Temps de mélange – Examen 2019

Les notes de cours sont autorisées. Les deux problèmes sont indépendants. Au sein de chacun d'eux, il est possible d'admettre la réponse à une question pour l'utiliser dans les suivantes. La dernière question de chaque problème est ambitieuse, et doit être gardée pour la fin.

Problème 1 – Marche biaisée sur le cycle

Soit $n \geq 3$ un entier, et $p \in (0,1)$ un paramètre. On se donne une suite $(\xi_t)_{t\geq 1}$ de variables aléatoires à valeurs dans $\{-1,0,1\}$, indépendantes et identiquement distribuées, avec

$$\mathbb{P}(\xi_1 = -1) = \frac{1-p}{2}, \qquad \mathbb{P}(\xi_1 = 0) = \frac{1}{2}, \qquad \mathbb{P}(\xi_1 = +1) = \frac{p}{2}.$$

On peut alors définir un processus $(X_t)_{t\geq 0}$ à valeurs dans $S=\mathbb{Z}/n\mathbb{Z}$ en choisissant une condition initiale arbitraire $x\in S$ et en posant, pour tout $t\geq 0$,

$$X_t := x + \xi_1 + \dots + \xi_t \mod n.$$

On s'intéresse au temps de mélange $t_{\text{MIX}}^{(n)} = t_{\text{MIX}}^{(n)}(1/4)$ de ce processus lorsque p est fixé et $n \to \infty$.

- 1. Justifier que $(X_t)_{t\geq 0}$ est une chaîne de Markov ergodique dont on précisera le noyau de transition P, la loi stationnaire π , et le noyau adjoint P^* .
- 2. Déterminer le degré maximal et le diamètre de la chaîne. Que peut-on en déduire pour $t_{\text{mix}}^{(n)}$?
- 3. Déterminer la conductance Φ_{\star} de la chaîne. Que peut-on en déduire pour $t_{\text{MIX}}^{(n)}$?
- 4. Trouver des constantes $\mu \in \mathbb{R}$ et $\kappa > 0$ (dépendant de p) telles que pour tout $t \geq 0$,

$$\mathbb{P}\left(\xi_1 + \dots + \xi_t \in \left] \mu t - \kappa \sqrt{t}; \mu t + \kappa \sqrt{t} \right[\right) \geq \frac{3}{4},$$

et en déduire que $t_{\text{MIX}}^{(n)} = \Omega(n^2)$.

- 5. À l'aide d'un noyau de couplage bien choisi, montrer que $t_{\text{MIX}}^{(n)} = O(n^2)$.
- 6. Pour chaque $k \in \mathbb{Z}/n\mathbb{Z}$, on définit $\phi_k \colon S \to \mathbb{C}$ par la formule

$$\phi_k(x) = \exp\left(\frac{2\mathbf{i}\pi kx}{n}\right).$$

Calculer $P\phi_k$, et en déduire que le temps de relaxation vérifie $t_{\text{REL}}^{(n)} \sim \alpha n^2$ lorsque $n \to \infty$, pour une constante $\alpha = \alpha(p) > 0$ que l'on déterminera. Est-il raisonnable d'espérer un cutoff?

7. Pour aller plus loin : montrer que pour tout $\varepsilon \in (0,1)$, on a en fait $t_{\text{MIX}}^{(n)}(\varepsilon) \sim f(\varepsilon)n^2$ lorsque $n \to \infty$, où $f: (0,1) \to (0,\infty)$ est une fonction (dépendant de p) que l'on explicitera.

Problème 2 – Marche simple sur l'arbre binaire

Soit $n \geq 1$ un entier, et soit T_n l'arbre binaire de hauteur n illustré Figure 1 : les sommets sont les mots binaires de longueur au plus n, et deux mots sont voisins si l'on peut passer de l'un à l'autre en ajoutant/retirant un symbole en fin du mot. On considère la marche aléatoire simple paresseuse sur cet arbre : à chaque étape, on tire à pile ou face avec une pièce non-biaisée et, si la pièce tombe sur pile, on se déplace vers un voisin choisi uniformément au hasard. On note $t_{\text{REL}}^{(n)}$ le temps de relaxation, et $t_{\text{MIX}}^{(n)}$ le temps de mélange avec précision $\varepsilon = \frac{1}{4}$.

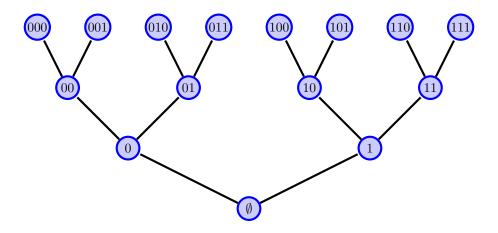


FIGURE 1 – L'arbre binaire complet de hauteur n = 3.

- 1. Justifier que le noyau est ergodique et réversible, et que $t_{\text{mix}}^{(n)} \geq n$.
- 2. Par la méthode des chemins canoniques, montrer que $t_{\text{REL}}^{(n)} \leq n2^{n+1}$. Qu'en déduire pour $t_{\text{MIX}}^{(n)}$?
- 3. Montrer que la conductance minimale vérifie $\Phi_{\star} \leq \frac{1}{2^n}$. Qu'en déduire pour $t_{\text{REL}}^{(n)}, t_{\text{MIX}}^{(n)}$?
- 4. Décrire un noyau de couplage qui préserve l'ordre des hauteurs : si $|X_0| \le |Y_0|$, alors $|X_t| \le |Y_t|$ pour tout $t \ge 0$, où |x| désigne la hauteur du sommet x dans l'arbre (distance à la racine).
- 5. Pour $k \in \{0, ..., n\}$, on note t_k l'espérance du temps d'atteinte du sommet racine \emptyset lorsque la marche part d'un sommet de hauteur k. Trouver une relation de récurrence satisfaite par la suite $(t_k)_{0 \le k \le n}$ et en déduire que pour tout $k \in \{0, ..., n\}$,

$$t_k = 2^{n+3} \left(1 - \frac{1}{2^k} \right) - 6k.$$

- 6. En déduire les ordres de grandeur de $t_{\text{REL}}^{(n)}$ et $t_{\text{MIX}}^{(n)}$ lorsque $n \to \infty$. Y a-t-il cutoff?
- 7. Pour aller plus loin : étudier le temps de mélange et le cutoff depuis le sommet racine, c'està-dire lorsque l'on re-définit la distance à l'équilibre comme étant $\mathfrak{D}(t) = d_{\text{TV}}(P^t(\emptyset,\cdot),\pi)$.