18)

for some universal constant C, and n large enough. In addition, one has

bn(f0, fi)
hn(f0, fi)

≤
∥∥∥Tn(f0)1/2Tn(fi)−1/2

∥∥∥
2

≤ C ′n2max(d0−di),0),

where the first inequality comes from Lemma 2, see Appendix A.1, and the
second inequality comes from Lemma 3 in Lieberman et al. (2009). Hence
for all C > 0, if 2|d0 − di| ≤ C/ log n, bn(f0, fi) ≤ C ′eChn(f0, fi). Moreover
for all δ > 0, there exists Cδ > 0 such that if 2|d0 − di| > Cδ(log n)−1

then hn(f0, fi) ≥ n−δ. Indeed, equation (21) of Lemma 6 implies that if
hn(f0, fi) ≥ ε2n, then

hn(f0, fi) ≥ C

n
tr
[
Tn(f−1

0 )Tn(fi − f0)Tn(f−1
i )Tn(fi − f0)

]

and Lemma 5, see Appendix A.3, implies that, for all a > 0,
∣∣∣∣∣
1
n

tr
[
Tn(f−1

0 )Tn(fi − f0)Tn(f−1
i )Tn(fi − f0)

]
− (2π)3

∫ π

−π

(fi − f0)2

fif0
dλ

∣∣∣∣∣ ≤ n−ρ+a.

Lemma 11, see Appendix D, implies that there exists a > 0 such that if
2|d0 − di| > Cδ(log n)−1,

∫ π

−π

(fi − f0)2

fif0
dx ≥ Ce−a log n/Cδ ≥ n−δ

as soon as Cδ is large enough. Choosing δ < ρ we finally obtain that

hn(f0, fi) ≥ C ′n−δ.

This and the definition of H̄n,l implies that l ≥ C ′n−δε−2
n , and therefore

ln−max(d0−di),0) ≥ 2lα/C ′, for all α < 1 as soon as |d0 − di| is small enough.
(18) becomes

log En
0 [φi,l] ≤ −clε2nn1−max(d0−di,0) ≤ −2nε2nlα.

Condition 3 implies that

En
0

[
φ̄l
]
≤
∑

i

En
0 [φi,l] ≤ C̄n,l exp{−2nε2nlα} ≤ exp{−nε2nlα}
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so that
∑

l E
n
0

[
φ̄l
]
≤ 2 exp{−nε2nlα0 } for n large enough.

For the second term of (17), since condition 3 on f, fi,l implies that

0 ≤ fi,l − f ≤ hn(f0, fi,l)fi,l

(
π2(di−d)

32
+

2| log |λ||
log n

)

,

when n is large enough, hence trA(fi,l − f, f0) ≤ nhn(f0, fi,l)/4 and we
obtain the first part of equation 31:

log En
f [1 − φi,l] ≤ − n

64
min

(
hn(f0, fi,l)2

bn(f, f0)
, 4hn(f0, fi,l)

)

.

We also have

bn(f, f0) ≤ bn(fi,l, f0) +
h2

n(fi,l, f0)
32

+ 2
√

bn(f0, fi,l)hn(fi,l, f0),

hence log En
f [1 − φi,l] ≤ −cnlαε2n, using the same arguments as before, and

ln∑

l=l0

En
0

[
(1 − φ̄l)Nn,l

]
=

∫





ln∑

l=l0

1lWn,l(f)Ef (1 − φ̄l)




 dπ(f)

≤ P π(f ∈ Fc
n ∩ {h(f, f0) ≤ ε})

+
ln∑

l=l0

∫
1lVn,l(f)En

f (1 − φ̄l) dπ(f)

≤ e−nε2n +
ln∑

l=l0

e−Cnε2nlα ≤ 2e−nε2n .

6. Discussion. In this paper we have considered the theoretical prop-
erties of Bayesian non parametric estimates of the spectral density for Gaus-
sian long memory processes. Some general conditions on the prior and on the
true spectral density are provided to ensure consistency and to determine
concentration rates of the posterior distributions in terms of the pseudo-
metric hn(f0, f). To derive a posterior concentration rate in terms of a more
common metric such as l2, we have considered a specific family of priors
based of the FEXP models and also used in the frequentist literature. Gaus-
sian long memory processes lead to complex behaviours, which makes the
derivation of concentration rates a difficult task. This paper is thus a step
in the direction of better understanding the asymptotic behaviour of the
posterior distribution in such models and could be applied to various types
of priors on the short memory part - other than the FEXP priors.
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The rates we have derived are optimal (up to a logn term) in Sobolev balls
but not adaptive since the estimation procedure depends on the smoothness
β. Another constraint in the paper is that the prior needs to be restricted
to Sobolev balls with fixed though large radius, forbidding the use of Gaus-
sian distributions on the coefficients appearing in the FEXP representation.
However, it is to be noted that even in the parametric framework existing
results on the asymptotic behaviour of likelihood approaches, whether max-
imum likelihood estimators or Bayesian estimators are all assuming that the
parameter space is compact, for the same reason that we have had to con-
straint the prior on fixed Sobolev balls in the FEXP example. The reason
is that the short memory part of the spectral density needs to be uniformly
bounded.

A related and fundamental problem is the practical implementation of
the model described in the paper. Liseo and Rousseau (2006) adopted a
Population MC algorithm which easily deals with the trans-dimensional pa-
rameter space issue. We are currently working on alternative computational
approaches.
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the third Author was visiting the Université Paris Dauphine, CEREMADE.
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APPENDIX A: TECHNICAL LEMMAS ON CONVERGENCE RATES
OF PRODUCTS OF TOEPLITZ MATRICES

We first give a set of inequalities on norms of matrices that are useful
throughout the proofs. We then give three technical lemmas on the uni-
form convergence of traces of products of Toeplitz matrices, in the spirit of
Lieberman et al. (2003) and Lieberman et al. (2009), but extending those
previous results to functional classes instead of parametric classes.

A.1. Some matrix inequalities. Let A and B be n dimensional ma-
trices. We consider the following two norms:

|A|2 = tr
[
AAt

]
, ‖A‖2 = sup

|x|=1
xtAAtx.

We first recall that:

|tr[AB]| ≤ |A||B|, |AB| ≤ ||A|||B|, |A| ≤ ||A||, ||AB|| ≤ ||A||||B||.

Using these inequalities we prove the following basic Lemma:
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Lemma 2. Let f1, f2 be two spectral densities, then

2nbn(f1, f2) ≤ n‖Tn(f2)−1/2Tn(f1)1/2‖2hn(f1, f2)

Proof. One has

2nbn(f1, f2)

= tr
[
Tn(f1)1/2Tn(f2)−1Tn(f1)1/2

(
Tn(f1)−1/2Tn(f1 − f2)Tn(f2)−1/2

)2
]

=
∣∣∣Tn(f2)−1/2Tn(f1)1/2

(
Tn(f1)−1/2Tn(f1 − f2)Tn(f2)−1/2

)∣∣∣
2

≤ ‖Tn(f2)−1/2Tn(f1)1/2‖2
∣∣∣Tn(f2)−1/2Tn(f1 − f2)Tn(f2)−1/2

∣∣∣
2

= n‖Tn(f2)−1/2Tn(f1)1/2‖2hn(f1, f2).

A.2. Uniform convergence: Lemmas 3 and 4. We state two tech-
nical lemmas, which are extensions of Lieberman et al. (2003) on uniform
convergence of traces of Toeplitz matrices, and which are repeatedly used in
the paper.

Lemma 3. Let t > 0, M,L > 0 and ρ ∈ (0, 1], let p be a positive integer,
we have, as n → +∞:

sup
fi=F (d1,gi), f ′

i=F (d2,g′i)
2p(d1+d2)≤1−t

gi∈G(−M,M,L,ρ)
g′i∈G(−M,M,L,ρ)

∣∣∣∣∣
1
n

tr
[ p∏

i=1

Tn(fi)Tn(f ′
i)
]

−
∫ π
−π
∏p

i=1 fi(λ)f ′
i(λ) dλ

(2π)1−2p

∣∣∣∣∣→ 0.

This lemma is a direct adaptation from Lieberman et al. (2003); the only
non obvious part is the change from the condition of continuous differen-
tiability in that paper to the Lipschitz condition of order ρ. This different
assumption affects only equation (30) of Lieberman et al. (2003), with ηn
replaced by ηρn, which does not change the convergence results.

Lemma 4. Let t > 0, M,L,m > 0 and ρ1, ρ2 ∈ (0, 1], let p be a positive
integer, we have, as n → +∞:

sup
fi=F (d1,gi) f ′

i=F (d2,g′i)
4p(d1−d2)≤ρ2+1−t
gi∈G(−M,M,L,ρ1)
g′i∈G(m,M,L,ρ2)

∣∣∣∣∣
1
n

tr
[ p∏

i=1

Tn(fi)Tn(f ′
i)

−1

]

− 1
2π

∫ π

−π

p∏

i=1

fi(λ)
f ′

i(λ)
dλ

∣∣∣∣∣→ 0,
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Proof. This result is a direct consequence of Lemma 3, as in Lieberman
et al. (2003). The only difference is in the proof of Lemma 5.2. of Dahlhaus
(1989), i.e. in the study of terms in the form

|In − Tn(f)1/2Tn

(
(4π2f)−1

)
Tn(f)1/2|,

with f = F (d2, g′i) for any i ≤ p. For simplicity’s sake we write f = F (d, g)
in the following calculations. Following Dahlhaus’s Dahlhaus (1989) proof,
we obtain an upper bound of

∣∣∣∣
f(λ1)
f(λ2)

− 1
∣∣∣∣

which is different from Dahlhaus (1989). If g ∈ G(m,M,L, ρ2), the Lipschitz
condition in ρ2 implies that

∣∣∣∣
f(λ1)
f(λ2)

− 1
∣∣∣∣ ≤ K

(

|λ1 − λ2|ρ2 +
|λ1 − λ2|1−δ

|λ1|1−δ

)

.

Calculations as in Lemma 5.2 of Dahlhaus (1989) imply that

|I − Tn(f)1/2Tn

(
(4π2f)−1

)
Tn(f)1/2|2 = O(n1−ρ2 log n2) + O(nδ), ∀δ > 0.

From this we prove the Lemma following Lieberman et al. (2009) Lemma 7,
the bounds being uniform over the considered class of functions.

A.3. Order of approximation: Lemma 5. In this section we recall
a result given in Kruijer and Rousseau (2010) which is a generalization of
Lieberman and Phillips (2004) concerning the convergence rate of

1
2

∣∣∣∣∣∣
tr




p∏

j=1

Tn(fj)Tn(gj)



 /n − (2π)−1
∫ π

−π

∏

j

fj(λ)gj(λ)dλ

∣∣∣∣∣∣
.

Lemma 5. Let 1/2 > a > 0, L > 0, M > 0 and 0 < ρ ≤ 1, then for all
δ > 0 there exists C > 0 such that for all n ∈ N∗

sup
p(d1+d2)≤a

gj ,g′j∈G(−M,M,L,ρ)

∣∣∣∣∣
1
n

tr




p∏

j=1

Tn(F (d1, gj))Tn(F (d2, g
′
j))





−(2π)2p−1
∫ π

−π

p∏

j=1

F (d1, gj)F (d2, g
′
j)

∣∣∣∣∣ ≤ Cn−ρ+δ+2pa+ ,(19)

where d1, d2 > −1/2 and a+ = max(a, 0).
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A.4. Some other approximations: Lemma 6.

Lemma 6. Let fj, j ∈ {1, 2} be such that fj(λ) = F (dj , gj), where dj ∈
(−1/2, 1/2), 0 < m ≤ gj ≤ M < +∞ for some positive constant m,M and
consider b a bounded function on [−π, π]. Assume that |d1 − d2| < δ, with
δ ∈ (0, 1/4), then, provided d1 > d2,

(20)
1
n

tr
[
Tn(f1)−1Tn(f1b)Tn(f2)−1Tn(f1b)

]
≤ C(log n)

[
|b|22 + δ|b|2∞

]
,

and, without assuming d1 > d2,

1
n

tr
[
Tn(f−1

1 )Tn(f1 − f2)Tn(f−1
2 )Tn(f1 − f2)

]

≤ C
[
hn(f1, f2) + nδ−1/2

√
hn(f1, f2)

]
.(21)

Proof. Throughout the proof C denotes a generic constant. We first
prove (20). To do so, we first obtain an upper bound on the following quan-
tity:

γ(b) =
1
n

tr
[
Tn(f−1

1 )Tn(f1b)Tn(f−1
2 )Tn(f1b)

]
.(22)

First note that b can be replaced by |b| so that we can assume that it is
positive. Since the functions gi are bounded from below and above, we can
prove (20) by replacing fi by |λ|−2di . Thus, without loss of generality, we
assume that fi = |λ|−2di . Let ∆n(λ) =

∑n
j=1 exp(−iλj) and Ln be the 2π-

periodic function defined by Ln(λ) = n if |λ| ≤ 1/n and Ln(λ) = |λ|−1 if
1/n ≤ |λ| ≤ π. Then |∆n(λ)| ≤ CLn(λ),

∫ π

−π
∆n(λ1 − λ2)∆n(λ2 − λ3)dλ2 = 2π∆n(λ1 − λ3),(23)

and we can express traces of products of Toeplitz matrices in the following
way. Let the symbol dλ denote the quantity dλ1dλ2dλ3dλ4; the conditions
on the gj ’s imply

γ(b) =
1
n

∫

[−π,π]4
b(λ1)b(λ3)

f1(λ1)f1(λ3)
f2(λ2)f1(λ4)

×

∆n(λ1 − λ2)∆n(λ2 − λ3)∆n(λ3 − λ4)∆n(λ4 − λ1)dλ

=
(2π)2

n

∫

[−π,π]2
b(λ1)b(λ3)|λ3|−2δ∆n(λ1 − λ3)∆n(λ3 − λ1)dλ1dλ3

+
1
n

∫

[−π,π]4
b(λ1)b(λ3)|λ3|−2δ

[∣∣∣∣
λ3

λ2

∣∣∣∣
−2d2

∣∣∣∣
λ1

λ4

∣∣∣∣
−2d1

− 1
]

dλ,(24)
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as d1 − d2 ≤ δ. We decompose the following factor in the integrand:
∣∣∣∣
λ3

λ2

∣∣∣∣
−2d2

∣∣∣∣
λ1

λ4

∣∣∣∣
−2d1

=
(∣∣∣∣
λ3

λ2

∣∣∣∣
−2d2

− 1
)(∣∣∣∣

λ1

λ4

∣∣∣∣
−2d1

− 1
)

(25)

+
(∣∣∣∣
λ3

λ2

∣∣∣∣
−2d2

− 1
)

+
(∣∣∣∣
λ1

λ4

∣∣∣∣
−2d1

− 1
)

+ 1

and treat each corresponding integral separately. Starting with the first term,
replacing ∆n by Ln, we obtain:

1
n

∫

[−π,π]4
b(λ1)b(λ3)|λ3|−2δ∆n(λ1 − λ3)∆n(λ3 − λ1)dλ1dλ3

≤ 1
n

∫

[−π,π]2
b(λ1)b(λ3)|λ3|−2δL2

n(λ1 − λ3)dλ1dλ3

≤ C
∫

[−π,π]2
b(λ1)b(λ3)|λ3|−2δLn(λ1 − λ3)dλ1dλ3

≤ C
{∫

{b(λ1)>b(λ3)|λ3|−2δ}
b2(λ1)Ln(λ1 − λ3)dλ1dλ3

+
∫

{b(λ1)≤b(λ3)|λ3|−2δ}
b2(λ3)|λ3|−4δLn(λ1 − λ3)dλ1dλ3

}

≤ C
{∫

b2(λ1)Ln(λ1 − λ3)dλ1dλ3

+
∫

b2(λ3)
∣∣∣|λ3|−4δ − 1

∣∣∣Ln(λ1 − λ3)dλ1dλ3

}

≤ C(log n)
{
|b|22 + δ |b|2∞

}
,

using calculations similar to Dahlhaus (1989, Lemma 5.2).
For the integral corresponding to the second term in (24), we note first

that for 0 < a < 1 − d1 < 1 − d2,
∣∣∣∣
λ1

λ4

∣∣∣∣
−2d1

− 1 ≤ C
|λ1 − λ4|1−a

|λ1|1−a
,

and the same inequality holds if λ1, λ4 and d1 are replaced, respectively, by
λ3, λ2 and d2. Using the same calculations as the proof of Lemma 5.2 in
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Dahlhaus (1989), one has

∫

[−π,π]4
b(λ1)b(λ3)|λ3|−2δ

(∣∣∣∣
λ3

λ2

∣∣∣∣
−2d2

− 1
)(∣∣∣∣

λ1

λ4

∣∣∣∣
−2d1

− 1
)

×

Ln(λ1 − λ2)Ln(λ2 − λ3)Ln(λ3 − λ4)Ln(λ4 − λ1)dλ

≤ C|b|2∞
∫

[−π,π]4

Ln(λ1 − λ2)Ln(λ2 − λ3)aLn(λ3 − λ4)Ln(λ4 − λ1)a

|λ1|1−a|λ3|1−a+2δ
dλ

≤ C|b|2∞n2a(log n)2,

provided a > 2δ. Taking a = 3δ < 1/2 and doing the same calculations
for the integrals corresponding to the two intermediate terms in (24), one
eventually obtains, when n is large enough

(26) γ(b) ≤ C(log n)
{
|b|22 + δ |b|2∞

}
.

We now prove that, for large n and ∀a > 0,

1
n

tr
[
Tn(f1)−1Tn(f1b)Tn(f2)−1Tn(f1b)

]
≤ C

{
γ(b) + na−1

}
.

Let

δn = tr
[
Tn(f1b)T−1

n (f2)Tn(f1b)T−1
n (f1)

]

= tr
[
Tn(f1b)Tn(f−1

2 /4π2)Tn(f1b)Tn(f−1
1 /4π2)

]

+tr
[
Tn(f1b)T−1

n (f2)Tn(f1b)T−1/2
n (f1)R1T

−1/2
n (h1)

]

+tr
[
Tn(f1b)Tn(f2)−1/2R2Tn(f2)−1/2Tn(f1b)Tn(f−1

1 /4π2)
]
,

where Ri = In−Tn(fi)1/2Tn(f−1
i /4π2)Tn(fi)1/2, i = 1, 2. We bound the first

term with (26):

1
n

tr
[
Tn(f1b)Tn(f−1

2 )Tn(f1b)Tn(f−1
1 )
]

≤ C(log n)3
{
|bn|22 + δ|b|∞

}
.

Moreover
∣∣∣tr
[
Tn(f1b)T−1

n (f2)Tn(f1b)T−1/2
n (f1)R1T

−1/2
n (f1)

]∣∣∣

≤ |R1||T−1/2
n (g1)Tn(f1b)T−1

n (f2)Tn(f1b)T−1/2
n (f1)|

≤ δ1/2
n |R1|‖T−1/2

n (f2)Tn(f1b)1/2‖‖Tn(f1b)1/2T−1/2
n (f1)‖
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Lemmas 5.2 and 5.3 in Dahlhaus (1989) lead to, ∀a > 0,
∣∣∣tr
[
Tn(f1b)T−1

n (f2)Tn(f1b)T−1/2
n (f1)R1T

−1/2
n (f1)

]∣∣∣ ≤ Cna+(d1−d2)|b|∞δ1/2
n

≤ Cn2δ|b|∞δ1/2
n

Similarly,
∣∣∣tr
[
Tn(f1b)Tn(f2)−1/2R2Tn(f2)−1/2Tn(f1b)Tn(f−1

1 /(4π2))
]∣∣∣

≤ |R2|δ1/2
n ‖Tn(f2)−1/2Tn(f1b)1/2‖2

≤ na+2δ|b|∞δ1/2
n

for all a > 0. Finally we obtain, when n is large enough

δn ≤ Cn3δ|b|∞δ1/2
n + C(log n)3

{
|bn|22 + δ|b|∞

}
,

which ends the proof of (20).
We now prove (21). Since fj ≥ mhj := m|λ|−2di , T−1

n (fj) ≤ T−1
n (hj), i.e.

T−1
n (hj) − T−1

n (fj) is positive semidefinite, and

hn(f1, f2)(27)

=
1
2n

tr
[
Tn(f1 − f2)T−1

n (f2)Tn(f1 − f2)T−1
n (f1)

]

≥ 1
2n

tr
[
Tn(f1 − f2)T−1

n (h2)Tn(f1 − f2)T−1
n (h1)

]

≥ 1
2n

tr
[
Tn(f1 − f2)T−1

n (h2)Tn(f1 − f2)T−1/2
n (h1)R1T

−1/2
n (h1)

]

+
1
2n

tr
[

Tn(f1 − f2)T−1
n (h2)Tn(f1 − f2)Tn

(
h−1

1

4π2

)]

=
1

n(8π2)
tr
[
Tn(f1 − f2)T−1/2

n (h2)R2T
−1/2
n (h2)Tn(f1 − f2)Tn

(
h−1

1

)]

+
1
2n

tr
[
Tn(f1 − f2)T−1

n (h2)Tn(f1 − f2)T−1/2
n (h1)R1T

−1/2
n (h1)

]

+
1

n(32π4)
tr
[
Tn(f1 − f2)Tn(h−1

2 )Tn(f1 − f2)Tn

(
h−1

1

)]
(28)

where Rj = In−T 1/2
n (hj)Tn(h−1

j /(4π2))T 1/2
n (hj). We first bound the second

term of the r.h.s. of (27). Let δ > 0 and ε <ε 0 such that |d − d0| ≤ δ
(Corollary 1 implies that there exists such a value ε0). Then using Lemmas
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5.2 and 5.3 of Dahlhaus (1989)
∣∣∣tr
[
Tn(f1 − f2)T−1

n (h2)Tn(f1 − f2)T−1/2
n (h1)R1T

−1/2
n (h1)

]∣∣∣

≤ 2|R1||T−1/2
n (h1)Tn(f1−f2)T−1/2

n (h2)|‖Tn(|f1−f2|)1/2T−1/2
n (h2)‖

× ‖Tn(|f1−f2|)1/2T−1/2
n (h1)‖

≤ Cn3δ|T−1/2
n (h1)Tn(f1−f2)T−1/2

n (h2)|.

Since hi ≤ Cfi,

|T−1/2
n (h1)Tn(f1−f2)T−1/2

n (f2)|2 = tr
[
T−1

n (h1)Tn(f1−f2)T−1
n (f2)Tn(f1−f2)

]

≤ Ctr
[
T−1

n (f1)Tn(f1−f2)T−1
n (f2)Tn(f1−f2)

]

= Cnhn(f1, f2),

and
1
n

∣∣∣tr
[
Tn(f1−f2)T−1

n (f2)Tn(f1−f2)T−1/2
n (g1)R1T

−1/2
n (g1)

]∣∣∣ ≤ Cn3δ−1/2
√

hn(f1, f2).

We now bound the first term of the r.h.s. of (27).

=
∣∣∣∣
1
n

tr
[
Tn(f1−f2)T−1/2

n (h2)R2T
−1/2
n (h2)Tn(f1−f2)Tn(h−1

1 )
]∣∣∣∣

≤ 1
n
|R2||T−1/2

n (h2)Tn(f1−f2)Tn(h1)−1/2|‖Tn(h1)1/2Tn(h−1
1 )Tn(|f1−f2|)T−1/2

n (h2)‖

≤ Cnδ
√

nhn(f2, f1)
n

‖Tn(h1)1/2Tn(h−1
1 )Tn(|f1−f2|)T−1/2

n (f2)‖

≤ Cnδ+1/2
√

hn(f2, f1)
n

‖Tn(h1)1/2Tn(h−1
1 )1/2‖2

×‖Tn(h1)−1/2Tn(|f1−f2|)1/2‖‖Tn(|f1−f2|)1/2T−1/2
n (f2)‖

≤ Cn3δ−1/2
√

hn(f1, f2),

Where the latter inequality comes from Lemma 5.3 of Dahlhaus (1989) and
from the fact that

‖Tn(h1)1/2Tn(h−1
1 )1/2‖2 = 4π2‖Tn(h1)1/2Tn(h−1

1 /(4π2))Tn(h1)1/2‖ ≤ |R1|+1

Therefore,

1
n

tr
[
Tn(f1−f2)Tn(h−1

2 )Tn(f1−f2)Tn(h−1
1 )
]
≤ C

[
hn(f1, f2) + n−1/2+3δ

√
hn(f1, f2)

]
,

and, using the fact that C gj > fj, for j = 1, 2 this proves (27).
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APPENDIX B: CONSTRUCTION OF TESTS: LEMMAS 7, 8 AND 9

Lemma 7. If 8|d0−di| ≤ ρ+1−t (case a of Condition 1), the inequalities
in (14) are verified provided ρi = tr

[
In − Tn(f0)T−1

n (fi)
]
/n + hn(f0, fi),

f ≤ fi and

(29)
1
2π

∫ π

0

fi(λ) − f(λ)
f0(λ)

dλ ≤ h(f0, fi)/4.

Proof. For all s ∈ (0, 1/4), using Markov inequality,

En
0 [φi] ≤ exp {−snρi}En

0

[
exp

{
−sXt

n

{
T−1

n (fi) − T−1
n (f0)

}
Xn

}]

= exp
{
−snρi −

1
2

log det [In + 2sB(f0, fi)]
}

≤ exp
{
−snρi − str [B(f0, fi)] + s2tr

[
((In + 2sτB(f0, fi))−2B(f0, fi))2

]}

≤ exp
{
−snρi − str [B(f0, fi)] + 4s2tr

[
B(f0, fi)2

]}
,

where τ ∈ (0, 1), using a Taylor expansion of the log-determinant around
s = 0, and the following inequality:

In + 2sτB(f0, fi) = (1 − 2sτ)In + 2sτTn(f0)1/2Tn(f)−1Tn(f0) ≥ 1
2
In,

since sτ < 1/4. Substituting ρi with its expression, the polynomial above
is minimal for smin = hn(f0, fi)/8bn(f0, fi). According to smin ∈ (0, 1/4) or
not, that is, whether hn(f0, fi) < 2bn(f0, fi) or not, one has:

1
n

log En
0 [φi] ≤ − hn(f0, fi)2

16bn(f0, fi)
1l {hn(f0, fi) < 2bn(f0, fi)}

−hn(f0, fi) − bn(f0, fi)
4

1l {hn(f0, fi) ≥ 2bn(f0, fi)} ,

≤ −hn(f0, fi)
16

min
{

hn(f0, fi)
bn(f0, fi)

, 2
}

.(30)

Since 8|d0 − di| ≤ ρ + 1 − t, the convergences bn(f0, fi) → b(f0, fi) and
hn(f0, fi) → h(f0, fi) are unifom on the support of the prior π, see Lemma
2. One deduces that, for any a > 0 and n large enough,

1
n

log En
0 [φi] ≤ − n

16
min

{
h(f0, fi)2 − a

b(f0, fi) + a
, 2h(f0, fi) − a

}

.

Since fi ∈ Ac
ε, h(f0, fi) > ε, and one may take a = ε2/2 to obtain

1
n

log En
0 [φi] ≤ −nh(f0, fi)

32
min

{
h(f0, fi)

b(f0, fi) + ε2/2
, 2
}

.
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Since |d0 − di| ≤ (ρ+ 1 − t) /8 ≤ 1/4, Lemma 12, see Appendix D, implies
that there exists C1 > 0 such that

En
0 [φi] ≤ exp (−nC1ε)

for ε small enough.
If f is in the support of π and satisfies f ≤ fi, and 8(di − d) ≤ ρ+ 1 − t,

using the same kind of calculations and the fact that

In − 2sT 1/2
n (f)

{
T−1

n (fi) − T−1
n (f0)

}
T 1/2

n (f) ≥ In + 2sB(f, f0),

as Tn(f) ≤ Tn(fi), we obtain for s ∈ (0, 1/4),

En
f [1 − φi] ≤ exp

{
nsρi − str [B(f, f0)] + 4s2tr

[
B(f, f0)2

]}

≤ exp
{
−nshn(f0, fi) + str [A(fi − f, f0)] + 4s2tr

[
B(f, f0)2

]}

≤ exp
{
−nshn(f0, fi)/2 + 4s2tr

[
B(f, f0)2

]}

where the last inequality comes from (29), which implies tr [A(fi − f, f0)] /n ≤
hn(f0, fi)/2 for n large enough, uniformly in f , using Lemma 2. Doing the
same calculations as above, for n large enough

1
n

log En
f [1 − φi] ≤ − 1

64
min

{
hn(f0, fi)2

bn(f, f0)
, 4hn(f0, fi)

}

≤ − 1
64

min
{

h(f0, fi)2/2
b(f, f0) + ε2/2

, 2h(f0, fi)
}

.(31)

To conclude, note that f ≤ fi and (29) implies that

b(f, f0) =
1
2π

∫ π

−π

{
f2

f2
0

+ 1 − 2
f

f0

}

dλ

≤ b(fi, f0) + h(f0, fi)/2
≤ (C + 1/2)h(f0, fi)

according to Lemma 12. One concludes that there exists C1 > 0 such that
En

f [1 − φi] ≤ e−nC1ε.

Lemma 8. If 8(di−d0) > ρ+1−t (case b of Condition 3), the inequalities
(14) are verified provided ρi = tr

[
In − Tn(f0)T−1

n (fi)
]
/n+2KLn(f0; fi), for

any f such that f ≤ fi and

(32)
1
2π

∫ π

−π

(
fi

f
− 1
)

dλ ≤
(

M

π2m

)4 b(f0, fi)
64

, b(fi, f) ≤ b(f0, fi)
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Note that for ε small enough, if b(fi, f) ≤ b(f0, fi)| log ε|−1, (32) is satis-
fied.

Proof. The upper bound of En
0 [φi] is computed similarly to (30) so that

1
n

log En
0 [φi] ≤ −1

4
min

{
KLn(f0, fi)2

bn(f0, fi)
,KLn(f0, fi)

}

.

According to Lemma 11 and since 8(di − d0) ≥ ρ+1− t, there exists C > 0,
such that b(f0, fi) ≥ C. Using the uniform convergence results of Appendix
A, this means that bn(f0, fi) ≥ C/2, for n large enough, independently of fi.
Using Lemma 13, there exists a constant C1 ≤ 1 such that KLn(f0, fi) ≥
C1bn(f0, fi). Thus, there exists C2 > 0 such that

1
n

log En
0 [φi] ≤ −nC2b(f0, fi),

and, for ε small enough, and some C3 > 0,

En
0 [φi] ≤ exp{−nC3ε}.

As in the previous Lemma, let h ∈ (0, 1):

log En
f [1 − φi] ≤ (1 − h)nρi/2

−1
2

log det
[
In − (1 − h)Tn(f)1/2

{
T−1

n (fi) − T−1
n (f0)

}
Tn(f)1/2

]

≤ (1 − h)nρi/2 − 1
2

log det [In + (1 − h)B(f, f0)]

= (1 − h)nρi/2 − log det[A(f, f0)]/2

−1
2

log det
[
In(1 − h) + hT−1/2

n (f)Tn(f0)T−1/2
n (f)

]
.

Substituting ρi with its expression, i.e. nρi−log detA(f, f0) = log det A(fi, f)
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and using the same kind of expansions as in the previous lemma, one obtains

1
n

log En
f [1 − φi] ≤ 1

n
log det[A(fi, f)] + (h/2)tr

[
Tn(f0)

{
T−1

n (fi) − T−1
n (f)

}]

−hnLKn(f0; fi) + h2tr
[{

In − T−1
n (f)Tn(f0)

}2
]

≤ 1
n

log det[A(fi, f)]

−hnLKn(f0; fi) + h2tr
[{

In − T−1
n (f)Tn(f0)

}2
]

≤ − 1
n

log det[A(fi, f)] +

−n min
(

KLn(f0, fi)2

4trB(f0, f)2/n
,
KLn(f0, fi)

4

)

.

Note that we use the fact f ≤ fi in the second line.
Since log detA(fi, f) = log det

{
In + Tn(fi − f)Tn(f)−1

}
, using a Taylor

expansion of log det around In, we obtain that for n large enough

1
n

log det A(fi, f) ≤ 1
2π

∫ π

−π

fi − f

f
dλ+ a

where a can be chosen as small as necessary. In addition, we use Lemma 13
and the uniform convergence results of Lemmas 3, 4 to obtain that:

(nKLn(f0, fi))2

tr[B(f0, f)2]
≥ nm4(b(f0, fi)2 − a)2

16π8M4(b(f0, f) + a)

and, since d ≥ d0 and (32),

b(f0, f) =
1
2π

∫ π

−π

(
f0

f
− 1
)2

dλ

≤ 2
(

b(f0, fi) +
M2π4

m2
b(fi, f)

)

,

≤ 2b(f0, fi)
(

1 +
M2π4

m2

)

.

hence, under the constraint (32), there exists C1 > 0 such that, for n large
enough, ε small enough,

En
f [1 − φi] ≤ exp {−nC1b(f0, fi)} ≤ e−nε.
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Lemma 9. If 8(d0−di) > ρ+1−t (case c of Condition 3), the inequalities
(14) are verified provided ρi = log det[Tn(fi)Tn(f0)−1]/n if

1
2π

∫ π

−π

fi − f

f0
(λ)dλ ≤ m2

4M2π4
b(fi, f0), b(f, fi) ≤ b(fi, f0)(33)

Note that for ε > 0 small enough if
∫
(fi − f)f−1

i dλ ≤ b(fi, f0)| log ε|−1,
(33) is satisfied.

Proof. For 0 < h < 1, following the same calculations as in the two
previous lemmas, we obtain

1
n

log En
0 [φi] ≤ −(1 − h)nρi/2 + log det[A(f0, fi)]/2

−1
2

log det
[
In(1 − h) + hT−1/2

n (f0)Tn(fi)T−1/2
n (f0)

]

≤ −nhKLn(fi, f0) + h2tr[B(fi, f0)2] ≤ −ε.

Moreover, for all f ≤ fi, satisfying 8(di − d) ≤ ρ + 1 − t, using the same
calculations as in the proof of Lemma 7, we bound logEn

f [1 − φi] by the
maximum of

−{nKLn(fi, f0) − tr[A(fi − f, f0)]/2}2

4n{b(f, f0) + a}

and
−n

4
KLn(fi, f0) +

1
8
tr[A(fi − f, f0)],

where a is any positive constant and n is large enough. Using Lemma 13,
one has

nKLn(fi, f0) ≥ nm2

2π4M2
b(fi, f0)

and the constraints (33) we finally obtain that there exists constant c1, C1 >
0 such that

En
f [1 − φi] ≤ exp{−2n(KLn(fi, f0) − tr[A(fi − f, f)]/2n) + 4s2nbn(f, f0)}

≤ e−nc1b(fi,f0) ≤ e−nC1ε

for ε small enough.



32 ROUSSEAU ET AL.

APPENDIX C: PROOF OF THEOREM 4.2

We re-use some of the notations of Section 5.1; in particular, C, C ′ denote
generic constants.

The proof of the theorem is divided in two parts. First, we show that

En
0

[
P π
{

f : hn(f, f0) ≥ log n

n2β/(2β+1)

∣∣∣∣Xn

}]
≤ C

n2
.(34)

Second, we show that, for f ∈ F̄n, and n large enough,

hn(f, f0) ≤ Cn− 2β
2β+1 log n ⇒ h(f, f0) ≤ C ′n− 2β

2β+1 log n.(35)

Since &(f, f0) ≤ h(f, f0), see the proof of Corollary 2 in Section 3, the
right-hand side inequality of (35) implies that

En
0 {Eπ [&(f, f0)|Xn]} ≤ C

log n

n2β/(2β+1)

+&̄En
0

{
P π
(

hn(f, f0) >
log n

n2β/(2β+1)
|Xn

)}

≤ Cn− 2β
2β+1 log n + C ′n−2,

for large n, where &̄ < +∞ is an upper bound for &(f, f0) which is easily
deduced from the fact that f , f0 belongs to some Sobolev class of functions.
This implies Theorem 4.2.

To prove (34), we show that Conditions 1 and 2 of Theorem 4.1 are fulfilled
for

un = n−2β/(2β+1)(log n).

In order to establish Condition 1, we show that, for n large enough, B̄n ⊃
B̂n, the set containing all the f = F̃ (d, k, θ) such that k ≥ k̄n, for k̄n =
k0n1/(2β+1), d − unn−a ≤ d0 ≤ d and, for j = 0, . . . , k,

(36) |θj − θ0j | ≤ (j + 1)−2βunn−a,

where a > 0 is some small constant. Then it is easy to see that π(B̄n) ≥
π(B̂n) ≥ exp{−nun/2}, provided k0 is small enough, since πk(k ≥ k̄n) ≥
exp{−Ck̄n log k̄n}, and (36) for all j implies that

k∑

j=0

θ2j (j + 1)2β =
k∑

j=0

(θ0j − θ0j + θj)2(j + 1)2β

≤ L0 + u2
nn−2a

k∑

j=0

(1 + j)−2β + 2unn−a




k∑

j=1

|θ0j |





< L
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for n large enough, since L0 =
∑

j θ0j(j+1)2β < L, and
∑k

j=1 |θ0j | is bounded
according to (6).

Let f = F̃ (d, k, θ), with (d, k, θ) ∈ B̂n. To prove that (d, k, θ) ∈ B̄n, it
is sufficient to prove that hn(f, f0) ≤ un/4, since hn(f, f0) = KLn(f0; f) +
KLn(f ; f0), and KLn(f ; f0) ≥ Cbn(f0, f), using the same calculation as in
Dahlhaus (1989, p. 1755) and the fact that d ≤ d0.

Since f0 ∈ S(β,L), and for the particular choice of k̄n above,

(37)
+∞∑

j=k̄n

θ20j ≤ L(k̄n + 1)−2β

and

+∞∑

j=k̄n

|θ0j| ≤




+∞∑

j=k̄n

θ20j(j + 1)2β



1/2


+∞∑

j=k̄n

(j + 1)−2β




1/2

≤ Ck̄1/2−β
n .(38)

Let

f0n(λ) = |1 − eiλ|−2d0 exp




k̄n∑

j=0

θ0j cos(jλ)



 ,

bn(λ) = exp



−
∑

j≥k̄n+1

θ0j cos(jλ)



 − 1,

and gn = 1−f0n/f . Then f −f0 = f0bn +fgn, where bn and gn are bounded
as follows. From (38), one gets that, for n large enough, |bn|∞ ≤ Ck̄1/2−β

n ,
and

|bn|22 =
∫ π

−π
bn(λ)2 dλ ≤ 2

∞∑

j=k̄n+1

θ20j ≤ 2Lk̄−2β
n ≤ 2Lk−2β

0
un

log n

according to (37). In addition since 1 − x ≤ − log x, for x > 0,

gn(λ) ≤ (d0 − d) log(1 − cos λ) +
∑

j≤k̄n

|θ0j − θj|

≤ Cunn−a (| log |λ|| + 1) .

Moreover, since tr
{
(A + B)2

}
≤ 2trA2 + 2trB2 for square matrices A and
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B, one has

hn(f0, f) ≤ 1
n

tr
[
Tn(f0bn)T−1

n (f)Tn(f0bn)T−1
n (f0)

]

+
1
n

tr
[
Tn(fgn)T−1

n (f)Tn(fgn)T−1
n (f0)

]

≤ C log n
{
|bn|22 + unn−a|bn|2∞

}

+Cu2
nn−1−2atr

[(
Tn(f (| log |λ|| + 1))T−1

n (f)
)2
]

≤ cun(39)

where c may be chosen as small as necessary, since k0 is arbritrarily large.
Note that the first two terms above come from (20) in Lemma 6, and the
third term comes from Lemma 4.

To establish Condition 2 is straightforward, since the prior has the same
form as in Section 3.3, and we can use the same reasoning as in the proof of
Theorem 3.2, that is, take, for some well chosen δ,

F̄n =
{
(d, k, θ) ∈ S(β,L) : |d − d0| ≤ δ, k ≤ k̃n

}

where k̃n = k1n1/(2β+1) so that, using Lemma 10,

π
(
F̄c

n ∩ {f, h(f, f0) < ε}
)
≤ πk(k ≥ k̃n) ≤ e−Ck̃n log k̃n

for n large enough. Choosing k1 large enough leads to Condition 2.
We now verify Condition 3 of Theorem 4.2. Let ε2n ≥ un and l0 ≤ l ≤ ln,

and consider f = F̃ (d, k, θ), (d, k, θ) ∈ Vn,l, as defined in Theorem 4.1, and
fi,l = (2e)lε2nF̃ (di, k, θi), where dependencies on l in di and θi are dropped for
convenience. If for some positive c > 0 to be chosen accordingly |θj − θij| ≤
clε2n/(k + 1), for j = 0, . . . , k, one obtains

gi,l(λ)
g(λ)

= (2e)lε
2
n exp






k∑

j=0

(θj − θij) cos(jλ)






≤ (2e2)clε
2
n

and fi,l/f ≥ 1 so that the constraints of Condition 3 of Theorem 4.2 are
verified by choosing c small enough. The cardinal of the smallest possible
net under these constraints needed to cover Vn,l is bounded by

C̄n,l ≤ kn

( 1
clε2n

)(
L′kn

clε2n

)kn+1
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since for all l |θl| ≤ L. This implies that

log C̄n,l ≤ Cnun

and Condition 3 is verified with ε2n = ε20un. This achieves the proof of (34),
which provides a rate of convergence in terms of the distance hn(·, ·).

Finally, we prove (35) to obtain a rate of convergence in terms of the
distance h(·, ·). Consider f such that

hn(f0, f) =
1
2n

tr
[
T−1

n (f0)Tn(f − f0)T−1
n (f)Tn(f − f0)

]
≤ ε2n.

Equation (21) of Lemma 6 implies that

1
2n

tr
[
Tn(f−1

0 )Tn(f − f0)Tn(f−1)Tn(f − f0)
]

≤ Cεn[εn + n−1/2+δ]

≤ Cε2n.(40)

We now prove that

tr
[
Tn(f−1

0 )Tn(f − f0)Tn(f−1)Tn(f − f0)
]

−tr
[
Tn(f−1

0 (f − f0))Tn(f−1(f − f0))
]

≤ C(log n)2

n1−2a
.

for some small a > 0. By symmetry we consider only the case d ≥ d0. Let
h0 = (1−cos λ)d0 , h = (1−cos λ)d, then fh ≤ C, f0h0 ≤ C and |f−f0|h ≤ C
for some C ≥ 0, and it is sufficient to study the difference below. Note that
the calculations below follow the same lines and the same notations as the
treatment of γ(b) in Lemma 6, see Appendix A.
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1
n

tr [Tn(h0(f − f0))Tn(h(f − f0))]

− 1
n

tr [Tn(h0)Tn(f − f0)Tn(h)Tn(f − f0)]

= − 1
n

∫

[−π,π]3
(f − f0)(λ2)h0(λ2)(f − f0)(λ4)h(λ4)

(
h0(λ1)
h0(λ2)

− 1
)

×∆n(λ1 − λ2)∆n(λ2 − λ4)∆n(λ4 − λ1)dλ

− 1
n

∫

[−π,π]3
(f − f0)(λ2)h0(λ1)(f − f0)(λ4)h(λ4)

(
h(λ3)
h(λ4)

− 1
)

×∆n(λ1 − λ2)∆n(λ2 − λ3)∆n(λ3 − λ4)∆n(λ4 − λ1)dλ

≤ C(log n)
n

∫

[−π,π]2
|λ2|−2(d−d0)|λ1|−1+aLn(λ1 − λ2)1+adλ

+
C

n

∫

[−π,π]4

|λ1|2d

|λ2|2d|λ3|1−a

×Ln(λ1 − λ2)Ln(λ2 − λ3)Ln(λ3 − λ4)aLn(λ4 − λ1)dλ

≤ C(log n)2

n1−a

∫

[−π,π]2
|λ2|−2(d−d0)|λ1|−1+aLn(λ2 − λ1)dλ

+
C(log n)

n1−a

∫

[−π,π]3

|λ1|2d

|λ2|2d|λ3|1−a
Ln(λ1 − λ2)Ln(λ2 − λ3)dλ

≤ C(log n)2

n1−2a
,

provided d − d0 ≤ a/4, using standard calculations and inequality (24).
Combined with (40), this result implies that

1
n

tr [Tn (h0(f − f0))Tn (h(f − f0))] ≤ Cε2n.
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Finally, to obtain (35), we bound
∣∣∣tr [Tn(h0(f − f0))Tn(h(f − f0))] − tr

[
Tn(h0h(f − f0)2)

]∣∣∣

= C
∣∣∣
∫

[−π,π]2
{h0(f − f0)} (λ1)

× [{h(f − f0)} (λ2) − {h(f − f0)} (λ1)]∆n(λ1 − λ2)∆n(λ2 − λ1)dλ
∣∣∣

≤ C

∣∣∣∣∣

∫

[−π,π]2
{h(f − f0)} (λ1)(f − f0)(λ2)[h(λ2) − h(λ1)]∆n(λ1 − λ2)∆n(λ2 − λ1)dλ

∣∣∣∣∣

+C

∣∣∣∣∣

∫

[−π,π]2
{hh0(f − f0)} (λ1) [f0(λ2) − f0(λ1)]∆n(λ1 − λ2)∆n(λ2 − λ1)dλ

∣∣∣∣∣

+C

∣∣∣∣∣

∫

[−π,π]2
{hh0(f − f0)} (λ1) [f(λ2) − f(λ1)]∆n(λ1 − λ2)∆n(λ2 − λ1)dλ

∣∣∣∣∣ .

The first term is of order O(n2a log n), from the same calculations as above.
We consider the last term, but the calculations for the second term follow
exactly the same lines. Recall that f = hew, where w(λ) =

∑k
j=0 θj cos(jλ)

is not necessarily continuously differentiable, e.g. when β < 1. Thus

f(λ2) − f(λ1) =
[
h(λ2)−1 − h(λ1)−1

]
ew(λ2) + h(λ1)−1

[
ew(λ2) − ew(λ1)

]
.

The first term is dealt with using (24), leading to a bound of order (logn)2n2a.
For the second term, and k ≤ kn,
∣∣∣∣∣

∫

[−π,π]2
h0(f − f0)(λ1)[g(λ2) − g(λ1)]∆n(λ1 − λ2)∆n(λ2 − λ1)dλ

∣∣∣∣∣

≤ C
∫

[−π,π]2

h0|f − f0|(λ1)

∣∣∣∣∣∣

k∑

j=0

θj (cos(jλ2) − cos(jλ1))

∣∣∣∣∣∣
Ln(λ1 − λ2)Ln(λ2 − λ1)dλ

≤ C(log n)




k∑

j=0

|θj|j




∫ π

−π
{h0|f − f0|} (λ1)dλ1

≤ C(log n)




k∑

j=0

|θj|j




(∫ π

−π

{
hh0(f − f0)2

}
(λ)dλ

)1/2

,

where the latter inequality holds because
∫ π
−π {h0/h} (λ)dλ is bounded when

|d− d0| is small enough. The same computations can be made on f0 so that
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for all a > 4|d − d0| we finally obtain that
∣∣∣tr [Tn(h0(f − f0))Tn(h(f − f0))] − tr

[
Tn(h0h(f − f0)2)

]∣∣∣

≤ C(log n)n2a + (log n)
k∑

j=0

j(|θj | + |θ0j |)
(∫

[−π,π]
g0g(f − f0)2(λ)dλ

)1/2

.

Splitting the indices of the sum above into into
{
j : j|θj | ≤ j2β+rθ2j

}
and its

complementary, for some r, we get that
k∑

j=0

j|θj | ≤
k∑

j=0

j2β+rθ2j +
k∑

j=0

j1−2β−r

≤ C
(
kr + k2−2β−r

)
≤ Ckn,

provided we take r = 3/2 − β. Using the same computation for f0, one
obtains eventually that, provided β ≥ 1/2,

∫

[−π,π]
h0h(f0 − f)2dλ ≤ Cε2n,

which achieves the proof.

APPENDIX D: TECHNICAL LEMMAS

The three following lemmas provide inequalities involving

b(f, f0) =
1
2π

∫ π

0
(f/f0 − 1)2dλ, h(f, f0) =

1
2π

∫ π

0
(f/f0 − 1)2

f0

f
dλ,

for f = F (d, g), f0 = F (d0, g0), d, d0 ∈ (0, 1/2), g, g0 ∈ G(m,M), for 0 <
m < M .

Lemma 10. For any ε > 0,

|d − d0| ≥ ε⇒ h(f, f0) ≥ 1
π

(4M
m

)−1/2ε

.

Proof. Without loss of generality, take d ≥ d0, then, since (x− 1)2/x ≥
x/2 for x ≥ 4,

h(f, f0) ≥ m

4πM

∫ π

0
1l
{
λ−2(d−d0) ≥ 4M/m

}
λ−2(d−d0) dλ

≥ 1
π

(4M
m

)−1/2ε

.
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Lemma 11. There exists C > 0 such that, for any ε > 0,

|d − d0| ≥ ε⇒ b(f, f0) ≥ C−1/2ε.

Proof. If d ≥ d0, then, since (x − 1)2 ≥ x2/2 for x ≥ 4,

b(f, f0) ≥ m2

4πM2

∫ π

0
1l
{
λ−2(d−d0) ≥ 4M/m

}
λ−4(d−d0) dλ

≥ 4
π

(4M
m

)−1/2ε

.

Otherwise, if d < d0, one has (x − 1)2 ≥ 1/4 for 0 ≤ x ≤ 1/2, so

b(f, f0) ≥ 1
8π

∫ π

0
1l
{
λ2(d0−d) ≤ m/2M

}
dλ

≥ 1
8π

(2M
m

)−1/2ε

.

Lemma 12. For any τ ∈ (0, 1/4), there exists C > 0 such that

d − d0 <
1
4
− τ ⇒ b(f, f0) ≤ Ch(f, f0).

Proof. If d ≤ d0, the bound is trivial, since f/f0 ≤ M/mπ2(d0−d).
Assume d > d0, and let A ≥ 1/2 some arbitrary large constant. Since
(x − 1)2 ≤ x2 for x ≥ 1/2, one has

b(f, f0) ≤ Ah(f, f0) +
M2

2πm2

∫ π

0
1l {f(λ)/f0(λ) ≥ A}λ−4(d−d0)dλ

≤ Ah(f, f0) +
M2

2πm2

∫ π

0
1l
{
λ−2(d−d0) ≥ Am/M

}
λ−4(d−d0)dλ

≤ Ah(f, f0) +
C ′(Am/M)2−1/2(d−d0)

1 − 4t
,(41)

provided A ≥ M/m and C ′ = M2/2πm2. In turn, since (x − 1)2 ≥ x2/2 for
x ≥ 4, and assuming A ≥ 4M2/m2, then λ−2(d−d0) ≥ Am/M implies that
f/f0 ≥ Am2/M2 ≥ 4, and (f/f0−1)2f0/f ≥ f/2f0 ≥ Am2/2M2. Therefore

h(f, f0) ≥ 1
2π

∫ π

0
1l
{
λ−2(d−d0) ≥ Am/M

}
(f/f0 − 1)2

f0

f
dλ(42)

≥ (Am/M)2−1/2(d−d0) /4πA.(43)
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One concludes the proof by combining (41) with (43) and taking A =
4M2/m2.

The lemma below makes the same assumptions with respect to f and f0,
but it involves finite n distances.

Lemma 13. One has:

d > d0 ⇒ KLn(f0; f) ≥ m2

M2π2
bn(f0, f).

Proof. Dahlhaus (1989, p. 1755) proves that KLn(f0; f) ≥ C−2bn(f0, f)
where C is the largest eigenvalue of Tn(f0)T−1

n (f). In our case, f0/f ≤
Mπ2(d−d0)/m, hence C−2 = m2/M2π2(d−d0).

The last lemma in this section applies to the FEXP formulation of Section
3.3.

Lemma 14. Let

f0(λ) = (2 − 2 cos λ)−d0 exp {w0(λ)} , f(λ) = (2 − 2 cos λ)−d exp {w(λ)} ,

then, for ε ∈ (0, 1/4),

|d − d0| ≤ ε, |w − w0| ≤ ε⇒ h(f, f0) ≤ 7ε.

Proof. Without loss of generality, take d − d0 ≥ 0. Then f0/f − 1 ≤
2εeε − 1 ≤ (1 + log 2)ε, since ex ≤ 1 + 2x for x ∈ [0, 1]. Moreover, since
2(1 − cos λ) ≥ λ2/3 for λ ∈ (0, π), one has

∫ π

0

f(λ)
f0(λ)

dλ = eε3(d−d0)
∫ π

0
λ−2(d−d0) dλ ≤ πeε3ε

1 − 2ε
,

and, to conclude, as again ex ≤ 1 + 2x for x ∈ [0, 1], and eε(1+log 3)(1 −
2ε)−1 − 1 ≤ 10ε, for ε ≤ 1/4,

h(f, f0) =
1
2π

∫ π

0

(
f(λ)
f0(λ)

+
f0(λ)
f(λ)

− 2
)

dλ ≤ (6 + log 2)ε.
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