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TD1. Brownian motion. Martingales. Stopping times.

Unless stated otherwise, we denote by B = (By);>¢ a Brownian motion starting form the origin on a
probability space (2,4, P). We also denote by F; := 0(Bs, s < t) the filtration generated by the Brownian
motion.

Exercise 1 We define the Brownian bridge as the process Z; = By —tB; (0 <t <1).
1. Show that Z is a Gaussian process independent of By
2. Compute the mean and covariance function of Z.
3. Is (Z})o<i<1 a martingale w.r.t (F;)i>o0?
4. Prove that Z has the same law as the process Y defined by

v {(1-:&)3(11“ (0<t<1),
0 (t=1).

Exercise 2 For t > 0, define A, = fg B.ds.
1. Justify why A is a well-defined (F;)¢>0-adapted process.
2. Determine the law of A; for all ¢ > 0.
3. Is (Ay)i>0 a martingale w.r.t (Fy)i>0 7

Exercise 3 The goal of the exercise is to compute (by hand) the bracket of the square-integrable mar-
tingale (M;)i>0 = (B? — t)t>0.

1. Compute E(B}|Fs) for all 0 < s < ¢.

2. Let X; = [; B2du. Compute E(X;|F,) for all 0 < s < t.

3. Deduce thereof that (M), = 4X;.

Exercise 4 In this exercise, B is a d-dimensional (d € N) standard Brownian motion, that is B, =
(Bgl), cey Bt(d))7 where the B("’s are independent standard Brownian motions. Let U be a d x d (deter-
ministic) orthogonal matrix. Prove that the process (Wy);>0 = (UBy)¢>0 is a d-dimensional standard
Brownian motion. By default, vectors are here considered to be column vectors in all matrix operations.

Exercise 5 For a > 0, define T, = inf{t > 0: B; > a}.
1. Show that Ty, is a (F)-stopping time.
2. Prove that for all A € Rand n € N :

E{exp ()\BTQA” - %XZ(TQ A n))] ~ 1.

3. Deduce thereof the Laplace transform of T, :
Elexp(—uT,)] = exp(—aVv2u), (u>0),
and show that P(7, < +o00) = 1.

Exercise 6 (Lévy’s characterization of Brownian motion) On a filtered space (2, F, (F¢)i>0,P),
let M = (M,;);>0 be a continuous square-integrable martingale with My = 0 and (M;) = ¢ for all ¢ > 0.
Let F' be any twice-differentiable function F': R4 xR — C with bounded first and second-order derivatives.
Define : . )
OF 10°F
Zy = F(t, M) — (— f—)  My)du,  t>0.
=t M) /o ot "3 gz ) (1 Mu)du =
1. Prove that Z is a martingale.
2. Applying the previous question to F(t,z) = exp(ifz + %921?), where § € R, prove that M is a
Brownian motion.

Exercise 7 Prove that Brownian motion is not monotone on any interval (a.s.).



Hints.

It is highly recommended to allow you some time to think about the problems first, before
looking at the hints.

Exercise 1 1. First show that the collection of random variables (B, Z;,0 < t < 1) as a whole is
Gaussian or, equivalently, that the constant process ¢t € [0,1] — B; and the process Z are jointly
Gaussian.

2. Computation.
3. Is (Zt)o<t<1 adapted to (Fi)i>o0?

4. Check the finite-dimensional marginals.

Exercise 2 1. Approximate A; by a Riemann sum.
2. Follow the previous hint.
3. Compute E(A; — A4|F,) when 0 < s < 1.

Exercise 3 1. Expand (B, + [B; — By])*
2. Try exchanging the integral sign and the conditional expectation.

3. Recall the definition of the bracket and use the previous questions.

Exercise 4 1. If X is a random vector with square-integrable components, show that its covariance
matrix equals E(X XT) where the row vector XT is the transpose of the column vector X.

2. Compute E(W WT]).

Exercise 5 1. T, = inf{t > 0: By € [a,+o0[}.
2. Use Doob’s optional stopping theorem.
3. Let n — oo. Justify the limit.

Exercise 6 Do a Taylor-expansion of F(t',2') — F(t,x) when |z — 2’| 4+ |t — ¢/| is small, then choose
“(z,2") = (Mg, My)” and take conditional expectation w.r.t. F; (t < t').

Exercise 7 1. Check that Brownian motion has zero probability of being nondecreasing on the unit
time interval.

2. What is the probability that Brs+1 — Bx >0 for all k € {0,...,n —1}?
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TD2. Local martingales. Wiener and Itd integrals.

Unless stated otherwise, we denote by B = (By);>o a Brownian motion starting form the origin on a
probability space (€2, .4, P). We also denote by F; := o(Bs, s < t) the filtration generated by the Brownian
motion.

Exercise 1 Fix 7' > 0. Show that a continuous local martingale M = (M;);c[o,7] is a square-integrable
martingale if and only if My € L? and (M)r € L.

Exercise 2 Let M be a continuous local martingale such that a.s., (M) = +o0. Prove that a.s.,

limsup My = +o0 and liminf M; = —o0.
t— 00 t—o0
Exercise 3 Let .
dB,
Zt::(l—t)/ — 0<t <.
o (1-3)

1. Show that Z is a Gaussian process. Determine its mean and covariance function. How is this process
called ?

2. Prove that Z; — 0 in L?(Q) as t — 1.
3. Prove that Z; —+ 0 a.-s. ast — 1.

Exercise 4 Determine the law of the process

t
X, =t (XO +/ e“dBu), t>0,
0

where X is a A/(0,1/2) random variable independent of (B;):>o. Show that the process is stationary.
How is it called ?

Exercise 5 Determine the law of the process

Vit
th/ V2u dB,, t>0.
0

Exercise 6 Let t > 0 and for n € N, 0 < k < n, define t;, = tk/n.
1. Show that

n

n
Bt2 = Z 2By, (B, — By,_,) + Z(Btk - Btk—l)Z'
k=1 k=1

2. Deduce thereof that for all ¢t > 0,
t
B? —t:/ 2B, dB; , a.s.
0

3. Retrieve the final result of Exercise 5 in TD1.

Exercise 7 Using the same notation as in the previous exercise :
1. Prove that for all p > 2, >}'_, (B, — By, _,)? — 0 in probability as n — oc.
2. Prove that for all continuous function f: Ry — R, >°1_; f(By, ,)(By, — B, ,)? — fg f(Bs)ds in
probability as n — oc.
3. With a similar method to Exercise 6, show that sin(B;) = —3 fg sin(Bs)ds + fot cos(Bs)dBs a.-s.



Hints.

Exercise 1 (Second implication) Assume My € L? and (M) € L'. Consider the localizing sequence :
T, :=inf{t > 0: |M;| > n}.
Exercise 2 Assume for simplicity that My = 0 a.-s. Let a,b > 0 and consider
~ =inf{t > 0: M; < —a}, o) =inf{t > 0: M; > b}.

Using Doob’s theorem, show that

_ b _ a
P(0a<0;):a+b’ P(U;<0a):a+b’
and let b — oco.
Exercise 3 Let .
dB;
Zt::(l—t)/ , 0<t<l.
o (1—35)

1. Use that t € [0,1) — Y} := fo
2. B(Z}?) =

3. You can use a time-reversal argument. Alternatively, prove that for n > 1 and € > 0,

1 is a Wiener process.
S

P( sup | Z1-¢] > 6) <

2—(n+1) <¢<2—n (2”7152) '

To this end, use Doob’s maximal inequality on the martingale Y and conclude via Borel-Cantelli’s
lemma.

Exercise 6 1. Computation

2. Recall the definition of quadratic variation. Recall that convergence of a sequence of random va-
riables in probability implies a.s. convergence on asubsequence.

Exercise 7 1. Use

Z Btk Btk 1
k=1

2. Prove it for step functions and then use a density argument.

n
-2
PI< m]?'X ‘Btk - Btk—l |p X E Btk Btk 1
k=1
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TD3. (Generalized) Ito integrals. Itd processes. Itd’s formula.

Unless stated otherwise, we denote by B = (B,);>o a Brownian motion starting form the origin on a
probability space (2, 4, P). We also denote by F; := o(Bs, s < t) the filtration generated by the Brownian
motion.

Exercise 1 Check that a process ¢ is progressive if and only if the map (t,w) — ¢:(w) is measurable
w.r.t. the progressive o-field P defined in the Lecture Notes (Remark 2.2).

Exercise 2 Do the following continuous adapted processes belong to M*(RT)? Or M2 ? Or M, ? (same
notation as in the Lecture Notes).

1. t e RT — By;
2. tGR*r—)%;

3. t € RT = exp(B?).

Exercise 3 Let X be an Itd process started at the origin, that is

t t
0 0

where ¢ € M%OC and ¢ € Mioc. Prove that X is a square-integrable martingale if and only if ¢» = 0 and
¢ € M2,

Exercise 4 Let a: Rt — R be a continuous (deterministic) function. With the help of the stochastic
integration by parts formula, check that the process

t t
X, = / exp (/ oz(u)du)dBS7 t>0,
0 s

satisfies the stochastic differential equation dX; = a(t)X¢dt + dB;.
Exercise 5 With the help of 1to’s formula, answer to Question (3) in Exercise 7, TD2.

Exercise 6 Let f: R+— R be continuously twice-differentiable. Show that the process

1 t
Xt = f(Bt) — 5/ f//(BS)dS7 t 2 0,
0
is a continuous local martingale. Give a sufficient condition for X to be a martingale.

Exercise 7 Let n > 1 and z1,...,x, be distinct points in R. Let f: R — R be such that f € C*(R) and
feC?*(R\{z1,...7,}). We assume that f” remains bounded in a neighborhood of z; for all 1 <i < n.
The goal of the exercise is to prove that [t6’s formula is still valid for such a function.

1. Prove that for all ¢t > 0, the set {(w,s) € Q x [0,¢]: Bs(w) € {x1,...2,}} has zero measure w.r.t.
P ® ds, where ds stands for Lebesgue measure.

2. Prove that It6’s formula is valid when we make the additional assumption that f has compact
support. Hint : approzimate f by a sequence of continuously twice-differentiable functions.

3. Conclude in the general case.
Exercise 8 (Tanaka’s formula and local time of Brownian motion) For ¢ > 0, define

|| (lz| =€)

Pele) = {%(E +Z) (2 <e).



1. With the help of Exercise 7, prove that P-a.-s., for all ¢t > 0,

t
6-(By) — 6(0) = / HL(BAB, + 5 Teb({0 < 5 < t: |By| < <),

where « Leb » stands for Lebesgue measure.
2. Check that

t
/ ¢ (By)1{p.1<ydBs 250, in L3(9).
0
3. Deduce thereof Tanaka’s formula : P-a.-s., for all ¢t > 0,
t
|Bi| = / sgn(Bs)dB;s + Ly,
0
where L; is the limit in L?(Q) of 5-Leb({0 < s < t: |B,| < &}), as € — 0, and
sgn(z) =1if z > 0, sgn(z) = —-1lifx <0.

4. Prove that the process (L;) is a.-s. continuous and non-decreasing. This process is called local
time of the Brownian motion (at the origin).

5. Show that (|B¢| — L¢)>0 is a Brownian motion.

Hints.
Exercise 3 Use Remark 3.2 in lectures notes and Exercice 1 in TD2.
Exercise 4 Write X as a product of Ito6 processes and apply integration by parts.
Exercise 6 Use Exercise 3.
Exercise 7 Item (2) : use convolution with C'* functions and stochastic dominated convergence.

Exercise 8 Item (5). Use Lévy’s characterization of Brownian motion.
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TD4. Multivariate It6’s formula. Exponential martingales and Girsanov’s theorem.

Unless stated otherwise, we denote by B = (By);>¢ a Brownian motion starting from the origin on a
probability space (2,.4,P). We denote by F; := o(Bs, s < t) the filtration generated by the Brownian
motion and write Foo = 0(Us>0F2)-

Exercise 1 (Transience and strict local martingales) In this exercise, B = (B, B®) B®)) is a
three-dimensional Brownian motion starting from xo € R3\ {0} (recall the definition in Exercise 3,
TD1). We define G(x) := 1/||z| for all z € R3\ {0}, where || - || is the Euclidian norm and

T, = inf{t > 0: || B:|| = a}, a>0.

Check that (B BY)) = 0 whenever i # j, where i,5 € {1,2,3}.
Check that AG(z) =0 for all = # 0.

Using Ito’s formula, prove that for all r > 0, {G(Biat.)}+>0 is a martingale.

o~ W o

Assume 0 < r < ||zg]] < R < co. Show that Tr < oo a.s. (you may use Exercise 7 in TD 1) and

R~ — ||zol !

P(Tr < TR) = Rl _ 1

5. Deduce from the previous formula that a.s. By # 0 for all ¢ > 0.

6. Prove that {G(B;)}:>0 is a continuous local martingale.

7. Check that {G(B:)}:>0 is a non-negative super-martingale and deduce thereof that ||Bi| a.s.
converges to +o0o, as t — 0.

8. Prove that {G(B;)}+>0 is bounded in L? but is not a martingale.

Exercise 2 (Exponential martingales : a simple case) Let ¢: R — R be a (deterministic) function
in L2 (R") and Z% = (Z?)1>0 the associated Doléans-Dade exponential process. Check that Z¢ is a
martingale.

Exercise 3 (Exponential martingales : an example) Find a progressive process X = (X;);>0 such
that the process Z = (Z;)i>¢ defined by Z; = exp(X; — B}) is a martingale.

Exercise 4 (Change of drift) Let X = (X;);>0 be an Itd process such that Xy = 0 a.s. and
dXt = bl (t)dt + O'(t)dBt,
where b1 : Ry — Risin L ((R*) and o: Ry — R% isin LY (R") (b; and o are both deterministic). Prove
that (under suitable assumptions to be specified) there exists a probability measure Q on (£2, Fo) under
which X satisfies ~
dX; = ba(t)dt + o(t)d By,

1

i .(RT) and B is a Brownian motion under Q.

where by: Ry = Risin L

Exercise 5 (Hitting times for Brownian motion with drift) For every a > 0 and b € R, define the
following stopping time :
Top :=1inf{t > 0: B, + bt = a}.

The goal of the exercise is to determine P(7, ; < o) using the result of Exercise 7 in TD1 (case b = 0)
via a change of measure argument.

1. Using an appropriate martingale and Girsanov’s theorem, prove that for all ¢ > 0,

P(Tup > t) = B[ Lz, >0y exp (0B, - %b%)]



2. Deduce thereof 1
P(T,, <t) = E[l{Tét} exp <bBMTa — 5% Ta))}.

3. Conclude that
1 b>0

exp(2ab) (b <0).

=

P(Ta’b < OO) = {

Exercise 6 (Onsager-Machlup function) Let h: [0,1] — R be a twice continuously differentiable (and
deterministic) function, with h(0) = 0. We equip the space of continuous functions Cy([0, 1], R) with the
norm || f|leo := maxgep,1] |f()]. Using an appropriate martingale and change-of-measure argument, prove

that .
P(||B — hl[oc <€) e 1 12
——expl|—= [ h'(s)*ds).
P([|Blle <€) ( 2 Jo )

We admit that the denominator in the left-hand side is positive for all € > 0.

Exercise 7 (Solutions of S.D.E. via Girsanov’s theorem) Let b: R; x R — R be a bounded mea-
surable function. Assume that there exists g € L?(R) such that |b(¢, z)| < g(t) for all (t,x) € Ry x R.
Using Girsanov’s theorem, find a probability measure Q on F, under which the process defined by

t
B; — / b(s, Bs)ds, t>0,
0

is a Brownian motion.
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TD5. Stochastic differential equations. Feynman-Kac formula.

Unless stated otherwise, (€2, A, P) is a probability space equipped with a filtration (F;);>0 and B = (By)¢>0
is an (F3)i>o-Brownian motion.

Exercise 1 (Invariant distribution for the solution of a s.d.e) Let V: R — R be a C? function
with bounded second derivative. We consider the following s.d.e :

dXt = dBt - V/(Xt)dt
1. Prove that for any given initial condition X, € L?(f, Fo, P), this equation has a unique solution
(up to indistinguishability).
2. What is the generator associated to this solution ?

3. Define ¢(z) = exp(—V(z)), which we assume to be in L?(R). Show that without any loss in
generality, we may as well assume that v(dx) := ¢?(z)dx is a probability distribution on R.

4. Prove that for any f € C2(R), [(Lf)(z)v(dz) = 0.
5. Assume that X is distributed as v and prove that for all ¢ > 0, X; is distributed as v too.

6. Give an example for an explicit function V.

Exercise 2 (Feynman-Kac formula in an interval) Let k& and f be two continuous functions from
[0,1] to R. We assume that f(0) = f(1) = 0. Let u: (¢,2) € [0,00) x [0,1] = R be a continuous function
that is also in C12((0,00) x (0,1),R) and solves the following p.d.e :

Oyu = 30%u — ku (t>0, 0<x<1);
(initial condition) u(0,z) = f(z) (0<z<1);
(boundary condition) wu(¢,1) =wu(t,0) =0 (¢t >0).
For all n > 3, let [, := (%, 1-— %) and ¢, be a C* compactly supported function such that
on(x) =0if z ¢ (0,1), dn(x)=1ifx € I,.

1. Fix t > 0 and define for s € [0,¢], n > 3,

Xolo) = ult = 5. B)6u (B exp (= [ KB)on(B o),
—int{t>0: B, ¢ I,).

Using Ito’s formula, prove that (X,,(s A Ty,))se[o,¢] is a square integrable martingale.

2. Let T =inf{t > 0: B; ¢ (0,1)}. We recall that E,(T) = z(1 — z) for = € [0, 1], where the subscript
stands for the starting point of Brownian motion (see Lecture Notes, Fzit time from an interval).
Deduce from the previous question that

u(t,z) = By [f(Bt)exp(—/Otk(Bs)ds)l{KT}}, vz € (0,1),

and, in the case k > 0, show that u(¢,z) converges to zero uniformly in z € (0,1) as t — oco.

Exercise 3 (Brownian motion on a circle) Prove that X; = (cos By,sin By), t > 0, is the unique
solution of the s.d.e :

1
dX, = 5 X,dt + RXidB;,  Xo = (1,0),

where R is (the matrix of) the rotation with angle /2.



Exercise 4 (Killed Brownian motion) We consider u € C*?(Ry x R,R) a bounded solution to the
following p.d.e :
du=302u—ku (t>0,z€R);
(initial condition) w(0,2) = f(z) (x € R);

where f,k: R — R are measurable, with f bounded and k£ non-negative. In this exercise, we provide a
representation of this solution in terms of a killed process. To this purpose, we introduce £ an exponential
random variable with parameter one that is independent of Brownian motion and set the killing time

K= inf{t >0: /Otk(Bs)ds > 5}.

We now define

X, — {Bt (t<l€§

*  (t>K).

and extend f to RU {*x} by setting f(x) = 0. Finally, G; := o(&, Bs,s < t).
1. Using the Feynman-Kac formula, show that u(t,z) = E,(f(X})).
2. Show that X = (X;):>0 is a Markov process.



