Stochastic calculus — exam 2022

We always work on a filtered probability space (2, F, (Ft)t>0,P) on which is defined a

(Ft)t>0—Brownian motion B = (By)>0.
Exercise 1 (5 points)
Let X = (X¢)¢>0 solve the stochastic differential equation

X
dx; = {dtJr dB;, X, =0.

1. Justify that this equation admits a unique solution, and find it explicitly.
This is a special case of the Langevin equation: the variable Z; := et/ 2X, solves dZ; =
et/ dB, with initial condition Zy = 0, i.e. Z; = [} e “/?>dB,. Thus, we have

t u
/ e 2dB,.
0

2. Set Y; .= €%Bl_e—t. Show that Y has the same law as X. Deduce the ¢ — oo behavior of X;.
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By the properties of the Wiener integral, X is a centered Gaussian process with covariance

) tAs s
Cov(Xs, Xy) = e’z etdy = e (1—e").
0

Y is also a centered Gaussian process (its coordinates belong to Vect(B)), with covariance

COV(%?K) = C%COV(Blfe—s’ Blfe_t) = et;s (1 _ e—t/\s) .

Since the law of a Gaussian process is determined by the mean and covariance, we conclude
that X 2 V. Now, it is clear that Y; tends to +oo or —oo, each with probability 1/2
(depending on the sign of Bj) and the same must be true for X (for a continuous function

(x¢)t>0, the events {z; — +oo} and {z; — —oo} can be expressed in the product oc—field).

3. Find a necessary and sufficient condition on F' € C?(R) for (F (Xt))¢>0 to be alocal martingale.
Using It6’s formula and the definition of X, we find

X, F'(X,) + F"(X,)

5 dt

dF(X;) = F'(Xy)dB;+



It then follows from the general properties of Itd processes that (F'(X;)), is a local mar-
tingale if and only if X;F'(X;) + F”(X;) = 0 almost-surely, for all ¢ > 0. But this is
equivalent to xF'(z) + F”(x) = 0 for all z € R, because x — zF'(z) + F"(x) is continuous
and X; ~ N(0,e! — 1) has full support for ¢ > 0.

4. Deduce that the process M = (M;);>o defined as follows is a martingale:

w2

1[N
M, = — e 2 du.
K \Y4 2 /;oo

11.2
The Gaussian cumulative distribution function F(z) := \/% J¥. e 7 du clearly satisfies

xF'(z)+ F"(x) =0, so F(X) is a local martingale. It is a martingale because F is bounded.

5. Find an expression for P(T, < oo) for all a > 0, where Ty, := inf{t > 0: X; > a}.
M is a continuous martingale, and 7, is a stopping time (hitting time of the closed set [a, +00)

by the continuous adapted process X). Thus, Doob’s optional stopping Theorem ensures that

E[Miar,] = E[M] =

5
We now send ¢t — co. On the event {7}, < oo}, we have Mir7, — F(a) by the continuity of
X. On the event {T, = 400}, we can not have X; — +o00, so we must have X; — —oo by
Question 2, and hence M7, — 0. We thus have My, — F(a)lr, <o almost-surely, and

also in L' because M is bounded. Taking expectations, we conclude that

1 a u?
BT, <o) = gpros.  with F@:V%/ % du
—00

Exercise 2 (5 points)
Let F' € C?(R) be such that F(0) = 0 and F’, F” are bounded. Let X = (X;);>0 solve
dXt = dBt - F/(Xt) dt, XO = 0.

1. Justify that this SDE admits a unique solution.
This is an homogeneous SDE whose coefficients o(-) = 1 and b(-) = —F’(-) are Lipschitz (the

second because F” is continuous and bounded). Thus, the SDE has a unique solution.



2. Set G := (F')?2 — F". Compute the stochastic differential of the process W := (W;);>0, where

t
0

Using the linearity of the stochastic differential and It6’s formula, we find
AWy = F'(X)dX; + %F”(Xt) d(X): + %G(Xt) dt
= F'(Xy)dB; — % (F/(Xt))Q dt,
where the second line uses the definitions of G and X.

3. Write W in integral form and deduce that " is a martingale.

Since Wy = F(0) = 0, the previous question gives

_ ! / 1 ¢ / 2
Wy = /OF(Xu)dBu—2/O (F'(Xy))" du.

Thus, €' is the exponential local martingale Z% associated with ¢; := F’(X;). Since I’ is

bounded, Novikov’s criterion E [e% Jo 44 d“} < 00 holds for all ¢ > 0. Thus, " is a martingale.

4. Prove that for any measurable functions f: R — R, we have the identity

vt>0,  E[f(Xy)] = IE{f(Bt)e_F(Bf)—%fJG(Bu)du}_

We have X; = B; — fot ¢y du where ¢; := F'(X;). Since Z? = €' is a martingale, Girsanov’s

Theorem ensures that X is a Brownian motion under QQ, where for every ¢ > 0,
AcF = Q(A) = E["14].

By linearity and density, this formula implies EQ [Y] = E[e"*Y] for any non-negative, F; —measurable

random variable Y. In particular, we may take Y = f(X;)e="* to obtain

E[f(X)] = E?[f(Xy)e ]
— [EQ [f(Xt)e—F(Xt)—%fOt G(Xu)du}

where the last identity uses the fact that X is a Brownian motion under Q.



Problem (10 points)

In this problem, we fix two Lipschitz functions b,0: R — R and for each z € R, we let X* solve

X5 = = W)

{ dX? = b(X¥)dt + o(X¥)dB,
Given two initial conditions z,y € R, we define two processes ¥ = (¢1)¢>0 and ¢ = (¢¢)¢>0 by

b(XF) = b(XY) o(XP) — o(X})
Py = Wl(&’”#xi’) and ¢y = Xr— X/ 1(Xf7éxty)'

1. Compute the stochastic differential of the process V = (V;);>0 defined by
t t ¢2
Vi = exp{—/ qﬁudBu—i—/ (”—wu> du}.
0 0o \ 2

Applying It6’s formula to the function exp, we readily find

dVi = Vi (¢} — ) dt — Vi dBy.

2. Express the stochastic differential of the process W = X% — XY in terms of W, ¢, ¢
In view of the SDE ({1)) and the linearity of the stochastic differential, we have

AW, = (B(XF) — b(XY)) dt + (o(XF) — o(XV)) dB,
= Wi(ydt + ¢y dBy),

where the second line uses the identities Wiy = b(X[) — b(X}) and Wiy = o(X}) — o (X7}).

3. Compute the stochastic differential of VI and deduce the following identity.
t t ¢2
vt >0, XP—-X/ = (x—y)exp{/ ¢udBu+/ <wu—2"> du}.
0 0

By the stochastic integration-by-parts formula and the previous questions, we have
d(ViWy) = WidVp + Vi dW; + d(V, W),

= VW, (¢7 dt — o dt — ¢y dBy) + ViWy (¢ dt + ¢y dBy) — ViWo? dt
= 0.



We conclude that the process VW is constant equal to VoWy = z — y. In other words, we
have W = (x — y)V !, which is exactly the claimed identity.

4. Deduce that when x # y, the indicators in the definition of ¥, ¢ can be safely removed.
Clearly, the right-hand side of the expression given for X} — X/ does not vanish.

5. Fix p > 1. Prove that the process M = (M;)¢>0 defined as follows is a martingale:
M, = exp{ / ¢y dBy, — / (j)udu}

This is the exponential local martingale associated with the process p¢. Recalling that b, o are
K —Lipschitz for some constant K < 0o, we know that ¢, ¢ are bounded by K. In particular,

Novikov’s criterion E [e 1[5 (pou)? du} < 00 is satisfied for all £ > 0, so M is a martingale.
6. Deduce the existence of a constant ¢ € (0, 00), independent of ¢ and p, such that

Vit >0, Vp>1, 1XF = XY |le < |2 — yleP".

In view of the definition of M, we deduce from the identity in Question 3 that

t 2 _ L
|XF - XVJP = x—y]thexp{P/ Tﬁudu‘i‘p 2p/¢id“}

p? —
< |z —y|PM;exp {pKt 5 L e }
Taking expectations yields the result, with ¢ = ma,x(KTQ, 2).
7. Deduce that the semi-group (F;)¢>o associated with enjoys the following properties:

(a) If f: R — R is bounded and non-decreasing, then so is P, f for each ¢ > 0.
Let f: R — R be bounded and non-decreasing, and let x < y. The identity proved in
Question 3 ensures that X < X/ almost-surely for all ¢ > 0, and hence f(X]) < f(Y/*).
Taking expectations yields (P.f)(x) < (P,f)(y), which shows that P, f is non-decreasing.
The fact that P, f is bounded is clear, since ||P.f]loo < || f]]oo-

(b) If f: R — R is bounded and Lipschitz, then so is P, f for each ¢t > 0.
If f: R — R is bounded and K —Lipschitz, then for any =,y € R we can write

|Pif(z) = Pf(y)l = [EF(XD)]-EF(X)]
< E[f(Xy) - f(XDI
< KE[X? - X/
< Kelz -y,



where the last line uses Question 6 with p = 1. This shows that P, f is Ke® Lipschitz.

(c) If f: R — R is bounded and continuous, then so is P f for each ¢ > 0.
Fix t > 0 and a real-valued sequence (x,),>1 that converges to x. Question 6 implies that
X" — X7 in LP hence in distribution, which precisely means that P f(xy,) — (P.f)(x)

for every bounded continuous f: R — R, as desired.
8. Prove that if f,b,0 are in C}(R), then so is P,f for all t > 0 and

bl (X ey yay_ (O XE)”
g Xu dBu qu —_— du
ek (BfY@) — B |pomeh oD (von- o)

For fixed u > 0, the formula in Question 3 shows that z — X is continuous. Since b, o are

differentiable, we deduce that

b(X3) — b(X7)

X{f — ng Y—T,YyF£r
o(Xy) — o(Xi)

qu — Xﬁ y—z,YyF£T

V(X))

o' (X3).

Since moreover b, o are Lipshitz, the left-hand sides are uniformly bounded, so we may invoke

the dominated convergence theorem and its stochastic version to obtain in probability:

b i) t
~tul T ) dy — b(X*)du
/0 ( X{f—Xg YT Y#T /0 ( U)

/ot <U()§f) - ;(ﬁ)f R —— /Otw’(Xﬁ))?du

YyoT,yFT
t XT) — Xg t
/(”( w) ~ ol )> dB, —— /a’(Xff)dBu
0 Xq‘f—Xu y—)a:,y;éss 0

In view of Questions 3 and 4, we deduce that in probability,

T _ vY t t / V)2
Xi = Xy exp / o (XT)dB, +/ V(XT) — (X)) du ;.
r—vy Yy—T,yF£r 0 0 2

This convergence actually holds in every LP, p > 1 because the left-hand side is bounded in

every LP,p > 1 (Question 6). On the other hand, we have the uniformly bounded convergence

FXF) — f(XY)
Xg: — Xiy YT, YFET

F1(X),

because f € Cb1 (R). Multiplying the last two displays yields the desired conclusion.



9. We finally assume that f,b,o are in CZ(R), and we admit that P,f € CZ(R) for each t > 0.
Prove that the function v: (¢,2) — (P, f)(z) solves a PDE that you should explicitate.
Write L for the generator associated with the SDE , and recall that for g € CZ(R), we have

Ve eR,  (Lo)x) = blz)g(x)+
Now for each t > 0, we have P,f € C}(R), so we may take g = P,f and combine this with

Kolmogorov’s equation %Ptf = LP,f to conclude that v(t,x) = (P.f)(x) solves the PDE

v, o2 (x) O
St = b@) o (ta) + T St a), 2)

on R; x R. Note that v is bounded by || f||cc and that
VeeR, v(0,z) = f(z). (3)

Conversely, we have seen in class that v is the only bounded solution to —.



