Stochastic calculus — exam 2021

We always work on a filtered probability space (0, F, (Ft)t>0,P) on which is defined a

(Ft)t>0— Brownian motion B = (By)i>0.

Problem 1 (10 points)

The goal of this problem is to determine the law of X, := sup;>( X¢, where X solves the SDE

1 1
dXy, = ——dB— —dt, Xo=0.
1+ X7 2 (1+Xx7)?
1. Justify the existence and uniqueness of a solution X = (X;);>o.
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two functions are Lipshitz, because they are continuously differentiable and their derivatives

This is an homogeneous SDE with coefficients o: x — -—= and b: x — These

oz — )2 and V': x — [ta?)? vanish at infinity. Thus, the SDE admits a unique

— 2
(1+ Itz
solution starting from any Xo € L?(£2, F,P), hence in particular from X = 0.
2. Prove that M := (eXt)tZO is a local martingale, and explicitate its quadratic variation.
M is in fact the exponential local martingale associated with the progressive, bounded process
Ot 1+1Xf' Specifically, we have M; = exp(fg ¢y du — 3 jo 2 du). The general theory
ensures that M is a continuous local martingale, with quadratic variation (M); = fot M2¢?2 du.

3. In this question, we fix a,b > 0, and set T'=T_, A Ty, where T, := inf{t > 0: X; =r}.

(a) Prove that (Miar)i>0 is a square-integrable martingale.
Being the hitting time of the closed set {—a, b} by the continuous and adapted process X,
T is a stopping time. Thus, the stopped process M T := (My,r);>0 is a local martingale.
But the continuity of M and the definition of T" ensure that the process M7 takes values
n [—a,b]. Thus, it is in fact a true, square-integrable martingale.
(b) Justify the following identity:
o2Xu

tAT
vt>0, E[Mi;] = 1+E[/O mdu

We know that (M7)2— (M7) is a martingale. In particular, it has constant expectation,
i.e. E[M2,—(M)pa] = E[MZ] =1 for all t > 0. Rearranging yields the desired identity.



(¢) Deduce from this identity that E[T] < oo.
In the above identity, the left-hand side is at most e?®, while the right-hand side is at

2a

least 1+ E[T A t](le;W' This implies that E[T A t] is bounded by a constant Cy,j, < 0o,

which does not depend on ¢. Taking ¢ — oo (monotone convergence) yields E[T] < C,.

(d) Justify the following formula:

1—e?
]P)(Tb < T_a) == m.
Since M1 is a martingale, we have E[M7,;] = E[My] = 1 for all t > 0. Letting ¢ — oo
yields E[M7] = 1. Indeed, we have T' < oo a.-s. because E[T] < oo, and we have the
domination |Mra| < e®. Now, since M7 takes values in {e~%, eb}, we have E[My] =
peb + (1 — p)e™®, where p = P(Ty, < T_). Thus, p = (1 — e~%)/(e? — e™%), as desired.

4. Deduce the value of P(7} < oo) for all b > 0. Relate this to X, and conclude.
The random variables (T_,)q>0 are clearly increasing with a. Moreover, for each ¢ > 0, we
have P(limg 00 T < t) = P(inf,cjo g Xu = —00) = 0. Passing to the limit as t — oo, we
obtain P(limy—00 T—q < o0) = 0. In other words, T, — 400 a.-s. as a — oo. We may
thus send @ — oo in the formula obtained in the previous question to obtain (by monotone
convergence) that P(T, < oo) = e, But the continuity of X implies that P(X, > b) =

P(T, < o), so we conclude that X, is an Exponential random variable with mean 1.

5. More generally, determine the law of X, := sup;>o X; when X = (X);>0 solves the SDE

dX;, = f(Xy)dB;— @ dt, Xo =0,
with f a strictly positive, bounded, Lipschitz function.
The answer is exactly the same. First, the assumptions on f imply that f? is Lipschitz,
because |f2(z) — f2(y)| = |f(@) — FWIIF(@) + Fu)] < 26]|floclz — yl, where r denotes the
Lipschitz constant of f. Thus, the SDE has a unique solution. Moreover, M = e¥ is the
exponential local martingale associated with ¢ — f(X;). Thus, the stopped process M Tis a

local martingale, and it is bounded so it is a square-integrable martingale. As above, we have
AT
E[MZr] = E[M§]+E[(M)nr] = 1+E [ / X f2(X,) dul .
0

The left-hand is at most €%, and the right-hand side is at least 1 + E[t A T]e~2¢ min;_, 12
This shows that E[T" A t] is bounded by a constant Cy ;. The end of the proof is the same.



Problem 2 (10 points)

The goal of this problem is to determine all bounded solutions v: Ry x R — R to the PDE

ov 1 0% 22
E(t,x) = 5@@#’3) - ?v(t,x)
v(0,z) = 1.

To this end, we fix a bounded solution v, and z € R and we write X =z + B.
1. Fix t > 0, and let M = (Mjs)qe[o,q be defined by
Vs € [0,1], Ms = v(t—s,Xs)e_%fosxi%d“.
Prove that M is a martingale, and deduce the following formula:

v(t,z) = E[e_%fgxﬁd“}.

One possibility is to compute the stochastic differential of M and check that the drift term
is zero. Since M is bounded, we may then deduce that it is a true martingale. Alternatively,

we recognize a special case of the general PDE

ov ov 1 0%v
5 (b)) = —h(x)v(t,a;)er(x)%(t,x)Jr502(1-)@(75,3;) |
v(0,z) = f.

for which Feynman-Kac’s formula gives the representation v(t,z) = E[f(X})e™ fo”h(Xff)du]’
where X7 solves the homogeneous SDE dX} = o(X})dB; + b(X}) dt, X§ = x. In our case,
we have b =0, 0 = 1, h(z) = 22 and f = 1. Thus, X* = z + B, and the claim follows.

2. Establish the following identity:

X2 —t—a?

t
V>0, /XudBu -
0 2

Both sides are Ito processes. They take the same value (zero) at time ¢t = 0, and they have

the same stochastic differentials (by Itd’s formula), so they must coincide.



3. Show that the process Z = (Z;)¢>0 defined below is a martingale:

t 1 t
Yt >0, Z ::mm{—/ &ABm—§/;ﬁdé}
0 0

The process Z is the exponential local martingale associated with X. Moreover, the previous

22
question implies that 0 < Z; < e%, so that

vt >0, E | sup |Zs|| < o0

s€[0,t]

This condition suffices to conclude that the local martingale Z is in fact a martingale.

4. Construct a probability measure Q under which the process W = (W;)¢>( defined by
t
Vtz 0, Wt = Bt+/ Xudu,
0

is a (F¢)t>0—Brownian motion, and express v(¢,x) as an expectation under Q.

This is Girsanov’s theorem, valid here because Z is a martingale. For each ¢ > 0, the formula
VA € ft, Qt(A) = E[Zt]_A},

defines a probability measure Q; on (2, F;), and these measures are consistent as t increases.
Thus, they must all be restrictions of a single probability measure Q on Foo := (U0 Ft)s

under which W is a (F;)¢>0—Brownian motion. In view of Question 1, we have

o(t,z) = E[ZtefotXudBu} _ @ {efgxudBu}_

5. Show that the process X satisfies a Langevin equation driven by the Brownian motion W,
and deduce an explicit expression for X, in terms of W.

By differentiating the very definition of W, we see that the process X = z 4+ B solves
dXt - th - Xt dt, XO =x.

This is the classical Langevin equation on the filtered space (2, (F;):>0, Foo, Q) equipped with

the Brownian motion W. The solution is of course the Ornstein-Uhlenbeck process:
t
Vt>0, X, = mt+/e“%W@
0

as shown in class (or re-obtained via the change of variable Y; = e! X;).



6. Deduce that for each ¢ > 0, the distribution of X; under Q is N/ (me*t, %)

2t71

Under Q, we have fg e dWy, ~ N (0, “5=) (Wiener integral), so the result follows.

7. For a random variable Y ~ N (u,0?) with u € R and o € [0, 1), show that

2

v2 e2(1—02)
V1—o02

Writing Y = p + oYy with Yy ~ N (0,1), we have

y?2 1 +oo p2402y? —2u0y—y?
E|ez2 = / e 2 d
|: :| V2T J Y
2

%
2(1—0)2 +oo _1702 _ Mo 2

— ¢ e 2 (y 1‘702) dy’
V2T —00
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and the result follows because the last integral is equal to /175.

8. Deduce that for all ¢ > 0, the function v admits the expression

o(t,z) = é(t) eXp{_lQZ(t)}’

where C,T: Ry — R, are classical functions that you should explicitate. Conclude.

Combining Questions 2 and 4, we obtain

22 x7
v(t,x) = e~ EQ [e;]

Now, Questions 6 and 7 allow us to compute the expectation on the right-hand side (take

Y =X, p=xetand 02 = I_ET_ZH) Re-arranging yields the desired expression, with
t ot
c) = % — cosh(t)
el — o=t

Conversely, a direct computation shows that the above expression indeed satisfies the desired
PDE, because the pair (T, C) satisfies the ODE (T”,C") = (1 — T2, TC) with initial condition
(0,1). Moreover, this expression is [0, 1]—valued, because T' > 0 and C' > 1. Thus, the PDE

admits a unique bounded solution, and it is given by the above formula.



