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TD1. Brownian motion. Martingales. Stopping times.

Unless stated otherwise, we denote by B = (Bt)t≥0 a Brownian motion starting form the origin on a
probability space (Ω,A,P). We also denote by Ft := σ(Bs, s ≤ t) the filtration generated by the Brownian
motion.

Exercise 1 We define the Brownian bridge as the process Zt = Bt − tB1 (0 ≤ t ≤ 1).
1. Show that Z is a Gaussian process independent of B1

2. Compute the mean and covariance function of Z.
3. Is (Zt)0≤t≤1 a martingale w.r.t (Ft)t≥0 ?
4. Prove that Z has the same law as the process Y defined by

Yt =

{
(1− t)B t

(1−t)
(0 ≤ t < 1),

0 (t = 1).

Exercise 2 For t ≥ 0, define At =
∫ t

0
Bsds.

1. Justify why A is a well-defined (Ft)t≥0-adapted process.
2. Determine the law of At for all t ≥ 0.
3. Is (At)t≥0 a martingale w.r.t (Ft)t≥0 ?

Exercise 3 The goal of the exercise is to compute (by hand) the bracket of the square-integrable mar-
tingale (Mt)t≥0 = (B2

t − t)t≥0.
1. Compute E(B4

t |Fs) for all 0 ≤ s ≤ t.
2. Let Xt =

∫ t

0
B2

udu. Compute E(Xt|Fs) for all 0 ≤ s ≤ t.
3. Deduce thereof that ⟨M⟩t = 4Xt.

Exercise 4 In this exercise, B is a d-dimensional (d ∈ N) standard Brownian motion, that is Bt =

(B
(1)
t , . . . , B

(d)
t ), where the B(i)’s are independent standard Brownian motions. Let U be a d × d (deter-

ministic) orthogonal matrix. Prove that the process (Wt)t≥0 = (UBt)t≥0 is a d-dimensional standard
Brownian motion. By default, vectors are here considered to be column vectors in all matrix operations.

Exercise 5 For a > 0, define Ta = inf{t > 0: Bt ≥ a}.
1. Show that Ta is a (Ft)-stopping time.
2. Prove that for all λ ∈ R and n ∈ N :

E
[
exp

(
λBTa∧n − 1

2
λ2(Ta ∧ n)

)]
= 1.

3. Deduce thereof the Laplace transform of Ta :

E[exp(−uTa)] = exp(−a
√
2u), (u > 0),

and show that P(Ta < +∞) = 1.

Exercise 6 (Lévy’s characterization of Brownian motion) On a filtered space (Ω,F , (Ft)t≥0,P),
let M = (Mt)t≥0 be a continuous square-integrable martingale with M0 = 0 and ⟨Mt⟩ = t for all t ≥ 0.
Let F be any twice-differentiable function F : R+×R → C with bounded first and second-order derivatives.
Define :

Zt = F (t,Mt)−
∫ t

0

(∂F
∂t

+
1

2

∂2F

∂x2

)
(u,Mu)du, t ≥ 0.

1. Prove that Z is a martingale.
2. Applying the previous question to F (t, x) = exp(iθx + 1

2θ
2t), where θ ∈ R, prove that M is a

Brownian motion.

Exercise 7 Prove that Brownian motion is not monotone on any interval (a.s.).
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Hints.

It is highly recommended to allow you some time to think about the problems first, before
looking at the hints.

Exercise 1 1. First show that the collection of random variables (B1, Zt, 0 ≤ t ≤ 1) as a whole is
Gaussian or, equivalently, that the constant process t ∈ [0, 1] 7→ B1 and the process Z are jointly
Gaussian.

2. Computation.
3. Is (Zt)0≤t≤1 adapted to (Ft)t≥0 ?
4. Check the finite-dimensional marginals.

Exercise 2 1. Approximate At by a Riemann sum.
2. Follow the previous hint.
3. Compute E(At −As|Fs) when 0 ≤ s ≤ t.

Exercise 3 1. Expand (Bs + [Bt −Bs])
4

2. Try exchanging the integral sign and the conditional expectation.
3. Recall the definition of the bracket and use the previous questions.

Exercise 4 1. If X is a random vector with square-integrable components, show that its covariance
matrix equals E(XX⊺) where the row vector X⊺ is the transpose of the column vector X.

2. Compute E(WsW
⊺
t ).

Exercise 5 1. Ta = inf{t > 0: Bt ∈ [a,+∞[}.
2. Use Doob’s optional stopping theorem.
3. Let n → ∞. Justify the limit.

Exercise 6 Do a Taylor-expansion of F (t′, x′) − F (t, x) when |x − x′| + |t − t′| is small, then choose
“(x, x′) = (Mt,Mt′)” and take conditional expectation w.r.t. Ft (t ≤ t′).

Exercise 7 1. Check that Brownian motion has zero probability of being nondecreasing on the unit
time interval.

2. What is the probability that B k+1
n

−B k
n
≥ 0 for all k ∈ {0, . . . , n− 1} ?
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TD2. Local martingales. Wiener and Itô integrals.

Unless stated otherwise, we denote by B = (Bt)t≥0 a Brownian motion starting form the origin on a
probability space (Ω,A,P). We also denote by Ft := σ(Bs, s ≤ t) the filtration generated by the Brownian
motion.

Exercise 1 Fix T ≥ 0. Show that a continuous local martingale M = (Mt)t∈[0,T ] is a square-integrable
martingale if and only if M0 ∈ L2 and ⟨M⟩T ∈ L1.

Exercise 2 Let M be a continuous local martingale such that a.s., ⟨M⟩∞ = +∞. Prove that a.s.,

lim sup
t→∞

Mt = +∞ and lim inf
t→∞

Mt = −∞.

Exercise 3 Let

Zt := (1− t)

∫ t

0

dBs

(1− s)
, 0 ≤ t < 1.

1. Show that Z is a Gaussian process. Determine its mean and covariance function. How is this process
called ?

2. Prove that Zt → 0 in L2(Ω) as t → 1.
3. Prove that Zt → 0 a.-s. as t → 1.

Exercise 4 Determine the law of the process

Xt = e−t
(
X0 +

∫ t

0

eudBu

)
, t ≥ 0,

where X0 is a N (0, 1/2) random variable independent of (Bt)t≥0. Show that the process is stationary.
How is it called ?

Exercise 5 Determine the law of the process

Xt =

∫ √
t

0

√
2u dBu, t ≥ 0.

Exercise 6 Let t ≥ 0 and for n ∈ N, 0 ≤ k ≤ n, define tk = tk/n.
1. Show that

B2
t =

n∑
k=1

2Btk−1
(Btk −Btk−1

) +

n∑
k=1

(Btk −Btk−1
)2.

2. Deduce thereof that for all t ≥ 0,

B2
t − t =

∫ t

0

2Bs dBs , a.s.

3. Retrieve the final result of Exercise 5 in TD1.

Exercise 7 Using the same notation as in the previous exercise :
1. Prove that for all p > 2,

∑n
k=1(Btk −Btk−1

)p → 0 in probability as n → ∞.

2. Prove that for all continuous function f : R+ → R,
∑n

k=1 f(Btk−1
)(Btk − Btk−1

)2 →
∫ t

0
f(Bs)ds in

probability as n → ∞.
3. With a similar method to Exercise 6, show that sin(Bt) = − 1

2

∫ t

0
sin(Bs)ds+

∫ t

0
cos(Bs)dBs a.-s.
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Hints.

Exercise 1 (Second implication) Assume M0 ∈ L2 and ⟨M⟩T ∈ L1. Consider the localizing sequence :

Tn := inf{t ≥ 0: |Mt| ≥ n}.

Exercise 2 Assume for simplicity that M0 = 0 a.-s. Let a, b > 0 and consider

σ−
a = inf{t ≥ 0: Mt ≤ −a}, σ+

b = inf{t ≥ 0: Mt ≥ b}.

Using Doob’s theorem, show that

P(σ−
a < σ+

b ) =
b

a+ b
, P(σ+

b < σ−
a ) =

a

a+ b
,

and let b → ∞.

Exercise 3 Let

Zt := (1− t)

∫ t

0

dBs

(1− s)
, 0 ≤ t < 1.

1. Use that t ∈ [0, 1) 7→ Yt :=
∫ t

0
dBs

(1−s) is a Wiener process.

2. E(Z2
t ) = . . ..

3. You can use a time-reversal argument. Alternatively, prove that for n ≥ 1 and ε > 0,

P
(

sup
2−(n+1)≤t≤2−n

|Z1−t| > ε
)
≤ 1

(2n−1ε2)
.

To this end, use Doob’s maximal inequality on the martingale Y and conclude via Borel-Cantelli’s
lemma.

Exercise 6 1. Computation
2. Recall the definition of quadratic variation. Recall that convergence of a sequence of random va-

riables in probability implies a.s. convergence on asubsequence.

Exercise 7 1. Use∣∣∣∣∣
n∑

k=1

(Btk −Btk−1
)p

∣∣∣∣∣ ≤ max
k

|Btk −Btk−1
|p−2 ×

n∑
k=1

(Btk −Btk−1
)2.

2. Prove it for step functions and then use a density argument.
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TD3. (Generalized) Itô integrals. Itô processes. Itô’s formula.

Unless stated otherwise, we denote by B = (Bt)t≥0 a Brownian motion starting form the origin on a
probability space (Ω,A,P). We also denote by Ft := σ(Bs, s ≤ t) the filtration generated by the Brownian
motion.

Exercise 1 Check that a process ϕ is progressive if and only if the map (t, ω) 7→ ϕt(ω) is measurable
w.r.t. the progressive σ-field P defined in the Lecture Notes (Remark 2.2).

Exercise 2 Do the following continuous adapted processes belong to M2(R+) ? Or M2 ? Or M2
LOC ? (same

notation as in the Lecture Notes).
1. t ∈ R+ 7→ Bt ;
2. t ∈ R+ 7→ Bt

1+t2 ;

3. t ∈ R+ 7→ exp(B2
t ).

Exercise 3 Let X be an Itô process started at the origin, that is

Xt =

∫ t

0

ϕudBu +

∫ t

0

ψudu, t ≥ 0,

where ϕ ∈ M2
LOC and ψ ∈ M1

LOC. Prove that X is a square-integrable martingale if and only if ψ ≡ 0 and
ϕ ∈ M2.

Exercise 4 Let α : R+ → R be a continuous (deterministic) function. With the help of the stochastic
integration by parts formula, check that the process

Xt :=

∫ t

0

exp
(∫ t

s

α(u)du
)
dBs, t ≥ 0,

satisfies the stochastic differential equation dXt = α(t)Xtdt+ dBt.

Exercise 5 With the help of Itô’s formula, answer to Question (3) in Exercise 7, TD2.

Exercise 6 Let f : R 7→ R be continuously twice-differentiable. Show that the process

Xt := f(Bt)−
1

2

∫ t

0

f ′′(Bs)ds, t ≥ 0,

is a continuous local martingale. Give a sufficient condition for X to be a martingale.

Exercise 7 Let n ≥ 1 and x1, . . . , xn be distinct points in R. Let f : R → R be such that f ∈ C1(R) and
f ∈ C2(R \ {x1, . . . xn}). We assume that f ′′ remains bounded in a neighborhood of xi for all 1 ≤ i ≤ n.
The goal of the exercise is to prove that Itô’s formula is still valid for such a function.

1. Prove that for all t ≥ 0, the set {(ω, s) ∈ Ω × [0, t] : Bs(ω) ∈ {x1, . . . xn}} has zero measure w.r.t.
P⊗ ds, where ds stands for Lebesgue measure.

2. Prove that Itô’s formula is valid when we make the additional assumption that f has compact
support. Hint : approximate f by a sequence of continuously twice-differentiable functions.

3. Conclude in the general case.

Exercise 8 (Tanaka’s formula and local time of Brownian motion) For ε > 0, define

ϕε(x) =

{
|x| (|x| ≥ ε)
1
2 (ε+

x2

ε ) (|x| < ε).
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1. With the help of Exercise 7, prove that P-a.-s., for all t ≥ 0,

ϕε(Bt)− ϕε(0) =

∫ t

0

ϕ′ε(Bs)dBs +
1

2ε
Leb({0 ≤ s ≤ t : |Bs| < ε}),

where « Leb » stands for Lebesgue measure.
2. Check that ∫ t

0

ϕ′ε(Bs)1{|Bs|<ε}dBs
ε→0−→ 0, in L2(Ω).

3. Deduce thereof Tanaka’s formula : P-a.-s., for all t ≥ 0,

|Bt| =
∫ t

0

sgn(Bs)dBs + Lt,

where Lt is the limit in L2(Ω) of 1
2εLeb({0 ≤ s ≤ t : |Bs| < ε}), as ε→ 0, and

sgn(x) = 1 if x > 0, sgn(x) = −1 if x ≤ 0.

4. Prove that the process (Lt) is a.-s. continuous and non-decreasing. This process is called local
time of the Brownian motion (at the origin).

5. Show that (|Bt| − Lt)t≥0 is a Brownian motion.

Hints.

Exercise 3 Use Remark 3.2 in lectures notes and Exercice 1 in TD2.

Exercise 4 Write X as a product of Itô processes and apply integration by parts.

Exercise 6 Use Exercise 3.

Exercise 7 Item (2) : use convolution with C∞ functions and stochastic dominated convergence.

Exercise 8 Item (5). Use Lévy’s characterization of Brownian motion.
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TD4. Multivariate Itô’s formula. Exponential martingales and Girsanov’s theorem.

Unless stated otherwise, we denote by B = (Bt)t≥0 a Brownian motion starting from the origin on a
probability space (Ω,A,P). We denote by Ft := σ(Bs, s ≤ t) the filtration generated by the Brownian
motion and write F∞ = σ(∪t≥0Ft).

Exercise 1 (Transience and strict local martingales) In this exercise, B = (B(1), B(2), B(3)) is a
three-dimensional Brownian motion starting from x0 ∈ R3 \ {0} (recall the definition in Exercise 3,
TD1). We define G(x) := 1/∥x∥ for all x ∈ R3 \ {0}, where ∥ · ∥ is the Euclidian norm and

Ta = inf{t ≥ 0: ∥Bt∥ = a}, a ≥ 0.

1. Check that ⟨B(i), B(j)⟩ ≡ 0 whenever i ̸= j, where i, j ∈ {1, 2, 3}.
2. Check that ∆G(x) = 0 for all x ̸= 0.
3. Using Itô’s formula, prove that for all r > 0, {G(Bt∧Tr

)}t≥0 is a martingale.
4. Assume 0 < r < ∥x0∥ < R < ∞. Show that TR < ∞ a.s. (you may use Exercise 7 in TD 1) and

P(Tr < TR) =
R−1 − ∥x0∥−1

R−1 − r−1
.

5. Deduce from the previous formula that a.s. Bt ̸= 0 for all t ≥ 0.
6. Prove that {G(Bt)}t≥0 is a continuous local martingale.
7. Check that {G(Bt)}t≥0 is a non-negative super-martingale and deduce thereof that ∥Bt∥ a.s.

converges to +∞, as t → ∞.
8. Prove that {G(Bt)}t≥0 is bounded in L2 but is not a martingale.

Exercise 2 (Exponential martingales : a simple case) Let ϕ : R+ → R be a (deterministic) function
in L2

loc(R
+) and Zϕ = (Zϕ

t )t≥0 the associated Doléans-Dade exponential process. Check that Zϕ is a
martingale.

Exercise 3 (Exponential martingales : an example) Find a progressive process X = (Xt)t≥0 such
that the process Z = (Zt)t≥0 defined by Zt = exp(Xt −B2

t ) is a martingale.

Exercise 4 (Change of drift) Let X = (Xt)t≥0 be an Itô process such that X0 = 0 a.s. and

dXt = b1(t)dt+ σ(t)dBt,

where b1 : R+ → R is in L1
loc(R

+) and σ : R+ → R∗
+ is in L2

loc(R
+) (b1 and σ are both deterministic). Prove

that (under suitable assumptions to be specified) there exists a probability measure Q on (Ω,F∞) under
which X satisfies

dXt = b2(t)dt+ σ(t)dB̃t,

where b2 : R+ → R is in L1
loc(R

+) and B̃ is a Brownian motion under Q.

Exercise 5 (Hitting times for Brownian motion with drift) For every a > 0 and b ∈ R, define the
following stopping time :

Ta,b := inf{t ≥ 0: Bt + bt = a}.

The goal of the exercise is to determine P(Ta,b < ∞) using the result of Exercise 7 in TD1 (case b = 0)
via a change of measure argument.

1. Using an appropriate martingale and Girsanov’s theorem, prove that for all t ≥ 0,

P(Ta,b > t) = E
[
1{Ta>t} exp

(
bBt −

1

2
b2t

)]
.
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2. Deduce thereof
P(Ta,b ≤ t) = E

[
1{Ta≤t} exp

(
bBt∧Ta − 1

2
b2(t ∧ Ta)

)]
.

3. Conclude that

P(Ta,b < ∞) =

{
1 (b ≥ 0)

exp(2ab) (b < 0).

Exercise 6 (Onsager-Machlup function) Let h : [0, 1] → R be a twice continuously differentiable (and
deterministic) function, with h(0) = 0. We equip the space of continuous functions C0([0, 1],R) with the
norm ∥f∥∞ := maxx∈[0,1] |f(x)|. Using an appropriate martingale and change-of-measure argument, prove
that

P(∥B − h∥∞ ≤ ε)

P(∥B∥∞ ≤ ε)

ε→0−→ exp
(
− 1

2

∫ 1

0

h′(s)2ds
)
.

We admit that the denominator in the left-hand side is positive for all ε > 0.

Exercise 7 (Solutions of S.D.E. via Girsanov’s theorem) Let b : R+ × R → R be a bounded mea-
surable function. Assume that there exists g ∈ L2(R+) such that |b(t, x)| ≤ g(t) for all (t, x) ∈ R+ × R.
Using Girsanov’s theorem, find a probability measure Q on F∞ under which the process defined by

Bt −
∫ t

0

b(s,Bs)ds, t ≥ 0,

is a Brownian motion.
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TD5. Stochastic differential equations. Feynman-Kac formula.

Unless stated otherwise, (Ω,A,P) is a probability space equipped with a filtration (Ft)t≥0 and B = (Bt)t≥0

is an (Ft)t≥0-Brownian motion.

Exercise 1 (Invariant distribution for the solution of a s.d.e) Let V : R → R be a C2 function
with bounded second derivative. We consider the following s.d.e :

dXt = dBt − V ′(Xt)dt.

1. Prove that for any given initial condition X0 ∈ L2(Ω,F0,P), this equation has a unique solution
(up to indistinguishability).

2. What is the generator associated to this solution ?
3. Define ϕ(x) = exp(−V (x)), which we assume to be in L2(R). Show that without any loss in

generality, we may as well assume that ν(dx) := ϕ2(x)dx is a probability distribution on R.
4. Prove that for any f ∈ C2

c (R),
∫
(Lf)(x)ν(dx) = 0.

5. Assume that X0 is distributed as ν and prove that for all t ≥ 0, Xt is distributed as ν too.
6. Give an example for an explicit function V .

Exercise 2 (Feynman-Kac formula in an interval) Let k and f be two continuous functions from
[0, 1] to R. We assume that f(0) = f(1) = 0. Let u : (t, x) ∈ [0,∞) × [0, 1] → R be a continuous function
that is also in C1,2((0,∞)× (0, 1),R) and solves the following p.d.e :

∂tu = 1
2∂

2
xu− ku (t > 0, 0 < x < 1);

(initial condition) u(0, x) = f(x) (0 ≤ x ≤ 1);
(boundary condition) u(t, 1) = u(t, 0) = 0 (t ≥ 0).

For all n ≥ 3, let In := ( 1n , 1−
1
n ) and ϕn be a C∞ compactly supported function such that

ϕn(x) = 0 if x /∈ (0, 1), ϕn(x) = 1 if x ∈ In.

1. Fix t > 0 and define for s ∈ [0, t], n ≥ 3,

Xn(s) = u(t− s,Bs)ϕn(Bs) exp
(
−

∫ s

0

k(Bv)ϕn(Bv)dv
)
,

Tn = inf{t ≥ 0: Bt /∈ In}.

Using Itô’s formula, prove that (Xn(s ∧ Tn))s∈[0,t] is a square integrable martingale.
2. Let T = inf{t ≥ 0: Bt /∈ (0, 1)}. We recall that Ex(T ) = x(1− x) for x ∈ [0, 1], where the subscript

stands for the starting point of Brownian motion (see Lecture Notes, Exit time from an interval).
Deduce from the previous question that

u(t, x) = Ex

[
f(Bt) exp

(
−

∫ t

0

k(Bs)ds
)
1{t<T}

]
, ∀x ∈ (0, 1),

and, in the case k ≥ 0, show that u(t, x) converges to zero uniformly in x ∈ (0, 1) as t → ∞.

Exercise 3 (Brownian motion on a circle) Prove that Xt = (cosBt, sinBt), t ≥ 0, is the unique
solution of the s.d.e :

dXt = −1

2
Xtdt+RXtdBt, X0 = (1, 0),

where R is (the matrix of) the rotation with angle π/2.
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Exercise 4 (Killed Brownian motion) We consider u ∈ C1,2(R+ × R,R) a bounded solution to the
following p.d.e :

∂tu = 1
2∂

2
xu− ku (t > 0, x ∈ R);

(initial condition) u(0, x) = f(x) (x ∈ R);

where f, k : R → R are measurable, with f bounded and k non-negative. In this exercise, we provide a
representation of this solution in terms of a killed process. To this purpose, we introduce E an exponential
random variable with parameter one that is independent of Brownian motion and set the killing time

κ := inf
{
t ≥ 0:

∫ t

0

k(Bs)ds ≥ E
}
.

We now define

Xt =

{
Bt (t < κ)

⋆ (t ≥ κ).

and extend f to R ∪ {⋆} by setting f(⋆) = 0. Finally, Gt := σ(E , Bs, s ≤ t).
1. Using the Feynman-Kac formula, show that u(t, x) = Ex(f(Xt)).
2. Show that X = (Xt)t≥0 is a Markov process.
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