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Université Paris-Dauphine

David Welch
University of Auckland

Abstract

TraitLab is a software package for simulating, fitting and analysing tree-like binary
data under a stochastic Dollo model of evolution. The model also allows for “catastro-
phes”, evolutionary events where many traits are simultaneously lost while new ones
arise. The core of the package is a Markov chain Monte Carlo (MCMC) sampling
algorithm that enables the user to sample from the Bayesian joint posterior distri-
butions for tree topologies, clade and root ages, and the trait loss and catastrophe
rates for a given data set. Data can be simulated according to the fitted Dollo model
or according to a number of generalized models that allow for borrowing (horizontal
transfer) of traits, heterogeneity in the trait loss rate and biases in the data collection
process. Both the raw data and the output of MCMC runs can be inspected using a
number of useful graphical and analytical tools provided within the package. TraitLab
is freely available and runs within the MATLAB computing environment.

Keywords: Bayesian inference, dating methods, Markov chain Monte Carlo, phylogenetics,
binary data, trait data, historical linguistics.

1. Introduction

The ability to fit phylogenetic models to genetic sequence data has become central to many
areas of the biological sciences thanks in part to a number of complex software tools that
aid this process. By contrast, binary trait data, which represent the absence or presence
of distinguishing characterisitcs in individuals, have received relatively little attention and
there are few publicly available tools for fitting such data.

http://www.jstatsoft.org/
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TraitLab, the software we describe here, was developed specifically to fit binary trait data
under a Dollo model of evolution (Dollo 1893) in which any trait shared among individuals
is assumed to have descended from the same evolutionary innovation. Examples of data
to which this model can be or has been applied are morphological traits (‘has wings’,
‘has opposable thumbs’), cultural traits (‘uses curvilinear designs in woodcarving’, ‘makes
pottery’) or lexical traits (‘uses word with Old Saxon root al to mean “all” ’, ‘uses word
with Latin root totus to mean “all” ’). The Dollo assumption insists that such complex
traits arise only once in the evolutionary history of the set of taxa being studied so that,
for example, for a set of taxa including birds and insects, ‘has wings’ would not be a valid
trait as insect and bird wings evolved independently, but could be replaced by the valid
traits ‘has bird wings’ and ‘has insect wings’. The basic Dollo model assumes that the
data can be fully described by a dated tree representing the evolutionary relationships
between taxa and parameters for the birth and death rates of traits. An extended Dollo
model, also implemented in TraitLab, allows so-called catastrophes to occur in which
multiple traits are born and die simultaneously, representing rapid evolutionary bursts.
This allows for heterogeneity in the rate of trait evolution along different lineages. The
extended model introduces two further parameters, being the rate at which catastrophes
occur and probability of trait death at a catastrophe.

TraitLab fits the model within a Bayesian framework using Markov chain Monte Carlo
(MCMC) techniques to draw samples from the posterior distribution of the parameters
for given data. Any or all of the parameters – the dated binary tree, the trait birth and
death rates, the catastrophe occurrence rate and the trait death rate – can be estimated
or fixed. The program is controlled via a simple graphical user interface in the MATLAB
computing environment.

The data we consider consist of N traits that have been recorded as present, absent or
missing (presence or absence undetermined) in L taxa. The data D are therefore an L×N
binary matrix where the (i, j)th entry Dij = 1 if the jth trait is present in the ith taxon,
Dij = 0 if it is absent and Dij = ? if its status is undetermined. In addition, clade
constraints that place constraints on the topology and ages of certain parts of the tree can
also be handled by TraitLab and are discussed in Section 6.2.

The remainder of the paper is organised as follows. In Section 2 we describe the trait
evolution and data collection models. Section 3 gives an outline of the likelihood and
posterior calculations, including the form of the prior distributions, and Section 4 discusses
the construction of the MCMC algorithm for sampling from the posterior. Directions on
how to install and start TraitLab are given in Section 5. Section 6 specifies the data file
format. Section 7 gives step-by-step instructions for running an MCMC analysis while
Section 8 describes the tools provided for analysing and visualising the output of the
MCMC run. Finally, in Section 9, we describe how data can be simulated under the Dollo
model and various extensions within TraitLab and how this can be used to check for model
fit and model mis-specification.

Further details on the model, its implementation and its application to linguistic data can
be found in Nicholls and Gray (2008), Ryder and Nicholls (2011) and Ryder (2010).
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2. A stochastic Dollo model of evolution

In the basic Dollo model of trait evolution, three events may occur: traits are born, traits
die and traits are duplicated when the lineages containing them split. We assume that
all events are independent and waiting times between events are exponentially distributed
with the stated rates. In each lineage, traits are born at a constant rate λ so if l lineages
are being followed at time t, trait births occur at total rate lλ at t. Each trait in each
lineage dies at constant rate µ so if there are ki traits in lineage i ∈ {1, . . . , l} at time t,
the total trait death rate in all lineages is µ

∑l
i=1 ki at t. Finally, lineages split at constant

rate θ. The total lineage splitting rate when there are l lineages is lθ. When lineage i splits
at time t, it is replaced by two exact copies of itself. That is, at time t+, immediately after
time t, two new lineages, j and k, say, are created which possess exactly the same traits
as lineage i possessed at time t−, immediately before t. After time t, lineage i no longer
exists and lineages j and k continue to evolve independently as all other lineages. We say
that lineage i is the parent of lineages j and k (the children of i).

Catastrophes occur independently along each lineage at rate ρ. At a catastrophe, each
trait dies with probability κ and Poisson(ν) new traits are born. We impose the condition
that λ

µ = ν
κ to ensure that the expected number of traits in any lineage remains constant

over time and that the process is reversible.

2.1. Observation model

The observed traits are not chosen uniformly at random from all possible traits, thus the
observation model needs to be carefully modelled so the likelihood of the data can be ac-
curately defined. Typically, traits which are not observed at any taxon (either because the
trait died out, or because of missing data) do not make it into the data set. Furthermore,
the traits may be chosen so that traits observed at only one taxon are also omitted. This
has the effect of thinning the trait evolution process described above, so that those traits
that evolve, survive and are observed at zero or just one taxon will not be registered in
the observation process. Further variations on this registration process are discussed in
Ryder and Nicholls (2011) but are not currently implemented in TraitLab.

Secondly, some data may be missing from the matrix where it has not been possible to
record the presence or absence of a particular trait in a taxon. We model each trait as
missing uniformly at random within each taxon, so that each trait is missing independently
from taxon i with probability ξi (so is recorded with probability 1− ξi).

3. Likelihood, prior and posterior calculations

Here we give a brief outline of the form of the posterior distribution for this problem. A
full description of the posterior, including details of an efficient recursion for the likelihood
calculation, can be found in Ryder and Nicholls (2011).

First we need to introduce some notation. Let g be a binary rooted tree with L leaves,
L − 1 internal nodes and a single “Adam” node, labelled 2L, that is adjacent to the root
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node of g and is infinitely old. Let V = {1, . . . , 2L} be the set of node labels. The ith
node of g has age ti and t = (t1, . . . , t2L) where we set t2L =∞ and ages increase towards
the root of the tree. The directed edges of g are pairs of nodes (i, j) such that ti < tj .
Let E = {(i, j)|(i, j) is an edge in g} so |E| = 2L− 1, as it consists of the 2L− 2 internal
edges of g and the edge of infinite length connecting the Adam and root nodes. The
tree is thus defined by g = (V,E, t). A catastrophe has the same effect as lengthening
the edge it occurs on by some fixed block of time (the size of which depends on κ and
ν). It is therefore convenient to extend the definition of a tree to include the number of
catastrophes that occur on each edge. Let ki be the number of catastrophes that occur on
edge (i, j) and k = (k1, . . . , k2L−2) be the vector of catastrophe counts for all finite edges.
The extended tree is defined by g = (V,E, t, k). Denote by [g] the set of all points (τ, i),
i.e., time τ on edge i, on the tree g.

Let zD = {z1, . . . , zN}, za ∈ [g], be the locations of the birth events of the N observed
traits. Recall that only traits which are observed at at least d taxa (with d = 1 or d = 2)
are registered in the data. Augment the data matrix D to include all traits whether
registered or not, so including those traits that survive in no taxa or in just one taxon.
Denote this augmented matrix D∗ with dimensions L × N∗. Let Z, a random point in
[g], be the birth time of some (possibly unobserved) trait. Let EZ be the event that this
trait makes it into the observed data. Then the Poisson point process of birth locations
of observed traits has intensity

λ̃(z) = λPr(EZ |g, µ, κ, ξ, Z = z)

at z ∈ [g] and probability density

fZD
(zD) =

1

N !
e−Λ([g])

N∏
a=1

λ̃(za)

with respect to the element of volume dzD = dz1dz2...dzN in [g]N , where

Λ([g]) =

∫
[g]
λ̃(z)dz

=
∑

(i,j)∈E

∫ tj

ti

λ̃((τ, i))dτ.

The distribution of the number N of registered traits is N ∼ Poisson(Λ([g])).

Let I be a matrix of indicator functions corresponding to the missing elements of that
extended data, so Ia,i = 1 if and only if D∗a,i = ?. For a matrix Y , let Ya denote the ath
column of Y . Then, following the notation of Ryder and Nicholls (2011), the likelihood is

P[D = D|g, µ, λ, κ, ξ,D=R(D̃)] =
e−Λ([g])

N !

N∏
a=1

(

L∏
i=1

ξ
Ii,a
i (1−ξi)1−Ii,a)λ

∫
[g]

∑
d∗∈Da

P[D∗a = d∗|g, µ, κ, ξ, Za = za]dza.

(1)
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The difficulty of calculating this function is in the calculation of the two integrals, Λ([g])
and the integral involving P[D∗a = d∗|g, µ, ξ, Za = za]. Both integrals can be calculated
efficiently using a recursion over the tree that is similar to Felsenstein’s pruning algorithm
(Felsenstein 1981). The interested reader is referred to Ryder and Nicholls (2011) for a
detailed discussion.

Our prior on the birth rate λ, death rate µ and catastrophe rate ρ is p(λ, µ, ρ) ∝ 1
λµρ , where

µ and ρ also have very conservative bounds placed on them to ensure that the posterior
is proper. We take a uniform prior over [0, 1] for the death probability at a catastrophe κ
and each missing data parameter ξi. The prior on the tree g is chosen in such a way that
the induced prior on the root age of the tree is approximately uniform over the interval
[t, T ], where t is the maximum of the lower bounds imposed by the clade constraints (or
zero of there are no clade constraints) and T is maximum root age imposed by the user.
Nicholls and Gray (2008) show that the prior distribution with density

fG(g|T ) ∝
∏
i∈S

(tr − t−i )−1

satisfies this criterion, where S is the set of all nodes with clade constaint bounds on their
maximum age falling at or beyond T . When clade constraints are placed on the tree, as
described in Section 6.2, the prior is defined to be zero for any tree not satisfying those
constraints.

We multiply the expression for the likelihood in Equation (1) by the priors to obtain the
posterior density

p(g, µ, λ, κ, ρ, ξ|D = D) ∝ 1

λµρ
fG(g|T )P[D = D|g, µ, λ, κ, ξ,D=R(D̃)] (2)

which is valid for parameters µ, λ, κ, ρ > 0, 0 ≤ ξi ≤ 1 and trees g satisfying the clade
constraints and with root age less than T .

4. MCMC algorithm

We sample from the posterior distribution using MCMC. Given our choice of prior for λ,
we are able to integrate the posterior analytically with respect to λ to obtain the target
distribution p(x|D) where x = ((E, V, t, k), µ, κ, ρ, ξ). Thus a state of the Markov chain is
some value for each component of x. Brief descriptions of the different mechanisms used
to propose new states in the chain are listed in Table 1. There are four proposals that alter
the tree topology (moves 2–5 in Table 1), which are described in Drummond, Nicholls,
Rodrigo, and Solomon (2002), five proposals that alter the heights of some or all nodes in
the tree (moves 1, 6, 7, 11 and 12), proposals that add, delete or shift catastrophes (moves
13, 14 and 18, respectively, described in Ryder and Nicholls (2011)) while the remaining
five moves (8, 15, 16, 19, 20) multiply one or more of the scalar parameters µ, κ, ρ and
ξ = (ξ1, . . . , ξL) by a randomly chosen factor.
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Move Description

1 vary internal vertex time
2 interchange neigbouring edges
3 interchange randomly chosen edges
4 move edge to new neigbouring location
5 move edge to new random location
6 rescale whole tree
7 rescale random subtree
8 rescale µ
9 (unused)
10 (unused)
11 random walk on leaf time
12 vary root time
13 add a catastrophe
14 delete a catastrophe
15 scale ρ
16 rescale κ
17 (unused)
18 move catastrophe to adjacent edge
19 rescale a single ξi
20 rescale all elements of ξ

Table 1: The moves used in the MCMC sampler to explore the state space. Moves 9, 10
and 17 were used in earlier versions of TraitLab but are no longer used.
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5. Installing and running TraitLab

5.1. System requirements

TraitLab is written in the MATLAB programming language. Thus, to run TraitLab, MAT-
LAB (version 6, release 12.1 or later) must already be installed on your system. MATLAB is
proprietary software which runs on Windows, Mac OS X or Unix/Linux machines. Trait-
Lab only requires the basic MATLAB installation without any additional packages. For
more information on MATLAB, see www.mathworks.com or ask your local mathematics,
statistics or engineering department who may be able to help.

5.2. Download and installation

Download the TraitLab zip archive from https://sites.google.com/site/traitlab/

and extract all files, preserving the subdirectories, to C:\TraitLab (or any other conve-
nient location - if using another directory, use that name instead of C:\TraitLab in the
following.)

5.3. Running TraitLab

Start MATLAB in the usual manner and make C:\TraitLab the current directory.

To start TraitLab and bring up the main GUI, type TraitLab at the MATLAB command
line.

6. Data file format

TraitLab accepts data in the Nexus file format which is standard in phylogenetic analysis
(see Maddison, Swofford, and Maddison (1997) for a full description of the format). The
binary data matrix is recorded in the Data block, while any clade constraints are recorded
in the Clades block, which is specific to TraitLab. In the following, we describe the
structure of these blocks and provide an example of a data file in Section 6.4.

6.1. Data block

The first command in the Data block must be the Dimensions command with values for
ntax (the number of taxa) and nchar (the number of characters or traits) defined.

The Format command where the missing character is defined is optional. If it is not
present, the missing character is assumed to be ‘?’. The gap character, ‘-’ by default, may
also be defined here but is not used in TraitLab. All gaps will be reclassified as missing.

The Matrix command is compulsory. Rows of the matrix are labelled with the taxa names,
which may not contain any whitespace. The content of the matrix must be zeros and ones
to indicate absence or presence of the trait. The matrix may be in standard format (where

https://sites.google.com/site/traitlab/
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the rows are nchar characters long) or in interleaved format (where the matrix is split
in sections of a manageable size). If the matrix is interleaved, each section of the matrix
must have the rows labelled by the taxa names and sections must be separated by blank
lines. Comments may only occur between interleaved sections of the matrix — comments
at the start or end of rows will cause errors.

The Charlabels command, followed by a list of exactly nchar trait names may also appear
in the Data block. All other commands in the Data block are ignored.

6.2. Clades block

Prior knowledge about the structure of the tree and divergence times can be encoded in
the clades block. The clades block consists of a series of clade commands, one for each
known clade. It has the following form:

BEGIN Clades;

Clade Name = Clade_1

Taxa = taxon_a,...,taxon_k

Rootmin = t1

Rootmax = t2

Originatemin = t3

Originatemax = t4;

Clade Name = Clade_2 ...

End;

Each clade command must include a name and the list of taxa that define the clade.
The time of the most recent common ancestor (the root) of the clade can be bounded
by defining rootmin and rootmax. The time that clade diverged from all other taxa (the
node above the root node) can be bounded by defining originatemin and originatemax.
See Figure 1 for an example of the difference between root and originate bounds. All time
bounds on a clade are optional.

Offset leaves

If the taxa are sampled at significantly different times, the clades block is used to encode
this information. If a clade has only one taxon, then the rootmax and rootmin definitions
for that clade are upper and lower bounds for the sampling time of that taxon. Time
zero is defined as the time of the most recently sampled taxon. The upper and lower time
bounds must not be the same, so if a taxon was known to have been sampled 500 years
before the most recently sampled taxon, set rootmax to be 501 and rootmin to be 499.
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taxon_1

taxon_2

taxon_3

taxon_4

taxon_5

0  100200300400500600700800900

Originate

Root

Figure 1: Suppose a clade consists of taxon_3, taxon_4 and taxon_5. If rootmin= t1
and rootmax= t2, then the node labelled root here is constrained to lie in the interval
(t1, t2). Similarly if originatemin= t3 and originatemax= t3, the node labelled originate
is constrained to lie in the interval (t3, t4). Note that one “child” node of the originate node
is necessarily the root node of the clade in question, but the other child node is arbitrary
(here, it is the leaf node of taxon_2).

6.3. Other blocks

When data are synthesized using TraitLab, a trees block and a synthesize block are
generated. The trees block contains the tree on which the data were synthesized and the
synthesize block contains the parameter values used for the synthesis. If either of these
blocks is found, TraitLab will assume that the data are synthetic.

The characters block which may contain taxa names and/or trait labels can be read by
TraitLab but we advise against its use. Include any relevant information in the data block
instead. All other blocks are ignored by TraitLab.

6.4. Example data file

The simple data file shown below shows the basic structure of a TraitLab data file. It has
the required data block and a clades block. The data block specifies that there are 9
taxa and 30 traits and gives the data matrix. The clades block specifies two clades, one
with two taxa and with maximum and minimum age bounds on the root, the other with
three taxa and a lower bound on the time it split from the rest of the tree.

#NEXUS

BEGIN DATA;

DIMENSIONS NTAX=9 NCHAR=30;

FORMAT MISSING=? GAP=- INTERLEAVE ;
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MATRIX

taxon_1 00?1111010110101000101001?0000

taxon_2 101111010?11001111001011011000

taxon_3 01101101??1110111?001010011000

taxon_4 010111100111011100110000100100

taxon_5 110111101111011??0110100100100

taxon_6 111111010111?01111001011011011

taxon_7 1111???101101011110??011011011

taxon_8 111111000111101110001011011011

taxon_9 11111101?111101111001011?11011

;

END;

BEGIN CLADES;

CLADE NAME = Clade_1

ROOTMIN = 346

ROOTMAX = 422

TAXA = taxon_4, taxon_5;

CLADE NAME = Clade_2

ORIGINATEMIN = 346

TAXA = taxon_1, taxon_8, taxon_9;

END;

7. Running an MCMC analysis

MCMC analyses are set up and run in TraitLab from the main GUI shown in Figure
2. There are four types of information that the user must specify before starting a run:
the data file, the initial state of the chain (which may be random), the model (including
which parameters to estimate and priors) and the run parameters including run length
and output file location. These four types of information correspond to the four colours
of the panels in the GUI and are each explained in detail in Sections 7.1–7.4 below. In
Section 7.5, we describe how to start MCMC runs without using the GUI, which is useful
for performing long runs or multiple runs in the background.

7.1. Data source

Specify the data source by clicking the “select data file” button and choose a nexus file
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Figure 2: The main TraitLab GUI.

conforming to the TraitLab requirements described in Section 6. Progress in reading the
file can be monitored in the MATLAB command window.

If the file is successfully read, the number of taxa and traits will be shown above the “select
data file” button. These numbers should agree with the respective numbers of rows and
columns in the matrix in the data file. If any clades were found in the file, the number
found is shown below the “select data file” button. If the data were synthesized using
TraitLab, this will also be indicated below the “select data file” button.

The names of the taxa and any clades found in the data file will appear in the MATLAB
command window. The numbers that appear next to the trait and clade names are the
order in which they appear in the file and are used to specify taxa and clades to be ignored
(see Sections 7.1.1 and 7.3.1).

Omitting taxa and traits

Any of the taxa and traits can be omitted from a run so long as at least two taxa remain
to be analysed. Omit taxa by checking the “omit taxa listed below” checkbox and listing
taxa numbers in the space provided. A taxon’s number corresponds to its row number
in the data matrix in the data file. They are also printed out to the MATLAB command
window after the data file is read in. Omitting taxa that appear in clade constraints can
cause problems; see Section 7.3.1 for more details.

Similarly, traits are omitted by checking the appropriate check box and listing a vector of
trait numbers. Trait numbers correspond to columns of the data matrix as they appear
in the data file. It is left to the user to find the correct column numbers for traits to be
masked.

The lists of numbers must satisfy MATLAB formatting. That is, numbers must be sep-
arated with commas or spaces. Sequences of consecutive numbers can be abbreviated
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using the the colon operator (for example, abbreviate 2,3,4,5 as 2:5). Thus, to omit taxa
1,10,11,12,13 and 20, type “1 10:13 20” in the space provided.

7.2. Initial tree

The initial tree may be random, be chosen from a previous TraitLab run or, if the data
were synthesized within TraitLab, be the true tree on which the data were synthesized.

If random initial tree option is selected, the initial tree is a Yule tree (i.e., a tree with
exponentially distributed branch lengths) with specified branching rate, θ (so that the
mean branch length is 1/θ). If clades are imposed, the random tree is constructed using a
heuristic method to ensure that all constraints are satisfied.

To start from a tree that appeared in a previous run, the output file where the tree is to
be found needs to be specified using the “select output tree file” button. Once the file has
been selected, a tree in the file is specified by the “use tree number” text box. Use the
adjacent “view” button to view the specified tree. The trees in the file must have taxa
names which are a superset of the taxa names in the current run.

Note that if the initial tree is chosen from an output file, the user should ensure that the
chosen tree satisfies all constraints to be imposed in the new run including the maximum
root age and any clade constraints. Specifying a tree that does not satisfy all the necessary
constraints will result in all proposed states being rejected and a failed run.

7.3. Model specification

The options in this section allow the user to decide how the data are to be modelled. The
following can all be included in or excluded from the fitted model: the catastrophe process,
the modelling of missing data and the observation process that accounts for the fact that
rare traits found in only a single taxon are typically not observed. In addition, the user
must specify here which of the model parameters, g, µ, κ, ρ and ξ are to be estimated and
what the initial value should be. The form of the prior on the tree needs to be specified
and any clade constraints found in the data file can be imposed here.

Radio buttons are used to determine the prior imposed on the tree. We recommend
the default prior which induces a uniform marginal prior distribution on the root age
as described in Section 3. If the user selects this option, an upper bound on the root
age, T , must be specified in the “max root age” box. If clades are imposed, the specified
value of T must be greater than the largest of the rootmin and originatemin bounds
imposed. The other option is a Yule prior in which trees are given prior weight according
to branch lengths which have an exponential penalty. If the “vary tree topology” box is
unchecked, the tree will remain in same shape throughout the run with only the branch
lengths varying.

The “account for rare traits” checkbox determines whether or not the likelihood takes
into account an observation process in which traits that only occur in a single lineage are
recorded. Check the box in the case in which the data collection process discards traits
observed at only one taxon, as described in Section 2.1. In this case, if the data matrix
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contains any traits that are observed in just a single taxon, those columns of the matrix
are automatically removed before the analysis begins. When the box is unchecked, the
likelihood is calculated as if all traits observed in at least one taxon have been recorded.
Note that, for real data sets, it is unusual for traits present in only one taxon to be
recorded; if in doubt, it is thus recommended that the checkbox remain checked.

If the data matrix includes traits coded as missing (i.e., it includes “?” characters), the
“model missing data” box should be checked. If it is unchecked, all missing traits will be
recoded as absent and ξ parameters in the likelihood will be fixed at zero.

The trait death rate, µ, defined in Section 2 is an estimable parameter when clades with
time constraints are imposed. Instead of working directly with µ, we reparametrize it as
a loss rate, ψ, defined by

ψ = 1− exp(−1000µ).

Thus ψ is a number between 0 and 1 and can be interpreted as the mean proportion of
traits that are lost in a lineage over a period of 1000 years. The user then has the option
of fixing ψ at a specified value or letting this value vary over the run in order to estimate
it. In the latter case, the user must either specify a starting value or choose to start from
a random value. These three options are determined by selecting the appropriate radio
button.

If the data are thought to include rate heterogeneity, the catastrophe process may be
included in the model by checking the “Include catastrophes” checkbox. In this case,
there are two further parameters to consider, the rate at which catastrophes occur, ρ, and
the probability of trait death at a catastrophe, κ. As with ψ, they can either be fixed
at a specified value, or estimated with specified or random initial value by selecting the
appropriate radio button.

Imposing clades

If clade constraints are present in the data file, they may be applied during a run by
checking the “impose clades” checkbox. To omit clades from the analysis, list the clades to
be omitted in the space provided using the respective clade numbers (see Section 7.1.1 for
details on clade numbers and list formatting). It is also possible to ignore the age ranges
of certain clades (as if rootmin = 1 and rootmax =∞) by checking the box “Ignore ages
for clades” and listing the clade numbers in the space provided.

Note that difficulties can arise when omitting taxa that appear in imposed clades. For
example, consider clade C that consists of taxa x, y and z with a root time between t1
and t2. If taxon z is omitted from the analysis, it is often incorrect to simply omit it
from clade C to get the new clade C ′ consisting of just taxa x and y with the same root
time constraints as C. This is because x and y could have a common ancestor at time t
where t < t1. The user is given the option, in the MATLAB command window, of simply
deleting the offending taxon from the clades in question (as was done to get from clade
C to clade C ′ in the example) or leaving it and causing an error which can be remedied
by adding the offending clades to the clades to ignore list. To delete the taxon from the
clade, type “1” at the command line when given the option “delete taxa/ignore? 1/0”. Be
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aware that deleting taxa from clades in this way can have unintended consequences: the
new clade may be inconsistent with other clades or, when all but one taxon are deleted
from a clade, the clade root time constraint is reinterpreted as an offset leaf (see Section
6.2.1). Furthermore, this can lead to errors in the MCMC estimation. If an error occurs
after ignoring some taxa, we suggest adding the problematic clades to the list of clades to
ignore.

If problems are encountered omitting taxa that occur in clade constraints, the cleanest
solution is to create another data file containing the same data block but a clade block
that has been altered to achieve the desired constraints with the offending taxa removed.
This is the recommended course of action when the run is started in batch mode (see
Section 7.5) as the process described above requires user interaction.

7.4. Run and output parameters

The last panel that needs to be completed relates to the length of the run, the location of
the output files and the required level of interactive monitoring of the run.

Specify the total length of the MCMC run, r, and sub-sample interval, j. The initial state
of the chain will be saved to the output files as will every jth state thereafter. Thus the
total number of sampled states that are saved is the integer part of (r/j) + 1 samples. We
are unable to give a priori guidance as to how long a particular run needs to be as it depends
heavily on the particular dataset in question. Generally, the greater the number of taxa,
the longer the run needs to be. Exploratory runs should be made to check convergence for
the parameters of interest and it is sensible to make at least one very long run to check
for any unexpected mixing behaviour in the chain. In some cases, it may take many days
or weeks to obtain a satisfactory number of samples for larger problems. The subsample
rate is chosen so that the output files are of a managable size. Choose a number so that
the total number of saved sampled states is somewhere in the range 1000-10000. Checking
a chain for convergence is discussed further in Section 8.

The “seed random numbers” checkbox is mainly used for debugging purposes and is gen-
erally left unchecked. If it is checked, a seed for the random number generator needs to be
specified (it can be any real number). Separate runs with all options the same including
the random seed will be identical. If the checkbox is unchecked, a random seed will be
generated based on the date and time.

Output files

Output files are saved in the location specified using the “select output file” button. Sup-
posing tlout is the chosen file name, five output files are created: tlout.nex, tloutcat.nex,
tlout.txt, tloutXI.txt and tlout.par.

The tlout.par contains a record of all parameter values and options used to create the
run. It can be used to perform similar runs in batch mode (see Section 7.5).

Each sampled state is recorded in the tlout.nex and tlout.txt files. The sampled trees
are in the tlout.nex file, information on the catastrophes is in the tloutcat.nex, and
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sampled scalar values (parameters and densities) are in the tlout.txt file. The recorded
parameter values are the root time for the sampled tree, the trait death rate µ, the cladistic
loss probability p (currently not estimated so always equals 1), the catastrophe rate ρ, the
death probability at a catastrophe κ and the birth rate λ. Note that λ is integrated
analytically rather than using the MCMC sampler so that the value recorded here is an
independent draw from the marginal posterior distribution of λ at the given state. Also in
the .txt file are values of the log prior density for the state, the integrated log likelihood
(where λ has been integrated out) and the log likelihood (using the value of λ recorded).
Finally, the ξ parameters related to missing data are stored in the tloutXI.txt file.

Monitoring a run

The progress of the run can be monitored via values output to the MATLAB command
window, a plot of the most recently sampled tree and trace plots of the parameter and log
density values. There is also a status box on the left of the GUI showing the number of
samples already obtained, the run time to date and an estimate of the time remaining.

To plot each tree as it is sampled, check the“draw trees”checkbox. If the box is unchecked,
the most recently sampled tree can be plotted by clicking the “view latest tree” button on
the left of the GUI.

To see the trace plots of the sampled root time, trait loss rate, log prior density and
integrated log likelihood density, check the “plot statistics” checkbox. Note that the log
likelihood trace plot is truncated to omit the early sampled values so that the vertical
scale of the plot is reasonable. If the data were synthesized using TraitLab, horizontal
lines showing the “true” parameter values for the data are shown on the trace plots.

Unless the “no onscreen output” checkbox is checked, when each sample is taken, a row of
numbers will appear in the MATLAB command window. These numbers show the sample
number, the log likelihood value and several statistics showing the proportion of proposed
MCMC updates accepted since the previous sample. For example, the line

(5,-3550.486804) 0.33 0.24 0.09 0.14 0.03 0.21 0.38 . . .

means that sample 5 has log likelihood of around -3550 and, of the updates between sample
4 and sample 5, 0.33 of the states proposed by move type 1 were accepted, 0.24 of those
proposed by move type 2 were accepted and so on. The ordering of the moves is the same
as that given in Table 1. Note that, depending on the options chosen, some moves may
not be proposed so the proportion accepted will be NaN.

7.5. Running TraitLab in batch mode

TraitLab can be run without the GUI interface directly from a Unix, Linux, Mac or
MATLAB command line. Instead of using the GUI to specify all parameters for a run,
they are stored in the file called batchtlinput.txt in the main TraitLab directory. This
has exactly the same form as a .par output file which is automatically created at the start
of every run and has options corresponding to those in the main TraitLab GUI. Either
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modify batchtlinput.txt field by field, or take an existing .par file, modify as necessary
and save as batchtlinput.txt. It may be easiest, if many similar runs are being made,
to set up a short model run using the GUI and then use the .par file as a template for
the other runs in batch mode.

To start a run in batch mode from a command shell, make the main TraitLab directory
the current working directory and type

\proglang{MATLAB} -nodisplay < batchTraitLab.m > outlog &

at the command line. Any onscreen output will be dumped to outlog while the normal
.nex, .txt and .par output files will be created in the location specified in batchtlinput.txt.
For long runs, consider adding nohup as a prefix to the above command.

To run the batch version from the MATLAB command line, make the main TraitLab
directory the current directory and type batchTraitLab.

8. Analysing output and inspecting the data

The results of MCMC runs and the raw data can be inspected in the analysis GUI, shown
in Figure 3. The tools provided for exploring the output of MCMC runs include viewing
sampled trees that are saved in a .nex output file, making trace plots and histograms
of sampled statistics from a .txt output file and making histograms of the root time of
user specified clades through the run. These functions are described in Section 8.2. Note
that many of these functions are fairly generic and can equally well be performed, along
with other functions not available in TraitLab, by programs such as Tracer (Rambaut and
Drummond 2009).

The data inspection tools provided, described in Section 8.3, allow the user to make his-
tograms of the number of traits per taxon and of the number of taxa per trait, comparisons
with synthetic data and plots based on a maximum a posteriori estimator of the time of
the most recent common ancestor for a pair of taxa. All of the plots made in TraitLab
can be saved or printed as one would a standard MATLAB figure.

Access the analysis GUI by choosing “analyse output” in the mode menu from the main
TraitLab GUI.

8.1. Loading data and output to the analysis GUI

When the analysis GUI is called, the output from the most recent completed run (if there
is one) along with the currently loaded data is automatically loaded into the analysis GUI.
If no run is in memory, nothing is passed to the analysis GUI and data and output can be
loaded using the “load output” and “load data” buttons. Note that it is left to the user to
ensure that the loaded output and data are compatible.

8.2. Exploring MCMC output



Journal of Statistical Software 17

2 4 6 8 10 12 14 16 18 20
−6.5

−6

−5.5

−5

−4.5
x 104

Figure 3: The analysis GUI.

Autocorrelations, trace plots and histograms

The “output statistics” box provides functions for calculating and plotting histograms, lag
autocorrelation functions and trace plots of the parameters and the log density functions.
Visual inspection of the trace plot of a parameter of interest is one of the best ways of
determining whether or not the chain is mixing well and has been run long enough for
the samples to be useful for scientific purposes. These plots can be made for any of the
log prior density, the log likelihood density, the tree root time, the catastrophe occurrence
rate, ρ, the probability of trait death at a catastrophe, κ, or the trait death rate, µ, stored
in the .txt output file. Choose which statistics to plot using the appropriate checkboxes.
Similar plots can be drawn for the age of internal nodes; see Section 8.2.3.

To plot the autocorrelation functions, it is necessary to specify the maximum lag for which
autocorrelations are calculated in the“lag” text box. The maximum value of the lag should
be significantly smaller than the number of samples being analysed. To ignore the first
part of the run as burn-in, specify the first sample to use in the “ignore samples before”
text box. Trace plots of the selected statistics are automatically drawn alongside the lag
autocorrelation plots. The title of the lag autocorrelation plot has the variable name,
the integrated autocorrelation time, τf , the number M , an estimate of the number of
samples after which the normalized autocovariance function is approximately zero and N ,
the number of samples analysed. A rough estimate of the effective sample size obtained
for statistic f is N/τf . An example of an autocorrelation plot is shown in Figure 4. For
further information about how to interpret autocorrelation plots and associated statistics,
see Nicholls (1998) or Geyer (1992).

To plot histograms of the sampled statistics, specify the number of bins to use in the
histogram. A burn-in can be specified using the “ignore samples before” text box. The
histograms of model parameters represent their respective estimated marginal posterior
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Figure 4: The lag autocorrelation function of the variable (root time, in this case) is
plotted on the left. On the right is the trace plot of the variable.

distributions.

Viewing sampled trees

At the top right of the GUI is a trace plot of the log likelihood of sampled states in the
loaded run. Trees from the loaded run can be viewed using the “view current tree” button
and (when data are also loaded) more closely investigated using the “inspect current tree”
functions. The current tree is the tree at the current position. The current position is
shown as a red line on the log likelihood plot and can be specified either in the “current
position” text box or by using the slider below the trace plot. To zoom in on a section of
the trace plot, specify the first and last samples of the section in the “start” and “finish”
text boxes and click the “zoom” button.

The sampled trees between “start” and “finish” can be watched as a movie by clicking the
“watch movie” button. The movie shows approximately 3 samples per second and can be
halted by closing the window in which it shows.

When data are loaded, the “inspect tree” function can be used to closely inspect sampled
trees. If the “show leaf names” radio button is selected, the standard plot of the current
tree is drawn when the “inspect tree” button is clicked. The “show all names/numbers”
option is mainly used for debugging and shows the node numbering used to internally
represent the tree. The numbers on the leaf nodes shown in this representation are those
used to specify taxa for the TMRCA histograms (see Section 8.2.3).

The “count active traits” option shows the standard tree plot of the current state where, at
each internal node of the tree, the number of traits found exclusively in the clade defined
by that node is shown. For example, suppose that the current tree has three taxa a, b
and c in which (a, b) form a clade and there are 20 traits found in a and b that are not
found in c. Then the number 20 will be shown at the internal node (a, b). Note that the
number shown at the root of the tree is always the total number of traits in the data set
being analysed (after rare traits have been stripped from the raw data).

By checking the “show trait” checkbox and specifying a trait number, the path of the
specified trait on the current tree can be viewed. According to the standard Dollo model,
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the trait must have been present on the lineages shown in black, so must have been born
either above the root of the tree or on the lineages shown in red. It was either not present
or died at some point on one of the lineages in blue. An example of a trait history is shown
in Figure 5.

4

5

1

2

3

0   500 10001500200025003000350040004500

Trait 177

Figure 5: An example of the use of the “show trait” function for inspecting a tree. The
specified trait here is found in taxa 4 and 5, so must have been present on the lineages
shown in black and could have arisen on any of the lineages shown in red (or above the
root).

Histogram of TMRCA for given taxa

The marginal posterior distribution of the time to the most recent common ancestor (TM-
RCA) for any group of taxa in the analysis can be estimated using the“show age histogram”
button. Specify the taxa of interest by using their respective numbers in the text box pro-
vided. The taxa numbers can be found using the“inspect tree” function (see Section 8.2.2).
The first part of the run can be ignored as burn-in using the “ignore samples before” text
box and the number of bins to use in the histogram is specified in the “bins” text box,
both found in the output statistics section of the GUI.

When the “show age histogram” button is clicked, the TMRCA for the given taxa in each
sampled tree is found and this information is output to the MATLAB command window
(copy it to a text file to analyse it elsewhere) as well as being made into a histogram.
The posterior mean, the 95% highest probability density (HPD) interval and the posterior
probability that the given taxa form a clade are all output to the MATLAB command
window. Note that the computation of the HPD interval assumes that the marginal
posterior distibution of the TMRCA is unimodal; this assumption can easily be checked
by inspecting the histogram and is usually verified in practice.

8.3. Inspecting the data



20 TraitLab: A MATLAB Package for Fitting and Simulating Binary Tree-like Data

Clicking the “analyse data” button will produce a number of plots which are described
below. Note that both data and output need to be loaded to view these plots since a tree
is required for the construction of the the distance-depth plot.

Data histograms

If the “show histograms” checkbox is checked, histograms of the number of taxa per trait
and the number of traits per taxon will be generated. The taxa per trait histogram is a
histogram made from the column sums of the data matrix. If there are k taxa and L traits
in total, each trait occurs in between 0 and k taxa, thus the horizontal axis in the graph
runs from 0 to k and the vertical axis (the frequency) runs from 0 to (at most) L.

The traits per taxon histogram is a histogram made from the row sums of the data matrix.
It is the empirical distribution of the number of traits found in each taxon.

If the “compare synthetic data” checkbox is checked, synthetic data according to the stan-
dard stochastic Dollo model are generated on the current tree and histograms of the
synthetic data are displayed below those for the loaded data.

If the model fits the data well and the tree is a representative draw from the posterior
distribution, the two pairs of histograms should be qualitatively very similar. Consistent
qualitative differences between the two pairs of histograms may indicate some significant
model misspecification.

Distance depth and distance matrix plots

When all traits, including those found only in a single taxon, are observed it is possible to
analytically calculate the maximum a posteriori estimate of the time to the most recent
common ancestor for a pair of taxa under the standard Dollo model (see equation 10 of
Nicholls and Gray (2008)). The distance matrix plot (check the “show distance matrix”
checkbox) and the distance depth relation plot (which is always shown when the “analyse
data”button is pressed) are based on this calculation. Note that we assume that rare traits
(traits that occur in only one taxon) are not observed, so, in order to make an accurate
estimate of the TMRCA, rare traits are synthesized and blended with the data in the file
to make these plots.

The distance matrix graph is simply a heat plot of a matrix where this distance has been
calculated for each pair. Bluer colours represent closer taxa, red more distant and green
intermediate. It is best understood by referring to the example in Figure 6.

For the depth distance relation plot, the maximum a posteriori estimate for the TRMCA
for each pair is calculated and the time of the MRCA of each pair in the specified tree is
found. The two times for each pair are then plotted against each other. See Figure 7 for
an example. The tree used is the current output tree (or, when the graph appears after
synthesizing data, the tree on which the data were synthesized). If the standard Dollo
model and the specified tree fit the data well, the points should lie along the line y = x.
Systematic deviation of the points away from the line y = x may indicate some significant
model misspecification.
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Figure 6: An example of the distance matrix graph. The column labels are the same as
the row labels. The pixel at row i, column j represents the maximum a posteriori estimate
of the TMRCA between taxon i and taxon j. The darker the blue the closer the taxa are,
the darker the red the further apart they are. Lighter and green colours are intermediate.
Note that the ordering of taxa is as it occurs in the data file, so the obvious clustering
that is shown here will not occur if rows in the data file are randomly ordered.
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Figure 7: An example of the depth distance relation graph. Each point represents a pair
of taxa. The position of the point along the x-axis is the maximum a posteriori estimate
of time to the most common ancestor for the given taxa pair, while the position along
the y-axis is given by the time of the most recent common ancestor of the pair in the
given tree. The line shown in blue is y = x. The points are horizontally stratified as a
single ancestral node in the tree may be the common ancestor of many pairs of taxa. The
example here show a very good fit of data and model.
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8.4. Building a consensus tree

A consensus tree is a convenient way of summarizing a sample of trees. A consensus tree
shows all splits with at least p = 50% support in the posterior sample. If a split receives
between 50% and 95% support, it is labelled; splits receiving at least 95% support are
unlabelled. If no split receives more than 50% support, the tree is multifurcating. The
threshold p can be changed to another value, but values lower than 50% will lead to errors.
The integer parameter subsample can be set to a value greater than 1 to subsample the
trees; this will speed up the computation of the consensus tree.

On a consensus tree, the length of a branch displayed is the average length of that branch in
the trees of the posterior sample where it is present. Similarly, the number of catastrophes
displayed on a branch is the average number of catastrophes on that branch in the trees
of the posterior sample where the branch is present, rounded to the nearest integer.

8.5. Saving as HTML

To ease the sharing of results, the GUI offers an option to save your analysis as an HTML
file. Tick the box “Save figures in HTML file”, then either select the name of your HTML
file or let TraitLab choose one for you, based on the date and time. So long as the check-
box is selected, all figures you produce from the Analysis GUI are saved as .bmp files,
and an HTML file is created with those figures and some explanatory text. Note however
that figures created before ticking the box are not included, nor is the “movie of trees”
described in Section 8.2.2.

9. Synthesizing data and model checking

TraitLab allows the user to simulate trait and clade data under any of the fitted models,
i.e., the Dollo model with or without catastrophes and with or without missing data,
and also allows simulation under various model extensions. The model extensions include
borrowing (lateral transfer of traits between lineages), heterogeneity in the trait death
rate, µ, across edges in the tree and heterogeneity in µ across different groups of traits. In
this section, we provide step by step instructions on how to synthesize data in TraitLab,
which involves specifying a tree, a model of trait evolution and a clade model. We give
full descriptions of each of the model extensions as we go along.

To get started with the synthesize GUI, choose “synthesize data” in the mode menu from
the main TraitLab GUI. The GUI is shown in Figure 8.

9.1. Selecting a tree

The tree along which traits evolve can either be a randomly generated Yule tree (with
exponential branch lengths) or any rooted tree (with branch lengths specified) stored in
the Newick format in a nexus file. Select the appropriate radio button to choose between
a random tree and a stored tree. If a random Yule tree is chosen, the branching rate, θ,
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Figure 8: The data synthesizing GUI.

and the number of taxa need to be specified. The mean branch length in a Yule tree is
1/θ years.

To synthesize data on a tree from a file, click the “Select tree file” button. TraitLab will
attempt to extract all readable trees from the specified file. If there is more than one tree
found in the file, specify which tree to use in the “use tree” text box. Check that you have
selected the correct tree with the “view” button. If there are trees in a file but TraitLab
is unable to read them, check that they are written in the correct format with a root and
branch lengths specified.

9.2. Defining the trait evolution model

All models are based on the basic Dollo model of evolution, which is completely specified
on a given tree by defining the trait birth and death rates. Equivalently, we parametrize
the model using the mean number of traits per taxon, K, and the trait loss rate, ψ =
1− exp(−1000µ). These must specified in the text boxes provided. The loss rate, ψ, is a
number between 0 and 1 and can be interpreted as the mean proportion of traits lost in a
lineage over a period of 1000 years. Given the mean number of traits per taxon, K, and
a value of µ, the per taxon trait birth rate, λ, is defined by λ = Kµ.

Catastrophes

Catastrophes are included in the simulation when the “include catastrophes” checkbox is
checked. In this case, the catastrophe occurrence rate, ρ > 0, and the probability of trait
death at a catastrophe, 0 < κ < 1, must be specified in their respective text boxes. The
trait birth rate at a catastrophe, ν, is automatically calculated so that that reversibility
condition, ν/κ = λ/µ, is respected.
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Rate heterogeneity and the no-empty-field assumption

Another form of rate heterogeneity, different from catastrophes, is to let the trait death
rate, µ, vary across each lineage of the tree so that for each lineage, 1 ≤ i ≤ L− 1, there
is a specific death rate µi. µi is a gamma distributed random variable with mean µ and
variance (σbµ)2. It is necessary to specify the relative standard deviation parameter, σb.
Check the “rate heterogeneity across branches” checkbox to include this in the model.

Checking the“impose no empty field assumption”checkbox will produce data as if traits are
collected based on pre-specified observation classes for which it is assumed every observed
taxon will have at least one trait in each class. This is called the no-empty-field assumption
as we assume that each observation class is occupied by at least one trait in each taxon at
all times. This is a natural assumption with lexical data where linguists set out to collect
words from different languages associated with a list of meanings. The meanings here are
the observation classes, so the assumption is that every language will have a word for these
basic meanings.

If this option is checked, it is necessary to specify the number of observation classes. Note
that the option will have the greatest effect on the simulated data when the number of
observation classes is close to the mean number of traits per taxon, K, and that K is a
natural upper bound for the number of observation classes.

If the no-empty-field assumption is imposed, heterogeneity in trait death rates across
observation classes may be simulated by checking the “rate heterogeneity across classes”
checkbox and specifying a relative standard deviation, σc in the associated “standard
deviation” text box. Traits in observation class j then have a death rate µc(j) ∼ Γ(mean =
µ, variance = (σcµ)2).

If the no-empty-field assumption is imposed and the “Missing data” box is checked, data
will go missing “in blocks”: within an observation class and for a given taxon, either all
traits are observed, or all are missing. The interested reader is referred to Section 4.2.2 of
Ryder (2010).

When rates vary across both branches and observation classes, a trait on branch i in
observation class j dies at rate µb,c(i, j) ∼ Γ(mean = µb(i), variance = (σcµb(i))

2) where
µb(i) ∼ Γ(mean = µ, variance = (σcµb)

2).

Borrowing

Borrowing, or horizontal transfer of traits, is observed in lexical, cultural and genetic trait
data. We allow users to simulate data under two models of borrowing — global or local
borrowing. Global borrowing is when all lineages are equally likely to borrow from one
another, whereas local borrowing means that only lineages that are close, in the sense
that they share a recent common ancestor within some specified time period, may borrow
traits from each other.

Global borrowing is synthesized by checking the“allow borrowing”checkbox and specifying
a relative borrowing rate, b. Each trait is borrowed at constant rate bµ. When a trait, k,
is borrowed, it chooses a lineage, i, uniformly at random from those existant. If trait k is
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not present in lineage i, k is added to i, otherwise nothing happens.

To make borrowing local instead of global, check the “local borrowing” checkbox and
specify a borrowing distance, d. All traits are still borrowed at constant rate bµ but the
target lineage is not chosen from all others. Instead, only lineages that share a common
ancestral lineage with the source lineage (the one in which the trait to be borrowed is
found) in the last d years may borrow the trait. The target lineage is chosen uniformly at
random from all such lineages.

When death rates are heterogeneous and borrowing occurs, a trait on branch i in obser-
vation class j is borrowed at rate bµb,c(i, j).

9.3. Missing data and rare traits

Once trait data have been simulated down a tree according to the specified model, the
observation model is simulated so that some traits may be marked missing and rare traits
are ignored. If the “include missing data” checkbox is checked, a parameter ξi ∼ β(1, 1/3)
is drawn for each leaf i. At leaf i, each entry in the simulated matrix is then made missing
with probability 1− ξi. Columns of the matrix with no 1’s (so traits not observed at any
taxa) are removed. If the “remove rare traits” checkbox is checked, traits that are observed
at only one taxon are also discarded. In many real data sets, such traits are not observed.

9.4. Synthesizing clades

Check the “synthesize clades” checkbox to synthesize clades. When there are L taxa in the
synthetic data, up to L− 1 clades can be synthesized corresponding to the L− 1 internal
nodes of the tree. It is necessary to specify the accuracy of the clade bounds, c, in the
“bounds within” text box. An accuracy of c means that, if the chosen node has a time t in
the tree, a lower bound of (1− c/100)t and an upper bound of (1+ c/100)t will be created.

By clicking on the appropriate radio buttons, the bounds can be on the root, on the
divergence time (originate bounds) or be chosen uniformly at random between the two.
In real data, the bounds are most commonly on the root.

9.5. Output of synthesize GUI

The synthetic data will be saved to the .nex file specified by the user by clicking the
“select data file”button, say synfile.nex. This file will contain the synthetic trait matrix,
the tree on which the data were synthesized and associated model parameters. A .par

file, synfile.par, will also be generated for record keeping purposes. All options and
parameter values used to produce the data as specified in the GUI are recorded here.
Checkbox options are represented by 0 for unchecked and 1 for checked.

When the “synthesize now” button is pressed, the data will be synthesized according to the
specified parameters and options. Progress can be monitored in the MATLAB command
window. A figure showing the tree on which the data were synthesized will appear.

If you check the box “Explore data after synthesizing” diagnostic tools are run on the
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synthetic data. An explanation of how to interpret the histograms and the depth distance
graph that are generated is given in Section 8.3 above.

10. Example: Analysis of Semitic lexical data

As an example, we provide in this section the steps used to analyse a real dataset. The
data concern core vocabulary of various Semitic languages and were collected and made
public by Kitchen, Ehret, Assefa, and Mulligan (2009). An analysis of these data with
TraitLab appeared first in Nicholls and Ryder (2011), with more detail. The dataset is
included in TraitLab in the Nexus file semitic09.nex and can thus be used to discover
TraitLab’s functionalities.

10.1. Data

The data file is in Nexus format. The DATA block includes 674 traits for 25 taxa. Each
taxon is a Semitic language (Gehez, Tigre, Amharic...) and each trait is a meaning cat-
egory; the meaning categories cover 96 meanings from the core vocabulary. In this file,
some data points are listed as ”gaps” (- in the data file); these are treated as missing by
TraitLab. The beginning of the data block is:

#NEXUS

BEGIN DATA;

DIMENSIONS NTAX=25 NCHAR=674;

FORMAT DATATYPE=RESTRICTION MISSING=? GAP=- INTERLEAVE=yes;

MATRIX

Gehez 10001000000010000000000100000000010000000000

Tigre 10000100000001000000000010000000010000000000

Tigrinya 10000010000010000000000010000000010000000000

Amharic 10001000000010000000000----------01000000000

Argobba 01001000000010000000000001000000000100000000

Harari 10001000000010000000000000100000000010000000

Zway 10001000000000100000000----------00010000000

Walani 10001000000000010000000000010000000010000000

Gafat 0010-------------------000001000000001000000

Soddo 10001000000001000000000001000000000000100000

Mesqan 10001000000000001000000000010000000000010000

Innemor 10001000000000000010000001000000000000001000

Mesmes 00011000000000000100000001000000000000000100

Geto 10001000000000000010000000010000000000000010

Chaha 10001000000000000010000000010000000000000010
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Hebrew 10000001000000000001000000000100000000000001

Ugaritic 10000000100000000001000010000000000000000001

Aramaic 10000000010001000000000001000000000000000000

Akkadian 10000000010000000001000001000000000000000000

MoroccanArabic 10000000001000000000100001000000000000000000

OgadenArabic 10000000001000000000001000000100000000000000

Mehri 10000000000100000000100000000010000000000000

Jibbali 10000000000100000000010000000001000000000000

Harsusi 00010000001000000000100000000010000000000000

Soqotri 00010000001001000000000000000000100000000000

;

END;

The data file also includes a CLADES block, with 6 clades. In this case, each clade
comprises only one language and thus gives information on one of the leaves of the tree.
The clades block is:

BEGIN CLADES;

CLADE NAME = hebrew

ROOTMIN =2500 ROOTMAX =2700

ORIGINATEMIN = 3200 ORIGINATEMAX = 4200

TAXA = Hebrew ;

CLADE NAME = ugaritic

ROOTMIN =3300 ROOTMAX =3500

ORIGINATEMIN = 3400 ORIGINATEMAX = 4400

TAXA = Ugaritic ;

CLADE NAME = aramaic

ROOTMIN =1700 ROOTMAX =1900

ORIGINATEMIN = 2850 ORIGINATEMAX = 3850

TAXA = Aramaic ;

CLADE NAME = amharic

ORIGINATEMIN = 700 ORIGINATEMAX = 1700

TAXA = Amharic ;

CLADE NAME = gehez

ROOTMIN =1600 ROOTMAX =1800

TAXA = Gehez ;

CLADE NAME = akkadian

ROOTMIN =2700 ROOTMAX =2900
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TAXA = Akkadian ;

END;

meaning for example that the sample of Hebrew in the data corresponds to a language
spoken between 2500 and 2700 Before Present, and that we know that the branch leading
to Hebrew split off from its closest cousins between 3200 and 4200 Before Present.

Loading the data

Launch MATLAB, change the current folder to C://traitlab, and type TraitLab in the
command window to start TraitLab. In the pink ”Specify data source” panel, click ”Select
data” and navigate to the semitic09.nex file.

In the main MATLAB window, we are given the list of clades, the list of languages, as well
as the list of languages with more than 5% missing data.

For now, we can keep all the parameter values unchanged and click the ”Start” button to
initiate the MCMC run. By default, TraitLab will use a run length of 5000 iterations,
subsampling every 100 iterations, thus giving a sample of size 50. On a 2011 iMac under
Kubuntu with an Intel i5 2.70GHz CPU and 8 GB RAM using MATLAB R2012a, this run
takes about 80 seconds.

Extra information is given in the main MATLAB window. First, the data are prepared.
By default, all traits which are present at only 0 or 1 taxon are removed from the data,
leaving 334 traits. During the run, the log-likelihood of each sample is displayed alongside
the acceptance ratios for each move, and a figure of the current tree is plotted, as well as
traces of several key statistics, as shown in Figure 10.1.1. It is immediately obvious that
the MCMC has not converged, so we lauch a longer run: 5 million iterations, subsampling
every 5000 iterations, giving a sample size of 1000. On the same computer as previously,
this run takes about 14 hours.

At first glance, this second run seems satisfactory, given the key statistic traces. We move
to the ”Analyse output” mode, to verify that the chain has indeed reached stationarity
and mixed well.

In the ”Analyse output” mode, the data and run are preloaded. The root time is plotted
over the entire run; we zoom in to display only iterations 100 to 1001. The plot indicates
that a burn-in of 100 is satisfactory. In the green ”Output statistics panel”, we check the
traces and autocorrelations of the prior, root time, log-likelihood, as well as the parameters
µ, κ and ρ, ignoring the samples before iteration 100. These plots are also satisfactory.
Finally, we check the traces and autocorrelations of a few internal and leaf ages. To do
this, first use the ”Inspect current tree” panel with the option ”Show all names/numbers”.
A tree is displayed, with the numbers used by TraitLab to represent each node internally.
These numbers can then be used to ”show the age histogram” of internal node ages. For
example, we check the age of the leaf Hebrew and the age of the internal node above Tigre
and Tigrinya by entering the relevant node numbers. Along with the age histogram, we
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Figure 9: Trace of key statistics after first MCMC run for the Semitic data. These plots
(for example the log-likelihood, top right) show that the MCMC has not yet reached
stationarity.
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are also given the MCMC trace and autocorrelations for that node age, and the trace and
autocorrelations for the indicator that the languages given form a subtree (this gives an
indication of the MCMC behaviour of the tree topology). Summary statistics are also
given in the main MATLAB window.

Since the MCMC run has converged, we can now check for model misfit. Using the
”Analyse data” panel, we observe that points on the ”Distance Depth Relation” plot are
close to the line y = x, and the histograms for the data in the file resemble those for
synthetic data, indicating reasonable overall fit.

The consensus tree with catastrophes shows strong support for catastrophe events on the
branches above Ugaritic, with almost no rate heterogeneity elsewhere in the tree; there is a
33% posterior probability for no catastrophes, compared with a 1% prior probability. This
indicates that there may be model misfit for Ugaritic. We now perform a Bayesian cross-
validation analysis of all 10 calibration constraints, as discussed by Ryder and Nicholls
(2011). To do this, we repeat the MCMC run, with one modification in the settings:
in the ”Impose clades ignoring” box, we list (for example) clade number 1, then let the
MCMC run for a sufficient number of iterations. Clade number 1 gives constraints on
the age and branching time of Hebrew. With this setting on, these constraints are no
longer imposed, letting the Hebrew leaf age and branching time vary freely. At the end
of the run, we use the ”show age histogram” feature of the Analysis mode to compare
the resulting posterior ages with the constraint. We find that they overlap, indicating
support of the historically attested constraint. We repeat this for all constraints, and find
problems with some constraints: the branching of Biblical Aramaic and the leaf ages of
Ugaritic and Gehez. We therefore decide to remove Ugaritic and Gehez from are final
analysis, given the evidence that they are outliers. This improves the model fit, and all
remaining constraints are then supported (including Aramaic branching).

We now perform are final run, from which we will draw our conclusions. In the MCMC
settings, we omit the taxa 1 and 17 (Gehez and Ugaritic) and impose all clades. We do
not include catastrophes, since they seem unnecessary. With this run, we can build a
consensus tree and estimate the root age of the Semitic family. Our 95% HPD interval for
the age of the root is [3800, 5100] BP.
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